
Optimization Technical Report 02-01
Computer Sciences Department, University of Wisconsin-Madison

Jeff Linderoth? ·Alexander Shapiro?? · Stephen Wright???

The Empirical Behavior of Sampling Methods
for Stochastic Programming

September 30, 2002

Abstract. We investigate the quality of solutions obtained from sample-average approxi-
mations to two-stage stochastic linear programs with recourse. We use a recently developed
software tool executing on a computational grid to solve many large instances of these prob-
lems, allowing us to obtain high-quality solutions and to verify optimality and near-optimality
of the computed solutions in various ways.

1. Introduction

Consider the following stochastic programming problem

min
x∈X

{
f(x) := EP [F (x, ξ(ω))]

}
, (1)

where F (x, ξ) is a real valued function of two vector variables x ∈ Rn and ξ ∈ Rd,
X is a subset of Rn, and ξ(ω) is viewed as a random vector having probability
distribution P , which is assumed to be known. Often we omit the subscript P
and simply write E[F (x, ξ(ω))]. In this paper, we discuss sampling techniques
for obtaining and verifying approximate solutions of (1), and we present results
for several standard problems from the literature. Some of the ideas presented

Jeff Linderoth: Industrial and Systems Engineering Department, Lehigh University, 200 West
Packer Avenue, Bethlehem, PA 18015; jtl3@lehigh.edu

Alexander Shapiro: School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology, Atlanta, GA 30332; ashapiro@isye.gatech.edu

Stephen J. Wright: Computer Sciences Department, University of Wisconsin-Madison, 1210
West Dayton Street, Madison, WI 53706; swright@cs.wisc.edu

? Research supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, U.S. Department
of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation under
Grant 9726385.

?? Research supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, U.S. Department
of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation under
Grant DMS-0073770.

??? Research supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, U.S. Department
of Energy, under Contract W-31-109-Eng-38, and by the National Science Foundation under
Grants 9726385 and 0082065.



2 Jeff Linderoth et al.

here are applicable to the general form (1), while others apply specifically to
two-stage stochastic linear programs with recourse.

The two-stage stochastic linear program with recourse can be written in
standard form as follows:

min
x

cTx+Q(x) subject to Ax = b, x ≥ 0, (2)

where Q(x) := E[Q(x, ξ(ω))] and Q(x, ξ) is the optimal value of the second-stage
problem

min
y

qT y subject to Tx+Wy = h, y ≥ 0. (3)

Here some or all elements of the data vector ξ = (q, h, T,W ) can be random
(that is, can depend on ω). In problems with fixed recourse, the matrix W is
fixed (deterministic). If we define

F (x, ξ) := cTx+Q(x, ξ), X = {x : Ax = b, x ≥ 0},

and assume that the optimal value of the second-stage problem (3) is finite for
all x ∈ X and almost every ξ, then problem (2) becomes a particular case of
problem (1).

We report computational results in this paper for problems of the form (2),
(3) with fixed recourse. We consider problems where the probability distribution
of ξ(ω) has finite support; that is, ξ(ω) has a finite number of possible realizations,
called scenarios {ξ1, ξ2, . . . , ξK} with respective probabilities pk ∈ (0, 1), k =
1, 2, . . . ,K. For such problems, the expected value function Q(x) can be written
as the finite sum

Q(x) =
K∑
k=1

pkQ(x, ξk), (4)

where Q(x, ξ) is once again the optimal value of (3) and ξk denotes the data
vector (qk, hk, Tk,W ), k = 1, 2, . . . ,K. By defining yk to be the instance of the
second-stage variable vector corresponding to scenario k, we can combine (2),
(3) into a single linear program as follows:

minx,y1,y2,...,yK cTx+
∑K
k=1 q

T
k yk subject to (5a)

Ax = b, x ≥ 0, (5b)
Wyk = hk − Tkx, yk ≥ 0, k = 1, 2, . . . ,K. (5c)

In many applications, K is an astronomically large number. This situation
can arise when each component of the random data vector ξ has a number
of possible values, independent of the other components. The total number of
scenarios is then the product of the number of possible values for each component
of ξ. For example, if ξ has 100 components, each of which has two possible
values, then the total number of scenarios is 2100, or approximately 1030. In
such situations, it is not practical to solve (2), (3), or equivalently (5), directly.
It is not even possible to evaluate the function Q(x), for a given x, by using



The Empirical Behavior of Sampling Methods for Stochastic Programming 3

formula (4) in a reasonable amount of time, since the number of second-stage
linear programs (3) to be solved is just too large.

We can however use sampling techniques, which consider only randomly se-
lected subsets of the set {ξ1, ξ2, . . . , ξK}, to obtain approximate solutions. Sam-
pling techniques can be applied in different ways. One approach uses sampling
in an “interior” fashion. Such algorithms aim to solve the original problem (1),
but resort to sampling whenever the algorithm requires an (approximate) value
of f(·) or subgradient information for f(·) at some point x. Typically, a different
sample is used each time function or subgradient information is required. We
mention in particular the L-shaped method with embedded sampling of Dantzig
and Infanger [18], the stochastic decomposition method of Higle and Sen [15,17],
and stochastic quasi-gradient methods (see Ermoliev [8]). A second fundamental
approach to sampling is an “exterior” approach, in which a sample is selected
from {ξ1, ξ2, . . . , ξK} and a corresponding approximation to f(·) is defined from
this sample. This approximate objective, known as a sample-average approxima-
tion of f(·), is then minimized using a deterministic optimization algorithm; no
further sampling is performed. This approach is known variously as sample-path
optimization [13,29] or the stochastic counterpart method [31,32].

In scenario-based approaches, each scenario can often (for portions of the al-
gorithm) be considered independently from other scenarios. This makes such ap-
proaches well-suited to implementation on parallel computing platforms, where
different processors execute the independent portions of the computation in par-
allel. The more independent the computational components of a solution algo-
rithm, the more able it is to benefit from parallel computing.

Our computational experiments are performed on an unusual platform—
a large federation of nondedicated, heterogenous, loosely coupled processors,
known as a computational grid or a metacomputer [9,22]. The grid represents
an extremely powerful computing resource that can provide large amounts of
computing power over extended time periods, yet is also inexpensive, especially
since we use only idle time on many of the workstations and PCs that make
up the grid. We needed the computational power of the grid to determine op-
timal and near-optimal solutions to two-stage stochastic linear programs with
recourse, and to test the convergence behavior of sample average approxima-
tions of f(·). Zakeri [39] has also used a computational grid to verify the quality
of a given solution to a stochastic programming instance. Other recent use of
computational grids to solve large, complex optimization problems have been
described by Anstreicher et al. [1], Goux and Leyffer [11], and Chen, Ferris, and
Linderoth [4].

The remainder of the paper is structured as follows. Section 2 defines the con-
struction of sample-average approximations using different sampling techniques.
In Section 3, we summarize results from Shapiro and Homem-de-Mello [35] con-
cerning convergence of the minimizer of the sample-average approximation to
the exact minimizer of the original problem under certain circumstances. In Sec-
tion 4, we describe techniques for estimating lower and upper bounds on the
optimal value of the problem (1), and for estimating the gap between these
bounds. We describe several tests for optimality or near-optimality of a candi-



4 Jeff Linderoth et al.

date solution in Section 5. In Section 6 we focus on the two-stage stochastic
linear programming problem with recourse (2), outlining the software that we
used to solve this problem. (A fuller description can be found in [21].) Section 7
briefly highlights the characteristics of the computational grid we used in this
work. Section 8 describes the benchmark problems used in our computational
tests, while Section 9 describes and analyzes the results obtained from our tests.

2. Sample-Average Approximations

Suppose that a random sample ξ1, ξ2, . . . , ξN ∼ P of N (not necessarily inde-
pendent) realizations of the random vector ξ(ω) is generated. By replacing f(·)
by an approximation based on this sample, we approximate the problem (1) by

min
x∈X

{
f̂N (x) := N−1

N∑
i=1

F (x, ξi)

}
. (6)

The function f̂N is a sample-average approximation (SAA) to the objective f of
(1). We denote by v̂N the optimal value and by x̂N an optimal solution of (6).

Since the random realizations ξi have the same probability distribution P ,
it follows that f̂N (x) is an unbiased estimator of f(x), for any x. If we per-
form Monte Carlo sampling, in which all ξi are independent of each other, then
Var

[
f̂N (x)

]
= σ2(x)/N , where σ2(x) := Var[F (x, ξ(ω))].

We also used Latin Hypercube sampling (LHS) to construct the sample-
average function f̂N . In this technique, initially proposed by McKay, Beckman,
and Conover [25], a sample of size N is constructed by dividing the interval (0, 1)
into N subintervals of equal size and picking one number randomly from each
subinterval. These N numbers are then shuffled, and the resulting sequence is
used to generate random variates for a given distribution, possibly by perform-
ing an inverse transform. Assuming that the components of the random vector
are independently distributed, the procedure is repeated for each component,
yielding a stratified sample of size N for that vector. The sample-average func-
tion f̂N so obtained is an unbiased estimator of f , but its variance Var

[
f̂N (x)

]
often is considerably less than that obtained from Monte Carlo sampling. Fur-
ther discussion of LHS and its properties can be found in Avramidis and Wil-
son [2, Section 1.2.2], Stein [38], and Owen [28]. In stochastic programming, LHS
methodology was used in Diwekar and Kalagnanam [7]and Bailey, Jensen and
Morton [3]. Some other variance reduction techniques have been described in
Higle [14]. Importance sampling variance reduction method has been used by
Dantzig and Infanger [5].

From a computational point of view, one can regard the SAA problem (6) as a
stochastic programming problem with a finite number of scenarios ξ1, ξ2, . . . , ξN

each with equal probability pi = N−1. Therefore, any numerical algorithm suit-
able for solving the corresponding stochastic problem with a discrete distribution
can be applied to the SAA problem.



The Empirical Behavior of Sampling Methods for Stochastic Programming 5

3. Convergence of the SAA Solution to the Exact Solution Set

A fundamental question central to any sampling-based solution approach is how
large must the sample size be so that the solution to the sampled instance is
a good (or optimal) solution for the true instance. In this section, we review
a theory, developed recently in [35,20,37], concerning the rate of convergence
of the solutions x̂N of the SAA problem (6) to the optimal solution set of the
original problem (1). This theory suggests that for certain instances, the sample
size necessary to obtain excellent solutions is small compared to the size of the
whole sample space.

Unless stated otherwise, we make the following assumptions on the problem
(1) throughout the remainder of the paper:

(A1) The distribution of ξ(ω) has finite support, say Ξ = {ξ1, ξ2, . . . , ξK};
(A2) For every ξ ∈ Ξ, the function F (·, ξ) : X → IR is convex and piecewise linear;
(A3) The set X is polyhedral;
(A4) The set S of optimal solutions of (1) is nonempty and bounded.

Assumption (A1) means that we deal with random data having a finite, although
possibly very large, number of realizations (scenarios). In the case of two-stage
linear programs of the form (2), (3) we have that F (x, ξ) < +∞ if the corre-
sponding second stage problem is feasible. We also have that F (·, ξ) is convex
and piecewise linear, and hence F (·, ξ) is bounded from below if F (x, ξ) > −∞
for at least one x. Therefore, assumption (A2) is satisfied by stochastic two-stage
linear programs provided that the recourse is relatively complete, that is, for ev-
ery x ∈ X and ξ ∈ Ξ, the second stage problem (3) is feasible. For the problems
used in our experiments, the set X is defined by linear constraints, and hence is
polyhedral, and consequently assumption (A3) holds. For the considered prob-
lems, the final assumption (A4) is satisfied as well. Assumptions (A1) and (A2)
imply that the expected value function f(·) is finite valued, piecewise linear and
convex on X. These assumptions together with (A3) imply that the set S is
convex and polyhedral.

For ε ≥ 0 we denote by Sε the set of all ε-optimal solutions of (1), that is, the
set of points x̄ ∈ X such that f(x̄) ≤ v∗ + ε, where v∗ is the optimal objective
value in (1). In particular, for ε = 0 the set Sε coincides with the set S of optimal
solutions of (1).

Under assumptions (A1)–(A4), we have that for each ε ≥ 0 there exist con-
stants Cε > 0 and βε > 0 such that the inequality

1− P (x̂N ∈ Sε) ≤ Cεe−βεN (7)

holds for all N ∈ N. Note that the choice of the optimal solution x̂N of (6) here
is arbitrary, so that the probability P (x̂N ∈ Sε) actually refers to the probability
that the set of optimal solutions of the SAA problem (6) is included in the set
Sε. It follows from (7) that

lim sup
N→∞

1
N

log [1− P (x̂N ∈ Sε)] ≤ −βε. (8)



6 Jeff Linderoth et al.

In other words, the probability that x̂N is an ε-optimal solution of the true
(expected value) problem (1) approaches 1 exponentially fast in N . The above
result (7), and hence (8), is a consequence of the upper bound of Cramér’s Large
Deviation Theorem and the assumed polyhedral structure of the problem (cf.,
[35, Theorem 3.2] and [20, Section 2.2]). By using the lower bound of Cramér’s
Large Deviation Theorem, it is possible to show that a limit in the left hand side
of (8) is attained, so that “ lim sup ” can be replaced by “ lim ”.

The estimates (7) and (8) hold in particular for ε = 0, that is, for Sε = S. Of
course, the probability P (x̂N ∈ Sε) increases with ε, and hence for larger values
of ε the exponential constant βε is larger. In the case in which the solution to
(1) is a singleton (that is, S = {x0} for some x0 ∈ X), there exists β > 0 such
that

lim
N→∞

1
N

log
[
1− P (x̂N = x0)

]
= −β. (9)

We can refine the expression (9) by quantifying the conditioning of the sin-
gleton solution. Denote by TX(x0) the tangent cone to the feasible set X at x0

and by F ′ω(x0, d) and f ′(x0, d) the directional derivatives of F (·, ω) and f(·),
respectively, at x in the direction d. Because of the assumed polyhedral struc-
ture of problem (1) and since the optimal solution x0 is unique, we have by the
theory of linear programming that it is sharp, that is

f ′(x0, d) > 0, ∀ d ∈ TX(x0) \ {0}. (10)

Furthermore, from [35], we have the following property: There exists a finite
set ∆ ⊂ TX(x0) \ {0} of directions, independent of the sample, such that if
f̂ ′N (x0, d) > 0 for every d ∈ ∆, then x̂N = x0. We call

κ := max
d∈∆

Var
[
F ′ω(x0, d)

][
f ′(x0, d)

]2 (11)

the condition number of the true problem (1). The above definition is motivated
by the result which states that the sample size N required to achieve a given
probability of the event “x̂N = x0” is roughly proportional to the condition
number κ. Specifically, for large N , we have from [37, Theorem 1] that the
probability of this event can approximated as follows:

P (x̂N = x0) ≈ 1− νe−N/(2κ)√
4πN/(2κ)

, (12)

where ν ≥ 1 is a small constant depending on the problem. It follows by com-
paring this expression with (9) that for large κ, the exponential constant β is
small, and therefore that one needs a large sample to attain a given probability
of the event “x̂N = x0”. Such problems can be be viewed as ill conditioned. Note
that for a given d, the expression in the right hand side of (11) is the ratio of
the variance of F ′ω(x0, d) to its squared expected value.

It is impractical to try to compute the numerical value of the condition num-
ber κ. (For one thing, it depends on the optimal solution x0 which, of course,



The Empirical Behavior of Sampling Methods for Stochastic Programming 7

is not known a priori.) Rather, the value of the above analysis is conceptual.
It indicates that instances that possess a sharp optimal solution will be well-
conditioned, and can be solved exactly with a small sample size. In other prob-
lems, the objective function is flat near the minimizer. These cases correspond to
a very large value of κ from (11). The value of κ may even be infinite, since the
directional derivative of f(·) may be zero in some directions. (This happens if
the set of optimal solutions of the true problem is not a singleton.) For these in-
stances, the sample size necessary to obtain a good solution to the true instance
could be quite large. One of the goals of this paper is to test the convergence
behavior of the sample average approximation on a number of real stochastic
programming instances to empirically verify if this conceptual analysis extends
to practice.

4. Estimating the Optimal Value

Although the results discussed in the previous section indicate a high probability
of identifying an exact optimal solution of (1) under certain circumstances, they
have little to say about identifying the optimal objective value v∗. Even when N
is large and x̂N is identical to x∗ for different samples of sizeN , the corresponding
optimal objective values v̂N of (6) will in general be different for each sample.
Further, the expected value of v̂N is an underestimate of v∗, as we discuss in
Section 4.1.

Sampling methodology can be used to obtain estimates of upper and lower
bounds on the optimal value v∗ of the true problem (1). In this section, we give
details on obtaining these estimates (with approximate confidence intervals).

4.1. Lower Bound Estimates

Denote by v∗ and v̂N the optimal values of the true (1) and SAA (6) problems,
respectively. It is well known, and can be easily shown, that

E[v̂N ] ≤ v∗. (13)

The expected value E[v̂N ] can be estimated as follows. Generate M independent
samples, ξ1,j , . . . , ξN,j , j = 1, . . . ,M , each of size N , and solve the corresponding
SAA problems

min
x∈X

{
f̂ jN (x) := N−1

N∑
i=1

F (x, ξi,j)

}
, (14)

for each j = 1, . . . ,M . Let v̂ jN be the optimal value of problem (14), and compute

LN,M :=
1
M

M∑
j=1

v̂ jN . (15)



8 Jeff Linderoth et al.

The estimate LN,M is an unbiased estimate of E[v̂N ]. Because of the property
(13), it provides a statistical lower bound for the true optimal value v∗.

When the M batches ξ1,j , ξ2,j , . . . , ξN,j , j = 1, . . . ,M , are i.i.d. (although
the elements within each batch do not need to be i.i.d.; they can for instance be
obtained by LHS), we have by the Central Limit Theorem that

√
M [LN,M − E(v̂N )]⇒ N(0, σ2

L), as M →∞, (16)

where σ2
L := Var[v̂N ] and “⇒ ” denotes convergence in distribution. The sample

variance estimator of σ2
L is

s2
L(M) :=

1
M − 1

M∑
j=1

(
v̂ jN − LN,M

)2

. (17)

Defining zα to satisfy P{N(0, 1) ≤ zα} = 1−α, and replacing σL by sL(M), we
can obtain an approximate (1− α)-confidence interval for E[v̂N ] to be[

LN,M −
zα/2sL(M)
√
M

,LN,M +
zα/2sL(M)
√
M

]
. (18)

Note that the above confidence interval is based on the asymptotic result (16),
and therefore is approximate. For small values of M , one can use tα/2,M−1 critical
values instead of zα/2, which will produce a slightly bigger confidence intervals.

The idea of the statistical lower bound (15), and statistical upper bounds
discussed in the next section, was introduced by Norkin, Pflug, and Ruszczyński
[27] and developed further by Mak, Morton, and Wood [24].

4.2. Upper Bound Estimates

An upper bound can be obtained by noting that for any x̂ ∈ X, we have im-
mediately from (1) that f(x̂) ≥ v∗. Hence, by choosing x̂ to be a near-optimal
solution (possibly obtained by solving an SAA problem (6)), and by using some
unbiased estimator of f(x̂), we can obtain an estimate of an upper bound for
v∗. In particular, we can generate T independent batches of samples of size N̄ ,
denoted by ξ1,j , ξ2,j , . . . , ξN̄,j , j = 1, 2, . . . , T , where each batch has the unbiased
property, namely

E

f̂ j
N̄

(x) := N̄−1
N̄∑
i=1

F (x, ξi,j)

 = f(x), for all x ∈ X. (19)

We can then use the average value defined by

UN̄,T (x̂) := T−1
T∑
j=1

f̂ j
N̄

(x̂), (20)



The Empirical Behavior of Sampling Methods for Stochastic Programming 9

as an estimate of f(x̂). By applying the Central Limit Theorem again, we have
that √

T
[
UN̄,T (x̂)− f(x̂)

]
⇒ N(0, σ2

U (x̂)), as T →∞, (21)

where σ2
U (x̂) := Var

[
f̂N̄ (x̂)

]
. We can estimate σ2

U (x̂) by the sample variance
estimator s2

U (x̂;T ) defined by

s2
U (x̂;T ) :=

1
T − 1

T∑
j=1

[
f̂ j
N̄

(x̂)− UN̄,T (x̂)
]2
. (22)

By replacing σ2
U (x̂) with s2

U (x̂;T ), we can proceed as above to obtain a (1−α)-
confidence interval for f(x̂):[

UN̄,T (x̂)−
zα/2sU (x̂;T )
√
T

,UN̄,T (x̂) +
zα/2sU (x̂;T )
√
T

]
. (23)

4.3. Estimating the Gap

For a given feasible solution x̂ ∈ X we may wish to estimate the optimality gap
f(x̂)− v∗. Consider the difference

GapN,M,N̄,T (x̂) := UN̄,T (x̂)− LN,M , (24)

between the upper and lower bound estimates, defined in (20) and (15), respec-
tively. By the Law of Large Numbers we have that UN̄,T (x̂) tends to f(x̂) with
probability one as N̄T tends to∞, and LN,M tends to E[v̂N ] with probability one
as M tends to ∞. Moreover, under the assumptions (A1),A(2) and (A4), E[v̂N ]
tends to v∗ with probability one as N tends to∞. It follows that GapN,M,N̄,T (x̂)
tends to f(x̂) − v∗ with probability one as N , M , N̄ , and T all tend to ∞. Of
course, if x̂ is not an optimal solution, then f(x̂)− v∗ is strictly positive. Three
factors contribute to the error in the statistical estimator GapN,M,N̄,T (x̂) of the
gap f(x̂)− v∗. These factors are

(i) variance of UN̄,T (x̂);
(ii) variance of LN,M ;
(iii) bias v∗ − E [v̂N ].

Note that UN̄,T (x̂) and LN,M are unbiased estimators of f(x̂) and E [v̂N ],
respectively. Variances of these estimators can be estimated from the generated
samples and may be reduced by increasing the respective sample sizes N̄ , M and
T . We have here that GapN,M,N̄,T (x̂) is an unbiased estimator of f(x̂)−E [v̂N ],
and that

f(x̂)− E [v̂N ] ≥ f(x̂)− v∗.
That is, GapN,M,N̄,T (x̂) overestimates the true gap f(x̂) − v∗, and has bias
v∗ − E [v̂N ].

The bias constitutes the most serious problem in estimating the GapN,M,N̄,T (x̂).
We have by the Central Limit Theorem that N1/2(f̂N (x) − f(x)) converges in



10 Jeff Linderoth et al.

distribution to Y (x), where each Y (x) is a random variable having normal distri-
bution with mean zero and the same covariance structure as F (x, ξ(ω)). Further-
more, it is known that N1/2(v̂N − v∗) converges in distribution to minx∈S Y (x)
(see Shapiro [34]). Under mild additional conditions, we have that the expected
value of N1/2(v̂N − v∗) converges to the expected value of minx∈S Y (x). Al-
though each Y (x) has mean (expected value) zero, the mean of the minimum
of these random variables could be negative and would tend to be smaller for
problems with a larger set S of optimal solutions. For a finite sample size N ,
one may expect that problems having a large set of nearly optimal solutions will
exhibit a similar behavior. That is, for ill conditioned problems, this bias may
be relatively large and tends to zero at a rate of O(N−1/2). The bias can be
reduced by increasing the sample size N of the corresponding SAA problems or
by sampling more intelligently (by using LHS, say). Of course, an increase in N
leads to a larger problem instance to be solved, while increases in N̄ , M and T
to reduce components (i) and (ii) of the error lead only to more instances of the
same size to be solved. (See [20, Section 3.3] for a further discussion of the bias
problem.)

5. Testing for (Approximate) Optimality

5.1. Testing for a Unique Solution with Repeated Independent Samples

Perhaps the simplest scheme for optimality verification is to ascertain whether a
phenomenon predicted by the results discussed in Section 3 occurs; that is, to see
if the solutions of (6) for a number of different samples of a given size N yield
identical solutions x̂N . For stochastic two-stage linear programs with unique
optimal solution, we would expect to see the same minimizer x̂N for almost all
samples, for sufficiently large N . Although this test will not in general yield
coincident values of x̂N if the solution set S is not a singleton, or if the problem
is poorly conditioned and does not allow identification of the true solution for
any reasonable value of N , we can still sometimes use the minimizers x̂N to learn
about the dimensionality of S and its diameter.

Our implementation of this test is as follows. We choose N , and solve a single
SAA problem (6) for this N , using a very tight convergence tolerance. We use
the solution x̂N so calculated as a starting point for solving a number (say, 10)
of SAAs for the same N , with different samples, again using a tight convergence
tolerance. If all these SAAs terminate without moving away from the starting
point x̂N , we conclude that it is likely that x̂N coincides with x∗. If not, we
repeat the entire process for a larger value of N .

5.2. Comparing Several Points with Repeated Independent Samples

Given two candidates x0, x1 ∈ X for an optimal solution of the problem (1),
we can validate whether one of these points has a significantly smaller value



The Empirical Behavior of Sampling Methods for Stochastic Programming 11

of the objective function by using the statistical (paired) t-test. We generate T
independent batches of samples of size N̄ , denoted by ξ1,j , ξ2,j , . . . , ξN̄,j , j =
1, 2, . . . , T , where each batch has the unbiased property (19). We have from this
property that

E

[
f̂ j
N̄

(x1)− f̂ j
N̄

(x0)
]

= E

N̄−1
N̄∑
i=1

(
F (x1, ξi,j)− F (x0, ξi,j)

) = f(x1)−f(x0),

so the average value defined by

DN̄,T (x0, x1) := T−1
T∑
j=1

[
f̂ j
N̄

(x1)− f̂ j
N̄

(x0)
]

(25)

can be used as an estimate of f(x1) − f(x0). By applying the Central Limit
Theorem again, we have that
√
T
[
DN̄,T (x0, x1)−

(
f(x1)− f(x0)

)]
⇒ N(0, σ2

D(x0, x1)), as T →∞, (26)

where σ2
D(x0, x1) := Var

[
f̂N̄ (x1) − f̂N̄ (x0)

]
. We can use the sample variance

estimator s2
D(x0, x1;T ) defined by

s2
D(x0, x1;T ) :=

1
T − 1

T∑
j=1

[
f̂ j
N̄

(x1)− f̂ j
N̄

(x0)−DN̄,T (x0, x1)
]2

to construct a (1− α)-confidence interval for f(x1)− f(x0), as follows:[
DN̄,T (x0, x1)−

zα/2sD(x0, x1;T )
√
T

, DN̄,T (x0, x1) +
zα/2sD(x0, x1;T )

√
T

]
. (27)

Mak, Morton, and Wood [24] use a common-random numbers technique like
that described above in connection with estimating the optimality gap defined
in Section 4.3.

5.3. Testing KKT Conditions I

In discussing the tests of optimality in this section, we assume that the feasi-
ble set X for the problem (1) and the SAA problem (6) is defined by linear
constraints, that is,

X :=
{
x ∈ Rn : aTi x+ bi ≤ 0, i ∈ I

}
, (28)

where I is a finite index set. It follows that X is polyhedral.
Another test for near-optimality of a candidate solution to (1) is based on

statistical verification of the first-order Karush-Kuhn-Tucker (KKT) optimality
conditions, using subgradients from the sample-average approximations (6) to
build up an approximation to the subdifferential of f(·) in the vicinity of the



12 Jeff Linderoth et al.

candidate solution x̂. Higle and Sen [16, Section 3] discuss a test that is related
to the one described below. It differs in that it does not attempt to calculate
explicitly the distance between the subdifferential of f and the normal cone to
X at x̂, but rather uses a kind of sampling technique to estimate this distance.

We discuss first the situation in which f(·) is differentiable at x̂; that is,
its subdifferential ∂f(x̂), at x̂, is a singleton. In the case of two-stage linear
stochastic programming the (optimal value) function Q(·, ξ) is convex, and since
it is assumed that the corresponding expected value function is real valued,
the subdifferential of f(x) can be taken inside the expectation operator (see,
e.g., Ioffe and Tihomirov [19, Theorem 4, page 381]). It follows that ∂f(x̂) is a
singleton if ∂Q(x̂, ξ(ω)) is a singleton with probability one. This typically holds
if the involved probability distributions are continuous. On the other hand if the
number of scenarios is finite, then the expected value function is piecewise linear
and cannot be differentiable everywhere except in the trivial case in which it is
affine. Nevertheless, it may still be differentiable at the considered point x̂.

Assuming that F (·, ξ(ω)) is differentiable at a given point x with probability
one, we can (under mild regularity conditions and, in particular, if F (·, ξ(ω)) is
convex and f(·) real valued) take the derivatives inside the expected value, that
is,

∇f(x) = E [∇xF (x, ξ(ω))] . (29)

The following first-order optimality conditions hold at an optimal solution x∗ of
the true problem (1). There exist Lagrange multipliers λi ≥ 0, i ∈ I(x∗), such
that

0 ∈ ∂f(x∗) +
∑

i∈I(x∗)

λiai, (30)

where
I(x∗) :=

{
i ∈ I : aTi x

∗ + bi = 0
}

is the index set of constraints active at x∗. In particular, if f(·) is differentiable
at x∗, that is, ∂f(x∗) = {∇f(x∗)} is a singleton, then the conditions (30) can
be written in the familiar KKT form:

∇f(x∗) +
∑

i∈I(x∗)

λiai = 0. (31)

We can also write (31) in the form

−∇f(x∗) ∈ NX(x∗), (32)

where NX(x∗), the normal cone to X at x∗, can be written as follows:

NX(x∗) =

 ∑
i∈I(x∗)

λiai : λi ≥ 0, i ∈ I(x∗)

 . (33)

Given a candidate solution x̂, we propose in our KKT test to estimate the
distance

δ(x̂) := dist (−∇f(x̂), NX(x̂)) ,



The Empirical Behavior of Sampling Methods for Stochastic Programming 13

where dist (a,C) denotes the distance from point a to set C. The KKT conditions
hold at x̂ if and only if δ(x̂) = 0.

Assuming that equation (29) holds at the point x̂, the gradient ∇f̂N (x̂) of
the sample-average function provides an unbiased and consistent estimator of
∇f(x̂). It follows that the quantity δ̂N (x̂) defined by

δ̂N (x̂) := dist
(
−∇f̂N (x̂), NX(x̂)

)
(34)

gives a consistent estimator of δ(x̂). Moreover, the covariance matrix of ∇f̂N (x̂)
can be estimated, allowing a confidence region for ∇f(x̂) to be constructed, and
therefore allowing a statistical validation of the KKT conditions. This test is
discussed in detail in [36].

Consider now the case in which the function f(·) in (1) is convex but is not
differentiable everywhere, as typically happens in the two-stage linear problem
with recourse when the distribution is discrete. We can write the first-order
conditions (30) as follows:

∃ γ ∈ ∂f(x∗) such that − γ ∈ NX(x∗). (35)

Defining
∆(x̂) := inf

γ∈∂f(x̂)
dist(−γ,NX(x̂)), (36)

we have that ∆(x̂) = 0 if and only if x̂ satisfies the conditions (30). Similarly to
(34), we estimate ∆(x̂) by ∆̂N (x̂) defined as follows:

∆̂N (x̂) := inf
γ∈∂f̂N (x̂)

dist (−γ,NX(x̂)) . (37)

It is known that the Hausdorff distance between ∂f(x) and its sample-average
estimate ∂f̂N (x) converges with probability 1 to zero, and moreover the conver-
gence is uniform in x on any compact subset of Rm if the distribution of ξ(ω)
has a finite support [35, Lemma 2.4]. In this sense, ∂f̂N (x) provides a consistent
estimator of ∂f(x), and it follows that ∆̂N (x̂) is a consistent estimator of ∆(x̂).

It is, of course, impractical to calculate the entire subdifferential ∂f̂N (x̂).
However, when f is convex and piecewise linear (as in the case of two-stage
linear programs with recourse), then in the neighborhood of any point x̂ there
exist a finite number of points x1, x2, . . . , x` such that Q is differentiable at
these points and ∂f(x̂) = conv{∇f(x1),∇f(x2), . . . ,∇f(x`)}. This observation
suggests the following test.

(i) Generate M points xj , j = 1, 2, . . . ,M , randomly distributed in a small
neighborhood of x̂.

(ii) Calculate an estimate γ̂j of a subgradient of f at each point xj . This can
be done either by using a common sample for all subgradients, that is, γ̂j ∈
∂f̂N (xj), where f̂N is defined by the same sample for each argument xj ; or
by using a different sample for each point xj .



14 Jeff Linderoth et al.

(iii) Calculate the minimal distance of the convex hull of γ̂j , j = 1, 2, . . . ,M , to
−NX(x̂), given by the optimal value δ̂MN (x̂) of the following problem:

minα dist
(
−
∑M
i=1 αj γ̂j , NX(x̂)

)
, subject to (38)∑M

j=1 αj = 1, αj ≥ 0, j = 1, 2, . . . ,M.

The convex hull of γ̂j , j = 1, 2, . . . ,M , converges (in the Hausdorff metric) to
∂f(x̂) with probability 1 as N and M both tend to infinity. It follows that this
test is a consistent KKT test.

Note that the convex hull of γ̂j , j = 1, 2, . . . ,M , actually converges to the
convex hull of the set ∪‖x−x̂‖≤ε ∂f(x), where ε > 0 defines a small neighborhood
of x̂. Although, since f(·) is piecewise linear, for ε sufficiently small this set will
coincide with ∂f(x̂), we should in practice choose ε to be a value corresponding
to the error we are prepared to tolerate in x̂. That is, if we wish only to verify
that x̂ is within ε of an exact solution, it suffices to use this value of ε in this
test.

5.4. Testing KKT Conditions II

Here we consider a variant of the test proposed in the previous section. As above,
the aim is to estimate the quantity ∆(x̂) defined by (36). Rather than building
up an estimate of the subgradient by taking randomly distributed points in a
small neighborhood of x̂, we use different samples of size N to generate different
elements of the true subdifferential ∂f(x̂). The approach is as follows.

(i) For given N and M , choose M samples of size N , that is, {ξ1,j , ξ2,j , . . . , ξN,j},
j = 1, 2, . . . ,M .

(ii) For each j = 1, 2, . . . ,M , and defining f̂ jN as in (14), calculate an element
γ̂j ∈ ∂f̂ jN (x̂).

(iii) Calculate the minimal distance of the convex hull of γ̂j , j = 1, 2, . . . ,M , to
−NX(x̂) by solving (38).

Note that this test is “stricter” than the test of the previous section, because
it constructs an approximation to ∂f(x̂) by sampling subgradients at the fixed
point x̂. Consequently, unless ∂f(x̂) is a singleton, there is no guarantee that the
convex hull of γ̂j , j = 1, 2, . . . ,M , converges (in the Hausdorff metric) to ∂f(x̂)
with probability one as N and M tend to infinity. Hence, in general, this test is
not a consistent KKT test.

6. An Algorithm for Two-Stage Stochastic Linear Programs with
Recourse

In this section, we focus our attention on two-stage stochastic linear programs
with recourse over a discrete scenario space, which are the subjects of our compu-
tational experiments. We discuss briefly the algorithm used in the experiments,
referring the reader to Linderoth and Wright [21] for further details.



The Empirical Behavior of Sampling Methods for Stochastic Programming 15

The problem we consider is (2), with second-stage problems defined by (3),
with fixed recourse, and with a finite number K of scenarios. We thus have Q
defined by (4), where ξk defines the data vector (qk, hk, Tk,W ), k = 1, 2, . . . ,K.
The optimality conditions for each second-stage problem (3) with ξ = ξk are
that there exists a vector πk such that

qk −WTπk ≥ 0 ⊥ yk ≥ 0, Wyk = hk − Tkx̂.

(The symbol ⊥ represents a complementarity condition, which we can also state
as requiring that the inner product of these two nonnegative vectors must be
zero.) It can be shown that

−TTk πk ∈ ∂Q(x; ξk).

From Rockafellar [30, Theorem 23.8], we have that

c+
K∑
k=1

pk∂Q(x; ξk) = c+ ∂Q(x),

and therefore

c−
K∑
k=1

pkT
T
k πk ∈ c+ ∂Q(x). (39)

Since the evaluation of each Q(x; ξk) requires solution of (3) and since πk is
simply the dual solution of this linear program, it follows that we can obtain
an element of the subdifferential for the objective function in (2) for little more
than the cost of evaluating the function alone.

Our tests require the solution of several SAA problems (6), which have the
same form as described above except that we work with a subset of N (instead
of K) scenarios, and the probabilities pk = 1/N .

The approach described in [21] uses subgradient information to construct
a lower bounding piecewise-linear approximation to the objective function in
(2). Candidate iterations are generated by finding the minimizer of this model
subject to the constraints Ax = b, x ≥ 0 from (2) and a trust-region constraint
of the form ‖x − xI‖∞ ≤ ∆, where xI is the “incumbent” (roughly speaking,
the best point found so far), and ∆ is a trust-region radius. This bundle-trust-
region subproblem can be formulated as a linear program and therefore solved
efficiently. Convergence to a solution (existence of a solution is specified in the
assumption (A4)) is assured by means of rules for adjusting the value of ∆, for
accepting candidate iterates as the new incumbent or rejecting them, and for
managing the subgradient information.

7. Computational Grids

The algorithm described in Section 6 is implemented to run on a computational
grid built using Condor [22]. The Condor system manages distributively owned
collections of workstations known as Condor pools. A unique and powerful feature



16 Jeff Linderoth et al.

of Condor is that each machine’s owner specifies the conditions under which jobs
from other users are allowed to run on his machine. The default policy is to
terminate a Condor job when a workstation’s owner begins using the machine,
and migrate it to some other machine. Under this policy, Condor jobs use only
compute cycles that would have otherwise been wasted. Because of the minimal
intrusion of the Condor system, workstation owners often are quite willing to
contribute their machines to Condor pools, and large pools can be built. Table 1
gives summary statistics about the resources that made up the computational
grid used in many of the experiments of Section 9.

Number Type of Machine Location
414 Intel/Linux PC Argonne
579 Intel/Linux PC Wisconsin
31 Intel/Solaris PC Wisconsin
133 Sun/Solaris Workstation Wisconsin
512 Intel/Linux PC New Mexico

Table 1. Computational Grid used for Experiments

The pool of workers typically grows and shrinks dynamically during the com-
putation, as some workers become available to the job and others are reclaimed
by their owners or by other Condor users. It is important for algorithms using
this platform to be able to handle the dynamism of the environment, the possi-
bility that the computations on some workers may never be completed, and the
high latencies in transferring information between master and workers. To help
implement our algorithm on the Condor platform, we used the runtime support
library MW [12,10], which supports parallel computations of the master-worker
type on the computational grid.

A typical computation in this environment proceeds as follows: A master
processor (typically the user’s workstation or a powerful server) maintains a
queue of tasks which it wishes the worker processors to solve, and a list of
currently available workers. MW manages these queues and takes responsibility
for assigning tasks to available workers. When a worker completes its task, it
returns the results to the master, which performs some computation in response,
possibly generating more tasks for the task queue.

Parallelism in the algorithmic approach of Section 6 arises in two places. First,
solution of the second-stage linear programs can be carried out independently for
each scenario ξk. Typically, we group these scenarios into “chunks” and assign
the solution of each chunk to a worker processor. The master processor manages
the function and subgradient information returned by the workers. The second
source of parallelism arises from considering more than one candidate iterate
at a time. We maintain a “basket” of possible new incumbents; at any given
time, tasks for evaluating the objective function for each iterate in the basket
are being performed on the workers. When evaluation of the function for a point
in the basket is completed, the master decides whether or not to make it the new
incumbent, and solves a trust-region subproblem to generate a new candidate.



The Empirical Behavior of Sampling Methods for Stochastic Programming 17

Name Application Scenarios First-Stage Size Second-Stage Size
20term Vehicle Assignment 1.1× 1012 (3,64) (124, 764)

gbd Aircraft Allocation 6.5× 105 (4, 17) (5, 10)
LandS Electricity Planning 106 (2, 4) (7, 12)

ssn Telecom Network Design 1070 (1, 89) (175, 706)
storm Cargo Flight Scheduling 6× 1081 (185, 121) (528, 1259)

Table 2. Test Problem Dimensions

Consideration of more than one candidate at a time makes the algorithm less
“synchronous,” making it less sensitive to slow or unreliable workers.

For the statistical tests that do not require the solution of a master problem,
the batches or scenarios can be processed completely independently of each other.
No centralized control is needed, except to gather statistics and results of the
runs. Such solution approaches lend themselves extremely well to computing
platforms where the processors themselves are diverse and loosely coupled, such
as the computational grid used in our experiments.

8. Test Problems

Here we briefly describe the test problems used in our experiments. All are
two-stage stochastic linear programs with recourse obtained from the literature,
though in some cases we refined the scenario distribution to increase the total
number of scenarios. The input data sets we used, in SMPS format, can be
obtained from the following site:

www.cs.wisc.edu/∼swright/stochastic/sampling/

8.1. 20term

This problem is described by Mak, Morton, and Wood [24]. It is a model of a
motor freight carrier’s operations, in which the first-stage variables are positions
of a fleet of vehicles at the beginning of a day, and the second-stage variables
move the fleet through a network to satisfy point-to-point demands for shipments
(with penalties for unsatisfied demands) and to finish the day with the same fleet
configuration as at the start.

8.2. gdb

This problem is derived from the aircraft allocation problem described by Dantzig [6,
Chapter 28]. Aircraft of different types are to be allocated to routes in a way
that maximizes profit under uncertain demand. Besides the cost of operating the
aircraft, there are costs associated with bumping passengers when the demand
for seats outstrips the capacity. In this model, there are four types of aircraft
flying on five routes, and the first-stage variables are the number of aircraft of



18 Jeff Linderoth et al.

each type allocated to each route. (Since three of the type-route pairs are infea-
sible, there are 17 variables in all.) The first-stage constraints are bounds on the
available number of aircraft of each type. The second-stage variables indicate the
number of carried passengers and the number of bumped passengers on each of
the five routes, and the five second-stage constraints are demand balance equa-
tions for the five routes. The demands (the right-hand sides of the five demand
balance equations) are random. In the original model, there are a total of only
750 scenarios. By refining the possible demand states (to allow between 13 and
17 states on each route), we obtain a model with 646, 425 scenarios.

8.3. LandS

Our test problem LandS is a modification of a simple problem in electrical invest-
ment planning presented by Louveaux and Smeers [23]. The four first stage vari-
ables represent capacities of different new technologies, and the 12 second-stage
variables represent production of each of three different “modes” of electricity
from each of the four technologies technologies. First-stage constraints represent
minimum total capacity and budget restrictions. The second-stage constraints
include capacity constraints for each of the four technologies, and three demand
constraints, which have the form

4∑
i=1

yij ≥ ξj , j = 1, 2, 3,

where ξ1, ξ2, and ξ3 are the (possibly uncertain) demands. All other data is
deterministic.

In [23], ξ2 and ξ3 are fixed at 3 and 2, respectively, while ξ1 takes on three pos-
sible values. The total number of scenarios is therefore 3. We modified the prob-
lem to allow 100 different values for each of these random parameters, namely,

ξj = .04(k − 1), k = 1, 2, . . . , 100, j = 1, 2, 3,

each with probability .01. Since we assume independence of these parameters,
the total number of scenarios is 106, each with equal probability 10−6.

8.4. SSN

The SSN problem of Sen, Doverspike, and Cosares [33] arises in telecommu-
nications network design. The owner of the network sells private-line services
between pairs of nodes in the network. When a demand for service is received,
a route between the two nodes with sufficient bandwidth must be identified for
the time period in question. If no such route is available, the demand cannot
be satisfied and the sale is lost. The optimization problem is to decide where to
add capacity to the network to minimize the expected rate of unmet requests.



The Empirical Behavior of Sampling Methods for Stochastic Programming 19

Since the demands are random (the scenarios are based on historical demand
patterns), this is a stochastic optimization problem.

The formulation in [33] is as follows:

min Q(x) subject to eTx ≤ b, x ≥ 0, (40)

where x is the vector of capacities to be added to the arcs of the network, e is
the vector whose components are all 1, b (the budget) is the total amount of
capacity to be added, and Q(x) is the expected cost of adding capacity in the
manner indicated by x. We have Q(x) = EPQ(x, d(ω)), where

Q(x, d) := min
f,s
{eT s : Af ≤ x+ c, Ef + s = d(ω), (f, s) ≥ 0}. (41)

Here, d = d(ω) is the random vector of demands; e is the vector whose compo-
nents are all 1; the columns of A are incidence vectors that describe the topology
of the network; f is the vector whose components are the number of connections
between each node pair that use a certain route; c is the vector of current ca-
pacities; s is the vector of unsatisfied demands for each request; and the rows of
E have the effect of summing up the total flow between a given node pair, over
all possible routes between the nodes in that pair.

In the data set for SSN, there are total of 89 arcs and 86 point-to-point pairs;
that is, the dimension of x is 89 and of d(ω) is 86. Each component of d(ω) is
an independent random variable with a known discrete distribution. Specifically,
there are between three and seven possible values for each component of d(ω),
giving a total of approximately 1070 possible complete demand scenarios.

8.5. Storm

This problem is based on a cargo flight scheduling application described by Mul-
vey and Ruszczyński [26, p.486 et seq.]. The aim is to plan cargo-carrying flights
over a set of routes in a network, where the amounts of cargo are uncertain. Each
first-stage variable represents the number of aircraft of a certain type assigned
to a certain route, and the first-stage equations represent minimum frequencies
for flights on each route, and balance equations for arrival and departure of air-
craft of each type at the nodes in the network. Second-stage variables include
the amounts of cargo to be shipped between nodes of the network, the amounts
of undelivered cargo on each route, and the unused capacity on each leg of each
route. Second-stage constraints include demand constraints and balance equa-
tions. Only the demands (the right-hand sides of the 118 demand constraints)
are random. Mulvey and Ruszczyński [26] generate scenarios from a uniform dis-
tribution of ±20% around the basic demand forecast. In our data set, we used
five scenarios for each demand, namely, the multiples .8, .9. 1.0, 1.1 and 1.2 of
the basic demand. Each scenario was assigned a probability of 0.2. Since the
demand scenarios were allowed to vary independently, our model has a total of
5118 scenarios, or approximately 6× 1081.



20 Jeff Linderoth et al.

9. Computational Results

9.1. Optimal Value Estimates

Summaries of our experiments to determine upper and lower bounds on the op-
timal objective values are shown in Tables 3 and 4. Our experimental procedure
is as described in Sections 4.1 and 4.2. For lower bound estimates, we calcu-
lated values of v̂ jN (see (14)) for j = 1, 2, . . . ,M , with M between 7 and 10,
and N = 50, 100, 500, 1000, 5000. The 95% confidence interval (18) for E[v̂N ] is
tabulated for each problem and for each sample size N in Tables 3 and 4. Monte
Carlo (MC) was used to select the samples in Tables 3, while Latin Hypercube
sampling (LHS) was used in Table 4.

These tables also show upper bound estimates. For the computed minimizer
x̂ jN in each of the lower-bound trials, we estimated of f(x̂ jN ) by sampling T = 50
batches of N̄ = 20000 scenarios, thereby obtaining a confidence interval of the
form (23) for the value of the function f at each point x̂ jN . In Tables 3 and 4, we
show on each line the 95% confidence interval obtained for the x̂ jN , j = 1, . . . ,M
with the lowest value of UN̄,T (x̂).

Further details of these experiments are given in Section A in the appendix.
In particular, we show in Tables 13 through 22 the values of v̂ jN obtained in
each lower-bound trial, and the corresponding confidence interval for f(x̂ jN ) for
each computed solution x̂ jN . We also graph the results from Tables 3 and 4
in Figures 1, 2, 3, 4, and 5 in Section A. In these figures, the 95% confidence
intervals for the lower and upper bounds are plotted as vertical bars, for each
value of N , each problem, and each sampling technique. The graphs for MC and
LHS are plotted on the same scale in each graph, to emphasize the improvements
obtained with the latter technique.

Several comments about these results are in order. The use of LHS produced
significant improvements over MC sampling on all problems; in fact, the im-
provements were dramatic for all problems except SSN. The bias v∗ − E [v̂N ],
which can be estimated by comparing the corresponding entries in the last two
columns of Tables 3 and 4, is significantly better with the LHS scheme of Ta-
ble 4. For the two smaller problems gbd and LandS, the results from Table 4
strongly suggest that the optimal solution value is identified exactly; we discuss
this issue further in Section 9.2. For 20term and storm, the relative gap appears
small, with storm showing a remarkable improvement in the variance of the lower
bound estimate v̂N with the use of LHS. For 20term, gbd, LandS, and storm,
the upper bound estimate is remarkably unaffected by the value of N , suggest-
ing that the approximate solutions x̂ jN obtained even for sample sizes N = 100
are of similar quality to this obtained for N = 5000. This fact is particularly
surprising in the case of storm, a problem with a huge number of scenarios.

The conditioning of SSN is significantly worse than than of the other prob-
lems. A sample size of at least N = 500 was required to identify approximate
solutions of reasonable quality, and the quality continues to improve as N is
increased to 1000 and 5000. LHS produces improvements in both the optimality



The Empirical Behavior of Sampling Methods for Stochastic Programming 21

gap and the variance of the upper- and lower-bound estimates, and our results
indicate strongly that the true optimal value is about 9.90.

Problem N Ev̂N Best f(x̂ jN )
(95% conf. int.) (95% conf. int.)

20term 50 253361.33 ± 944.06 254317.96 ± 19.89
20term 100 254024.89 ± 800.88 254304.54 ± 21.20
20term 500 254324.33 ± 194.51 254320.39 ± 27.36
20term 1000 254307.22 ± 234.04 254333.83 ± 18.85
20term 5000 254340.78 ± 85.99 254341.36 ± 20.32

gbd 50 1678.62 ± 66.73 1655.86 ± 1.34
gbd 100 1595.24 ± 42.41 1656.35 ± 1.19
gbd 500 1649.66 ± 13.60 1654.90 ± 1.46
gbd 1000 1653.50 ± 12.32 1655.70 ± 1.49
gbd 5000 1653.13 ± 4.37 1656.40 ± 1.31

LandS 50 227.19 ± 4.03 225.71 ± 0.12
LandS 100 226.39 ± 3.99 225.55 ± 0.12
LandS 500 226.02 ± 1.43 225.61 ± 0.12
LandS 1000 225.96 ± 0.76 225.70 ± 0.13
LandS 5000 225.72 ± 0.52 225.70 ± 0.12

ssn 50 4.11 ± 1.23 12.68 ± 0.05
ssn 100 7.66 ± 1.31 11.20 ± 0.05
ssn 500 8.54 ± 0.34 10.28 ± 0.04
ssn 1000 9.31 ± 0.23 10.09 ± 0.03
ssn 5000 9.98 ± 0.21 9.86 ± 0.05

storm 50 15506271.7 ± 22043.4 15499092.17 ± 845.26
storm 100 15482549.9 ± 19213.8 15499056.00 ± 623.30
storm 500 15498139.8 ± 4152.8 15498468.02 ± 684.65
storm 1000 15500879.4 ± 4847.1 15498893.02 ± 695.90
storm 5000 15498121.3 ± 1879.0 15498646.89 ± 696.08

Table 3. Lower and Upper Bound Estimates for v∗, Monte Carlo Sampling.

9.2. Convergence of Approximate Solution

Taking the approximate solutions x̂ jN , j = 1, 2, . . . ,M in the Latin Hypercube
experiments with N = 5000, we calculated pairwise distances between six of
these solutions, for the problems 20term, gbd, LandS, SSN, and storm. The
resulting “distance matrices” are shown in Tables 5— 9. Table 6 confirms that
we appear to have identified an exact solution for gbd; that is, x̂ jN ≡ x∗, where
{x∗} = S is the unique solution of (2), (3), (4). For 20term and SSN, Tables 5
and 8 suggest an “ill conditioned” problem—one in which a small change to the
data results in a large change to the solution set S. For these problems, it is
quite possible that S is a set with a fairly large diameter. It is even more likely
that S lies in a shallow basin; that is, there is a large, feasible neighborhood of S
within which the value of f is not much different from the optimal value v∗. For
the storm problem, on the other hand, Table 9 indicates that the approximate
solutions x̂ jN , i = j, 2, . . . ,M are quite close together for N = 5000, suggesting
that they may be converging to a unique minimizer x∗ that will be identified
at a larger sample size N . We report below on further investigations of this



22 Jeff Linderoth et al.

Problem N Ev̂N Best f(x̂ jN )
(95% conf. int.) (95% conf. int.)

20term 50 254307.57 ± 371.80 254328.69 ± 4.73
20term 100 254387.00 ± 252.13 254312.50 ± 5.77
20term 500 254296.43 ± 117.95 254315.82 ± 4.59
20term 1000 254294.00 ± 95.22 254310.33 ± 5.23
20term 5000 254298.57 ± 38.74 254311.55 ± 5.56

gbd 50 1644.21 ± 10.71 1655.628 ± 0.00
gbd 100 1655.62 ± 0.00 1655.628 ± 0.00
gbd 500 1655.62 ± 0.00 1655.628 ± 0.00
gbd 1000 1655.62 ± 0.00 1655.628 ± 0.00
gbd 5000 1655.62 ± 0.00 1655.628 ± 0.00

LandS 50 222.59 ± 2.75 225.647 ± 0.004
LandS 100 225.57 ± 0.16 225.630 ± 0.004
LandS 500 225.65 ± 0.05 225.628 ± 0.004
LandS 1000 225.64 ± 0.03 225.633 ± 0.005
LandS 5000 225.62 ± 0.02 225.624 ± 0.005

ssn 50 10.10 ± 0.81 11.380 ± 0.023
ssn 100 8.90 ± 0.36 10.542 ± 0.021
ssn 500 9.87 ± 0.22 10.069 ± 0.026
ssn 1000 9.83 ± 0.29 9.996 ± 0.025
ssn 5000 9.84 ± 0.10 9.913 ± 0.022

storm 50 15497683.7 ± 1078.8 15498722.14 ± 17.97
storm 100 15499255.3 ± 1011.7 15498739.40 ± 18.34
storm 500 15498661.4 ± 280.8 15498733.67 ± 17.71
storm 1000 15498598.1 ± 148.5 15498735.73 ± 19.93
storm 5000 15498657.8 ± 73.9 15498739.41 ± 19.11

Table 4. Lower and Upper Bound Estimates for v∗, Latin Hypercube Sampling.

issue, but note here that the result is somewhat surprising; given the very large
number of scenarios for this problem we might have expected it to display the
same symptoms of ill conditioning as 20term or SSN.

0.000 16.1 26.5 296 278 263
16.1 0.000 20.3 297 279 264
26.5 20.3 0.000 291 273 259
296 297 291 0.000 49.2 67.0
278 279 273 49.2 0.000 31.9
263 264 259 67.0 31.9 0.000

Table 5. Distance Matrix for Six SAAs of 20term with N = 5000, Latin Hypercube Sampling.

0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Table 6. Distance Matrix for Six SAAs of gbd with N = 5000, Latin Hypercube Sampling.



The Empirical Behavior of Sampling Methods for Stochastic Programming 23

0.000 0.0566 0.0980 0.0566 0.0566 0.0800
0.0566 0.000 0.0980 0.000 0.000 0.0566
0.0980 0.0980 0.000 0.0980 0.0980 0.1497
0.0566 0.000 0.0980 0.000 0.000 0.0566
0.0566 0.000 0.0980 0.000 0.000 0.0566
0.0800 0.0566 0.1497 0.0566 0.0566 0.000

Table 7. Distance Matrix for Six SAAs of LandS with N = 5000, Latin Hypercube Sampling.

0.00 19.9 13.3 22.0 16.9 21.8
19.9 0.00 21.6 27.3 23.0 18.1
13.3 21.6 0.00 22.4 19.5 22.3
22.0 27.3 22.4 0.00 26.4 30.6
16.9 23.0 19.5 26.4 0.00 26.7
21.8 18.1 22.3 30.6 26.7 0.00

Table 8. Distance Matrix for Six SAAs of SSN with N = 5000, Latin Hypercube Sampling.

0.000 0.0187 0.0037 0.0105 0.0147 0.0069
0.0187 0.000 0.0153 0.0095 0.0078 0.0124
0.0037 0.0153 0.000 0.0069 0.0122 0.0033
0.0105 0.0095 0.0069 0.000 0.0097 0.0036
0.0147 0.0078 0.0122 0.0097 0.000 0.0105
0.0069 0.0124 0.0033 0.0036 0.0105 0.000

Table 9. Distance Matrix for Six SAAs of storm with N = 5000, Latin Hypercube Sampling.

We performed the repeated sampling test of Section 5.1 on the gbd, LandS,
and storm problems. For gbd and LandS, we solved an SAA with N = 5000
(using LHS), then solved 10 more different instances with different samples of
the same size, with a very tight convergence tolerance of 10−12. The results
are as expected from the observations above; all 10 additional trials terminated
without stepping away from their starting point, effectively confirming that all
instances have the same solution x̂N .

For storm, we tried repeated sampling with sample sizes N = 20000 and
N = 50000 (with LHS), but did not obtain convergence of the solution of the
SAA to an identical value. Close examination of the solutions, however, suggested
a solution set S with a very specific structure. In the 10 trials for N = 20000,
the 10 solutions were essentially identical in all but one of their 121 components.
The exception was the 112th component, which varied between 1.46003333 and
1.47593333. In the 10 trials for N = 50000, the 10 solutions were again identical
in all components except the 112th, which took values between 1.46123333 and
1.47210000. It seems likely that the condition number κ as defined by (11) is
very large (possibly infinite), yet this problem is quite well behaved, in that for
small ε, the ε-optimal solution set Sε is close to being a short line segment,
rather than a large multidimensional basin.

For SSN, we tested with two SAAs at each sample size N = 10000, 20000,
and 40000, all using LHS, but found that the two solutions obtained for each
value of N differed. We conclude that either the solution set S for SSN is not a
singleton, or else that the values of N we tried were not large enough to identify
the unique solution x∗.



24 Jeff Linderoth et al.

Quantity Estimate (95% conf. int.)
f(x0) 9.9016607± .0035396
f(x1) 9.9016731± .0035396
f(x2) 9.9043870± .0035302

f(x1)− f(x0) 1.24118× 10−5 ± 2.910× 10−7

f(x2)− f(x0) 2.72648× 10−3 ± 4.96724× 10−5

Table 10. Confidence Intervals for Function Values and Gaps for SSN at Three Points

9.3. Comparison of Several Points

We performed a comparison of several candidate solution points for the SSN
problem, using the technique described in Section 5.2. We compared three points.
The first point x0 was obtained by solving an SAA with sample size N = 250000,
generated using LHS. To obtain the second point x1, we generated an SAA with
a different sample of size N = 250000, and applied our trust-region algorithm
starting from the first point x0, and initial trust-region radius 10−3. The point
x1 was the first point accepted by this algorithm as having a lower value of f̂N
for this sample. For the point x2, we used the same SAA as was used to obtain
x1, but this time applied our algorithm with an initial trust-region radius of 1.
The point x2 was the first point accepted by the algorithm. (At the time it was
generated, the trust-region radius had been reduced to .4 by the algorithm.)

We applied the test of Section 5.2 N̄ = 25000 (samples generated by LHS)
and T = 2000 to obtain confidence intervals for the function values at x0, x1, and
x2, and the gaps f(x1)−f(x0) and f(x2)−f(x0). Results are shown in Table 10.
They show that x0 almost certainly has the lowest function value of the three.
In this sense, the second SAA (which was used to obtain x1 and x2) appears to
give a less accurate approximation to the true function f in the vicinity of these
three points than does the first SAA (for which x0 was the minimizer). It also
confirms the impression gained from Table 4 that the optimal value x∗ for SSN
is very close to 9.90. We can also conclude that the solution set for SSN is flat
in the neighborhood of the optimal solution.

9.4. KKT Tests for Near-Optimality

We now report on the KKT tests described in Sections 5.3 and 5.4, applied to
the problems 20term and SSN.

For 20term, we set x̂ to be a computed solution of an SAA with N = 100000.
The two first-stage equality constraints were active at this point, of course, but
the single inequality constraint was inactive. We calculated approximations to
the distances δ̂MN (x̂) defined in (38) using an `1 norm, since this allowed us to
formulate the distance calculation as a linear program, which we solved with a
simple AMPL model. For the test of Section 5.3, we generated each of the M
subgradients γ̂i, i = 1, 2, . . . ,M , at points x in a neighborhood of radius 10−2

around x̂. We used MC sampling with N = 100000 to generate the subgradients,
using a different sample for each point.



The Empirical Behavior of Sampling Methods for Stochastic Programming 25

M δ̂MN (x̂) λ
50 1065
500 53.08 (−100,−7× 10−12, 0)
1000 10.89 (−100,−1× 10−11, 0)
2000 3.53 (−100,−8× 10−14, 0)

Table 11. Discrepancy in KKT Conditions for 20term Using Test of Section 5.3

M δ̂MN (x̂) λ
5 .254847 .050000
20 .250329 .050000
250 .238522 .049774
1000 .237175 .049733
2000 .236541 .049878

Table 12. Discrepancy in KKT Conditions for 20term Using Test of Section 5.3

Results are shown for different values of M in Table 11. The final column
contains the values of λ, the multiplier vector for the active constraints at the
nearest point in NX(x̂) to the approximate subdifferential of f . The third com-
ponent of λ is uniformly zero since the third constraint is inactive, while the
first two components are clearly converging to −100 and 0, respectively. The
distance to the subdifferential approximation appears to converge toward zero
as more gradients are gathered, as we would expect, since the convex hull covers
the subdifferential more fully as the number of gradients increases.

Although useful in verifying near-optimality, it is clear that this test is not a
practical termination test for an algorithm, because the time required to compute
enough gradients to verify optimality is too great.

For SSN, we performed the test described in Section 5.4 to the point x0

discussed in Section 9.3. A subgradient was generated at each of the T = 2000
SAAs used in the experiment of Section 9.3, where each SAA has N̄ = 25000
and is obtained by LHS. The single inequality constraint in (40) is active at this
solution, as are a number of the lower bounds of zero on the components of x.
We performed this test using different values M for the size of the subgradient
bundle. In each case we chose simply the first M of the 2000 subgradients in the
list.

Results are shown in Table 12. The second column indicates the distance
between the convex hull of the subgradient bundle and the normal cone of the
constraints, and the third column indicates the Lagrange multiplier for the in-
equality constraint eTx ≤ b in (40). We see that the distance does not shrink to
zero as M increases, indicating either that the point x0 is some distance from
optimality, or that the convex hull of the subgradient bundle is not converging
to ∂f(x0). We conjecture that the latter is the case, since we have good evidence
from the other tests that x0 is close to optimal, and we know in general that
Hausdorff convergence of the subgradient bundle to ∂f(x0) need not occur. Our
experience with this test indicates that it is not valuable.



26 Jeff Linderoth et al.

10. Conclusions

We have described experiments with sample-average approximations to five two-
stage stochastic linear programs with recourse. We first obtained confidence in-
tervals for upper and lower bounds on the optimal value of these five problems,
by solving many SAA instances for different sample sizes, using two different
sampling techniques. We then investigated the optimality of various candidate
solutions using a number of tests motivated by recently developed theory, in-
cluding tests that are applicable to problems with a singleton solution set and
tests based on satisfaction of the Karush-Kuhn-Tucker conditions for optimal-
ity. We found that the five test problem varied widely in difficulty, in that good
approximations to the true solution could be obtained with small sample sizes
in some cases, while large sample sizes were needed in others.

All these experiments were made possible by the availability of the ubiqui-
tous computing power of the computational grid, and by software tools such as
Condor and MW that enable us to run practical computations on the grid. All
these ingredients, along with an algorithm that runs effectively on the grid, were
necessary in building the software tool ATR (described comprehensively in [21]),
which was needed to solve the multitude of instances required by this study.

References

1. K. Anstreicher, N. Brixius, J.-P. Goux, and J. T. Linderoth. Solving large quadratic
assignment problems on computational grids. To appear in Mathematical Programming,
available at http://www.optimization-online.org/DB_HTML/2000/10/233.html, 2001.

2. A. N. Avramidis and J. R. Wilson. Integrated variance reduction strategies for simulation.
Operations Research, 44:327–346, 1996.

3. T. G. Bailey, P. Jensen, and D. P. Morton. Response surface analysis of two-stage stochas-
tic linear programming with recourse. Naval Research Logistics, 46:753–778, 1999.

4. Q. Chen, M. C. Ferris, and J. T. Linderoth. Fatcop 2.0: Advanced features in an op-
portunistic mixed integer programming solver. Annals of Operations Research, 2000. To
appear.

5. G. Dantzig and G. Infanger. Large-scale stochastic linear programs—Importance sampling
and Bender’s decomposition. In C. Brezinski and U. Kulisch, editors, Computational and
Applied Mathematics I (Dublin, 1991), pages 111–120. North-Holland, Amsterdam, 1991.

6. G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Prince-
ton, New Jersey, 1963.

7. U. M. Diwekar and J. R. Kalagnanam. An efficient sampling technique for optimization
under uncertainty. American Institute of Chemical Engineers Journal, 43, 1997.

8. Y. Ermoliev. Stochastic quasigradient methods. In Y. Ermoliev and R. J.-B. Wets, editors,
Numerical techniques for stochastic optimization problems. Springer-Verlag, Berlin, 1988.

9. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1999. Chapter 1 “Grids in Context” by Larry Smarr and chapter 13
“High-Throughput Resource Management” by Miron Livny and Rajesh Raman.

10. J.-P. Goux, S. Kulkarni, J. T. Linderoth, and M. Yoder. Master-Worker : An enabling
framework for master-worker applications on the computational grid. Cluster Computing,
4:63–70, 2001.

11. J.-P. Goux and S. Leyffer. Solving large MINLPs on computational grids. Numerical
Analysis Report NA/200, Mathematics Department, University of Dundee, 2001.

12. J.-P. Goux, J. T. Linderoth, and M. Yoder. Metacomputing and the master-worker
paradigm. Preprint MCS/ANL-P792-0200, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Ill., February 2000.



The Empirical Behavior of Sampling Methods for Stochastic Programming 27

13. G. Gürkan, A. Y. Özge, and S. M. Robinson. Sample-path optimization in simulation. In
Proceedings of the Winter Simulation Conference, pages 247–254, 1994.

14. J. L. Higle. Variance reduction and objective function evaluation in stochastic linear
programs. INFORMS Journal on Computing, 10(2):236–247, 1998.

15. J. L. Higle and S. Sen. Stochastic decomposition: An algorithm for two-stage linear pro-
grams with recourse. Mathematics of Operations Research, 16:650–669, 1991.

16. J. L. Higle and S. Sen. Duality and statistical tests of optimality for two-stage stochastic
programs. Mathematical Programming, 75:257–275, 1996.

17. J. L. Higle and S. Sen. Stochastic Decomposition: A Statistical Method for Large Scale
Stochastic Linear Programming. Kluwer Academic Publishers, Boston, MA, 1996.

18. G. Infanger. Planning Under Uncertainty: Solving Large Scale Stochastic Linear Pro-
grams. Boyd and Fraser Publishing Company, 1994.

19. A. D. Ioffe and V. M. Tihomirov. theory of Extremal Problems. North-Holland, Amster-
dam, 1979.

20. A. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization, 2001. To
appear.

21. J. T. Linderoth and S. J. Wright. Decomposition algorithms for stochastic programming
on a computational grid. Preprint ANL/MCS-P875-0401, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, Ill., April 2001. Available at
http://www.optimization-online.org/DB_HTML/2001/04/315.html.

22. M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms
for high throughput computing. SPEEDUP, 11, 1997. Available from
http://www.cs.wisc.edu/condor/doc/htc mech.ps.

23. F. V. Louveaux and Y. Smeers. Optimal investments for electricity generation: A stochastic
model and a test problem. In Y. Ermoliev and R. J.-B. Wets, editors, Numerical techniques
for stochastic optimization problems, pages 445–452. Springer-Verlag, Berlin, 1988.

24. W. K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo bounding techniques for
determining solution quality in stochastic programs. Operations Research Letters, 24:47–
56, 1999.

25. M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21:239–245, 1979.

26. J. M. Mulvey and A. Ruszczyński. A new scenario decomposition method for large scale
stochastic optimization. Operations Research, 43:477–490, 1995.

27. V. I. Norkin, G. Ch. Pflug, and A. Ruszczyński. A branch and bound method for stochastic
global optimization. Mathematical Programming, 83:425–450, 1998.

28. A. B. Owen. Monte Carlo variance of scrambled equidistribution quadrature. SIAM
Journal on Numerical Analysis, 34:1884–1910, 1997.

29. E. L. Plambeck, B. R. Fu, S. M. Robinson, and R. Suri. Sample-path optimization of
convex stochastic performance functions. Mathematical Programming, Series B, 1996.

30. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, N.J., 1970.
31. R. Y. Rubinstein and A. Shapiro. Optimization of static simulation models by the score

function method. Mathematics and Computers in Simulation, 32:373–392, 1990.
32. R. Y. Rubinstein and A. Shapiro. Discrete Event Systems: Sensitivity Analysis and

Stochastic Optimization by the Score Function Method. Wiley, New York, 1993.
33. S. Sen, R. D. Doverspike, and S. Cosares. Network planning with random demand.

Telecommunications Systems, 3:11–30, 1994.
34. A. Shapiro. Asymptotic analysis of stochastic programs. Annals of Operations Research,

30:169–186, 1991.
35. A. Shapiro and T. Homem de Mello. On the rate of convergence of optimal solutions

of Monte Carlo approximations of stochastic programs. SIAM Journal on Optimization,
11:70–86, 2000.

36. A. Shapiro and T. Homem-de-Mello. A simulation-based approach to stochastic program-
ming with recourse. Mathematical Programming, 81:301–325, 1998.

37. A. Shapiro, T. Homem-de Mello, and J. Kim. Conditioning of convex piecewise linear
stochastic programs. Technical report, School of ISyE, Georgia Institute of Technology,
Atlanta, GA 3032-0205, 2000.

38. M. Stein. Large sample properties of simulations using Latin Hypercube Sampling. Tech-
nometrics, 29:143–151, 1987.

39. Golbon Zakeri. Verifying a stochastic solution using meta-computing, 2000. Presentation
at INFORMS Winter Meeting, Salt Lake City, USA.



28 Jeff Linderoth et al.

A. Details of Bound Estimates

Here we tabulate the details of our experiments for determining upper and lower
bounds, and graph the results from Tables 3 and 4. A description of the experi-
mental methodology, and the values of the parameters N , N̄ , T , and so on, are
given in Section 9.1.



The Empirical Behavior of Sampling Methods for Stochastic Programming 29

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 252084 254397.80 ± 21.56
2 253009 254333.82 ± 19.11
3 253060 254392.79 ± 19.71
4 251786 254351.03 ± 18.78
5 254045 254380.54 ± 24.75
6 253124 254425.12 ± 20.02
7 256794 254349.73 ± 20.70
8 253174 254383.53 ± 24.44
9 253176 254322.24 ± 22.90 ∗

253361 ± 944.06
100 1 255012 254358.48 ± 21.85

2 255350 254315.56 ± 20.19
3 253600 254300.62 ± 23.71 ∗
4 255024 254346.31 ± 20.59
5 253152 254321.04 ± 21.72
6 252012 254371.29 ± 31.39
7 253971 254321.12 ± 19.48
8 252768 254328.15 ± 21.92
9 255335 254314.30 ± 20.93

254025 ± 800.88
500 1 254192 254377.86 ± 21.57

2 254084 254316.99 ± 20.14
3 254601 254322.96 ± 21.55
4 253976 254334.15 ± 20.51
5 254368 254322.19 ± 21.06
6 254935 254353.95 ± 17.06
7 254294 254294.35 ± 25.35 ∗
8 254383 254303.03 ± 21.29
9 254086 254316.25 ± 17.01

254324 ± 194.51
1000 1 254306 255168.89 ± 19.59

2 254174 254343.38 ± 17.37
3 254626 254271.17 ± 27.10 ∗
4 254619 254338.87 ± 19.22
5 254541 254364.64 ± 21.14
6 253693 254343.03 ± 22.74
7 253852 254297.04 ± 19.35
8 254715 254303.15 ± 22.21
9 254239 254323.23 ± 23.83

254307 ± 234.04
5000 1 254335 254314.01 ± 38.75

2 254361 254332.26 ± 17.84
3 254484 254297.79 ± 27.06
4 254189 254316.99 ± 33.44
5 254483 254291.32 ± 28.22
6 254345 254319.74 ± 25.88
7 254471 254333.57 ± 28.14
8 254293 254309.17 ± 36.31
9 254106 254274.97 ± 33.27 ∗

254341 ± 85.99

Table 13. 20term, Monte Carlo sampling.



30 Jeff Linderoth et al.

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 254239 254336 ± 5.56
2 254091 254325 ± 4.58 ∗
3 254697 254383 ± 4.52
4 253949 254411 ± 6.65
5 253705 254457 ± 8.42
6 254262 254338 ± 5.04
7 255210 254328 ± 5.26

254307.57 ± 371.80
100 1 254433 254313 ± 5.43 ∗

2 254255 254346 ± 4.38
3 254524 254324 ± 5.48
4 253886 254371 ± 7.40
5 254869 254390 ± 4.57
6 254077 254337 ± 5.03
7 254665 254327 ± 4.12

254387.00 ± 252.13
500 1 254148 254312 ± 5.58

2 254156 254322 ± 4.52
3 254294 254317 ± 4.63
4 254537 254329 ± 4.32
5 254170 254312 ± 4.12 ∗
6 254487 254319 ± 4.65
7 254283 254315 ± 5.13

254296.43 ± 117.95
1000 1 254395 254312 ± 5.14

2 254205 254313 ± 6.18
3 254180 254312 ± 5.65 ∗
4 254519 254317 ± 3.72
5 254316 254326 ± 4.83
6 254165 254328 ± 5.23
7 254278 254317 ± 5.44

254294.00 ± 95.22
5000 1 254245 254315 ± 4.89

2 254290 254316 ± 5.41
3 254326 254316 ± 5.21
4 254390 254312 ± 4.92
5 254306 254312 ± 5.51
6 254233 254310 ± 5.80 ∗
7 254300 254313 ± 5.08

254298.57 ± 38.74

Table 14. 20term, Latin Hypercube sampling.



The Empirical Behavior of Sampling Methods for Stochastic Programming 31

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 1788.68 1657.15 ± 1.41
2 1607.03 1665.08 ± 1.29
3 1647.35 1657.24 ± 1.30
4 1998.96 1664.08 ± 1.47
5 1592.97 1658.74 ± 1.59
6 1559.19 1667.80 ± 1.37
7 1693.98 1659.83 ± 1.33
8 1664.59 1653.89 ± 1.10 ∗
9 1654.02 1657.08 ± 1.28
10 1640.95 1662.60 ± 1.76
11 1703.55 1659.35 ± 1.31
12 1592.13 1655.95 ± 1.26

1678.62 ± 66.73
100 1 1586.44 1659.33 ± 1.45

2 1560.36 1656.47 ± 1.42
3 1500.98 1676.39 ± 1.56
4 1480.81 1655.86 ± 1.30
5 1685.07 1655.29 ± 1.50
6 1642.51 1656.95 ± 1.25
7 1612.27 1656.61 ± 1.16
8 1735.93 1656.60 ± 1.21
9 1645.40 1659.32 ± 1.44
10 1526.68 1656.53 ± 1.13
11 1565.53 1655.09 ± 1.31 ∗
12 1600.89 1662.06 ± 1.35

1595.24 ± 42.41
500 1 1676.01 1655.72 ± 1.30

2 1620.61 1655.45 ± 1.78
3 1643.91 1653.97 ± 1.15 ∗
4 1691.30 1657.15 ± 1.29
5 1651.25 1655.58 ± 1.36
6 1633.11 1655.90 ± 1.44
7 1666.47 1656.06 ± 1.29
8 1637.12 1656.17 ± 1.15
9 1640.52 1654.62 ± 1.39
10 1633.17 1655.65 ± 1.45
11 1619.83 1657.84 ± 1.12
12 1682.61 1654.91 ± 1.25

1649.66 ± 13.60
1000 1 1659.00 1656.62 ± 1.44

2 1642.25 1655.83 ± 1.95
3 1631.26 1656.26 ± 1.37
4 1658.69 1655.74 ± 1.16
5 1623.98 1656.38 ± 1.44
6 1654.58 1655.17 ± 1.21
7 1642.15 1655.36 ± 1.18
8 1709.83 1656.09 ± 1.45
9 1666.58 1654.83 ± 1.36 ∗
10 1656.75 1655.30 ± 1.34
11 1656.62 1655.28 ± 1.16
12 1640.28 1656.07 ± 1.44

1653.50 ± 12.32
5000 1 1664.86 1656.85 ± 1.88

2 1652.38 1656.22 ± 1.27
3 1640.53 1655.39 ± 1.35
4 1659.53 1654.62 ± 1.32
5 1651.32 1655.19 ± 1.46
6 1643.72 1655.35 ± 1.70
7 1655.29 1655.47 ± 1.58
8 1661.05 1656.36 ± 1.60
9 1652.66 1655.75 ± 1.65
10 1653.17 1655.16 ± 1.98
11 1660.30 1653.98 ± 1.45 ∗
12 1642.78 1655.09 ± 1.63

1653.13 ± 4.37

Table 15. gbd, Monte Carlo sampling.



32 Jeff Linderoth et al.

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 1617.97 1656.77 ± 0.00
2 1661.83 1655.64 ± 0.00
3 1650.97 1655.64 ± 0.00
4 1626.21 1655.64 ± 0.00
5 1659.45 1655.64 ± 0.00
6 1642.91 1655.64 ± 0.00
7 1660.43 1655.62 ± 0.00 ∗
8 1618.77 1655.64 ± 0.00
9 1657.15 1655.64 ± 0.00
10 1646.41 1656.77 ± 0.00

1644.21 ± 10.71
100 1 1655.62 1655.62 ± 0.00 ∗

2 1655.62 1655.62 ± 0.00
3 1655.62 1655.62 ± 0.00
4 1655.62 1655.62 ± 0.00
5 1655.62 1655.62 ± 0.00
6 1655.62 1655.62 ± 0.00
7 1655.62 1655.62 ± 0.00
8 1655.62 1655.62 ± 0.00
9 1655.62 1655.62 ± 0.00
10 1655.62 1655.62 ± 0.00

1655.62 ± 0.00
500 1 1655.62 1655.62 ± 0.00 ∗

2 1655.62 1655.62 ± 0.00
3 1655.62 1655.62 ± 0.00
4 1655.62 1655.62 ± 0.00
5 1655.62 1655.62 ± 0.00
6 1655.62 1655.62 ± 0.00
7 1655.62 1655.62 ± 0.00
8 1655.62 1655.62 ± 0.00
9 1655.62 1655.62 ± 0.00
10 1655.62 1655.62 ± 0.00

1655.62 ± 0.00
1000 1 1655.62 1655.62 ± 0.00 ∗

2 1655.62 1655.62 ± 0.00
3 1655.62 1655.62 ± 0.00
4 1655.62 1655.62 ± 0.00
5 1655.62 1655.62 ± 0.00
6 1655.62 1655.62 ± 0.00
7 1655.62 1655.62 ± 0.00
8 1655.62 1655.62 ± 0.00
9 1655.62 1655.62 ± 0.00
10 1655.62 1655.62 ± 0.00

1655.62 ± 0.00
5000 1 1655.62 1655.62 ± 0.00 ∗

2 1655.62 1655.62 ± 0.00
3 1655.62 1655.62 ± 0.00
4 1655.62 1655.62 ± 0.00
5 1655.62 1655.62 ± 0.00
6 1655.62 1655.62 ± 0.00
7 1655.62 1655.62 ± 0.00
8 1655.62 1655.62 ± 0.00
9 1655.62 1655.62 ± 0.00
10 1655.62 1655.62 ± 0.00

1655.62 ± 0.00

Table 16. gbd, Latin Hypercube sampling.



The Empirical Behavior of Sampling Methods for Stochastic Programming 33

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 232.93 225.87 ± 0.12
2 236.05 225.78 ± 0.10
3 238.39 225.86 ± 0.12
4 223.36 225.71 ± 0.14
5 221.39 225.77 ± 0.13
6 224.89 225.79 ± 0.12
7 222.25 225.81 ± 0.14
8 227.89 225.60 ± 0.10 ∗
9 228.55 225.63 ± 0.11
10 215.11 225.74 ± 0.11
11 228.30 225.67 ± 0.12

227.19 ± 4.03
100 1 230.03 225.67 ± 0.12

2 232.06 225.85 ± 0.12
3 230.17 225.68 ± 0.12
4 217.40 225.75 ± 0.13
5 218.49 225.74 ± 0.12
6 230.43 225.65 ± 0.12 ∗
7 229.71 225.71 ± 0.11
8 217.07 225.78 ± 0.12
9 221.84 225.70 ± 0.12
10 225.83 225.71 ± 0.14
11 237.29 225.93 ± 0.10

226.39 ± 3.99
500 1 227.30 225.61 ± 0.13

2 227.88 225.60 ± 0.11
3 227.60 225.64 ± 0.13
4 224.53 225.56 ± 0.12
5 223.53 225.60 ± 0.12
6 228.60 225.58 ± 0.10
7 222.73 225.69 ± 0.13
8 224.72 225.49 ± 0.11 ∗
9 227.69 225.61 ± 0.12
10 222.64 225.56 ± 0.13
11 229.01 225.61 ± 0.10

226.02 ± 1.43
1000 1 225.99 225.62 ± 0.14

2 226.33 225.70 ± 0.12
3 225.66 225.56 ± 0.10
4 226.38 225.64 ± 0.11
5 225.66 225.63 ± 0.10
6 226.22 225.66 ± 0.12
7 225.43 225.53 ± 0.11 ∗
8 223.47 225.61 ± 0.11
9 228.58 225.67 ± 0.12
10 227.07 225.69 ± 0.11
11 224.78 225.66 ± 0.10

225.96 ± 0.76
5000 1 224.17 225.69 ± 0.12

2 224.95 225.60 ± 0.14
3 225.83 225.50 ± 0.11 ∗
4 225.66 225.70 ± 0.14
5 226.49 225.63 ± 0.10
6 225.25 225.53 ± 0.12
7 226.79 225.70 ± 0.12
8 226.45 225.67 ± 0.14
9 225.64 225.64 ± 0.13
10 224.86 225.67 ± 0.14
11 226.88 225.66 ± 0.13

225.72 ± 0.52

Table 17. LandS, Monte Carlo sampling.



34 Jeff Linderoth et al.

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 215.517 225.726 ± 0.01
2 222.507 225.682 ± 0.00
3 220.662 225.646 ± 0.00 ∗
4 223.54 225.651 ± 0.00
5 225.779 225.646 ± 0.00
6 226.508 225.769 ± 0.01
7 218.88 225.694 ± 0.00
8 230.732 225.65 ± 0.00
9 223.285 225.69 ± 0.00
10 218.493 225.669 ± 0.00

222.59 ± 2.75
100 1 225.269 225.654 ± 0.01

2 225.443 225.645 ± 0.00
3 225.755 225.629 ± 0.00 ∗
4 225.678 225.632 ± 0.00
5 225.596 225.635 ± 0.00
6 225.665 225.635 ± 0.00
7 225.493 225.642 ± 0.00
8 225.164 225.639 ± 0.00
9 225.61 225.632 ± 0.00
10 226.057 225.657 ± 0.00

225.57 ± 0.16
500 1 225.492 225.631 ± 0.00

2 225.674 225.634 ± 0.00
3 225.628 225.632 ± 0.00
4 225.543 225.63 ± 0.00
5 225.656 225.631 ± 0.00
6 225.699 225.632 ± 0.00
7 225.702 225.63 ± 0.01
8 225.671 225.627 ± 0.00 ∗
9 225.691 225.633 ± 0.00
10 225.735 225.63 ± 0.00

225.65 ± 0.05
1000 1 225.653 225.634 ± 0.01

2 225.649 225.633 ± 0.01
3 225.654 225.629 ± 0.00
4 225.655 225.633 ± 0.00
5 225.674 225.633 ± 0.00
6 225.536 225.632 ± 0.01
7 225.587 225.633 ± 0.00
8 225.663 225.628 ± 0.01
9 225.614 225.627 ± 0.00 ∗
10 225.696 225.633 ± 0.00

225.64 ± 0.03
5000 1 225.667 225.632 ± 0.00

2 225.571 225.629 ± 0.01
3 225.583 225.633 ± 0.01
4 225.627 225.625 ± 0.00 ∗
5 225.624 225.626 ± 0.00
6 225.678 225.631 ± 0.00
7 225.639 225.633 ± 0.00
8 225.576 225.631 ± 0.00
9 225.617 225.629 ± 0.00
10 225.649 225.629 ± 0.00

225.62 ± 0.02

Table 18. LandS, Latin Hypercube sampling.



The Empirical Behavior of Sampling Methods for Stochastic Programming 35

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 5.75 13.63 ± 0.05
2 2.54 13.63 ± 0.06
3 7.16 15.76 ± 0.09
4 3.03 12.95 ± 0.07
5 5.74 13.39 ± 0.05
6 5.66 14.60 ± 0.05
7 2.99 17.97 ± 0.07
8 6.44 12.63 ± 0.06 ∗
9 2.56 15.25 ± 0.05
10 2.47 14.79 ± 0.06
11 0.85 15.63 ± 0.07

4.11 ± 1.23
100 1 6.71 11.58 ± 0.04

2 7.56 11.14 ± 0.04 ∗
3 8.82 11.92 ± 0.04
4 9.40 12.76 ± 0.04
5 6.37 11.44 ± 0.05
6 5.22 14.83 ± 0.06
7 6.57 13.71 ± 0.05
8 10.79 11.91 ± 0.05
9 6.84 11.91 ± 0.05
10 4.51 13.28 ± 0.05
11 11.44 12.17 ± 0.05

7.66 ± 1.31
500 1 8.60 10.38 ± 0.05

2 8.08 10.26 ± 0.04 ∗
3 7.85 10.44 ± 0.05
4 9.09 10.45 ± 0.05
5 8.50 10.64 ± 0.04
6 7.91 10.77 ± 0.05
7 9.11 10.86 ± 0.04
8 9.32 10.47 ± 0.04
9 9.30 10.59 ± 0.05
10 8.11 10.80 ± 0.05
11 8.11 10.51 ± 0.04

8.54 ± 0.34
1000 1 9.07 10.04 ± 0.05 ∗

2 9.02 10.08 ± 0.04
3 9.19 10.19 ± 0.05
4 9.81 10.27 ± 0.04
5 9.39 10.10 ± 0.04
6 9.65 10.12 ± 0.04
7 8.68 10.05 ± 0.05
8 9.43 10.17 ± 0.03
9 9.58 10.07 ± 0.04
10 8.83 10.19 ± 0.04
11 9.77 10.15 ± 0.04

9.31 ± 0.23
5000 1 10.28 9.87 ± 0.06 ∗

2 9.67 9.89 ± 0.06
3 9.68 9.96 ± 0.05
4 10.44 9.98 ± 0.04
5 9.69 9.94 ± 0.05
6 10.38 9.94 ± 0.04
7 10.37 9.95 ± 0.04
8 9.53 10.02 ± 0.05
9 9.98 9.97 ± 0.04
10 10.13 9.98 ± 0.04
11 9.65 9.92 ± 0.05

9.98 ± 0.21

Table 19. ssn, Monte Carlo sampling.



36 Jeff Linderoth et al.

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 11.069 12.629 ± 0.03
2 9.785 11.467 ± 0.02
3 8.236 12.097 ± 0.03
4 10.417 11.385 ± 0.02 ∗
5 12.132 13.065 ± 0.02
6 9.816 12.323 ± 0.02
7 11.934 11.687 ± 0.02
8 9.7 11.562 ± 0.02
9 8.565 12.182 ± 0.02
10 9.347 12.061 ± 0.02

10.10 ± 0.81
100 1 8.491 12.051 ± 0.03

2 9.418 10.783 ± 0.03
3 9.887 10.813 ± 0.02
4 8.627 11.116 ± 0.03
5 8.614 10.517 ± 0.02 ∗
6 8.704 11.134 ± 0.02
7 8.741 11.375 ± 0.03
8 8.922 11.196 ± 0.02
9 9.638 10.918 ± 0.03
10 8.002 11.355 ± 0.03

8.90 ± 0.36
500 1 9.356 10.233 ± 0.03

2 9.886 10.048 ± 0.02 ∗
3 10.261 10.152 ± 0.02
4 10.168 10.326 ± 0.03
5 9.957 10.075 ± 0.03
6 10.21 10.189 ± 0.02
7 9.926 10.19 ± 0.02
8 9.687 10.175 ± 0.02
9 9.993 10.121 ± 0.02
10 9.218 10.236 ± 0.02

9.87 ± 0.22
1000 1 9.229 10.046 ± 0.03

2 9.907 9.99 ± 0.03
3 9.654 10.028 ± 0.03
4 9.922 9.975 ± 0.02
5 9.427 10.034 ± 0.02
6 10.925 10.082 ± 0.03
7 9.575 9.988 ± 0.03
8 9.694 9.974 ± 0.03 ∗
9 10.005 10.084 ± 0.02
10 10.003 10.099 ± 0.02

9.83 ± 0.29
5000 1 9.661 9.941 ± 0.02

2 9.974 9.934 ± 0.02
3 9.926 9.949 ± 0.02
4 10.146 9.93 ± 0.02
5 9.832 9.92 ± 0.02
6 9.652 9.918 ± 0.03
7 9.726 9.903 ± 0.02
8 9.82 9.927 ± 0.02
9 9.946 9.928 ± 0.03
10 9.736 9.901 ± 0.03 ∗

9.84 ± 0.10

Table 20. ssn, Latin Hypercube sampling.



The Empirical Behavior of Sampling Methods for Stochastic Programming 37

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 15531965.9 15499394.49 ± 717.29
2 15444631.9 15499858.44 ± 809.75
3 15527925.1 15499137.46 ± 649.78
4 15492684.7 15500436.31 ± 705.40
5 15543334.8 15499410.71 ± 831.47
6 15579111.7 15499016.18 ± 640.24
7 15483314.5 15499775.67 ± 650.70
8 15457776.9 15498142.30 ± 792.63 ∗
9 15465732.8 15500048.44 ± 843.03
10 15523480.9 15499029.75 ± 719.52
11 15511112.3 15498506.54 ± 722.76
12 15514189.1 15499466.80 ± 646.17

15506271.7 ± 22043.3
100 1 15510777.4 15499228.78 ± 553.94

2 15528673.6 15498230.30 ± 602.99
3 15498170.6 15499008.77 ± 668.22
4 15459602.5 15498747.30 ± 615.50
5 15477455.6 15498218.92 ± 748.83 ∗
6 15440971.6 15499110.72 ± 601.46
7 15416044.1 15498243.28 ± 719.41
8 15518284.9 15498503.24 ± 646.60
9 15473847.4 15499336.21 ± 743.68
10 15518557.1 15499292.91 ± 695.26
11 15477360.8 15498659.27 ± 745.56
12 15470853.2 15499270.33 ± 690.87

15482549.9 ± 19213.8
500 1 15496050.6 15498528.45 ± 793.82

2 15489507.6 15499189.25 ± 704.01
3 15499018.5 15499121.32 ± 688.68
4 15494267.3 15499165.45 ± 775.66
5 15491105.1 15497602.67 ± 1103.38
6 15503260.3 15499399.22 ± 841.89
7 15508506.2 15498145.55 ± 733.54 ∗
8 15509944.2 15499592.75 ± 733.37
9 15486782.2 15498308.67 ± 1002.77
10 15498430.0 15497527.86 ± 1016.05
11 15504652.2 15498343.72 ± 1024.06
12 15496153.1 15499285.83 ± 1057.83

15498139.8 ± 4152.8
1000 1 15498653.2 15498803.79 ± 686.55

2 15520761.5 15499145.13 ± 795.08
3 15504128.1 15498277.13 ± 590.80
4 15497767.9 15498242.11 ± 804.38 ∗
5 15504635.1 15498768.54 ± 997.55
6 15491787.7 15498710.92 ± 1001.64
7 15509053.8 15498785.86 ± 902.27
8 15493874.9 15498893.94 ± 1055.03
9 15492759.0 15498632.15 ± 944.34
10 15491643.7 15498949.08 ± 1036.71
11 15499917.0 15499356.79 ± 861.47
12 15505570.6 15499461.20 ± 871.86

15500879.4 ± 4847.1
5000 1 15501515.1 15498451.74 ± 553.28

2 15499211.4 15498824.11 ± 634.32
3 15503271.1 15498747.77 ± 720.78
4 15496814.0 15498836.80 ± 711.78
5 15500288.4 15498459.42 ± 780.61
6 15499461.5 15498279.30 ± 774.23 ∗
7 15497473.5 15499035.93 ± 835.64
8 15497455.0 15499447.97 ± 779.99
9 15500551.3 15498035.30 ± 628.43
10 15495827.0 15498760.45 ± 612.69
11 15491199.8 15499014.30 ± 623.51
12 15494386.9 15499530.54 ± 681.05

15498121.3 ± 1879.0

Table 21. storm, Monte Carlo sampling.



38 Jeff Linderoth et al.

E(v̂N ) f(x̂
(i)
N )

N i v̂
(i)
N (95% conf. int.) (95% conf. int.) Best

50 1 15496526.2 15498895.8 ± 18.76
2 15500293.0 15498819.1 ± 21.67
3 15497849.4 15498882.3 ± 20.39
4 15497800.4 15498773.4 ± 16.51
5 15495986.3 15498741.4 ± 16.95
6 15497023.0 15498739.4 ± 19.10
7 15494804.3 15498721.2 ± 17.05 ∗
8 15500032.9 15498786.7 ± 17.48
9 15499062.3 15498733.7 ± 18.51
10 15497459.0 15498862.7 ± 17.85

15497683.7 ± 1078.8
100 1 15500047.4 15498713.9 ± 20.10 ∗

2 15498546.3 15498809.2 ± 19.41
3 15500509.7 15498729.2 ± 23.49
4 15500133.5 15498733.7 ± 18.36
5 15499785.9 15498724.8 ± 15.71
6 15498865.8 15498733.1 ± 17.13
7 15497825.8 15498783.3 ± 16.26
8 15497601.0 15498760.8 ± 21.35
9 15502359.7 15498755.8 ± 17.96
10 15496877.4 15498846.8 ± 19.48

15499255.3 ± 1011.7
500 1 15498139.5 15498745.9 ± 19.70

2 15498694.2 15498744.0 ± 18.19
3 15499566.1 15498732.1 ± 18.98
4 15497929.2 15498725.3 ± 18.45
5 15498479.6 15498736.4 ± 24.17
6 15499010.3 15498746.0 ± 16.81
7 15498502.5 15498807.0 ± 23.88
8 15498701.5 15498724.7 ± 15.99
9 15498763.5 15498719.9 ± 22.71 ∗
10 15498827.9 15498735.5 ± 15.69

15498661.4 ± 280.8
1000 1 15498761.3 15498752.0 ± 18.87

2 15498188.8 15498740.8 ± 19.52
3 15498737.8 15498727.7 ± 20.36
4 15498497.0 15498773.9 ± 18.92
5 15498394.0 15498745.0 ± 21.36
6 15498858.9 15498733.1 ± 16.58
7 15498416.5 15498713.3 ± 17.30 ∗
8 15498567.1 15498740.4 ± 18.12
9 15498575.3 15498728.4 ± 16.98
10 15498983.9 15498737.3 ± 18.66

15498598.1 ± 148.5
5000 1 15498558.9 15498728.4 ± 19.84

2 15498709.6 15498733.5 ± 18.94
3 15498725.4 15498732.9 ± 20.16
4 15498486.7 15498732.7 ± 19.00
5 15498820.6 15498728.4 ± 15.04
6 15498737.1 15498728.8 ± 19.08
7 15498718.5 15498722.1 ± 18.16 ∗
8 15498728.3 15498743.8 ± 18.06
9 15498633.5 15498722.4 ± 22.42
10 15498459.0 15498730.7 ± 17.17

15498657.8 ± 73.9

Table 22. storm, Latin Hypercube sampling.



The Empirical Behavior of Sampling Methods for Stochastic Programming 39

252000

252500

253000

253500

254000

254500

255000

10 100 1000 10000

V
al

ue

N

20term Monte Carlo

Lower Bound
Upper Bound

252000

252500

253000

253500

254000

254500

255000

10 100 1000 10000

V
al

ue

N

20term Latin Hypercube

Lower Bound
Upper Bound

Fig. 1. 20term: Means and 95% Confidence Intervals for Optimal Value Bound Estimates



40 Jeff Linderoth et al.

1550

1600

1650

1700

1750

10 100 1000 10000

V
al

ue

N

gbd Monte Carlo

Lower Bound
Upper Bound

1550

1600

1650

1700

1750

10 100 1000 10000

V
al

ue

N

gbd Latin Hypercube

Lower Bound
Upper Bound

Fig. 2. gbd: Means and 95% Confidence Intervals for Optimal Value Bound Estimates



The Empirical Behavior of Sampling Methods for Stochastic Programming 41

218

220

222

224

226

228

230

232

10 100 1000 10000

V
al

ue

N

LandS Monte Carlo

Lower Bound
Upper Bound

218

220

222

224

226

228

230

232

10 100 1000 10000

V
al

ue

N

LandS Latin Hypercube

Lower Bound
Upper Bound

Fig. 3. LandS: Means and 95% Confidence Intervals for Optimal Value Bound Estimates



42 Jeff Linderoth et al.

4

6

8

10

12

14

10 100 1000 10000

V
al

ue

N

SSN Monte Carlo

Lower Bound
Upper Bound

4

6

8

10

12

14

10 100 1000 10000

V
al

ue

N

SSN Latin Hypercube

Lower Bound
Upper Bound

Fig. 4. SSN: Means and 95% Confidence Intervals for Optimal Value Bound Estimates



The Empirical Behavior of Sampling Methods for Stochastic Programming 43

1.545e+07

1.546e+07

1.547e+07

1.548e+07

1.549e+07

1.55e+07

1.551e+07

1.552e+07

1.553e+07

10 100 1000 10000

V
al

ue

N

Storm Monte Carlo

Lower Bound
Upper Bound

1.545e+07

1.546e+07

1.547e+07

1.548e+07

1.549e+07

1.55e+07

1.551e+07

1.552e+07

1.553e+07

10 100 1000 10000

V
al

ue

N

Storm Latin Hypercube

Lower Bound
Upper Bound

Fig. 5. storm: Means and 95% Confidence Intervals for Optimal Value Bound Estimates


