
Continuous Optimization
(Nonlinear and Linear
Programming)

Stephen J. Wright

Computer Sciences Department, University of
Wisconsin, Madison, Wisconsin, USA

1 Overview

At the core of any optimization problem is a
mathematical model of a system, which could be
constructed from physical, economic, behavioral,
or statistical principles. The model describes re-
lationships between variables that define the state
of the system, and may also place restrictions on
the states, in the form of constraints on the vari-
ables. The model also includes an objective func-
tion, which measures the desirability of a given
set of variables. The optimization problem is to
find the set of variables that achieves the best
possible value of the objective, among all those
values that satisfy the constraints.

1.1 Examples

Optimization problems are ubiquitous, as we il-
lustrate with some examples.

• A firm wishes to maximize its profit,
given constraints on availability of resources
(equipment, labor, raw materials), produc-
tion costs, and forecast demand.

• In order to forecast weather, we first need to
solve a problem to identify the state of the
atmosphere a few hours ago. This is done by
finding the state that is most consistent with
recent meteorological observations (temper-
ature, wind speed, humidity, etc) taken at a
variety of locations and times. The model
contains differential equations that describe
evolution of the atmosphere, statistical ele-
ments that describe prior knowledge of the
atmospheric state, and an objective that
measures the consistency between the atmo-
spheric state and the observations.

• Computer systems for recognizing handwrit-
ten digits contain models that read the writ-

ten character, in the form of a pixellated im-
age, and output their best guess as to the
digit that is represented in the image. These
models can be “trained” by presenting them
with a (typically large) set of images con-
taining known digits. An optimization prob-
lem is solved to adjust the parameters in the
model so that the error count on the training
set is minimized. If the training set is repre-
sentative of the images that the system will
see in future, this optimized model can be
trusted to perform reliable digit recognition.

• Given a good that is produced in a num-
ber of cities and consumed in other cities,
we wish to find the least expensive way to
transport the good from supply locations to
demand locations. Here, the model consists
of a graph that describes the transportation
network, capacity constraints, and the cost
of transporting one unit of the good between
two adjacent locations in the network.

• Given a set of possible investments along
with the means, variances, and correlations
of their expected returns, an investor wishes
to allocate his funds in a way that balances
the expected mean return of the portfolio
with its variance, in a way that fits his ap-
petite for risk.

These few examples capture some of the wide
variety of applications currently seen in the field.
As they suggest, the mathematical models that
underlie optimization problems vary widely in
size, complexity, and structure. They may con-
tain simple algebraic relationships, systems of or-
dinary or partial differential equations, models
derived from Bayesian statistics, and “black-box”
models whose internal details are not accessible,
and which can be accessed only by supplying in-
puts and observing outputs.

1.2 Continuous Optimization

In continuous optimization, the variables in the
model are nominally allowed to take on a con-
tinuous range of values, usually real numbers.
This feature distinguishes continuous optimiza-
tion from discrete or combinatorial optimization,
in which the variables may be binary (restricted

1

2

to the values 0 and 1), integer (for which only
integer values are allowed), or more abstract ob-
jects drawn from sets with finitely many elements.
(Discrete optimization is the subject of another
article in this volume.)

Continuous optimization problems are typi-
cally solved using algorithms that generate a se-
quence of values of the variables, known as it-
erates, that converge to a solution of the prob-
lem. In deciding how to step from one iterate
to the next, the algorithm makes use of knowl-
edge gained at previous iterates, and information
about the model at the current iterate, possibly
including information about its sensitivity to per-
turbations in the variables. The continuous na-
ture of the problem allows sensitivities to be de-
fined in terms of first and second derivatives of
the functions that define the models.

1.3 Standard Paradigms

Research in continuous optimization tends to be
organized into several paradigms, each of which
makes certain assumptions on the properties of
the objective function, variables, and constraints.
To define these paradigms, we group the variables
into a real vector x with n components (that is,
x ∈ <n), and define the general continuous opti-
mization problem as follows:

min
x∈<n

f(x) (1a)

subject to ci(x) = 0, i ∈ E , (1b)

ci(x) ≥ 0, i ∈ I. (1c)

where the objective f and the constraints ci,
i ∈ E ∪ I are real-valued functions on <n. To
this formulation is sometimes added a geometric
constraint

x ∈ Ω, (2)

where Ω ⊂ <n is a closed convex set. All func-
tions in (1) are assumed to at least be continuous.
A point x that satisfies all the constraints is said
to be feasible.

There is considerable flexibility in the way that
a given optimization problem can be formulated,
and the choice of formulation can affect the effec-
tiveness with which the problem can be solved.
One common reformulation technique is to re-
place an inequality constraint by an equality con-

straint plus a bound, by introducing an new
“slack” variable:

ci(x) ≤ 0 ⇔ ci(x) + si = 0, si ≥ 0. (3)

Referring to the general form (1), we distin-
guish several popular paradigms.

• In linear programming, all objectives and
constraints are affine functions of x, that is,
they have the form aTx+ b, for some a ∈ <n
and b ∈ <.

• In quadratic programming, we have f(x) =
(1/2)xTQx + cTx + d, for some n × n sym-
metric matrix Q, vector c ∈ <n, and scalar
d ∈ <; while all constraints ci are linear.
When Q is positive semidefinite, we have a
convex quadratic program.

• In convex programming, the objective f and
the negated inequality constraint functions
−ci, i ∈ I are convex functions, while the
equality constraints ci, i ∈ E are affine func-
tions. (These assumptions, along with the
convexity and closedness of Ω in the case that
(2) is included in the formulation, imply that
set of feasible points is closed and convex.)

• Conic optimization problems have the form
(1), (2), where the set Ω is assumed to be a
pointed, closed, convex cone, while the ob-
jective f and equality constraints ci, i ∈ E
are assumed to be affine. There are no in-
equalities, that is I = ∅.

• In unconstrained optimization, the con-
straints (1b), (1c), and (2) are nonexistent,
while the objective f is usually assumed to be
smooth, with at least continuous first deriva-
tives. Nonsmooth optimization allows f to
have discontinuous first derivatives, but it is
often assumed that f has some other struc-
ture that can be exploited by the algorithms.

• In nonlinear programming, the functions f
and ci, i ∈ E ∪ I are generally nonlinear but
smooth, at least having continuous first par-
tial derivatives on the region of interest.

An important special class of conic optimiza-
tion problems is semidefinite programmming, in

3

which the vector x of unknowns contains the ele-
ments of a symmetric m ×m matrix X which is
required to be positive semidefinite. It is natural
and useful to write this problem in terms of the
matrix X as follows:

min
X∈S<m×m

C •X (4a)

subject to Ai •X = bi, i = 1, 2, . . . , p; (4b)

X � 0, (4c)

Here, S<m×m denotes the set of symmetric m×m
matrices, the matrices C and Ai, i = 1, 2, . . . , p all
belong to S<m×m, while the operator • is defined
on pairs of matrices in S<m×m as follows: A•B =∑m
i=1

∑m
j=1AijBij = trace(AB). The constraint

(4c) instantiates the geometric constraint (2).

Terminology. “Mathematical programming”
is a historical term that encompasses optimiza-
tion and such closely related areas as complemen-
tarity problems. Its origins date to the 1940s,
with the development of the simplex method of
George Dantzig, the first effective method for lin-
ear programming (8). The term “programming”
referred originally to the formalized, systematic
mathematical procedure by which problems can
be solved. Only later did “programming” become
roughly synonymous with “computer program-
ming,” causing some slight confusion which opti-
mization reserachers have often been called on to
explain. The more modern term “optimization”
is generally preferred, although the term “pro-
gramming” is still attached (probably forever) to
such problems as linear programming and integer
programming.

1.4 Scope of Research

Research in optimization encompasses study of
the mathematical properties of the problems
themselves; development, testing, and analysis of
algorithms for solving particular classes of prob-
lems (such as one of the paradigms described
above); and development of models and algo-
rithms for specific application areas. We give a
brief description of each of these aspects.

One topic of fundamental interest is the char-
acterization of solution sets: Are there verifi-
able conditions that we can check to determine

whether a given point is a solution to the opti-
mization problem? Given the uncertainty that is
present in many practical settings, we may also
be interested in the sensitivity of the solution to
perturbations in the data or in the objective and
constraint functions. Ill-conditioned problems are
those in which the solution can change signifi-
cantly when the data or functions change slightly.
Another important fundamental concept is dual-
ity: Often, the data and functions that define an
optimization problem can be rearranged to pro-
duce a new “dual” problem that is related to the
original problem in interesting ways. The con-
cept of duality can also be of great practical im-
portance in designing more efficient formulations
and algorithms.

The study of algorithms for optimization prob-
lems blends theory and practice. The design of al-
gorithms that work well on practical problems re-
quires a good deal of intuition and testing. Most
algorithms in use today have a solid theoretical
basis, but the theory often allows wide latitude in
the choice of certain parameters, and algorithms
are often “engineered” to find suitable values for
these parameters and to incorporate other heuris-
tics. Analysis of algorithms tackles such issues as
whether the iterates can be guaranteed to con-
verge to a solution (or some other point of in-
terest); whether there is an upper bound on the
number of iterations needed, as a function of the
size or complexity of the problem; and the rate of
convergence, particularly after the iterates enter
a certain neighborhood of the solution. Algorith-
mic analysis is typically worst-case in nature. It
gives important indications about how the algo-
rithm will behave in practice, but does not tell
the whole story. Famously, the simplex method
is known to perform badly in the worst case —
its running time may be exponential in the prob-
lem size — yet its performance on most practical
problems is impressively good.

Development of software that implements ef-
ficient algorithms is another important activity.
High-quality codes are available both commer-
cially and in the public domain. Modeling tools
— high-level languages that serve as a front-end
to algorithmic software packages — have become
more popular in recent years. They relieve the
user of much of the burden of transforming their

4

practical problem to a set of functions (the objec-
tive and constraints in (1)), allowing the model to
be expressed in intuitive terms, closer to the ap-
plication.

With the growth in the size and complexity of
practical optimization problems, issues of mod-
eling, formulation, and customized algorithm de-
sign have become more prominent. A particular
application can be formulated as an optimization
problem in many different ways, and different for-
mulations can lead to very different solver perfor-
mance. Experience and testing is often required
to identify the most effective formulation.

Many modern applications cannot be solved ef-
fectively with packaged software for one of the
standard paradigms of Section 1.3. It is neces-
sary to assemble a customized algorithm, draw-
ing on a variety of algorithmic elements from
the optimization toolbox, and also on tools from
other disciplines in scientific computing. This ap-
proach allows the particular structure or context
of the problem to be exploited. Examples of spe-
cial context include the following. Low-accuracy
solutions may suffice for some problems. Algo-
rithms that require less data movement, or sam-
pling from a large data set, or the ability to han-
dle streaming data, may be essential in other set-
tings. Algorithms that produce (possibly subop-
timal) solutions in real time may be essential in
such contexts as industrial control.

1.5 Connections

Continuous optimization is a highly intercon-
nected discipline, having close relationships to
other areas of mathematics, with scientific com-
puting, and with numerous application areas. It
also has close connections to discrete optimiza-
tion, which often requires continuous optimiza-
tion problems to be solved as subproblems or re-
laxations.

In mathematics, continuous optimization relies
heaving on various forms of mathematical analy-
sis, especially real analysis and functional analy-
sis. Certain types of analysis have been developed
in close association the discipline of optimization,
including convex analysis [22], nonsmooth analy-
sis [6], and variational analysis [23]. The theory of
computational complexity also plays a role in the
study of algorithms. Game theory is particularly

relevant when we examine duality and optimal-
ity conditions for optimization problems. Con-
trol theory is also relevant, for framing problems
involving dynamical models and as an important
source of applications for optimization. Statis-
tics provides vital tools for stochastic optimiza-
tion and for optimization in machine learning, in
which the model is available only through sam-
pling from a data set.

Continuous optimization also intersects with
many areas in numerical analysis and scientific
computing. Numerical linear algebra is vitally
important, since many optimization algorithms
generate a sequence of linear approximations,
which must be solved with linear algebra tools.
Differential equation solvers are important coun-
terparts to optimization in such applications as
data assimilation and distributed parameter iden-
tification, which involve optimization of ODE and
PDE models. The ubiquity of multicore archi-
tectures and the wide availability of cluster com-
puting has given new prominence to parallel al-
gorithms in some areas (such as machine learn-
ing), requiring the use of software tools for paral-
lel computing.

Finally, we mention some of the many con-
nections between optimization and several appli-
cation areas within which it has become deeply
embedded. Machine learning uses optimization
algorithms extensively, to perform classification
and learning tasks. The challenges posed by ma-
chine learning applications (for example, large
data sets) have been driving recent developments
in stochastic optimization and large-scale uncon-
strained optimization. Compressed sensing, in
which sparse signals are recovered from random-
ized encodings, also relies heavily on optimization
formulations and specialized algorithms. Engi-
neering control is a rich source of challenging op-
timization problems at many scales, frequently
involving dynamic models of plant processes. In
these and many other areas, practitioners have
made important contributions to all aspects of
continuous optimization.

2 Basic Principles

We mention here some basic theory that under-
pins continuous optimization, and that serves as a

5

starting point for the algorithms outlined in later
sections.

Possibly the most fundamental issues are: How
do we define a solution to the problem, and how
do we recognize such a point? The answers be-
come more complicated as we expand the classes
of functions allowed in the formulation. The type
of solution most amenable to analysis is a local so-
lution. The point x∗ is a local solution for (1) if
x∗ is feasible, and there is an open neighborhood
N of x∗ such that f(x) ≥ f(x∗) for all feasible
points x ∈ N . Further, x∗ is a strict local solu-
tion if f(x) > f(x∗) for all feasible x ∈ N with
x 6= x∗. A global solution is a point x∗ such that
f(x) ≥ f(x∗) for all feasible x.

As we see below, we can use the derivatives
of the objective and constraint functions to con-
struct testable conditions that verify that x∗ is
a local solution, under certain assumptions. It
is difficult to verify global optimality, even when
the objective and constraints are smooth, because
of the difficulty of gaining a global perspective on
these functions. However, in convex optimization,
where the objective f is a convex function and the
set of feasible points is also convex, all local solu-
tions are global solutions. (Convex optimization
includes linear programming and conic optimiza-
tion as special cases.)

Global optimization techniques have also been
devised for certain classes of nonconvex problems.
It is possible to prove results about the perfor-
mance of such methods when the function f sat-
isfies additional properties (such as Lipschitz con-
tinuity, with known Lipschitz constant) and the
feasible region is bounded. One class of meth-
ods for solving the global optimization problem
uses a process of subdividing the feasible region
and using information about f to obtain a lower
bound on the objective in that region, leading to
a branch-and-bound algorithm akin to methods
used in integer programming.

We turn now to characterizations of local solu-
tions for problems defined by smooth functions,
assuming for simplicity that f and ci, i ∈ E ∪ I
have continuous second partial derivatives. We
use ∇f(x) to denote the gradient of f (the vector
in <n of first partial derivatives) and ∇2f(x) to
denote the Hessian of f (the n× n matrix of sec-
ond partial derivatives). An important tool, both

in the characterization of solutions for smooth
problems and in the design of algorithms, is Tay-
lor’s Theorem. This result can be used to esti-
mate the value of f by using its derivative infor-
mation at a nearby point. For example, we have

f(x+ p) = f(x) +∇f(x)T p+ o(‖p‖), (5a)

f(x+ p) = f(x) +∇f(x)T p (5b)

+
1

2
pT∇2f(x)p+ o(‖p‖2),

where the notation o(t) indicates a quantity that
goes to zero faster than t. These formulae can be
used to construct low-order approximations to the
problem (1) that are valid in the neighborhood
of a current iterate x, and can thus be used to
identify a possibly improved iterate x+ p.

For unconstrained optimization of a smooth
function f , we have the following necessary con-
dition.

If x∗ is a local solution of minx f(x),
then ∇f(x∗) = 0.

Note that this is only a necessary condition; it
is possible to have ∇f(x) = 0 without x being
a minimizer. (An example is the scalar function
f(x) = x3, which has no minimizer but which has
∇f(0) = 0.) To complement this result, we have
the following sufficient condition.

If we have a point x∗ such that
∇f(x∗) = 0 with ∇2f(x∗) positive defi-
nite, then x∗ is a strict local solution of
minx f(x).

Turning to constrained optimization — the
general form (1), with smooth functions — iden-
tification of local solutions becomes somewhat
more complex. We can obtain a necessary con-
dition based on the gradients of ∇f and ∇ci, but
this depends on an additional condition called a
constraint qualification, which ensures that the
linear approximation to the feasible set, based on
the linear approximations (5a) to the constraint
functions ci around the point x, capture the true
geometry of the feasible set near x.

A central role in characterizing solutions of con-
strained optimization problems is played by the
Lagrangian function, defined as follows:

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x). (6)

6

This is a linear combination of objective and con-
straints, where the weights λi are called Lagrange
multipliers. At a local solution x∗ for (1), the fol-
lowing conditions will hold for some values of λ∗i ,
i ∈ E ∪ I:

∇xL(x∗, λ∗) = 0, (7a)

ci(x
∗) = 0, i ∈ E , (7b)

ci(x
∗) ≥ 0, i ∈ I, (7c)

λ∗i ≥ 0, i ∈ I, (7d)

λ∗i ci(x
∗) = 0, i ∈ I. (7e)

Condition (7e) is a complementarity condition
that indicates complementarity between each in-
equality constraint value ci(x

∗) and its Lagrange
multiplier λ∗i : For each i, at least one of these
two quantities must be zero. Roughly speaking,
the Lagrange multipliers measure the sensitivity
of the optimal objective value f(x∗) to perturba-
tions in the constraints ci. The conditions (7) are
often known as the Karush-Kuhn-Tucker condi-
tions after their inventors, or KKT conditions for
short.

When the functions in (1) are nonsmooth, it
becomes harder to define optimality conditions,
as even the concept of derivative becomes more
complicated. We consider the simplest problem
instance of this type — the unconstrained prob-
lem minx f(x), where f is a convex (possibly non-
smooth) function. The subdifferential of f at a
point x is defined from the collection of support-
ing hyperplanes to f at x:

∂f(x) := {v | f(z) ≥ f(x) + vT (z − x)

for all z in the domain of f}.

For example, the function f(x) = ‖x‖1 =∑n
i=1 |xi| is nonsmooth, with subdifferential con-

sisting of the vectors v such that

vi

= +1 if xi > 0

∈ [−1, 1] if xi = 0

= −1 if xi < 0.

When f is smooth at x in addition to being con-
vex, we have ∂f(x) = {∇f(x)}. A necessary
and sufficient condition for x∗ to be a solution
of minx f(x) is that 0 ∈ ∂f(x∗).

*x

Figure 1: Feasible region (unshaded), objective func-

tion contours (dashed lines), and optimal vertex x∗

for a linear program in two variables.

3 Linear Programming

Consider the problem

min
x

cTx subject to Ax = b, x ≥ 0, (8)

where x ∈ <n as before, b ∈ <m is the right-hand
side, and A ∈ <m×n is the constraint matrix.
Any optimization problem with an affine objec-
tive function and affine constraints can be writ-
ten in this standard form, after some elementary
transformations. As illustrated by the example in
Figure 1, the feasible region for the problem (8)
is polyhedral, and the countours of the objective
function are lines.

There are three possible outcomes for a linear
program:

(a) The problem is infeasible, that is, there is no
point x that satisfies Ax = b and x ≥ 0;

(b) The problem is unbounded, that is, there is
a sequence of feasible points xk such that
cTxk ↓ −∞;

(c) The problem has a solution, that is, there is
a feasible point x∗ such that cTx∗ ≤ cTx for
all feasible x.

7

When a solution exists (case (c)) it may not be
uniquely defined. However, we can note that the
set of solutions itself forms a polyhedron, and that
at least one solution lies at a vertex of the feasi-
ble set, that is, a point which does not lie in the
interior of a line joining any other two feasible
points.

By rearranging the data in (8), we obtain an-
other linear program called the dual:

max
λ,s

bTλ subject to ATλ+ s = c, s ≥ 0. (9)

(In discussions of duality, the original problem
(8) is called the primal problem.) The primal
and dual problems are related by a powerful du-
ality theory which has important practical impli-
cations. Weak duality states that if x is a feasible
point for (8) and (λ, s) is a feasible point for (9),
then the primal objective is greater than or equal
to the dual objective. This statement is easily
proved in a single line:

cTx = (ATλ+ s)Tx ≥ λTAx = λT b.

The other fundamental duality result — strong
duality — states that there are three possible out-
comes for the pair of problems (8) and (9):

(a) One of the two problems is infeasible and the
other is unbounded;

(b) Both problems are infeasible;

(c) (8) has a solution x∗ and (9) has a solu-
tion (λ∗, s∗) with objective functions equal:
cTx∗ = bTλ∗.

Specializing (7), we see that the primal and
dual problems share a common set of KKT con-
ditions:

Ax = b, ATλ+ s = c, (10a)

x ≥ 0, s ≥ 0, (10b)

xisi = 0, i = 1, 2, . . . , n. (10c)

If (x∗, λ∗, s∗) is any vector triple that satisfies
these conditions, x∗ is a solution of (8) and
(λ∗, s∗) is a solution of (9).

We now discuss the two most important classes
of algorithms for linear programming.

3.1 Simplex Method

The simplex method, devised by George Dantzig
in the late 1940s (and described in [9]) remains
a fundamental approach of practical and theo-
retical importance in linear programming. Geo-
metrically speaking, the simplex method moves
from vertex to neighboring vertex of the feasi-
ble set, decreasing the objective function with
each move, and terminating when it cannot find
a neighboring vertex with a lower objective value.
The method is implemented by maintaining a ba-
sis — a subset of m out of the n components of
x that are allowed to be nonzero at the current
iteration. The values of these basic components
of x are determined uniquely by the m linear con-
straints Ax = b. Each step of the simplex method
starts by choosing a non-basic variable to enter
the basis. This variable is allowed to increase
away from zero, a process which, because of the
requirement to maintain feasibility of the linear
constraints Ax = b, causes the values of the exist-
ing basic variables to change. The entering vari-
able is allowed to increase to the point where one
of the basic variables reaches zero, upon which it
leaves the basis, and the iteration is complete.

Efficient implementation of the simplex method
depends both on good “pricing” strategies, to
choose which nonbasic variable should enter the
basis, and efficient linear algebra, to update the
values of the basic variables as the entering vari-
able increases away from zero. Both topics have
seen continued development over the years, and
highly effective software is available, both com-
mercially and in the public domain. Specialized,
highly efficient versions of the simplex method ex-
ist for some special cases of linear programming,
such as those arising from transportation or rout-
ing over networks.

The simplex method is an example of an active-
set method: It maintains a subset of the inequal-
ity constraints that is held to be active (that
is, enforced at equality) at each iteration, and
changes this set only slightly from one iteration
to the next. (In the problem (8), the inequality
constraints are the bounds xi ≥ 0, i = 1, 2, . . . , n,
so the active set at iteration k is the complement
of the basis at xk.)

The theoretical properties of the simplex
method remain a source of fascination because,

8

despite its practical efficiency, its worst-case be-
havior is poor. A famous example [14] shows that
the number of steps may be exponential in the di-
mension of the problem. There have been various
attempts to understand the “average case” be-
havior, in which the number of iterations required
is roughly linear in the problem dimensions. The
“smoothed analysis” of Spielman and Teng [24]
shows that small perturbations in the data of a
problem for which simplex behaves badly yields
a problem that requires only polynomially many
iterations.

An algorithm with polynomial complexity
(in the worst case) was announced in 1979:
Khachiyan’s ellipsoid algorithm [13]. Though of
great theoretical interest, it was not a practical
alternative to simplex. The interior-point rev-
olution began with Karmarkar’s algorithm [12],
also a polynomial-time approach. This method
had much better computational properties than
the ellipsoid approach. It motivated a new class
of algorithms — primal-dual interior-point meth-
ods — which not only had attractive theoretical
properties, but were also truly competitive with
simplex on practical problems. We describe these
next.

3.2 Interior-Point Methods

As their name suggests, primal-dual interior-
point methods generate a sequence of iterates
(xk, λk, sk), k = 1, 2, . . . in both primal and dual
variables, in which xk and sk contain all posi-
tive numbers (that is, they are strictly feasible
with respect to the constraints (x ≥ 0 and s ≥ 0
in (10b)). Steps between iterates are obtained by
applying Newton’s method to a perturbed form of
the condition (10c) in which the right-hand side 0
is replaced by a positive quantity µk > 0, which is
gradually decreased to zero as k →∞. The New-
ton equations for each step (∆xk,∆λk,∆sk) are
obtained from a linearization of these perturbed
KKT conditions, specifically,0 AT I
A 0 0
S 0 X

∆xk

∆λk

∆sk

 = −

ATλk + sk − c
Axk − b

XkSke− µk1

 ,
where Xk is the diagonal matrix whose diagonal
elements come from xk, Sk is defined similarly,

and 1 is the vector of length n whose elements are
all 1. The new iteration is obtained by setting

(xk+1,λk+1, sk+1)

= (xk + αk∆xk, λk + βk∆λk, sk + βk∆sk),

where αk and βk are steplengths in the range
[0, 1] chosen so as to ensure that xk+1 > 0 and
sk+1 > 0, among other goals. Convergence, with
polynomial complexity, can be demonstrated un-
der appropriate schemes for choosing µk and the
steplengths αk and βk. Clever schemes for choos-
ing these parameters and for enhancing the search
directions using “second-order corrections” lead
to good practical behavior. See [27] and the many
references therein for further details.

Primal-dual interior-point methods have the
additional virtue that they are easily extendible
to convex quadratic programming and montone
linear complementarity problems, with only mi-
nor changes to the algorithm and the convergence
theory.

4 Unconstrained Optimization

Consider the problem of simply minimizing a
function without constraints:

min
x

f(x), (11)

where f has at least continuous first derivatives.
This problem is important in its own right. It also
appears as a subproblem in many methods for
constrained optimization, and serves to illustrate
several algorithmic techniques that can be applied
also to the constrained case.

4.1 First-Order Methods

The Taylor approximation (5a) shows that f de-
creases most rapidly in the direction of the nega-
tive gradient vector −∇f(x). Steepest descent
methods move in this direction, each iteration
having the form

xk+1 = xk − αk∇f(xk), (12)

for some positive steplength αk. A suitable
value of αk can be found by performing (ap-
proximately) a one-dimensional search along the

9

durection −∇f(xk), thus guaranteeing a decrease
in f at every iteration. In some When further in-
formation about f is available, it may be pos-
sible to choose αk to guarantee descent in f
without doing a line search. An nonstandard
approach [1] chooses αk by a formula that al-
lows f to increase (sometimes dramatically) on
some iterations, while often achieving better long-
term behavior than standard steepest-descent ap-
proaches.

For the case of convex f , there has been re-
newed attention to accelerated first-order meth-
ods that still require only the calculation of a gra-
dient ∇f at each step, but that have more attrac-
tive convergence rates than steepest descent, both
in theory and in practice. The common aspect of
these methods is a “momentum” device, in which
the step from xk to xk+1 is based not just on the
latest gradient ∇f(xk) but also on the step from
the previous iterate xk−1 to the current iterate
xk. In heavy-ball and conjugate gradient meth-
ods, the steps have the form

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1),

for positive parameters αk and βk that are mo-
tivated and implemented in a variety of ways.
Other accelerated methods described by Nesterov
[18] (see also [2]) retain this spirit, but differ in
the derivation of the momentum term. Rather
than generating a single sequence of iterates {xk},
these methods produce two interleaved series of
iterates.

For convex f , first-order methods are charac-
terized in some cases by linear convergence (with
the error in xk decreasing to zero in a geometric
sequence) or sublinear convergence (with the er-
ror decreasing to zero but not geometrically, typ-
ically at a rate of 1/k or 1/k2, where k is the
iteration number).

4.2 Superlinear Methods

When second derivatives of f are available, we
can use the second-order Taylor approximation
(5b) to motivate Newton’s method, a fundamen-
tal algorithm in both optimization and nonlinear
equations. When ∇2f is positive definite at the
current iterate xk, we can define the step pk to be
the minimizer of the right-hand side of (5b) (with

the o(‖p‖3) term omitted), yielding the formula

pk = −[∇2f(xk)]−1∇f(xk). (13)

The next iterate is defined by choosing a
steplength αk > 0 and setting xk+1 = xk +αkp

k.
This method is characterized by quadratic con-
vergence, in which the error in xk+1 is bounded
by the square of the error in xk, for all k suffi-
ciently large. (The number of correct digits in xk

doubles on each of the last few iterations.)
Enhancements of the basic approach based on

(13) yield more robust and general implementa-
tions. For example, the Hessian matrix ∇2f(xk)
may be modified during computation of pk to
ensure that it is a descent direction for f . An-
other important class of methods known as quasi-
Newton methods avoids the calculation of second
derivatives altogether, instead replacing ∇2f(xk)
in (13) by an approximation Bk that is con-
structed using first derivative information. The
possibility of such an approximation is a con-
sequence of another form of Taylor’s theorem,
which posits the following relationship between
two successive gradients:

∇f(xk+1)−∇f(xk) ≈ ∇2f(xk)(xk+1 − xk).

In updating the Hessian approximation to Bk+1

after the step to xk+1 is taken, we ensure that
Bk+1 mimics this property of the true Hessian,
that is, we enforce the condition

∇f(xk+1)−∇f(xk) ≈ Bk+1(xk+1 − xk).

We obtain a variety of quasi-Newton methods
by imposing various other conditions on Bk+1,
for example, closeness to Bk in some metric,
and positive semidefiniteness. Limited memory
quasi-Newton methods [15] store Bk implicitly by
means of the difference vectors between succes-
sive iterates and successive gradients at a limited
number of prior iterations — typically between 5
and 20.

4.3 Derivative-Free Methods

Methods that require the users to supply only
function values f (and not gradients or Hessians)
have been enormously popular over many years.
More recently, they have attracted the attention

10

of optimization researchers who have tried to im-
prove their performance, equip them with a con-
vergence theory and customize them to certain
specific classes of problems, such as problems in
which f is obtained from a simulation.

In the absence of gradient or Hessian values,
it is sometimes feasible to use finite differencing
to construct approximations to these higher-order
quantities, and then apply the methods described
above. Another possible option is to use algo-
rithmic differentiation [10] to obtain derivatives
directly from computer code and, once again, use
them in the algorithms described above.

Methods that use only function values are usu-
ally suited best to problems of modest dimension
n. Model-based methods use interpolation among
function values at recently visited points to con-
struct a model of the function f . This model
is used to generate a new candidate, which is
accepted as the next iterate if it yields a suffi-
cient improvement in the function value over the
best point found so far. The model is updated by
changing the set of points on which the interpo-
latiion is based, replacing older points with higher
values of f by newer points with lower function
values. Pattern-search methods take candidate
steps along a certain frame of directions, shrink-
ing step lengths as needed to evaluate a new iter-
ate with a lower function value. After a successful
step, the step length may be increased, to speed
future progress. Appropriate maintenance of the
set of search directions is crucial to efficient imple-
mentation and valid convergence theory. Another
derivative-free method is the enormously popular
simplex method of Nelder and Mead [16]. This
method — unrelated to the method of the same
name for linear programming — maintains a set
of n+ 1 points that form the vertex of a simplex
in <n. At each iteration, it replaces one of these
points with a new one, by expanding or contract-
ing the simplex along promising directions or re-
flecting one of the vertices through its opposite
face. Various attempts have been made in the
years since to improve the performance of this
method and to develop a convergence thory.

A recent book [8] provides more detail on these
and other derivative-free methods.

4.4 Stochastic Gradient Methods

Important problems have been identified recently
for which evaluation of ∇f or even f is computa-
tionally expensive, but it is possible to obtain an
unbiased estimate of ∇f cheaply. Such problems
are common in data analysis, where f typically
has the form

f(x) = (1/N)

N∑
i=1

fi(x),

for large N , where each fi depends on a single
item in the data set. If i is selected at random
from {1, 2, . . . , N}, the vector gk = ∇fi(xk) is
an unbiased estimate of ∇f(xk). For convex f ,
methods that use this approximate gradient in-
formation have been a focus of work in the op-
timization and machine learning communities for
some years (see for example [17]), and efforts have
recently intensified as their wide applicablity has
become evident. The basic iteration has the form
xk+1 = xk−αkgk, where the choice of gk may be
based on additional information about f , such as
lower and upper bounds on its curvature. (Line
searches are not pratical in this setting, as evalu-
ation of f is assumed to be too expensive.) Addi-
tional devices such as averaging of the iterates xk

or the gradient estimates gk enhance the proper-
ties of the method in some settings, such as when
f is only weakly convex. Typical convergence
analysis shows that the expected value of the error
in xk, of the difference between the function value
after k iterations and its optimal value, approach
zero at a sublinear rate, like 1/k or 1/

√
k.

5 Conic Optimization

Conic optimization problems have the form

min cTx subject to Ax = b, x ∈ Ω, (14)

where Ω is closed, convex cone. They include lin-
ear programming (8) and semidefinite program-
ming (4) as special cases. It is possible to design
generic algorithms with good complexity prop-
erties for this problem class provided that we
can identify a certain type of barrier function
for Ω. A barrier function ϕ is convex with do-
main the interior of Ω, with ϕ(x) → ∞ as x
approaches the boundary of Ω. The additional

11

property required for an efficient algorithm is self-
concordancy, which is the property that for any
x ∈ domϕ and any v, we have

|ϕ′′′(x)vvv| ≤ 2[ϕ′′(x)vv]3/2.

Because the third derivatives are bounded in
terms of the second derivatives, the function
ϕ is well approximated (locally at least) by a
quadratic, so we can derive complexity bounds
on Newton’s method applied to ϕ, with a suit-
able steplength scheme. We can use this bar-
rier function to define a interior-point method
in which each iterate xk obtained by finding an
approximate minimizer of the following equality-
constrained optimization problem:

min
x

cTx+ µkϕ(x) subject to Ax = b, (15)

where the positive parameter µk can be decreased
gradually to zero as k increases, as in interior-
point methods for linear programming. One or
more steps of Newton’s method can be used to
find the approximate solution to the subproblem
(15), starting from the previous iterate.

For linear programming the cone Ω = {x |x ≥
0} admits a self-concordant barrier function
ϕ(x) = −

∑n
i=1 log xi. In semidefinite program-

ming, where Ω is the cone of positive semidefinite
matrices, we have ϕ(X) = − log detX.

The most successful interior-point methods for
semidefinite programming in practice are primal-
dual methods rather than primal methods. These
are (nontrivial) extensions of the linear program-
ming approaches of Subsection 3.2; see [25] for a
description.

See [19, 5] for more on algorithms for convex
and conic optimization.

6 Nonlinear Programming

We turn next to methods for nonlinear program-
ming, in which the functions f and ci in (1)
are smooth nonlinear functions. A basic princi-
ple used in constructing algorithms for this prob-
lem is successive approximation of the nonlinear
program by simpler problems, such as quadratic
programming or unconstrained optimization, to
which methods from the previous sections can
be applied. Taylor’s theorem is instrumental in

constructing these approximations, using first- or
second-order expansions of functions around the
current iterate xk, and possibly also the current
estimates of the Lagrange multipliers for the con-
straints (1b) and (1c). The optimality conditions
described in Section 2 also play a central role in
algorithm design. Further information about al-
gorithms for nonlinear programming can be found
in [20, 4].

6.1 Gradient Projection

Gradient projection is an extension of the steep-
est descent approach for unconstrained optimiza-
tion, in which steps are taken along the negative
gradient direction but projected onto the feasible
set. Considering the formulation

min f(x) s.t. x ∈ Ω,

the basic gradient projection step is

xk+1 = PΩ(xk − αk∇f(xk)),

where PΩ(·) denotes projection onto the closed
convex constraint set Ω. This approach may be
practical if the projection can be computed inex-
pensively, as is the case when Ω is a “box” defined
by bounds on the variables. It is possible to en-
hance the gradient method by using second-order
information in a selective way (simple projection
of the Newton step does not work). See [4] for
additional details.

6.2 Sequential Quadratic
Programming

In sequential quadratic programming (SQP), we
use Taylor’s theorem to form the following apr-
poximation of (1) around the current point xk:

min
d∈<n

∇f(xk)T d+
1

2
dTHkd (16a)

s.t. ci(x
k) +∇ci(xk)T d = 0, i ∈ E , (16b)

ci(x
k) +∇ci(xk)T d ≤ 0, i ∈ I, (16c)

where Hk is a symmetric matrix. Denoting the
solution of (16) by dk, the next iterate is obtained
by setting

xk+1 = xk + αkd
k, (17)

12

for some step length αk > 0. The problem (16)
is a quadratic program; it can be solved with
methods of active-set or interior-point type. The
matrix Hk may contain second-order information
from both objective and constraints; an “ideal”
value is the Hessian of the Lagrangian function
defined in (6), that is, Hk = ∇2

xxL(xk, λk), where
λk are estimates of the Lagrange multipliers, ob-
tained for example from the solution of the sub-
problem (16) at the previous iteration. When
second derivatives are not readily available, Hk

could be a quasi-Newton approximation to the
Lagrangian Hessian, updated by formulae similar
to those used in unconstrained optimization.

A line search can be performed to find a suit-
able value of αk in (17). An alternative approach
to stabilizing SQP is to add a “trust region” to
the subproblem (16), in the form of a constraint
‖d‖∞ ≤ ∆k, for some ∆k > 0.

6.3 Interior-Point Methods

The interior-point methods for linear program-
ming described in Subsection 3.2 can be extended
to nonlinear programming, and software based on
such extensions has been highly successful. To
avoid notational clutter, we consider a formula-
tion of nonlinear programming containing non-
negativity constraints on x along with equality
constraints:

min f(x) s.t. cj(x) = 0, j ∈ E ; x ≥ 0. (18)

(This problem is no less general than (1); simple
transformations can be used to express (1) in the
form (18).) Following (7), and introducing an ad-
ditional vector s in the style of (10), we write the
optimality conditions for this problem as follows:

∇f(x)−
∑
j∈E

λ∇cj(x)− s = 0, (19a)

cj(x) = 0, j ∈ E , (19b)

x ≥ 0, s ≥ 0, (19c)

xisi = 0, i = 1, 2, . . . , n. (19d)

As in linear programming, interior-point meth-
ods generate a sequence of iterates (xk, λk, sk) in
which all components of xk and sk are strictly
positive. The basic primal-dual step is obtained

by applying Newton’s method at (xk, λk, sk) to
the nonlinear equations defined by (19a), (19b),
and (19d), with the right-hand side in (19d) re-
place by a positive parameter µk, which is re-
duced to zero gradually at the iterations progress.
The basic approach can be enhanced in var-
ious ways: quasi-Newton approximations, line
searches or trust regions, second-order corrections
to the search direction, and so on. A description
of a successful interior-point code can be found in
[26].

6.4 Augmented Lagrangian

An approach for solving (18), first proposed in
the early 1970s, is enjoying renewed popularity
because of its successful use in new application
areas. Originally known as the “method of multi-
pliers,” it is founded on the following augmented
Lagrangian function:

LA(x, λ;µ) := f(x) +
∑
j∈E

λjcj(x) +
1

2µ

∑
j∈E

c2j (x),

(20)
for some positive parameter µ. The method de-
fines a sequence of primal-dual iterates (xk, λk)
for a given sequence of parameters {µk}, where
each iteration is defined as follows:

- Obtain xk+1 by solving (approximately) the
problem

min
x
LA(x.λk;µk) s.t. x ≥ 0; (21)

- Update Lagrange multipliers:

λk+1
j = λkj + cj(x

k)/µk, j ∈ E ;

- Choose µk+1 ∈ (0, µk] by some heuristic.

The method replaces the original nonlinearly
constrained problem with a sequence of bound-
constrained problems (21). Unlike in interior-
point methods, it is not necessary to drive the
parameters µk to zero to obtain satisfactory con-
vergence. Although the motivation for this ap-
proach is perhaps not as clear as for other algo-
rithms, it can be seen that if the Lagrange mul-
tiplers λk happen to be optimal in (21), then the
solution of the original nonlinear program (18)

13

would also be optimal for this subproblem. Un-
der favorable assumptions, and provided that the
sequence {µk} is chosen judiciously, we find that
the sequence (xk, λk) converges to a point satis-
fying the optimality conditions (19).

Augmented Lagrangian methods were first pro-
posed by Hestenes [11] and Powell [21]. Bertsekas’
book [3] and the book of Conn, Gould, and Toint
[7] describing the Lancelot code, were influential
in later developments. The approach has proved
particularly useful in “splitting” schemes, where
the objective f is decomposed naturally into a
sum of functions, each of which is assigned its
own copy of the variable vector x. Equality of
the different copies is enforced via equality con-
straints, and the augmented Lagrangian method
is applied to the resulting equality-constrained
problem. The appeal of this approach is that
minimization with respect to each copy of x can
be performed independently, and these individual
minimizations may be simpler to perform than
minimization of the original function f . More-
over, the possibility arises of performance these
minimizations simultaneously, on a parallel com-
puter.

7 Final Remarks

Our brief description of major problem classes in
continuous optimization, and algorithms for solv-
ing them, has necessarily omitted several impor-
tant topics. We mention several such topics be-
fore closing.

Stochastic and robust optimization deal with
problems in which there is uncertainty in the ob-
jective functions or constraints, but where the un-
certainty can be quantified and modeled. In these
problems we may seek solutions that minimize the
expected value of the uncertain objective, or that
are guaranteed to satisfy the constraints with a
certain specified probability.

Equilibrium problems are not optimization
problems in that there is no objective to be min-
imized, but they use a range of algorithmic tech-
niques that are closely related to optimization
techniques. The basic formulation is as follows:
Given a function F : <n → <n, find a vector
x ∈ <n such that

x ≥ 0, F (x) ≥ 0, xiFi(x) = 0, i = 1, 2, . . . , n.

(Note that the KKT conditions in (7) have a simi-
lar form.) Equilibrium problems arose initially in
economic applications and game theory. More re-
cent classes of applications involve contact prob-
lems in mechanical simulations.

Nonlinear equations, in which we seek a vector
x ∈ <n such that F (x) = 0, for some smooth
function F : <n → <n arise throughout scientific
computing. Newton’s method, so fundamental in
continuous optimization, is also key here. The
Newton step is obtained by solving

∇F (xk)dk = −F (xk),

(compare with (13)), where ∇F (x) is the n × n
matrix of first partial derivatives of the compo-
nents of F (x).

Further Reading

1. Barzilai, J. and J. M. Borwein. 1988, Two-point
step size gradient methods. IMA Journal of Nu-
merical Analysis 8:141–148.

2. Beck, A. and M. Teboulle. 2009, A fast iterative
shrinkage-threshold algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences
2(1):183–202.

3. Bertsekas, D. P. 1982, Constrained Optimization
and Lagrange Multiplier Methods. New York:
Academic Press.

4. ———. 1999, Nonlinear Programming. Athena
Scientific, second edition.

5. Boyd, S. and L. Vandenberghe. 2003, Convex
Optimization. Cambridge University Press.

6. Clarke, F. H. 1983, Optimization and Nonsmooth
Analysis. New York: John Wiley.

7. Conn, A. R., N. I. M. Gould, and P. Toint. 1992,
LANCELOT: A Fortran package for large-scale
nonlinear optimization, Springer Series in Com-
putational Mathematics, volume 17. Springer-
Verlag.

8. Conn, A. R., K. Scheinberg, and L. N. Vicente.
2009, Introduction to Derivative-Free Optimiza-
tion, MPS-SIAM Series in Optimization, vol-
ume 8. SIAM.

9. Dantzig, G. B. 1963, Linear Programming and
Extensions. Princeton, New Jersey: Princeton
University Press.

10. Griewank, A. and A. Walther. 2008, Evaluat-
ing Derivatives: Principles and Techniques of
Algorithmic Differentiation. Philadelphia, PA:
SIAM, second edition.

11. Hestenes, M. R. 1969, Multiplier and gradient
methods. Journal of Optimization Theory and
Applications 4:303–320.

14

12. Karmarkar, N. 1984, A new polynomial-time al-
gorithm for linear programming. Combinatorica
4:373–395.

13. Khachiyan, L. G. 1979, A polynomial algorithm
in linear programming. Soviet Mathematics
Doklady 20:191–194.

14. Klee, V. and G. J. Minty. 1972, How good is
the simplex algorithm? In Inequalities, edited
by O. Shisha, pp. 159–175, New York: Academic
Press.

15. Liu, D. C. and J. Nocedal. 1989, On the limited-
memory BFGS method for large scale optimiza-
tion. Mathematical Programming 45:503–528.

16. Nelder, J. A. and R. Mead. 1965, A simplex
method for function minimization. Computer
Journal 7:308–313.

17. Nemirovski, A., A. Juditsky, G. Lan, and
A. Shapiro. 2009, Robust stochastic approxima-
tion approach to stochastic programming. SIAM
Journal on Optimization 19(4):1574–1609.

18. Nesterov, Y. 2004, Introductory Lectures on
Convex Optimization: A Basic Course. Kluwer
Academic Publishers.

19. Nesterov, Y. and A. S. Nemirovskii. 1994, Inte-
rior Point Polynomial Methods in Convex Pro-
gramming. Philadelphia: SIAM Publications.

20. Nocedal, J. and S. J. Wright. 2006, Numerical
Optimization. New York: Springer, second edi-
tion.

21. Powell, M. J. D. 1969, A method for nonlinear
constraints in minimization problems. In Opti-
mization, edited by R. Fletcher, pp. 283–298,
New York: Academic Press.

22. Rockafellar, R. T. 1970, Convex Analysis.
Princeton, N.J.: Princeton University Press.

23. Rockafellar, R. T. and R. J. Wets. 1998, Varia-
tional Analysis. Berlin: Springer.

24. Spielman, D. A. and S.-H. Teng. 2004,
Smoothed analysis of algorithms: Why the sim-
plex method usually takes polynomial time.
Journal of the Association for Computing Ma-
chinery 51(3):385–463.

25. Todd, M. J. 2001, Semidefinite optimization.
Acta Numerica 10:515–560.

26. Wächter, A. and L. T. Biegler. 2006, On the
implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlin-
ear programming. Mathematical Programming,
Series B 106(1):25–57.

27. Wright, S. J. 1997, Primal-Dual Interior-Point
Methods. Philadelphia, PA: SIAM.

Biography

Stephen Wright is a Professor of Computer Sci-
ences at the University of Wisconsin-Madison.

