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Abstract. An algorithm for smooth nonlinear constrained optimization problems is described,
in which a sequence of feasible iterates is generated by solving a trust-region sequential quadratic
programming (SQP) subproblem at each iteration, and perturbing the resulting step to retain fea-
sibility of each iterate. By retaining feasibility, the algorithm avoids several complications of other
trust-region SQP approaches: The objective function can be used as a merit function and the SQP
subproblems are feasible for all choices of the trust-region radius. Global convergence properties are
analyzed under different assumptions on the approximate Hessian. Under additional assumptions,
superlinear convergence to points satisfying second-order sufficient conditions is proved.
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1. Introduction. We consider the general smooth constrained optimization
problem:

min f(z) subject to c(z) = 0, d(z) ≤ 0, (1.1)

where z ∈ IRn, f : IRn → IR, c : IRn → IRm, and d : IRn → IRr are smooth (twice
continuously differentiable) functions. We denote the set of feasible points for (1.1)
by F .

At a feasible point z, let H be an n × n symmetric matrix. The basic SQP
approach obtains a step ∆z by solving the following subproblem

min
∆z

m(∆z) def= ∇f(z)T ∆z + 1
2∆zT H∆z subject to (1.2a)

c(z) +∇c(z)T ∆z = 0, d(z) +∇d(z)T ∆z ≤ 0. (1.2b)

The matrix H is chosen as some approximation to the Hessian of the Lagrangian, pos-
sibly obtained by a quasi-Newton technique, or possibly a “partial Hessian” computed
in some application-dependent way from some of the objective and constraint func-
tions and Lagrange multiplier estimates. The function m(·) is the quadratic model
for the change in f around the current point z.

Although the basic approach (1.2) often works well in the vicinity of a solution to
(1.1), trust-region or line-search devices must be added to improve its robustness and
global convergence behavior. In this paper, we consider a trust region of the form

‖D∆z‖p ≤ ∆, (1.3)

where the scaling matrix D is uniformly bounded above and p ∈ [1,∞]. The choice
p = ∞ makes (1.2), (1.3) a quadratic program, since we can then restate the trust-
region constraint as −∆e ≤ D∆z ≤ ∆e, where e = (1, 1, . . . , 1)T . The choice p = 2
produces the quadratic constraint ∆zT DT D∆z ≤ ∆2, and since z is feasible for (1.1),
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we can show that the solution ∆z of (1.2), (1.3) is identical to the solution of (1.2)
alone, with H replaced by H + γDT D for some γ ≥ 0. For generality, we develop
most of the convergence theory to apply to any choice of p ∈ [1,∞], making frequent
use of the equivalence between ‖ · ‖p and ‖ · ‖2.

By allowing D to have zero eigenvalues, the constraint (1.3) generally allows ∆z
to be unrestricted by the trust region in certain directions. We assume, however, that
the combination of (1.3) and (1.2b) ensures that the all components of the step are
controlled by the trust region; see Assumption 1 below.

When the iterate z is not feasible for the original problem (1.1), we cannot in
general simply add the restriction (1.3) to the constraints in the subproblem (1.2),
since the resulting subproblem will be infeasible for small ∆. Practical trust-region
methods such as those due to Celis-Dennis-Tapia [3] and Byrd-Omojokun [12] do not
insist on satisfaction of the constraints (1.2b) by the step ∆z, but rather achieve some
reduction in the infeasibility, while staying within the trust region (1.3) and reducing
the objective in the subproblem (1.2a).

Another issue that arises in the practical SQP methods is the use of a merit or
penalty function to measure the worth of each point z. Typically this function is
some combination of the objective f(z) and the violations of the constraints, that is,
|ci(z)|, i = 1, 2, . . . ,m and d+

i (z), i = 1, 2, . . . , r. The merit function may also depend
on estimates of the Lagrange multipliers for the constraints in (1.1). It is sometimes
difficult to choose weighting parameters in these merit functions appropriately, in a
way that drives the iterates to a solution (or at least a point satisfying Karush-Kuhn-
Tucker conditions) of (1.1).

In this paper, we propose an algorithm called Algorithm FP-SQP (for feasibility
perturbed SQP), in which all iterates zk are feasible; that is, zk ∈ F for all k. We
obtain a step by solving a problem of the form (1.2) at a feasible point z ∈ F with
a trust-region constraint (1.3). We then find a perturbation ∆̃z of the step ∆z that
satisfies two crucial properties: First, feasibility:

z + ∆̃z ∈ F . (1.4)

Second, asymptotic exactness: There is a continuous monotonically increasing func-
tion φ : IR+ → [0, 1/2] with φ(0) = 0 such that

‖∆z − ∆̃z‖2 ≤ φ(‖∆z‖2) ‖∆z‖2. (1.5)

Note that because φ(t) ≤ 1/2 for all t ≥ 0, we have that

(1/2)‖∆z‖2 ≤ ‖∆̃z‖2 ≤ (3/2)‖∆z‖2. (1.6)

These conditions on ∆̃z suffice to prove good global convergence properties for the
algorithm. Additional assumptions on the feasibility perturbation technique can be
made to obtain fast local convergence; see Section 4.

The effectiveness of our method depends on its being able to calculate efficiently
a perturbed step ∆̃z with the properties (1.4) and (1.5). This task is not difficult for
certain structured problems, including some problems in optimal control. Addition-
ally, in the special case in which the constraints c and d are linear, we can simply
set ∆̃z = ∆z. When some constraints are nonlinear, ∆̃z can be obtained from the
projection of z + ∆z onto the feasible set F . For general problems, this projection
is nontrivial to compute, but for problems with structured constraints, it may be
inexpensive.
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By maintaining feasible iterates, our method gains several advantages. First, the
trust region restriction (1.3) can be added to the SQP problem (1.2) without concern
as to whether it will yield an infeasible subproblem. There is no need for a composite-
step approach such as those mentioned above [3, 12]. Second, the objective function
f can itself be used as a merit function. Third, if the algorithm is terminated early,
we will be able to use the latest iterate zk as a feasible suboptimal point, which in
many applications is far preferable to an infeasible suboptimum.

The advantages of the previous paragraph are of course shared by other feasible
SQP methods. The FSQP approach described in Lawrence and Tits [10] (based on an
earlier version of Panier and Tits [13] and also using ideas from Birge, Qi, and Wei [2])
calculates the main search direction via a modified SQP subproblem that includes a
parameter for “tilting” the search direction toward the interior of the set defined by
the inequality constraints. A second subproblem is solved to obtain a second-order
correction, and an “arc search” is performed along these two directions to find a new
iterate that satisfies feasibility as well as a sufficient decrease condition in the objective
f . The approach can also handle nonlinear equality constraints, but feasibility is not
maintained with respect to these constraints, in general. Our algorithm below differs
in that it uses a trust region rather than arc searches to attain global convergence,
it requires feasibility with respect to both inequality and equality constraints at each
iteration, and it is less specific than in [10] about the details of calculating the step.
In this sense, Algorithm FP-SQP represents an algorithmic framework rather than a
specific algorithm.

Heinkenschloss [8] considers projected SQP methods for problems with equality
constraints in addition to bounds on a subset of the variables. He specifically targets
optimal control problems with bounds on the controls—a similar set of problems to
those we discuss in a companion manuscript [15]. The linearized equality constraints
are used to express the free variables in terms of the bounded variables, and a pro-
jected Newton direction (see [1]) is constructed for the bounded variables. The step
is computed by performing a line search along this direction with projection onto the
bound constraints. Besides using a line search rather than a trust region, this method
contrasts with ours in that feasibility is not enforced with respect to the equality con-
straints, so that an augmented Lagrangian merit function must be used to determine
an acceptable step length.

Other related work includes the feasible algorithm for problems with convex con-
straints discussed in Conn, Gould, and Toint [5]. At each iteration, this algorithm
seeks an approximate minimizer of the model function over the intersection of the
trust region with the original feasible set. The algorithm is targeted to problems in
which the constraint set is simple (especially bound-constrained problems with ∞-
norm trust regions, for which the intersection is defined by componentwise bounds).
Aside from not requiring convexity, our method could be viewed as a particular in-
stance of Algorithm 12.2.1 of [5, p. 452], in which the model function approximates
the Lagrangian and the trial step is a perturbed SQP step. It may then be possible to
apply the analysis of [5], once we show that the step generated in this fashion satisfies
the assumptions in [5], at least for sufficiently small values of the trust-region radius.
It appears nontrivial, however, to put our algorithm firmly into the framework of [5],
and to extend the latter algorithm to handle a class of problems (featuring noncon-
vexity) which its designers did not have in mind. Therefore, we present an analysis
that was developed independently of that in [5]. We note that several features of the
analysis in [5, Chapter 12] are similar to ours; for instance, χ on [5, p. 452] is similar to
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C(z, 1) defined below in (3.1), except that minimization in χ is taken over the original
feasible set rather than over its linearized approximation, as in (3.1). Other aspects
of the analysis in [5] and this paper are different; for instance, the generalized Cauchy
point in [5, Section 12.2.1] is defined in a much more complex fashion with respect
to the projected-gradient path, rather than along the straight line as in Lemma 3.3
below.

The remainder of the paper is structured as follows. The algorithm is specified in
Section 2, and in Section 2.1 we show that it is possible to find a feasible perturbation
of the SQP step that satisfies the requirements (1.4) and (1.5). We present global
convergence results in Section 3. After some basic lemmas in Section 3.1, we describe
in Section 3.2 conditions under which the algorithm has at least one limit point that
either fails a constraint qualification or satisfies Karush-Kuhn-Tucker conditions. In
particular, we assume in this section that the approximate Hessian Hk in (1.2) satisfies
the bound ‖Hk‖2 ≤ σ0 + σ1k for some constant σ0 and σ1—a type of bound often
satisfied by quasi-Newton update formulae. In Section 3.3, we make the stronger
assumption that ‖Hk‖ is uniformly bounded, and prove the stronger result that all
limit points of the algorithm either fail a constraint qualification or else satisfy Karush-
Kuhn-Tucker conditions. Under stronger assumptions on the limit point z∗ and the
feasibility projection technique, we prove fast local convergence in Section 4. Some
final comments appear in Section 5.

A companion report of Tenny, Wright, and Rawlings [15] describes application of
the algorithm to nonlinear optimization problems arising in model predictive control.

1.1. Optimality Results and Notation. The Lagrangian function for (1.1) is

L(z, µ, λ) def= f(z) + µT c(z) + λT d(z), (1.7)

where µ ∈ IRm and λ ∈ IRr are Lagrange multipliers for the constraints. The Karush-
Kuhn-Tucker (KKT) conditions for (1.1) are as follows:

∇zL(z, µ, λ) = ∇f(z) +∇c(z)µ +∇d(z)λ = 0, (1.8a)
c(z) = 0, (1.8b)

0 ≥ d(z) ⊥ λ ≥ 0, (1.8c)

where ⊥ indicates that λT d(z) = 0. We refer to any point z such that there exist µ
and λ satisfying the conditions (1.8) as a KKT point.

For any feasible point z, we denote the active set A(z) as follows:

A(z) def= {i = 1, 2, . . . , r | di(z) = 0}. (1.9)

To ensure that the tangent cone to the constraint set at a feasible point z ad-
equately captures the geometry of the feasible set near z, a constraint qualification
must be satisfied at z. In the global convergence analysis of Section 3, we use the
Mangasarian-Fromovitz constraint qualification (MFCQ), which requires that

∇c(z) has full column rank; and (1.10a)
there exists a vector v ∈ IRn such that

∇c(z)T v = 0 and vT∇di(z) < 0 for all i ∈ A(z). (1.10b)

A more stringent constraint qualification, used in the local convergence analysis of
Section 4, is the linear independence constraint qualification (LICQ), which requires
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that

{∇ci(z), i = 1, 2, . . . ,m} ∪ {∇di(z), i ∈ A(z)} is linearly independent. (1.11)

If z is a solution of (1.1), at which a constraint qualification such as (1.10) or
(1.11) is satisfied, there exist vectors µ and λ such that (1.8) is satisfied by the triplet
(z, µ, λ).

We say that the strict complementarity condition is satisfied at the KKT point z
if for some choice of the Lagrange multiplier vectors µ and λ satisfying the conditions
(1.8), we have

λ− d(z) > 0. (1.12)

That is, λi > 0 for all i ∈ A(z).
We use B(z, t) to denote the open ball (in the Euclidean norm) of radius t about

z. When the subscript on the norm ‖ · ‖ is omitted, the Euclidean norm ‖ · ‖2 is to be
understood. The closure of a set L is denoted by cl(L).

We use order notation in the following way: If two matrix, vector, or scalar
quantities M and A are functions of a common quantity, we write M = O(‖A‖) if
there is a constant β such that ‖M‖ ≤ β‖A‖ whenever ‖A‖ is sufficiently small. We
write M = Ω(‖A‖) if there is a constant β such that ‖M‖ ≥ β−1‖A‖ whenever ‖A‖ is
sufficiently small. We write M = o(‖A‖) if there is a continuous, increasing function
φ : IR→ IR with φ(0) = 0 such that ‖M‖ ≤ φ(‖A‖)‖A‖ for all ‖A‖ sufficiently small.

2. The Algorithm. In specifying the algorithm, we assume only that the per-
turbed step ∆̃z satisfies (1.4) and (1.5), without specifying how it is calculated. As
with all trust-region algorithms, a critical role is played by the ratio of actual to
predicted decrease, which is defined for a given SQP step ∆zk and its perturbed

counterpart ∆̃z
k

as follows:

ρk =
f(zk)− f(zk + ∆̃z

k
)

−mk(∆zk)
. (2.1)

The algorithm is specified as follows.
Algorithm 2.1 (FP-SQP).

Given starting point z0 ∈ F , initial radius ∆0 ∈ (0, ∆̄], initial scaling matrix D0,
trust-region upper bound ∆̄ ≥ 1, η ∈ (0, 1/4), and p ∈ [1,∞];

for k = 0, 1, 2, · · ·
Obtain ∆zk by solving (1.2), (1.3);
if mk(∆zk) = 0

STOP;

Seek ∆̃z
k

with the properties (1.4) and (1.5);

if no such ∆̃z
k

is found;
∆k+1 ← (1/2)‖Dk∆zk‖p;
zk+1 ← zk; Dk+1 ← Dk;

else
Calculate ρk using (2.1);
if ρk < 1/4

∆k+1 ← (1/2)‖Dk∆zk‖p;
else if ρk > 3/4 and ‖Dk∆zk‖p = ∆k
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∆k+1 ← min(2∆k, ∆̄);
else

∆k+1 ← ∆k;
if ρk ≥ η

zk+1 ← zk + ∆̃z
k
;

choose new scaling matrix Dk+1;
else

zk+1 ← zk; Dk+1 ← Dk;
end (for).

We now state some assumptions that are used in the subsequent analysis. First,
we define the level set L0 as follows:

L0
def= {z | c(z) = 0, d(z) ≤ 0, f(z) ≤ f(z0)} ⊂ F .

Our assumption on the trust-region bound (1.3) is as follows:
Assumption 1. There is a constant δ such that for all points z ∈ L0 and all

scaling matrices D used by the algorithm, the following conditions hold:
(a) D is uniformly bounded; and
(b) we have for any ∆z satisfying the constraints

c(z) +∇c(z)T ∆z = 0, d(z) +∇d(z)T ∆z ≤ 0

that

δ−1‖∆z‖2 ≤ ‖D∆z‖p ≤ δ‖∆z‖2. (2.2)

In this assumption, the constant that relates ‖·‖2 with the equivalent norms ‖·‖p
for all p between 1 and ∞ is absorbed into δ. Note that the right-hand inequality in
(2.2) is implied by part (a) of the assumption.

Note that for unconstrained problems (in which c and d are vacuous), the left-
hand inequality in (2.2) is satisfied when all scaling matrices D used by the algorithm
have bounded inverse. Another special case of relevance to optimal control problems
occurs when the constraints have the form

c(u, v) = 0, c : IRn−m × IRm → IRm, (2.3)

(that is u ∈ IRn−m and v ∈ IRm), and the trust-region constraint is imposed only on
the u variables; that is,

‖Du∆u‖p ≤ ∆, (2.4)

where Du is a diagonal matrix with positive diagonal elements. The linearized con-
straints (1.2b) then have the form

∇uc(u, v)T ∆u +∇vc(u, v)T ∆v = 0, (2.5)

which if ∇vc(u, v) is invertible leads to

∆v = − (∇vc(u, v))−T ∇uc(u, v)T ∆u.

If we assume that ∇vc(u, v) is invertible for all points (u, v) in the region of interest,
with ‖(∇vc(u, v))−1‖ bounded, we can define a constant δ̂ > 0 such that ‖∆v‖p ≤
δ̂‖∆u‖p. We then have

‖(∆u, ∆v)‖p ≤ (1 + δ̂)‖∆u‖p ≤ (1 + δ̂)D−1
min‖Du∆u‖p = (1 + δ̂)D−1

min‖D(∆u, ∆v)‖p,
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where we define Dmin to be a lower bound on the diagonals of Du, and
D = diag(Du, 0). On the other hand, we have

‖D(∆u, ∆v)‖p = ‖Du∆u‖∞ ≤ Dmax‖∆u‖p ≤ Dmax‖(∆u, ∆v)‖p,

where Dmax is an upper bound on the diagonals of Du. It follows from the last two
expressions that Assumption 1 is satisfied in this situation.

Second, for some results we make an assumption on the boundedness of the level
set L0 and on the smoothness of

Assumption 2. The level set L0 is bounded, and the functions f , c, and d in
(1.1) are twice continuously differentiable in an open neighborhood N (L0) of this set.

Note that L0 is certainly closed, so that if Assumption 2 holds, it is also compact.

2.1. Algorithm FP-SQP is Well Defined. We show first that the algorithm
is well defined, in the sense that given a feasible point zk, a step ∆̃zk satisfying (1.4)
and (1.5) can be found for all sufficiently small ∆k, under certain assumptions.

We note first that whenever z = zk is feasible and Assumption 1 holds, the sub-
problem (1.2), (1.3) has a solution. This fact follows from nonemptiness, closedness,
and boundedness of the feasible set for the subproblem. To show that there exists
∆̃zk satisfying (1.4) and (1.5), we make use of the following assumption.

Assumption 3. For every point ẑ ∈ L0, there are positive quantities ζ and ∆̂3

such that for all z ∈ cl(B(ẑ, δ∆̂3)) we have

min
v∈F

‖v − z‖ ≤ ζ (‖c(z)‖+ ‖[d(z)]+‖) , (2.6)

where δ is the constant from Assumption 1 and [d(z)]+ = [max(di(z), 0)]ri=1.
(Recall our convention that ‖ · ‖ denotes ‖ · ‖2.)

This assumption requires the constraint system to be regular enough near each
feasible point that a bound like that of Hoffmann [9] for systems of linear equalities
and inequalities is satisfied. Assumption 3 is essentially the same as Assumption C
of Lucidi, Sciandrone, and Tseng [11]. A result of Robinson [14, Corollary 1] shows
that Assumption 3 is satisfied whenever MFCQ is satisfied at all points in L0. The
following result shows that a bound similar to (2.6) also holds locally, in the vicinity
of a feasible point satisfying MFCQ.

Lemma 2.1. Let ẑ be a feasible point for (1.1) at which MFCQ is satisfied. Then
there exist positive quantities ζ and R̂1 such that for all z ∈ cl(B(ẑ, R̂1)), the bound
(2.6) is satisfied.

Proof. We first choose R̄1 small enough that for all z̃ ∈ cl(B(ẑ, R̄1))∩F , we have
that A(z̃) ⊂ A(ẑ), where A(·) is defined by (1.9). Let v be a vector satisfying (1.10)
at z = ẑ, and assume without loss of generality that ‖v‖2 = 1. Because ∇c(ẑ) has
full column rank, we have by decreasing R̄1 if necessary that for any z̃ ∈ cl(B(ẑ, R̄1)),
∇c(z̃) also has full column rank. Moreover, using the full rank of ∇c(z̃), we can find
a perturbation ṽ of v satisfying ‖ṽ − v‖ = O(‖z̃ − ẑ‖) and (after possibly decreasing
R̄1 again) ‖ṽ‖ ≥ 0.5, such that

∇c(z̃)T ṽ = 0 and ṽT∇di(z̃) < 0 for all i ∈ A(ẑ) ⊃ A(z̃), all z̃ ∈ cl(B(ẑ, R̄1)) ∩ F .

Hence, the MFCQ condition is satisfied for all z̃ ∈ cl(B(ẑ, R̄1)) ∩ F .
We now appeal to Corollary 1 of Robinson [14]. From this result, we have that

there is ζ > 0 (depending on ẑ but not on z̃) and an open neighborhood M(z̃) of each
z̃ ∈ cl(B(ẑ, R̄1)) ∩ F such that (2.6) holds for all z ∈M(z̃). Since

M̂(ẑ) def= ∪z̃{M(z̃) | z̃ ∈ cl(B(ẑ, R̄1)) ∩ F}
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is an open neighborhood of the compact set cl(B(ẑ, R̄1)) ∩ F , we can define R̂1 ≤ R̄1

small enough that cl(B(ẑ, R̂1)) ⊂ M̂(ẑ). Thus, since (2.6) holds for all z ∈M(z̃), our
proof is complete.

We observed above that under Assumption 1, the solution ∆z of (1.2), (1.3) is well
defined. Using the other assumptions, we now show that ∆̃z satisfying the properties
(1.4) and (1.5) can also be found, so that Algorithms FP-SQP is well defined.

Theorem 2.2. Suppose that Assumptions 1, 2, and 3 are satisfied. Then there
is a positive constant ∆def such that for any z ∈ L0 and any ∆ ≤ ∆def , there is a
step ∆̃z that satisfies the properties (1.4) and (1.5), where ∆z is the solution of (1.2),
(1.3) for the given values of z and δ.

Proof. We show that the result holds for the function φ(t) = min(1/2,
√

t) in
(1.5).

We first choose ∆̂0 small enough that B(z, δ∆̂0) ⊂ N (L0) for all z ∈ L0, where
N (L0) is defined in Assumption 2. Thus, for ∆ ≤ ∆̂0 and ∆z solving (1.2), (1.3), we
have for all α ∈ [0, 1] that

‖α∆z‖ ≤ ‖∆z‖ ≤ δ‖D∆z‖p ≤ δ∆̂0, (2.7)

so that z + α∆z ∈ N (L0).
Given any ẑ ∈ L0, we seek a positive constant ∆̂ such that for all

z ∈ cl(B(ẑ, δ∆̂/2))∩F , and all ∆ ≤ ∆̂/2, there is a step ∆̃z that satisfies the properties
(1.4) and (1.5).

We choose initially ∆̂ = ∆̂0, and assume that ∆z satisfies ‖D∆z‖p ≤ ∆, which
implies from Assumption 1 and the definitions of ∆ and ∆̂ that

‖∆z‖ ≤ δ‖D∆z‖p ≤ δ∆ ≤ δ∆̂/2 < δ∆̂0.

From feasibility of z, (2.7), and (1.2b), and the fact that c and d are twice continuously
differentiable in N (L0), we have that

c(z + ∆z) = c(z) +∇c(z)T ∆z + O(‖∆z‖2) = O(‖∆z‖2)

and

[d(z + ∆z)]+ =
[
d(z) +∇d(z)T ∆z + O(‖∆z‖2)

]
+

= O(‖∆z‖2).

We now set ∆̂← min(∆̂, ∆̂3) and apply Assumption 3. Since

‖(z + ∆z)− ẑ‖ ≤ ‖z − ẑ‖+ ‖∆z‖ ≤ δ∆̂/2 + δ∆̂/2 ≤ δ∆̂3,

we have from Assumption 3 and the estimates above that

min
v∈F

‖v − (z + ∆z)‖ ≤ ζ (‖c(z + ∆z)‖+ ‖[d(z + ∆z)]+‖) = O(ζ‖∆z‖2), (2.8)

where ζ may depend on ẑ. Since v = z is feasible for (2.8), we have that any solution
of this projection problem satisfies ‖v − (z + ∆z)‖ ≤ ‖∆z‖. Hence, the minimization
on the left-hand side of (2.8) may be restricted to the nonempty compact set cl(B(z +
∆z, ‖∆z‖)) ∩ F , so the minimum is attained. If we use the minimizer v to define
∆̃z = v − z, then from (2.8) we have

‖∆̃z −∆z‖ = O(ζ‖∆z‖2).
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Therefore, by decreasing ∆̂ if necessary, we find that (1.5) is satisfied for our choice
φ(t) = min(1/2,

√
t).

The set of open Euclidean balls B(ẑ, δ∆̂/2), ẑ ∈ L0 forms an open cover of L0.
Since L0 is compact, we can define a finite subcover. By defining ∆def to be the
minimum of the ∆̂/2 over the subcover, we have that ∆def is positive and has the
desired property.

3. Global Convergence. In this section, we prove convergence to KKT points
of (1.1). Our results are of two types. We show first in Section 3.2 that if Algorithm
FP-SQP does not terminate finitely (at a KKT point), it has a limit point which either
satisfies the MFCQ and KKT conditions or else fails to satisfy MFCQ. In Section 3.3,
we show under a stronger assumption on the approximate Hessian Hk that all limit
points either fail to satisfy MFCQ or else satisfy both MFCQ and KKT.

We start with some technical results.

3.1. Technical Results. The first result concerns the solution of a linear pro-
gramming variant of the SQP subproblem (1.2), (1.3). Its proof appears in the Ap-
pendix.

Lemma 3.1. Let f , c, and d be as defined in (1.1), and let C(z, τ) denote the
negative of the value function of the following problem, for some z ∈ F and τ > 0:

CLP(z, τ): min
w
∇f(z)T w subject to (3.1a)

c(z) +∇c(z)T w = 0, d(z) +∇d(z)T w ≤ 0, wT w ≤ τ2. (3.1b)

For any point z̄ ∈ F , we have C(z̄, 1) ≥ 0, with C(z̄, 1) = 0 if and only if z̄ is a KKT
point (1.8).

When the MFCQ conditions (1.10) are satisfied at z̄, but z̄ is not a KKT point,
then there exist positive quantities R2 and ε such that for any z ∈ B(z̄, R2) ∩ F , we
have C(z, 1) ≥ ε.

An immediate consequence of this result is that for any subsequence {zk}k∈K
such that zk → z̄ and C(zk, 1)→ 0, where z̄ satisfies the MFCQ conditions, we must
have that z̄ is a KKT point for (1.1).

Note that C(z, τ) is an increasing concave function of τ > 0. In particular, if
w(z, τ) attains the optimum in CLP(z, τ), the point αw(z, τ) is feasible in CLP(z, ατ)
for all α ∈ [0, 1], so that

C(z, ατ) ≥ αC(z, τ), for all τ > 0, all α ∈ [0, 1]. (3.2)

For convenience, we restate the subproblem (1.2), (1.3) at an arbitrary feasible
point z as follows:

min
∆z

m(∆z) def= ∇f(z)T ∆z + 1
2∆zT H∆z subject to (3.3a)

c(z) +∇c(z)T ∆z = 0, d(z) +∇d(z)T ∆z ≤ 0, (3.3b)
‖D∆z‖p ≤ ∆, (3.3c)

where D satisfies Assumption 1. Consider now the following problem, obtained by
omitting the quadratic term from (3.3a):

min
∆zL
∇f(z)T ∆zL subject to (3.4a)

c(z) +∇c(z)T ∆zL = 0, d(z) +∇d(z)T ∆zL ≤ 0, (3.4b)
‖D∆zL‖p ≤ ∆. (3.4c)
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Denote the negative of the value function for this problem by V (z,D, ∆). Referring to
(3.1) and Assumption 1, we see that the feasible region for CLP(z, δ−1∆) is contained
in the feasible region for (3.4), and the objectives are the same. Hence for ∆ ∈ (0, 1],
we have from (3.2) that

V (z,D, ∆) ≥ C(z, δ−1∆) ≥ δ−1C(z, 1)∆.

For ∆ > 1, on the other hand, we have

V (z,D, ∆) ≥ C(z, δ−1∆) ≥ δ−1C(z,∆) ≥ δ−1C(z, 1).

Hence, by combining these observations, we obtain that

V (z,D, ∆) ≥ δ−1C(z, 1)min(1,∆). (3.5)

The following result is an immediate consequence of (3.5) together with Lemma 3.1.
Lemma 3.2. Suppose that Assumption 1 holds. Let z̄ ∈ L0 satisfy the MFCQ con-

ditions (1.10) but not the KKT conditions (1.8). Then there exist positive quantities
R2 and ε such that for any z ∈ B(z̄, R2) ∩ F and any ∆ > 0, we have

C(z, 1) ≥ ε, (3.6a)
V (z,D, ∆) ≥ δ−1ε min(1,∆), (3.6b)

where V (·, ·, ·) is the negative of the value function for (3.4).
If Assumption 1 holds, we have that

‖∆zL‖2 ≤ δ‖D∆zL‖p ≤ δ∆. (3.7)

Hence, since ∆z is optimal for (3.3), and since ∆zL that solves (3.4) is feasible for
this problem we have

m(∆z) ≤ m(∆zL)
= (∆zL)T∇f(z) + 1

2 (∆zL)T H(∆zL)

≤ −V (z,D, ∆) + 1
2δ2‖H‖∆2

≤ −δ−1 min(1,∆)C(z, 1) + 1
2δ2‖H‖∆2 (3.8)

where the last inequality follows from (3.5).
We now define the Cauchy point for problem (3.3) as

∆zC = αC∆zL, (3.9)

where

αC = arg min
α∈[0,1]

α∇f(z)T ∆zL + 1
2α2(∆zL)T H∆zL. (3.10)

We show that ∆zC has the following property:

m(∆zC) ≤ −1
2C(z, 1) min

[
δ−1, δ−1∆, (δ4∆̄2‖H‖2)−1C(z, 1)

]
, (3.11)

where ∆̄ is defined in Algorithm FP-SQP. We prove (3.11) by considering two cases.
First, when (∆zL)T H∆zL ≤ 0, we have αC = 1 in (3.10) and hence ∆zC = ∆zL.
Similarly to (3.8), but using (∆zL)T H∆zL ≤ 0 together with (3.5), we have

m(∆zC) = m(∆zL) ≤ −V (z,D, ∆) ≤ −δ−1C(z, 1) min(1,∆),
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so the result (3.11) holds in this case. In the alternative case (∆zL)T H∆zL > 0, we
have

α = min
(

1,
−∇f(z)T ∆zL

(∆zL)T H∆zL

)
. (3.12)

If the minimum is achieved at 1, we have from (∆zL)T H∆zL ≤ −∇f(z)T ∆zL and
(3.5) that

m(∆zC) = m(∆zL) ≤ 1
2∇f(z)T ∆zL ≤ − 1

2δ−1C(z, 1) min(1,∆), (3.13)

and therefore again (3.11) is satisfied. If the min in (3.12) is achieved at
−∇f(z)T ∆zL/(∆zL)T H∆zL, we have from (3.5) that

m(∆zC) = m(α∆zL) = − 1
2

(∇f(z)T ∆zL)2

(∆zL)T H∆zL
≤ − 1

2

δ−2 min(1,∆2)C(z, 1)2

‖H‖2‖∆zL‖22
. (3.14)

Because of (3.7), we have from (3.14) that

m(∆zC) ≤ −1
2

δ−2 min(1,∆2)C(z, 1)2

δ2∆2‖H‖2
= − 1

2 (δ4‖H‖2)−1 min(1,∆−2)C(z, 1)2 ≤ −1
2 (δ4∆̄2‖H‖2)−1C(z, 1)2,

which again implies that (3.11) is satisfied.
Since ∆zC is feasible for (3.3), we have proved the following lemma.
Lemma 3.3. Suppose that z ∈ L0 and that Assumption 1 holds. Suppose that ∆zC

is obtained from (3.4), (3.9), and (3.10). Then the decrease in the model function m
obtained by the point ∆zC satisfies the bound (3.11), and therefore the solution ∆z of
(3.3) satisfies the similar bound

m(∆z) ≤ −1
2C(z, 1) min

[
δ−1, δ−1∆, (δ4∆̄2‖H‖2)−1C(z, 1)

]
, (3.15)

where C(z, 1) is the negative of the value function of CLP(z, 1) defined in (3.1).
Note that this lemma holds even when we assume only that ∆z is feasible for

(3.3) and satisfies m(∆z) ≤ m(∆zC). This relaxation is significant since, when H is
indefinite, the complexity of finding a solution of (3.3) is greater than the complexity
of computing ∆zC.

3.2. Result I: At Least One KKT Limit Point. We now discuss conver-
gence of the sequence of iterates generated by the algorithm under the assumptions of
Section 2, and the additional assumption that the Hessians Hk of (1.2) are bounded
as follows:

‖Hk‖2 ≤ σ0 + σ1k, k = 0, 1, 2 . . . . (3.16)

The style of analysis follows that of a number of earlier works on convergence of
trust-region algorithms for unconstrained, possibly nonsmooth problems; for exam-
ple Yuan [17], Wright [16]. However, many modifications are needed to adapt the
algorithms to constrained problems and to the algorithm of Section 2.

We first prove a key lemma as a preliminary to the global convergence result
of this section. It finds a lower bound on the trust-region radii in the case that no
subsequence of {C(zk, 1)} approaches zero.
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Lemma 3.4. Suppose that Assumptions 1, 2, and 3 are satisfied, and that there
are ε > 0 and an index K such that

C(zk, 1) ≥ ε, for all k ≥ K.

Then there is a constant T > 0 such that

∆k ≥ T/Nk, for all k ≥ K. (3.17)

where

Nk
def= 1 + max

i=0,1,...,k
‖Hk‖2.

Proof. For ∆k ≥ 1, the claim (3.17) obviously holds with T = 1. Hence, we
assume for the remainder of the proof that ∆k ∈ (0, 1].

From Lemma 3.3, we have

−mk(∆zk) ≥ 1
2ε min

[
δ−1∆k, (δ4∆̄2‖Hk‖2)−1ε

]
≥ 1

2ε min
[
δ−1∆k, (δ4∆̄2Nk)−1ε

]
. (3.18)

We define the constants σ̄ and γ as follows:

σ̄ = sup{‖∇2f(z)‖2 | z ∈ N (L0)}, γ = sup{‖∇f(z)‖2 | z ∈ L0}, (3.19)

where N (L0) is the neighborhood defined in Assumption 2. Suppose now that T is
chosen small enough to satisfy the following conditions:

T ≤ 1, (3.20a)
{z |dist(z, L0) ≤ 2δT} ⊂ N (L0), (3.20b)

2T ≤ ε/(δ3∆̄2), (3.20c)
(γ + 2σ̄δ)φ(2δT )δ2 ≤ (1/48)ε, (3.20d)

2σ̄δ3T ≤ (1/48)ε, (3.20e)
δ3T ≤ (1/48)ε, (3.20f)

where φ(·) is defined in (1.5).
For any k with

‖∆zk‖ ≤ 2δT, (3.21)

we have from Taylor’s Theorem and the definition of mk that

f(zk)− f(zk + ∆̃z
k
) + mk(∆zk)

= −∇f(zk)T ∆̃z
k
− 1

2 (∆̃z
k
)T∇2f(zk

θ )∆̃z
k

+∇f(zk)T ∆zk + 1
2 (∆zk)T Hk∆zk

=
[
∇f(zk) +∇2f(zk

θ )∆zk
]T

(∆zk − ∆̃z
k
) (3.22)

− 1
2 (∆̃z

k
−∆zk)T∇2f(zk

θ )(∆̃z
k
−∆zk)− 1

2 (∆zk)T (∇2f(zk
θ )−Hk)∆zk,
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where zk
θ lies on the line segment between zk and zk +∆̃z

k
. If k is an index satisfying

(3.21), we have from feasibility of both zk and zk + ∆̃z
k

that

dist(zk
θ , L0) ≤ 1

2‖∆̃z
k
‖2

≤ 1
2

(
‖∆zk‖2 + ‖∆zk − ∆̃z

k
‖2

)
≤ 1

2

(
‖∆zk‖2 + φ(‖∆zk‖2)‖∆zk‖2

)
≤ 1

2 (2δT + φ(2δT )2δT ) ≤ 2δT,

and therefore from (3.20b) and (3.19) we have ‖∇2f(zk
θ )‖2 ≤ σ̄. For k satisfying

(3.21), we have from (3.22) that∣∣∣f(zk)− f(zk + ∆̃z
k
) + mk(∆zk)

∣∣∣
≤

(
‖∇f(zk)‖2 + ‖∇2f(zk

θ )‖2‖∆zk‖2
)
‖∆zk − ∆̃z

k
‖2

+ 1
2‖∇

2f(zk
θ )‖2‖∆̃z

k
−∆zk‖22 + 1

2 (‖∇2f(zk
θ )‖2 + ‖Hk‖2)‖∆zk‖22

≤ (γ + 2σ̄δT )‖∆zk − ∆̃z
k
‖2 + 1

2 σ̄‖∆zk − ∆̃z
k
‖22 + 1

2 (σ̄ + Nk)‖∆zk‖22. (3.23)

Now using (1.5) and Assumption 1, we have for indices k satisfying (3.21) that∣∣∣f(zk)− f(zk + ∆̃z
k
) + mk(∆zk)

∣∣∣
≤ (γ + 2σ̄δT )φ(‖∆zk‖2)‖∆zk‖2 + 1

2 σ̄φ(‖∆zk‖2)2‖∆zk‖22 + 1
2 (σ̄ + Nk)‖∆zk‖22

≤
[
(γ + 2σ̄δT )φ(2δT ) + 1

2 σ̄φ(2δT )22δT + σ̄δT + 1
2Nk‖∆zk‖2

]
‖∆zk‖2

≤
[
(γ + 2σ̄δT )φ(2δT ) + σ̄δT + σ̄δT + 1

2Nk‖∆zk‖2
]
‖∆zk‖2

≤
[

1
48

ε

δ2
+

1
48

ε

δ2
+

1
2
Nk‖∆zk‖2

]
‖∆zk‖2, (3.24)

where we used φ ≤ 1/2, (3.20d), and (3.20e) to derive the various inequalities.
Now suppose that (3.17) is not satisfied for all k and for our choice of T , and

suppose that l is the first index at which it is violated, that is,

∆l < T/Nl. (3.25)

We exclude the case l = K (by decreasing T further, if necessary), and consider the
index l − 1. Since ∆k ≥ (1/2)‖Dk−1∆zk−1‖p for all k, and since Nl ≥ 1, we have

‖∆zl−1‖2 ≤ δ‖Dl−1∆zl−1‖p ≤ 2δ∆l < 2δT, (3.26)

so that l − 1 satisfies (3.21). Hence, the bound (3.24) applies with k = l − 1, and we
have ∣∣∣f(zl−1)− f(zl−1 + ∆̃z

l−1
) + ml−1(∆zl−1)

∣∣∣ (3.27)

≤
[

1
24

ε

δ2
+

1
2
Nl−1‖∆zl−1‖2

]
‖∆zl−1‖2.

Since Nl−1 ≤ Nl, we have from (3.26) and (3.25) that

Nl−1‖∆zl−1‖2 ≤ 2δNl∆l < 2δT. (3.28)
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Therefore by using (3.27) and (3.20f), we obtain∣∣∣f(zl−1)− f(zl−1 + ∆̃z
l−1

) + ml−1(∆zl−1)
∣∣∣

≤
(

1
24

ε

δ2
+ δT

)
‖∆zl−1‖2 ≤

1
16

ε

δ2
‖∆zl−1‖2. (3.29)

Returning to the right-hand side of (3.18), we have for k = l − 1 that

δ−1∆l−1 ≥ δ−1‖Dl−1∆zl−1‖p ≥ δ−2‖∆zl−1‖2,

and using (3.28) and (3.20c), we have

ε

δ4∆̄2Nl−1
≥ ε

δ4∆̄2

‖∆zl−1‖2
2δT

≥ δ−2‖∆zl−1‖2.

Hence, from (3.18) and the last two inequalities, we have

−ml−1(∆zl−1) ≥ 1
2

ε

δ2
‖∆zl−1‖2. (3.30)

By comparing (3.29) and (3.30), we have from (2.1) that

ρl−1 =
f(zl−1)− f(zl−1 + ∆̃z

l−1
)

−ml−1(∆zl−1)

≥ 1−

∣∣∣f(zl−1)− f(zl−1 + ∆̃z
l−1

) + ml−1(∆zl−1)
∣∣∣

−ml−1(∆zl−1)

≥ 1− 1
8

=
7
8
.

Hence, by the workings of the algorithm, we have ∆l ≥ ∆l−1. But since Nl−1 ≤ Nl,
we have Nl−1∆l−1 ≤ Nl∆l, so that ∆l−1 < T/Nl−1, which contradicts the definition
of l as the first index that violates (3.17). We conclude that no such l exists, and
hence that (3.17) holds.

The following technical lemma, attributed to M. J. D. Powell, is proved in Yuan
[17, Lemma 3.4]. We modify the statement slightly to start the sequence at the index
K rather than at 0.

Lemma 3.5. Suppose {∆k} and {Nk} are two sequences such that ∆k ≥ T/Nk

for all k ≥ K, for some integer K and constant T > 0. Let K ⊂ {K, K+1,K +2, . . . }
be defined such that

∆k+1 ≤ τ0∆k if k ∈ K, (3.31a)
∆k+1 ≤ τ1∆k if k /∈ K, (3.31b)
Nk+1 ≥ Nk for all k ≥ K, (3.31c)∑

k∈K

min(∆k, 1/Nk) <∞, (3.31d)

where τ0 and τ1 are constants satisfying 0 < τ1 < 1 < τ0. Then

∞∑
k=K

1/Nk <∞. (3.32)
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Our main global convergence result for this section is as follows.
Theorem 3.6. Suppose that Assumptions 1, 2, and 3 are satisfied, and that

the approximate Hessians Hk satisfy (3.16); that is, ‖Hk‖2 ≤ σ0 + kσ1, for some
nonnegative constants σ0 and σ1. Then Algorithm FP-SQP either terminates at a
KKT point, or else it has at least one limit point which is either a KKT point or else
fails to satisfy the MFCQ conditions (1.10).

Proof. Consider first the case in which the algorithm terminates finitely at some
iterate zk at which mk(∆zk) = 0. Then ∆z = 0 is a solution of the subproblem (1.2),
(1.3) at z = zk at which the trust-region bound is inactive. The KKT conditions for
the subproblem at ∆z = 0 correspond exactly to the KKT conditions (1.8) for the
original problem (1.1) at zk.

In the alternative case, the algorithm generates an infinite sequence {zk}. Suppose
first that it is possible to choose ε > 0 and K such that the conditions of Lemma 3.4
are satisfied. We apply Lemma 3.5, choosing K to be the subsequence of {K, K +
1,K +2, . . . } at which the trust-region radius is not reduced. We can then set τ0 = 2,
τ1 = 0.5, and define Nk as in Lemma 3.4. At the iterates k ∈ K, the algorithm takes
a step, and we have ρk ≥ η. By using (3.15) and (3.18), we then have

f(zk)− f(zk + ∆̃z
k
) ≥ −ηmk(∆zk)
≥ 1

2ηε min(δ−1, δ−1∆k, δ−4∆̄−2ε/Nk)

≥ 1
2ηε min(δ−1, δ−4∆̄−2ε) min(∆k, 1/Nk),

where the final inequality follows from Nk ≥ 1. By summing both sides of this
inequality over k ∈ K, and using the fact that f(zk) is bounded below (since f is
continuous on the compact level set L0) we have that condition (3.31d) is satisfied.
The conclusion (3.32) then holds. However, since from (3.16) we have Nk ≤ 1 + σ0 +
σ1k, (3.32) cannot hold, so we have a contradiction. We conclude therefore that it is
not possible to choose ε > 0 and K satisfying the conditions of Lemma 3.4, that is,
there is a subsequence J ⊂ {0, 1, 2, . . . } such that

lim
k∈J

C(zk, 1) = 0.

Since the points zk, k ∈ J all belong to the compact set L0, we can identify a
limit point z̄, and assume without loss of generality that limk∈J zk = z̄. From the
observation immediately following the statement of Lemma 3.1, we have that either
MFCQ conditions (1.10) fail to hold at z̄, or else that z̄ satisfies both the MFCQ
conditions and the KKT conditions (1.8).

3.3. Result II: All Limit Points are KKT Points. In this section, we replace
the bound (3.16) on the Hessians Hk by a uniform bound

‖Hk‖2 ≤ σ, (3.33)

for some constant σ, and obtain a stronger global convergence result; namely, that
every limit point of the algorithm either fails to satisfy MFCQ or else is a KKT point.

As a preliminary to the main result of this section, we show that for any limit
point z̄ of Algorithm FP-SQP at which MFCQ but not KKT conditions are satisfied,
there is a subsequence K with zk →k∈K z̄ and ∆k →k∈K 0.

Lemma 3.7. Suppose that Assumptions 1, 2, and 3 are satisfied, and that the
Hessians Hk satisfy the bound (3.33) for some σ > 0. Suppose that z̄ is a limit point of
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the sequence {zk} such that the MFCQ condition (1.10) holds but the KKT conditions
(1.8) are not satisfied at z̄. Then there exists an (infinite) subsequence K such that

lim
k∈K

zk = z̄, (3.34)

and

lim
k∈K

∆k = 0. (3.35)

Proof. Since z̄ ∈ L0, we can define ε and R2 as in Lemma 3.1. From this lemma,
we have that C(z, 1) ≥ ε for all z ∈ B(z̄, R2) ∩ F . Hence, for such z, we have from
Lemma 3.3 that the solution ∆z of the trust-region subproblem at (3.3) with ∆ ∈ (0, 1]
satisfies

m(∆z) ≤ −1
2C(z, 1)min

[
δ−1, δ−1∆, (δ4∆̄2‖H‖2)−1C(z, 1)

]
≤ −1

2ε min
[
δ−1, δ−1∆, (δ4∆̄2σ)−1ε

]
, (3.36)

where we used the bound (3.33) to obtain the second inequality.
Because z̄ is a limit point, we can certainly choose a subsequence K satisfying

(3.34). By deleting the elements from K for which zk /∈ B(z̄, R2), we have from (3.36)
that

mk(∆zk) ≤ −1
2ε min

[
δ−1, δ−1∆k, (δ4∆̄2σ)−1ε

]
, for all k ∈ K. (3.37)

We prove the result (3.35) by modifying K and taking further subsequences as
necessary. Consider first the case in which {zk}k∈K takes on only a finite number
of distinct values. We then must have that zk = z̄ for all k ∈ K sufficiently large.
Now, remove from K all indices k for which zk 6= z̄. Suppose for contradiction that
some subsequent iterate in the full sequence {zk} is different from z̄. If k̄ ≥ k is some
iterate such that

f(zk̄) < f(zk) = f(z̄),

we have by monotonicity of {f(zl)} (for the full sequence of function values) that

f(zl) ≤ f(zk̄) < f(z̄)

for all l > k̄. Hence the function values in the tail of the full sequence are bounded
away from f(z̄), so it is not possible to choose a subsequence K with the property
(3.34). Therefore, we have that zl = z̄ for all l ≥ k, so that all steps generated by
Algorithm FP-SQP after iteration k fail the acceptance condition. We then have that

∆l+1 = 1
2‖Dl∆zl‖p ≤ 1

2∆l, for all l ≥ k,

so that ∆l → 0 as l→∞ (for the full sequence). Hence, in particular, (3.35) holds.
We consider now the second case, in which {zk}k∈K takes on an infinite number

of distinct values. Without loss of generality, we can assume that all elements zk,
k ∈ K are distinct (by dropping the repeated elements if necessary). Moreover, we
can assume that zk+1 6= zk for all k ∈ K, by replacing k if necessary by the largest
index k̄ such that k̄ ≥ k and zk̄ = zk. Thus, we have that the sufficient decrease
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condition ρk ≥ η is satisfied at all k ∈ K. Therefore from (2.1) and (3.36), and the
easily demonstrated fact that f(zl) ≥ f(z̄) for all l = 0, 1, 2, . . . , we have

f(zk)− f(z̄) ≥ f(zk)− f(zk+1)
≥ −ηmk(∆zk)
≥ 1

2ηε min
[
δ−1, δ−1∆k, (δ4∆̄2σ)−1ε

]
≥ 0.

Since f(zk)→k∈K f(z̄), we have from this chain of inequalities that (3.35) is satisfied
in this case too. Hence, we have demonstrated (3.35).

We now prove the main global convergence result of this section.
Theorem 3.8. Suppose that Assumptions 1, 2, and 3 are satisfied, and that the

Hessian approximations Hk satisfy (3.33). Then all limit points of Algorithm FP-SQP
either are KKT points or else fail to satisfy the MFCQ conditions (1.10).

Proof. Suppose for contradiction that z̄ is a limit point at which (1.10) holds but
(1.8) are not satisfied, and let R2 and ε be defined as in the proof of Lemma 3.7. We
invoke Lemma 3.7 to define the subsequence K with the properties (3.34) and (3.35).
The inequality (3.37) also holds for the subsequence K.

Let σ̄ and γ be defined as in (3.19). We now define the constants R > 0 and
∆φ > 0 such that that the following conditions hold:

R ≤ R2, (3.38a)

γφ(∆φ) ≤ 1
16

ε

δ2
, (3.38b)

B(z̄, R + ∆φ) ∩ F ⊂ N (L0), (3.38c)
∆φ ≤ ∆def , (3.38d)

where ∆def is defined in Theorem 2.2. Note in particular from the latter theorem that
∆̃z satisfying (1.4) and (1.5) exists whenever ‖D∆z‖2 ≤ ∆φ.

Given R and ∆φ, we can now define ∆̃ > 0 small enough to satisfy the following
properties:

∆̃ ≤ 1, (3.39a)

(2σ̄ + 1
2σ)δ∆̃ ≤ 1

16
ε

δ2
, (3.39b)

∆̃ ≤ 2∆φ

3δ
, (3.39c)

∆̃ ≤ ε

δ3∆̄2σ
, (3.39d)

where ∆̄ is the overall upper bound on trust-region radius. We then define ε̂ > 0 as
follows:

ε̂ = 1
2ηε min

(
δ−1, 1

4R/δ2, (δ4∆̄2σ)−1ε
)
. (3.40)

Finally, we define an index q ∈ K sufficient large that

‖zq − z̄‖2 < R/2, (3.41a)
f(zq)− f(z̄) ≤ ε̂/2. (3.41b)

(Existence of such an index q follows immediately from zk →K z̄.)
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Consider the neighborhood

cl (B(zq, R/2)) ∩ F , (3.42)

which is contained in B(z̄, R) ∩ F because of (3.41a). We consider two cases.
Case I: All remaining iterates zq+1, zq+2, . . . of the full sequence remain inside the
neighborhood (3.42). If

‖Dk∆zk‖p ≤ ∆̃, for any k = q, q + 1, q + 2, . . . , (3.43)

we have from (1.6) and (3.39c) that

‖∆̃z
k
‖2 ≤ (3/2)‖∆zk‖2 ≤ (3/2)δ‖Dk∆zk‖p ≤ (3/2)δ∆̃ ≤ ∆φ. (3.44)

We now show that whenever (3.43) occurs, the ratio ρk defined by (2.1) is at least
3/4, so that the trust-region radius ∆k+1 for the next iteration is no smaller than the
one for this iteration, ∆k. As in the proof of Lemma 3.4, the relation (3.22) holds,
with zk

θ satisfying

dist(zk
θ , L0) ≤ 1

2‖∆̃z
k
‖2 ≤ 1

2∆φ.

Hence, from (3.19) and (3.38c), we have ‖∇2f(zk
θ )‖2 ≤ σ̄. Similarly to (3.23), we have∣∣∣f(zk)− f(zk + ∆̃z

k
) + mk(∆zk)

∣∣∣
≤

(
‖∇f(zk)‖2 + ‖∇2f(zk

θ )‖2‖∆zk‖2
)
‖∆zk − ∆̃z

k
‖2

+ 1
2‖∇

2f(zk
θ )‖2‖∆̃z

k
−∆zk‖22 + 1

2 (‖∇2f(zk
θ )‖2 + ‖Hk‖2)‖∆zk‖22

≤ (γ + σ̄δ∆̃)φ(‖∆zk‖2)‖∆zk‖2 + 1
2 σ̄φ(‖∆zk‖2)2‖∆zk‖22 + 1

2 (σ̄ + σ)‖∆zk‖22,

where we used (3.19) and ‖∆zk‖2 ≤ δ∆̃ from (3.44) in deriving the second inequality.
Now using (3.44) again, together with monotonicity of φ, φ(·) ≤ 1/2, (3.38b), and
(3.39b), we have∣∣∣f(zk)− f(zk + ∆̃z

k
) + mk(∆zk)

∣∣∣
≤ (γ + σ̄δ∆̃)φ(∆φ)‖∆zk‖2 +

[
1
2 σ̄φ(∆φ)2δ∆̃ + 1

2 (σ̄ + σ)δ∆̃
]
‖∆zk‖2

≤
[
γφ(∆φ) +

(
σ̄δ∆̃ + 1

2 σ̄δ∆̃ + 1
2 (σ̄ + σ)δ∆̃

)]
‖∆zk‖2

=
[
γφ(∆φ) + (2σ̄ + 1

2σ)δ∆̃
]
‖∆zk‖2

≤
(

1
16

ε

δ2
+

1
16

ε

δ2

)
‖∆zk‖2 =

1
8

ε

δ2
‖∆zk‖2. (3.45)

Meanwhile, from (3.36) and since zk ∈ B(z̄, R) ∩ F where R ≤ R2, we have

−mk(∆zk) ≥ 1
2ε min(δ−1, δ−1∆k, (δ4∆̄2σ)−1ε). (3.46)

Now from Assumption 1 we have

∆k ≥ ‖Dk∆zk‖p ≥ δ−1‖∆zk‖2,
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while from (3.39a) and (3.43), we have

1 ≥ ∆̃ ≥ ‖Dk∆zk‖p ≥ δ−1‖∆zk‖2.

From (3.39d) and Assumption 1, we have

ε ≥ δ3∆̄2σ∆̃ ≥ δ3∆̄2σ‖Dk∆zk‖p ≥ δ2∆̄2σ‖∆zk‖2.

By substituting these last three expressions into (3.46), we obtain

−mk(∆zk) ≥ 1
2

ε

δ2
‖∆zk‖2. (3.47)

We then have from (2.1), and using (3.45) and (3.47), that

ρk =
f(zk)− f(zk + ∆̃z

k
)

−mk(∆zk)

≥ 1− |f(zk)− f(zk + ∆̃z
k
) + mk(∆zk)|

−mk(∆zk)
≥ 3/4.

It follows that the algorithm sets

∆k+1 ≥ ∆k (3.48)

for all k satisfying (3.43). For k = q, q + 1, q + 2, . . . not satisfying (3.43), Algorithm
FP-SQP indicates that we may have reduction of the trust-region radius to

∆k+1 = (1/2)‖Dk∆zk‖p ≥ (1/2)∆̃. (3.49)

By considering both cases, we conclude that

∆k ≥ min(∆q, (1/2)∆̃), for all k = q, q + 1, q + 2, . . . ,

which contradicts (3.35). Hence, Case I cannot occur.
We now consider the alternative.

Case II: Some subsequent iterate zq+1, zq+2, . . . leaves the neighborhood (3.42). If zl

is the first iterate outside this neighborhood, note that all iterates zk, k = q, q +1, q +
2, . . . , l − 1 lie inside the set B(z̄, R) ∩ F , within which (3.36) applies. By summing
over the “successful” iterates in this span, we have the following:

f(zq)− f(zl)

=
l−1∑
k=q

zk 6=zk+1

f(zk)− f(zk+1)

≥
l−1∑
k=q

zk 6=zk+1

−ηmk(∆zk) by (2.1) and Algorithm FP-SQP

≥ η
l−1∑
k=q

zk 6=zk+1

1
2ε min

[
δ−1, δ−1∆k, (δ4∆̄2σ)−1ε

]
by (3.36)

≥ 1
2ηε min

δ−1, δ−1
l−1∑
k=q

zk 6=zk+1

∆k, (δ4∆̄2σ)−1ε

 . (3.50)
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We have from Assumption 1 and (1.6) that

∆k ≥ ‖Dk∆zk‖p ≥ δ−1‖∆zk‖2 ≥ 1
2δ−1‖∆̃z

k
‖2,

so that (3.50) becomes

f(zq)− f(zl) ≥ 1
2ηε min

δ−1,
l−1∑
k=q

zk 6=zk+1

1
2δ−2‖∆̃z

k
‖2, (δ4∆̄2σ)−1ε

 . (3.51)

However, because zl lies outside the neighborhood (3.42) we have that

R/2 ≤ ‖zq − zl‖2 ≤
l−1∑
k=q

zk 6=zk+1

‖∆̃z
k
‖2,

so that (3.51) becomes

f(zq)− f(zl) ≥ 1
2ηε min

[
δ−1, 1

4δ−2R, (δ4∆̄2σ)−1ε
]
. (3.52)

By using this estimate together with the definition of ε̂ (3.40), we have

f(zq)− f(zl) ≥ ε̂,

But since f(zl) ≥ f(z̄) (since z̄ is a limit point of the full sequence), this inequality
contradicts (3.41b). Hence, Case II cannot occur either, and the proof is complete.

4. Local Convergence. We now examine local convergence behavior of the
algorithm to a point z∗ satisfying second-order sufficient conditions for optimality,
under the assumption that zk → z∗. We do not attempt to obtain the most general
possible superlinear convergence result, but rather make the kind of assumptions
that are typically made in the local convergence analysis of SQP methods in which
second derivatives of the objective and constraint functions are available. We also
make additional assumptions on the feasibility perturbation process that is used to

recover ∆̃z
k

from ∆zk. Ultimately, we show that Algorithm FP-SQP converges Q-
superlinearly.

We assume a priori that z∗ satisfies the KKT conditions, and define the active
set A∗ as follows:

A∗ def= A(z∗), (4.1)

where A(·) is defined in (1.9). In this section, we use the following subvector notation:

dI(z) def= [di(z)]i∈I , where I ⊂ {1, 2, . . . , r}.

Assumption 4.
(a) The functions f , c, and d are twice continuously differentiable in a neighbor-

hood of z∗.
(b) The linear independence constraint qualification (LICQ) (1.11) is satisfied at

z∗.
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(c) Strict complementarity holds; that is, for the (unique) multipliers (µ∗, λ∗)
satisfying the KKT conditions (1.8) at z = z∗, we have λ∗i > 0 for all i ∈ A∗.

(d) Second-order sufficient conditions are satisfied at z∗; that is, there is α > 0
such that

vT∇2
zzL(z∗, µ∗, λ∗)v ≥ α‖v‖2, ∀ v s.t. ∇c(z∗)T v = 0, ∇dA∗(z∗)T v = 0,

where the Lagrangian function L is defined in (1.7).
Besides these additional assumptions on the nature of the limit point z∗, we make

additional assumptions on the algorithm itself. As mentioned above, we start by as-
suming that zk → z∗. We further assume that estimates Wk of the active set A∗ and
estimates (µk, λk) of the optimal Lagrange multipliers (µ∗, λ∗) are calculated at each
iteration k, and that these estimates are asymptotically exact. It is known (see, for
example, Facchinei, Fischer, and Kanzow [6]) that an asymptotically exact estimate
Wk of A∗ is available, given that (zk, µk, λk)→ (z∗, µ∗, λ∗), under weaker conditions
than assumed here. On the other hand, it is also known that given an asymptoti-
cally exact Wk, we can use a least-squares procedure to compute an asymptotically
exact estimate (µk, λk) of (µ∗, λ∗). However, the simultaneous estimation of Wk and
(µk, λk) is less straightforward. We anticipate, however, that a procedure that works
well in practice would be relatively easy to implement, especially under the LICQ
and strict complementarity assumptions. Given an initial guess of Wk, such a pro-
cedure would alternate between a least-squares estimate of (µk, λk) and an active-set
identification procedure like those in [6], until the estimate of Wk settles down. We
note that the multipliers for the linearized constraints in the subproblem (1.2), (1.3)
(denoted in the analysis below by µ̄k and λ̄k) do not necessarily satisfy the asymptotic
exactness condition, unless it is known a priori that the trust region is inactive for
all k sufficiently large. Fletcher and Sainz de la Maza [7] have analyzed the behav-
ior of these multipliers in the context of a sequential linear programming algorithm
and show that, under certain assumptions, (µ∗, λ∗) is a limit point of the sequence
{(µ̄k, λ̄k)}.

We summarize the algorithmic assumptions as follows.
Assumption 5.
(a) zk → z∗.
(b) Wk = A∗ for all k sufficiently large, where Wk is the estimate of the optimal

active set.
(c) (µk, λk)→ (µ∗, λ∗).
(d) In addition to (1.4) and (1.5), Algorithm FP-SQP requires the perturbed step

∆̃z
k

to satisfy

di(zk + ∆̃z
k
) = di(zk) +∇di(zk)T ∆zk, ∀ i ∈ Wk (4.2)

and

‖∆zk − ∆̃z
k
‖ = O(‖∆zk‖2). (4.3)

We make the following notes about Assumption 5
- For iterations k at which a step if taken (the “successful” iterations), we have

that ∆̃z
k

= zk+1−zk, which approaches zero by Assumption 5(a). Hence, by
(1.6), and defining K to be the subsequence of successful iterations, we have
that

lim
k∈K
‖∆zk‖ = lim

k∈K
‖∆̃z

k
‖ = 0. (4.4)



22 S. J. WRIGHT AND M. J. TENNY

- The condition (4.2) is an explicit form of “second-order correction,” a family
of techniques that are often needed to ensure fast local convergence of SQP
algorithms.

- It follows from (1.6) and (4.3) that

‖∆zk − ∆̃z
k
‖ = O(‖∆̃z

k
‖2). (4.5)

We start with a technical result to show that the various requirements on the

perturbed step ∆̃z
k

are consistent. Note that this result is merely an existence result.

It is not intended to show a practical way of obtaining ∆̃z
k
. There may be other

(less expensive, problem-dependent) ways to calculate the perturbed step that result
in satisfaction of all the required conditions.

Lemma 4.1. Suppose that Assumption 4 and Assumptions 5(a),(b) hold. Then
for all sufficiently large k, it is possible to choose the trust-region radius ∆k small

enough that there exists ∆̃z
k

satisfying (1.4), (1.5), (4.2), and (4.3).
Proof. Assume first that k is chosen large enough that Wk = A∗. We prove the

result constructively, generating ∆̃z
k

as the solution of the following problem:

min
w

1
2‖w −∆zk‖22 s.t. (4.6a)

c(zk + w) = 0, (4.6b)
di(zk + w) = di(zk) +∇di(zk)T ∆zk, ∀ i ∈ Wk. (4.6c)

When the right hand sides of (4.6b), (4.6c) are replaced by c(zk + ∆zk) and di(zk +
∆zk), respectively, the solution is w = ∆zk. By the smoothness assumptions on
c and d, these modified right-hand sides represent only an O(‖∆zk‖2) perturbation
of the right-hand sides in (4.6b), (4.6c). Note that the Jacobian of the constraints
(4.6b), (4.6c) has full row rank at zk +∆zk, because of Assumption 4(b) and Assump-
tion 5(a). Hence, the Jacobian matrix of the KKT conditions for the problem (4.6)
(which is a “square” system of nonlinear equations) is nonsingular at zk + ∆zk, and
a straightforward application of the implicit function theorem to this system yields

that the solution w = ∆̃z
k

of (4.6) satisfies the property (4.3) for all k sufficiently
large. The condition (4.2) is an immediate consequence of (4.6c).

By decreasing ∆k if necessary and using ‖∆zk‖ ≤ δ∆k, we can derive (1.5) as a
consequence of (4.3).

Because of (1.2b), we have

di(zk + ∆̃z
k
) = di(zk) +∇di(zk)T ∆zk ≤ 0, ∀ i ∈ A∗,

while for i /∈ A∗ we have from di(z∗) < 0 and Assumption 5(a) that

di(zk + ∆̃z
k
) = di(zk) + O(∆k) ≤ (1/2)di(z∗) < 0

for all k sufficiently large and ∆k sufficiently small. For the equality constraints we

have immediately from (4.6b) that c(zk+∆̃z
k
) = 0. Hence zk+∆̃z

k
∈ F , so condition

(1.4) is also satisfied.
We assume that the Hessian matrix Hk in the subproblem (1.2), (1.3) at z = zk

is the Hessian of the Lagrangian L evaluated at this point, with appropriate estimates
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of the multipliers µk and λk; that is,

Hk = ∇2
zzL(zk, µk, λk) = ∇2f(zk) +

m∑
i=1

µk
i∇2ci(zk) +

r∑
i=1

λk
i∇2di(zk). (4.7)

We show now that with this choice of Hk, the ratio ρk of actual to predicted decrease

is close to 1 when k is sufficiently large and the steps ∆zk and ∆̃z
k

are sufficiently
small. We prove the result specifically for the Euclidean-norm trust region; a minor
generalization yields the proof for general p ∈ [1,∞].

Lemma 4.2. Suppose that p = 2 in (1.3), that Assumptions 1, 4, and 5 hold, and
that Hk is defined by (4.7). Then there is a threshold value ∆τ and an index K1 such
that if k ≥ K1 and ‖Dk∆zk‖2 ≤ ∆τ , we have ρk ≥ 1/2, where ρk is defined by (2.1).

Proof. Note first that we can use ∆τ to control the size of both ∆zk and ∆̃z
k
,

since from Assumption 1 we have ‖∆zk‖ ≤ δ‖Dk∆zk‖2 ≤ δ∆τ , while from (1.6) we

have ‖∆̃z
k
‖ ≤ (3/2)‖∆zk‖.

From (2.1) we have

ρk = 1 +
f(zk)− f(zk + ∆̃z

k
) + mk(∆zk)

−mk(∆zk)
. (4.8)

we prove the result by showing that the numerator of the final term in this expression

is o(‖∆̃z
k
‖2), while the denominator is Ω(‖∆zk‖2).

We assume initially that K1 is large enough that Wk = A∗ for all k ≥ K1. We
work first with the numerator in (4.8). By elementary manipulation, using Taylor’s
theorem and the definition of mk(·), we have for some θf ∈ (0, 1) that

f(zk)− f(zk + ∆̃z
k
) + mk(∆zk)

= −∇f(zk)T ∆̃z
k
− 1

2 (∆̃z
k
)T∇2f(zk + θf ∆̃z

k
)∆̃z

k
+∇f(zk)T ∆zk + 1

2 (∆zk)T Hk∆zk

=
(
∇f(zk) + Hk∆̃z

k
)T

(∆zk − ∆̃z
k
) + 1

2 (∆̃z
k
)T

(
Hk −∇2f(zk + θf ∆̃z

k
)
)

∆̃z
k

+O(‖∆zk − ∆̃z
k
‖2)

= ∇f(zk)T (∆zk − ∆̃z
k
) + 1

2 (∆̃z
k
)T

(
Hk −∇2f(zk)

)
∆̃z

k
+ o(‖∆̃z

k
‖2), (4.9)

where we used (4.5), boundedness of Hk, and continuity of ∇2f to derive the final
equality. Now from (1.2b) and continuity of ∇2ci for all i = 1, 2, . . . ,m (Assump-
tion 4(a)), we have

0 = ci(zk + ∆̃z
k
)

= ci(zk) +∇ci(zk)T ∆̃z
k

+ 1
2 (∆̃z

k
)T∇2ci(zk)∆̃z

k
+ o(‖∆̃z

k
‖2)

= ∇ci(zk)T (∆̃z
k
−∆zk) + 1

2 (∆̃z
k
)T∇2ci(zk)∆̃z

k
+ o(‖∆̃z

k
‖2). (4.10)

From (4.2), we have for all i ∈ A∗ that

0 = di(zk + ∆̃z
k
)− di(zk)−∇di(zk)T ∆zk

= ∇di(zk)T (∆̃z
k
−∆zk) + 1

2 (∆̃z
k
)T∇2di(zk)∆̃z

k
+ o(‖∆̃z

k
‖2). (4.11)
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For i /∈ A∗, we have from λk
i → λ∗i = 0 and (4.5) that

λk
i∇di(zk)T (∆̃z

k
−∆zk) + 1

2λk
i (∆̃z

k
)T∇2di(zk)∆̃z

k
= o(‖∆̃z

k
‖2). (4.12)

We now multiply equations (4.10) and (4.11) by their corresponding Lagrange multi-
pliers (µk

i and λk
i , respectively), and subtract them together with (4.12) from (4.9),

to obtain

f(zk)− f(zk + ∆̃z
k
) + mk(∆zk)

=
(
∇f(zk) +∇c(zk)µk +∇d(zk)λk

)T
(∆zk − ∆̃z

k
)

+ 1
2 (∆̃z

k
)T

[
Hk −∇2f(zk)−

m∑
i=1

µk
i∇2ci(zk)−

r∑
i=1

λk
i∇2di(zk)

]
∆̃z

k

+o(‖∆̃z
k
‖2)

= O(‖(zk, µk, λk)− (z∗, µ∗, λ∗)‖)‖∆zk − ∆̃z
k
‖+ o(‖∆̃z

k
‖2)

= o(‖∆̃z
k
‖2), (4.13)

where we used the KKT condition (1.8a) at (z, µ, λ) = (z∗, µ∗, λ∗) and the definition
(4.7) to derive the second equality, and Assumption 5(a),(c) together with (4.5) to
derive the third equality. Hence we have shown that the numerator of the last term

in (4.8) is o(‖∆̃z
k
‖2).

In the remainder of the proof we use the following shorthand notation for the
Hessian of the Lagrangian:

(∇2
zzL)k = ∇2

zzL(zk, µk, λk); (∇2
zzL)∗ = ∇2

zzL(z∗, µ∗, λ∗). (4.14a)

Given p = 2 in (1.3), we see that the KKT conditions for ∆zk to be a solution of
(1.2), (1.3) at z = zk are that there exist Lagrange multipliers µ̄k, λ̄k, and γk such
that

∇f(zk) + (∇2
zzL)k∆zk +∇c(zk)µ̄k +∇d(zk)λ̄k + γkDT

k Dk∆zk = 0, (4.15a)
c(zk) +∇c(zk)T ∆zk = 0, (4.15b)

0 ≥ d(zk) +∇d(zk)T ∆zk ⊥ λ̄k ≥ 0, (4.15c)
0 ≥ ‖Dk∆zk‖22 −∆2

k ⊥ γk ≥ 0, (4.15d)

where γk is the Lagrange multiplier for the trust-region constraint ‖Dk∆zk‖22 ≤ ∆2
k.

From (4.15b), (4.15c), and feasibility of zk, we have

(µ̄k)T∇c(zk)T ∆zk = −(µ̄k)T c(zk) = 0, (4.16a)
(λ̄k)T∇d(zk)T ∆zk = −(λ̄k)T d(zk) ≥ 0. (4.16b)

We turn now to the denominator in (4.8), and show that it has size Ω(‖∆zk‖2)
for all k sufficiently large. From the definition of mk(·), (4.7), and (4.14a), we have

−mk(∆zk) = −∇f(zk)T ∆zk − 1
2 (∆zk)T (∇2

zzL)k∆zk

= −(∆zk)T
(
∇f(zk) + (∇2

zzL)k∆zk
)

+ 1
2 (∆zk)T (∇2

zzL)k∆zk.
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By substituting from (4.15a), then using (4.15b) and (4.16), we obtain

−mk(∆zk) = (∆zk)T
(
∇c(zk)µ̄k +∇d(zk)λ̄k + γkDT

k Dk∆zk
)

+ 1
2 (∆zk)T (∇2

zzL)k∆zk

= −d(zk)T λ̄k + γk‖Dk∆zk‖22 + 1
2 (∆zk)T (∇2

zzL)k∆zk.

By using Assumption 1, we obtain

−mk(∆zk) ≥ −d(zk)T λ̄k + γkδ−2‖∆zk‖22 + 1
2 (∆zk)T (∇2

zzL)k∆zk. (4.17)

We now define the constant γ̄ as follows:

γ̄
def= max

(
2δ2

∥∥(∇2
zzL)∗

∥∥
2
, 1

)
. (4.18)

By increasing K1 if necessary, we have by smoothness of L together with Assump-
tion 5(a),(c) that ∥∥(∇2

zzL)k

∥∥
2
≤ 2

∥∥(∇2
zzL)∗

∥∥
2
≤ δ−2γ̄, ∀ k ≥ K1. (4.19)

We derive the estimate for −mk(∆zk) from (4.17) by considering two cases. In
the first case, we assume that γk ≥ γ̄. We then have from (4.17), using (4.16b), that
the following bound holds for all k ≥ K1:

−mk(∆zk) ≥ γkδ−2‖∆zk‖22 + 1
2 (∆zk)T (∇2

zzL)k∆zk

≥ γ̄δ−2‖∆zk‖22 − 1
2‖∆zk‖2

∥∥(∇2
zzL)k

∥∥
2

≥ 1
2 γ̄δ−2‖∆zk‖22, (4.20)

so we see that the estimate −mk(∆zk) = Ω(‖∆zk‖2) is satisfied in this case .
In the second case of γk ≤ γ̄, a little more analysis is needed. We show first that

lim
k→∞,γk≤γ̄

(µ̄k, λ̄k) = (µ∗, λ∗).

By choosing ∆τ small enough and increasing K1 if necessary, we have when
‖Dk∆zk‖ ≤ ∆τ and k ≥ K1 that

i /∈ Wk = A∗

⇒ di(zk) +∇di(zk)T ∆zk = di(z∗) + O(‖zk − z∗‖) + O(‖∆zk‖) ≤ (1/2)di(z∗) < 0,

where we used Assumption 5(a) for the first equality. Hence, from (4.15c), we have
λ̄k

i = 0 for all i /∈ A∗. By rearranging (4.15a), we therefore have

∇c(zk)µ̄k +∇dA∗(zk)λ̄k
A∗ = −∇f(zk)− (∇2

zzL)k∆zk − γkDT
k Dk∆zk.

By comparing this expression with the KKT condition for z∗, namely,

∇c(z∗)µ∗ +∇dA∗(z∗)λ∗A∗ = −∇f(z∗),

and using the LICQ (Assumption 4(b)), Assumption 1, and γk ≤ γ̄, we obtain

‖(µ̄k, λ̄k
A∗)− (µ∗, λ∗A∗)‖ = O(‖zk − z∗‖) + O(‖∆zk‖)→ 0.
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Hence, by strict complementarity (Assumption 4(c)), and by increasing K1 again if
necessary, we can identify a constant λ̄min > 0 such that

λ̄k
i ≥ λ̄min, ∀ i ∈ A∗, ∀ k ≥ K1 with γk ≤ γ̄. (4.21)

Therefore, by the complementarity condition (4.15c), we have that

∇dA∗(zk)T ∆zk = −dA∗(zk).

Using this expression together with (4.15b), we deduce that[
∇c(z∗)T

∇dA∗(z∗)T

]
∆zk =

[
(∇c(z∗)−∇c(zk))T ∆zk

−dA∗(zk) + (∇dA∗(z∗)−∇dA∗(zk))T ∆zk

]
= O(‖dA∗(zk)‖) + O(‖zk − z∗‖‖∆zk‖). (4.22)

By full row rank of the coefficient matrix on the left-hand side of (4.22), we have that
there exists a vector sk with[

∇c(z∗)T

∇dA∗(z∗)T

]
sk =

[
∇c(z∗)T

∇dA∗(z∗)T

]
∆zk, (4.23a)

‖sk‖ = O(‖dA∗(zk)‖) + O(‖zk − z∗‖‖∆zk‖). (4.23b)

Since the vector ∆zk − sk satisfies the conditions on v in the second-order sufficient
conditions (Assumptions 4(d)), we have

(∆zk − sk)T (∇2
zzL)∗(∆zk − sk) ≥ α‖∆zk − sk‖22,

so that by increasing K1 again if necessary, we have by Assumption 5(a),(c) that

(∆zk − sk)T (∇2
zzL)k(∆zk − sk) ≥ 1

2α‖∆zk − sk‖22, ∀ k ≥ K1.

By using this inequality together with (4.23b) and Assumption 5(a), we obtain (again
increasing K1 if needed) that

(∆zk)T (∇2
zzL)k∆zk

= (∆zk − sk)T (∇2
zzL)k(∆zk − sk) + O(‖sk‖‖∆zk‖) + O(‖sk‖2)

≥ 1
2α‖∆zk − sk‖22 + O(‖∆zk‖‖sk‖) + O(‖sk‖2)

= 1
2α‖∆zk‖22 + O(‖∆zk‖‖sk‖) + O(‖sk‖2)

= 1
2α‖∆zk‖22 + O(‖dA∗(zk)‖‖∆zk‖) + O(‖dA∗(zk)‖2)

+O(‖dA∗(zk)‖‖zk − z∗‖‖∆zk‖) + o(‖∆zk‖2)
≥ 1

4α‖∆zk‖22 + O(‖dA∗(zk)‖‖∆zk‖) + O(‖dA∗(zk)‖2), (4.24)

for all k ≥ K1 with γk ≤ γ̄. Because of (4.21), and since λ̄k
i = 0 for i /∈ A∗, we have

−(λ̄k)T d(zk) =
∑
i∈A∗

λ̄k
i (−di(zk)) ≥ λ̄min‖dA∗(zk)‖1. (4.25)

By substituting (4.24) and (4.25) into (4.17), and dropping the second term on the
right-hand side of (4.17) (which is positive in any case), we obtain

−mk(∆zk) ≥ −d(zk)T λ̄k + 1
2 (∆zk)T (∇2

zzL)k∆zk

≥ λ̄min‖dA∗(zk)‖1 + (1/8)α‖∆zk‖22 + O(‖dA∗(zk)‖‖∆zk‖) + O(‖dA∗(zk)‖2)
≥ (1/8)α‖∆zk‖22, ∀ k ≥ K1. (4.26)
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The last inequality holds because the term λ̄min‖dA∗(zk)‖1 dominates the remainder
terms (after possibly another decrease of ∆τ and increase of K1).

We conclude from (4.20) and (4.26) that for all k sufficiently large, we have
−mk(∆zk) = Ω(‖∆zk‖2). By combining this estimate with (4.13) and (4.8), and
using (1.6), we obtain that

ρk = 1 +
o(‖∆̃z

k
‖2)

Ω(‖∆zk‖2)
= 1 +

o(‖∆zk‖2)
Ω(‖∆zk‖2)

.

Hence by decreasing ∆τ further if necessary, we have ρk > 1/2 whenever k ≥ K1 and
‖Dk∆zk‖ ≤ ∆τ , as claimed.

The next lemma takes a few more steps toward our superlinear convergence result.
Lemma 4.3. Suppose that p = 2 in (1.3), that Assumptions 1, 4, and 5 hold, and

that Hk is defined by (4.7). Let K1 and ∆τ be as defined in Lemma 4.2. Then the
following are true:

(a) For all k ≥ K1, we have ∆k ≥ min(∆K1 ,∆τ/2).
(b) There is an index K2 such that the trust-region bound (1.3) is inactive at all

successful iterations k with k ≥ K2.
Proof. For (a), Lemma 4.2 indicates that for k ≥ K1, the trust-region radius can

be decreased only when ‖Dk∆zk‖2 > ∆τ . Since Algorithm FP-SQP decreases the
trust region by setting it to (1/2)‖Dk∆zk‖2, we must have ∆k+1 ≥ ∆τ/2 after any
such decrease. On the other hand, if no decreases occur after iteration K1, we have
∆k ≥ ∆K1 for all k ≥ K1. The claim follows by combining these two observations.

For (b), we observed in (4.4) that ‖∆zk‖ → 0 for the successful steps, while from
part (a), the trust-region radius is bounded below by a positive quantity. Hence, we
can identify an index K2 with the required property.

Theorem 4.4. Suppose that p = 2 in (1.3), that Assumptions 1, 4, and 5 hold,
and that Hk is defined by (4.7). Then the sequence {zk} converges Q-superlinearly to
z∗.

Proof. At all successful iterations k with k ≥ K2, the step ∆zk is a (full) standard
SQP step. Hence by the known local convergence properties of SQP with an exact
Hessian, we have that

‖zk + ∆zk − z∗‖ ≤ β‖zk − z∗‖
[
‖zk − z∗‖+ ‖(µk, λk)− (µ∗, λ∗)‖

]
= o(‖zk − z∗‖),

where β is a constant, and we have used Assumption 5(a) and (c) to obtain the final
equality. It follows from this expression that

‖∆zk‖ = O(‖zk − z∗‖).

Using this estimate together with (4.3), we have

‖zk+1 − z∗‖ = ‖zk + ∆̃z
k
− z∗‖

≤ ‖zk + ∆zk − z∗‖+ ‖∆zk − ∆̃z
k
‖

= o(‖zk − z∗‖) + O(‖∆zk‖2) = o(‖zk − z∗‖), (4.27)

showing that Q-superlinear behavior occurs at all successful steps with k ≥ K2.
We show now that there is an index K3 ≥ K2 such that all iterations k ≥ K3

are successful. If not, then there are infinitely many unsuccessful iterations and the
trust-region radius is reduced (by at least a factor of 2) at each such iteration. Since
by Lemma 4.3(b), the trust region is inactive at the successful steps, the radius is not
increased at these steps. Hence, we have ∆k ↓ 0, which contradicts Lemma 4.3(a).
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5. Conclusions. We have described a simple feasibility perturbed trust-region
SQP algorithm for nonlinear programming with good global and local convergence
properties. As discussed above, we believe that the feasibility perturbation often can
be carried out efficiently when the constraints are separable or otherwise structured.
The companion report [15] describes application of the algorithm to optimal control
problems with constraints on the inputs (controls).

We assert (without proof) the following result concerning global convergence to
points satisfying second-order necessary conditions. When the assumptions used in
Section 3 are satisfied, z∗ is a KKT limit point of the sequence {zk} at which LICQ
and strict complementarity are satisfied, asymptotically exact estimates of (µk, λk)
and Wk are available on the convergent subsequence K, Hk is chosen as in (4.7),
and Assumption 5(d) is satisfied, then the following second-order necessary condition
holds at z∗:

vT∇2
zzL(z∗, µ∗, λ∗)v ≥ 0, ∀ v s.t. ∇c(z∗)T v = 0, ∇dA∗(z∗)T v = 0,

We omit the proof, which uses many of the same techniques as in Sections 3 and 4.
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Appendix A. Value Function of a Parametrized Linear Program.
Here we prove Lemma 3.1.
Proof. Note first that C(z, 1) ≥ 0 for any feasible z, since w = 0 is feasible for

(3.1).
We have C(z, 1) = 0 if and only if w = 0 is a solution of the problem (3.1). The

bound wT w ≤ 1 is inactive at w = 0, and the optimality conditions for (3.1) are then
identical to the KKT conditions (1.8) for (1.1). Hence, C(z, 1) = 0 if and only if z
satisfies the KKT conditions.

Suppose now that z̄ ∈ F satisfies MFCQ (1.10) but not the KKT conditions (1.8).
Suppose for contradiction that there exists a sequence {zl} with zl → z̄, zl ∈ F such
that

0 ≤ C(zl, 1) ≤ l−1, l = 1, 2, 3, . . . .

The KKT conditions for the solution wl of (3.1) at z = zl are that there exist multi-
pliers µl ∈ IRm, λl ∈ IRr, and βl ∈ IR such that:

∇f(zl) +∇c(zl)µl +∇d(zl)λl + 2βlwl = 0, (A.1a)
c(zl) +∇c(zl)T wl = 0, (A.1b)

d(zl) +∇d(zl)T wl ≤ 0 ⊥ λl ≥ 0, (A.1c)
(wl)T wl − 1 ≤ 0 ⊥ βl ≥ 0. (A.1d)

We now verify that these are in fact optimality conditions for (3.1) by showing that
MFCQ holds at wl. We define the “linearized” active indices at zl as follows:

Al
def= {i = 1, 2, . . . , r | di(zl) +∇di(zl)T wl = 0}.
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Since MFCQ holds for the original problem (1.1) at z̄, we have by the logic in the
proof of Lemma 2.1 that MFCQ is also satisfied at zl for all l sufficiently large. Hence,
there is a vector vl such that

∇c(zl)T vl = 0 and ∇di(zl)T vl < 0 for all i ∈ A(zl).

Consider now the vector

ul = −wl + εvl

for some ε > 0 to be defined. We show that ul is an “MFCQ direction” for (3.1) at
wl, that is

‖wl‖2 = 1 ⇒ 2(wl)T ul < 0, (A.2a)
∇c(zl)T ul = 0, (A.2b)

i ∈ Al ∩ A(zl) ⇒ ∇di(zl)T ul < 0, (A.2c)
i ∈ Al\A(zl) ⇒ ∇di(zl)T ul < 0. (A.2d)

For (A.2a), we have when ‖wl‖2 = 1 that

(2wl)T ul = −2‖wl‖22 + ε(wl)T vl = −2 + ε(wl)T vl < 0

for all ε > 0 sufficiently small. The second condition (A.2b) obviously holds, since
∇c(zl)T wl = 0 and ∇c(zl)T vl = 0. For (A.2c), we have

∇di(zl)T ul = −∇di(zl)T wl + ε∇di(zl)T vl = di(zl) + ε∇di(zl)T vl ≤ ε∇di(zl)T vl < 0,

for all ε > 0, where the second equality follows from i ∈ Al and the third equality
from zl ∈ F . For (A.2d), we have from i /∈ A(zl) that di(zl) < 0, and so

∇di(zl)T ul = −∇di(zl)T wl + ε∇di(zl)T vl = di(zl) + ε∇di(zl)T vl < 0,

for all ε > 0 sufficiently small. It is clearly possibly to choose ε in such a way that
all the conditions (A.2) are satisfied, so we conclude that (A.1) are indeed optimality
conditions for wl.

From these relations, and using the fact that zl ∈ F , we have that

C(zl, 1) = −∇f(zl)T wl

= (wl)T∇c(zl)µl + (wl)T∇d(zl)λl + 2βl(wl)T wl

= −d(zl)T λl + 2βl ≥ 0 (A.3)

By taking limits as l→∞, and since −d(zl)T λl and βl are both nonnegative, we have
from (A.3) that

βl → 0, d(zl)T λl → 0. (A.4)

Consider first the case in which there is a subsequence K of multipliers from (A.1),
that is, {µl, λl}l∈K is bounded. By compactness, and taking a further subsequence of
K if necessary, we can identify µ̄ and λ̄ ≥ 0 such that

(µl, λl)l∈K → (µ̄, λ̄). (A.5)
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Then by taking limits in (A.1a), and using (A.4) and (1.7), we have that

∇zL(z̄, µ̄, λ̄) = 0, d(z̄)T λ̄ = 0. (A.6)

By using these relations together with feasibility of z̄, we see that z̄ is a KKT point,
which is a contradiction.

In the other case, the sequence {µl, λl} has no bounded subsequence. By taking
another subsequence K, we can identify a vector (µ̂, λ̂) with ‖(µ̂, λ̂)‖2 = 1 and λ̂ ≥ 0
such that

lim
k∈K

(µl, λl)
‖(µl, λl)‖2

= (µ̂, λ̂), lim
k∈K
‖(µl, λl)‖2 =∞.

By dividing both sides of (A.1a) by ‖(µl, λl)‖2 and using (A.4), we obtain

∇c(z̄)µ̂ +∇d(z̄)λ̂ = 0, d(z̄)T λ̂ = 0, λ̂ ≥ 0. (A.7)

It is easy to show that (A.7) together with the MFCQ (1.10) implies that (µ̂, λ̂) = 0,
which contradicts ‖(µ̂, λ̂)‖2 = 1 (see Clarke [4, pp. 235-236]).

Therefore, we obtain a contradiction, so that no sequence {zl} with the claimed
properties exists, and therefore C(z, 1) is bounded away from zero in a neighborhood
of z̄.
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