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Remarks on Optimization in SILO

I was able to attend the SILO Workshop only by video hookup
during the wee hours of the Australian morning. My biased sample
of the live proceedings (and a later study of the slides for the intro-
ductory talks) confirms the organizers’ opinion that the meeting was
highly successful and that it highlighted some of the most exciting
current research in data analysis and learning.

As an optimizer who has been marginally involved in these fields for
some time, I was asked to make some remarks on SILO issues from
the optimization perspective. I’ll start with some background, then
discuss the optimization issues that arise in data analysis and learn-
ing, and the ways in which optimization research (past and present)
addresses these issues.

Data analysis can be defined broadly as the extraction of knowledge
from data. Machine learning is similar in scope, but emphasizes
the use of the knowledge to make predictions about other, similar
data. These areas are highly interdisciplinary, drawing on statistics,
information theory, signal processing, and computer science (artificial
intelligence, databases, architecture, and systems). Optimization too
is key. Not only is it embedded into many aspects of data analysis
and learning (as discussed below), but it also plays a familiar role in
turning the knowledge thus gained into good decisions.

Interest in data analysis and learning has grown because of the
buzz surrounding “big data.” A feature article in the New York
Times Magazine (11 Feb 2012), quoted by Michael Mahoney in his
SILO talk, opines that “(big data) opens the door to a new approach
to understanding the world and making decisions.” The scientific, so-
cial, and economic implications of big data will take years to fathom,
and it may not live up to the hype, but the potential is clearly present
for major impacts across many fields.

Important big data application problems are found in speech, lan-
guage, and text processing (e.g., speech recognition, machine trans-
lation); image and video processing (e.g., denoising / deblurring and
medical imaging); biology and bioinformatics (e.g., identifying ge-
nomic and evironmental risk factors for diseases); feature identifica-
tion in geographical and astronomical images; and many other areas.
As we discovered recently, U.S. government agencies have been busy
solving big-data problems of their own, analyzing surveillance data
from telephone and email communications.

The nature of the analysis differs across these applications, as does
the use that is made of the extracted knowledge. Nevertheless, some
powerful unifying themes can be identified. One theme is the preva-
lence of regression and classification problems. Given many items of
data and an output or label associated with each item, can we learn
a function that maps the data to its corresponding output? This
function can then be applied to future, unknown items of data and
used to predict the output. By parametrizing the function appro-
priately and applying statistical principles (for example, expressing
the likelihood of the observations as a function of the parameters)
such problems can be formulated as optimization problems. A pro-
cess of this type leads to the familiar least-squares problem, and the
only slightly less familiar robust regression, logistic regression, and
support vector machine (SVM) formulations. (A common version of
the latter is a structured convex quadratic program, to which many
optimization methods have been applied during the past 15 years.)
Many formulations have partially separable objectives, a consequence
of the fact that the data set has many items of the same structure
to which the same transformations and measures are applied. Algo-
rithms of stochastic and incremental gradient type have thus become
extremely popular. Each iteration of these methods requires only a
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small, randomly selected subset of the data, using this sample to form
an unbiased estimate the full objective gradient. These methods can
be applied also to streaming data, provided we assume that the order
of arrival of data items is random. Stochastic gradient methods date
back to a 1951 paper of Robbins and Munro. They were studied inde-
pendently by the machine learning and optimization communities for
many years; forces have been joined in recent times. A particularly
relevant property of stochastic methods is that they do not require
evaluations of the objective, an operation that requires a complete
sweep through the data set, and is therefore prohibitively expensive
in some big data applications.

Another important theme is the identification of low-dimensional
structure in high-dimensional data. Examples include finding a partic-
ular combination of base pairs in a genome (among an astronomical
number of possible combinations) that indicate heightened risk of a
disease, or finding a particular (possibly nonlinear) function of the
pixel intensities in a picture of a digit, that makes it easy to identify
the subject as being one of the digits 0 through 9. Two fundamental
issues arise here. The first is one of representation, in which we seek
ways to transform raw data into forms that facilitate more effective
analysis. Deep learning — in which data is transformed by passing
it though a layered neural network, resulting in output data that is
easier to classify — is enjoying renewed popularity in speech and im-
age processing. Optimization is used in the training of deep learning
networks, in determining optimal values for the parameters that de-
fine the transformations at each layer of the network. Another way
to address the representation issue is to choose a collection of basis
elements (sometimes called “atoms”) in high-dimensional space and
define the low-dimensional structure in terms of a small subset of
these elements. The basis can be predefined, or built up greedily or
adaptively during the computation. Basis selection leads us to the
second key issue: Formulation and solution of optimization problems
that are tractable representations of the essentially intractable prob-
lem of low-dimensional structure identification. To explain: Consider
the classical problem of finding the vector in Rn with k � n nonzeros
that minimizes a least-squares objective. A general algorithm would
require investigation of all

(
n
k

)
possible locations for the nonzeros, but

compressed sensing shows us that when the least-squares objective
has certain properties, a convex optimization formulation involving
the `1 norm finds the solution. More generally, the challenge is to
find regularization functions that can be included in the optimization
formulation to induce the desired low-dimensional structure. The
form of these functions depends, naturally, on the type of structure
desired. As examples: The nuclear norm of a matrix tends to induce
low rank in the solution of matrix optimization problems, and the use
of the total-variation norm in image processing yields images with a
natural quality — fields of constant color separated by sharp edges.
Regularizations functions are often simple but nonsmooth. The study
of formulation and solution of such problems is sometimes known as
“sparse optimization.”

Optimization formulations derived from Bayesian principles contain
terms arising from prior assumptions about the knowledge hidden in
the data. These terms often have similar forms to the regularization
functions discussed above. Optimizers can leave the Bayesian vs.
frequentist disputes to statisticians! Both approaches give rise to
interesting optimization problems.

Partial separability and the widespread use of regularization are two
typical characteristics of optimization problems in data analysis and
learning. We mention several other ways in which these problems are
unusual, by the standards of traditional optimization.
1. The objective functions often have a simple analytical form, mak-

ing it easy to hand-calculate derivatives. (Indeed, it is argued that
greater volumes of data make it possible to use less sophisticated
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models.)
2. Data scientists usually do not require a near-exact solution of the

optimization problem, as the problem posed is often thought of as
an empirical model (based on sampled data) of some underlying
true objective. In fact, over-precise solution can lead to overfitting
of the available data, at the expense of generalizability, that is,
relevance of the solution to unseen data. In this sense, early termi-
nation of the optimization algorithm can be regarded as a form of
regularization. The low-accuracy imperative is another reason for
the success of stochastic gradient and first-order methods, which
can sometimes find crude solutions rapidly.

3. Optimization formulations in these areas often contain simple
scalar parameters, that trade off between different objectives, for
example, between fitting the available data vs generalizability /
regularization. The process of finding good values for these pa-
rameters is called “tuning.” Often, the solution of the optimiza-
tion model for a particular parameter is evaluated by some external
criterion, such as its performance in predicting outputs for data
items in a validation data set. The optimal parameter value is
taken to be the one whose solution performs best on this crite-
rion. Consequently, we need to solve not just one isolated problem,
but rather a sequence of closely related problems, differing only
in the choice of tuning parameters. Warm starting — using the
solution for one value of tuning parameter as the starting point for
a nearby value — has been applied with success. Moreover, tech-
niques from derivative-free optimization can be used to traverse
the space of tuning parameters, when the dimension is greater
than one.

4. Data scientists are strongly interested in the theoretical complexity
of optimization algorithms, such as different sublinear convergence
rates (for example 1/

√
k vs 1/k vs 1/k2 in iteration number k) and

dependence of complexity on the dimension of the data space. The
level of interest would seem unusual to many optimizers, who are
used to seeing only weak relationships between theoretical com-
plexity and practical performance. Optimization complexity plays
into the field of inferential complexity, which explores the tradeoffs
between the statistical quality of a solution and the complexity of
attaining it.

Many established optimization techniques, including some regarded
as old-fashioned, have proved to be extremely useful in tackling data
analysis and learning problems. Augmented Lagrangian methods, in
particular the alternating direction method of multipliers (ADMM),
are important in regularized formulations and as a basis for paral-
lel methods. Accelerated first-order methods are popular because
they can be extended easily to regularized objectives and require lit-
tle extra work or storage than steepest-descent approaches. These
methods introduce “momentum” terms into search directions to im-
prove convergence rates, and are cousins of such old approaches as
conjugate-gradient and heavy-ball. The prox-linear framework has
proved useful for regularized formulations; LBFGS and inexact New-
ton methods have been adapted with much success to learning appli-
cations; and even the conditional-gradient method (sometimes known
as “Frank-Wolfe”) is enjoying a revival, as a way to find compact rep-
resentations greedily. Coordinate relaxation, not taken very seriously
by optimizers for some years, has been used with success in support
vector machines since the 1990s, and is being applied in other areas
too. Duality has also proved to be an important tool. Duals are some-
times easier to solve and may (as in support vector machines) lead to
reformulations with more powerful statistical properties. Primal-dual
algorithms are efficient for some applications.

Computational systems issues — database systems, computation
and memory architectures, parallel computing — also play a central
role in big data. The interaction of optimization algorithms with sys-
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tems is opening up new opportunities for research, for example in fast
parallel asynchronous variants of stochastic gradient and coordinate
descent. The possibility of using GPUs has piqued the interest of
several resarchers since about 2008. They remain difficult to exploit
for several reasons (including ease-of-use and memory transfer rates)
but the potential payoff in computational efficiency is large, so they
may yet hold interest in some contexts.

What of the future? Although we do not know how research pri-
orities in SILO will evolve, we can say with confidence that optimiza-
tion will continue to play an important role. It has become deeply
enmeshed in many aspects of SILO; interest in optimization is run-
ning high among data scientists. New optimization formulations will
continue to proliferate, each bringing its own particular challenges. It
is not hard to imagine that optimization solvers will provide impor-
tant middleware for general purpose data-analysis toolboxes, or that
optimization technology will form some of the glue in “human-in-the-
loop” systems for data analysis. Finally, new and increasingly com-
plex computing substrates are rewriting the rules of computational
cost and parallel processing. Optimization algorithms will need to be
rethought and reanalyzed to exploit these new realities.

I close with several references. The report [1] presents a perspective
on big data from leaders of the data science community. The recent
edited volume [2] collects papers from on optimization for machine
learning, written by researchers in both fields, and at their interface.
Finally, I recommend perusal of the slides from the SILO Workshop,
which illustrate the impressive variety and depth of research at the
intersection of systems, information, learning, and optimization.

Stephen J. Wright, Computer Sciences Department, University of Wiscon-
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