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Motivation

Many applications give rise to optimization problems for which simple,
approximate solutions are required, rather than complex exact solutions.

Occam’s Razor

Data quality doesn’t justify exactness

Possibly more robust to data perturbations (not “overoptimized”)

Easier to actuate / implement / store simple solutions

Conforms better to prior knowledge.

When formulated with variable x ∈ Rn, simplicity is often manifested as
sparsity in x (few nonzero components) or in a simple transformation of x .
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Formulating Sparse Optimization

Two basic ingredients:

The underlying optimization problem — often of data-fitting type

Regularization term or constraints to “encourage” sparsity — often
nonsmooth.

Usually very large problems. Need techniques from

Large-scale optimization

Nonsmooth optimization

Lots of domain-specific knowledge.
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Example: Regularized Logistic Regression

Have attribute vectors x(1), x(2), . . . , x(n) (real vectors) and labels
y(1), y(2), . . . , y(n) (binary 0/1).

Probability of outcome Y = 1 given attribute vector X is
p(X ) = E (Y = 1|X ). Model log odds or logit function as linear
combination of basis functions of x :

ln

(
p(x)

1− p(x)

)
=

N∑
l=0

alBl(x),

for a (possibly huge) number of basis functions Bl .

Define a log-likelihood function based on observations:

1

n

n∑
i=1

[y(i) log p(x(i)) + (1− y(i)) log(1− p(x(i)))] .

Choose coefficients (a1, a2, . . . , aN) sparsely to approximately maximize
this function. [Wahba-Shi-SW et al, 2008]
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Example: Radiotherapy for Cancer
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Multileaf collimator. Leaves move up and down to shape the beam.
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Linear accelerator, showing cone and collimators
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Irradiate tumor while sparing surrounding tissue and critical organs

Choose angles of delivery and aperture shapes to match the
oncologist’s specifications (many possible configurations)

Many optimization formulations used: linear, quadratic, second-order
cone, nonlinear, integer programs.

Uncertainty in the model:

dose distribution
cancer / organ location and movement.

Want a sparse, approximate, robust solution that can be delivered
efficiently using few aperture shapes/angles.
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Example: Support Vector Machines
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Have attribute vectors x(1), x(2), . . . , x(n) (real vectors) and labels
y(1), y(2), . . . , y(n) (binary 0/1).

See a hyperplane that separates the points according to their
classification — usually after transforming attributes to higher
dimensional space (using a kernel).

The usual optimization formulation has dimension n, with number of
nonzeros equal to number of misclassified points.
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Example: Image Processing
TV Denoising

Rudin-Osher-Fatemi (ROF) model. Given a domain Ω ⊂ R2 and an
observed image f : Ω→ R, seek a restored image u : Ω→ R that
preserves edges while removing noise.

The regularized image u can typically be stored more economically.

Seek to “minimize” both

‖u − f ‖2 and

the total-variation (TV) norm
∫
Ω |∇u| dx .

Use constrained formulations, or a weighting of the two objectives:

min
u

P(u) :=

∫
Ω
|∇u| dx +

λ

2
‖u − f ‖22.

Minimizing u tends to have regions in which u is constant (∇u = 0).
More pronounced for small λ.

More later...
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Example: Compressed Sensing

Many signals are close to being sparse when the correct
representation is used; that is,

When expressed as a linear combination of basis elements, few of the
coefficients are nonzero.

Rather than sample the signal as though it were possibly dense, we can
take a much smaller set of well chosen samples and use these to
reconstruct the nonzero coefficients of the (approximate) representation.

Allows big savings in cost of sensing and possibly storage, but novel
formulations and algorithms are needed to extract the sparse
representation.

The optimization perspective is proving to be useful.
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Given a signal x ∈ Rn with at most S nonzero components, observe the
inner products of x with some chosen vectors ai ∈ Rn, i = 1, 2, . . . , k, plus
some noise. Observations yi are therefore

yi = aT
i x + ei ,

(where ei is the noise term). Defining

y := [yi ]
i=1
k ∈ Rk , A :=

[
aT
i

]i=1

k
∈ Rk×n, e := [ei ]

i=1
k ∈ Rk ,

we have
y = Ax + e.

How to recover x , given y and A (and possibly some information
about e)?

What properties does A need to have?

How big does k need to be?
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Choosing A

The choice of vectors ai , i = 1, 2, . . . , k (and hence A) is critical.

A Bad Idea: If ai have the form (0, . . . , 0, 1, 0, . . . , 0)T , i.e. we randomly
sample components of x — we won’t recover all the nonzero components
of x with reasonable probability until k � n.

For other kinds of random A, much smaller values of k will give enough
information to recover x , as closely as e allows, to high probability. The
critical property is restricted isometry [Candès, Tao].

Given sparsity level S ≤ k, A satisfies the restricted isometry property with
isometry constant δS < 1 if for any column submatrix A·T of A with at
most S columns, we have

(1− δS)‖c‖22 ≤ ‖A·T c‖22 ≤ (1 + δS)‖c‖22, for all c ∈ RS .

That is, A·T has close-to-orthonormal columns.
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Formulating the Recovery Problem

Similarly to TV denoising, seek to control both

Fit between observation and model: ‖Ax − y‖22
`1-norm of signal: ‖x‖1.

The term ‖x‖1 serves as surrogate for ‖x‖0 (which is a count of the
number of nonzero coefficients), but

‖x‖1 is convex and can lead to smooth convex formulations;

Problems with ‖x‖1 often give the same (sparse) solutions as those
with ‖x‖0!

A term ‖x‖2 does not have the latter property.
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Three Formulations

LASSO with parameter β > 0:

min
1

2
‖Ax − y‖22 subject to ‖x‖1 ≤ β.

Reconstruction with noise bound ε:

min ‖x‖1 subject to ‖Ax − y‖2 ≤ ε.

Unconstrained nonsmooth formulation with regularization τ > 0.

min
1

2
‖Ax − y‖22 + τ‖x‖1.

By varying their parameters, all three formulations generally lead to
the same path of solutions.

The “correct” choice of parameter usually is not known a priori; need
to solve for a selection or range of values and choose it in some
“outer loop.”
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Why Does ‖x‖1 Work?

Can give some more or less intuitive justifications as to why the ‖x‖1 term
promotes sparsity in the solution. Consider LASSO formulation

min
1

2
‖Ax − y‖22 subject to ‖x‖1 ≤ β,

where A ∈ Rk×n with k < n: in particular k = 1, n = 2:
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k = 2, n = 2. Solution has a single nonzero for small β, two nonzeros for
larger β.
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A View from the Dual

[Nesterov, 2007] The formulation

min
1

2
‖Ax − y‖22 + τ‖x‖1

has dual
min

u
‖u − y/τ‖22 subject to ‖ATu‖∞ ≤ 1.

Components of x are Lagrange multipliers for the constraints
‖ATu‖∞ ≤ 1.

The number of nonzero components of x corresponds to the number
of active facets in this constraint set.

We illustrate a case of k = 2, n = 3.
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Compressed Sensing Algorithms

Many algorithms and heuristics have been proposed for all three of the
`2 − `1 formulations of compressed sensing. The problem has certain
properties that drive certain algorithmic choices:

n very large, possibly also k.

A often dense, can’t store substantial submatrices explicitly (but a
small column submatrix may be OK).

A often a product of a representation matrix and an observation
matrix;

Representation matrix (e.g. wavelet basis, FFT) often dense, but
allows fast matrix-vector multiplies;

The solution x is sparse, for interesting choices of regularization
parameter.

Often want to solve for a selection of regularization values.
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Interior-Point Algorithms

`1-magic: Log-barrier (primal interior-point) approach for the second-order
cone program formulation: min ‖x‖1 s.t. ‖Ax − y‖2 ≤ ε [Candès,
Romberg]:

Newton method used for inner iteration

CG used for inner-inner iteration (if A not explicitly available).

l1 ls: Apply a log-barrier method to a reformulation of the
unconstrained problem:

min
1

2
‖Ax − y‖22 + τ1Tu subject to − u ≤ x ≤ u.

Preconditioned CG used for the inner loop. [Kim et al, 2007]

SparseLab/PDCO: Primal-dual formulation, with linear equations solved
iteratively with LSQR for large A. [Saunders, 2002]
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Interior-Point Properties

Generally few outer iterations, but expensive.

Linear systems at innermost level become increasingly ill conditioned.

Requires many more CG / LSQR iterations.
Clever preconditioning can help.

Difficult to warm-start.

No big savings from using the solution for one value of τ to warm-start
for the next value in the sequence.
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Matching Pursuit and Descendants

MP, OMP heuristics build up x one component at a time, in a greedy
fashion.

CoSaMP [Needell, Tropp, 2008] extends this idea, adding ideas from other
approaches, and adds includes a convergence theory.

(CoSaMP is related to a constraint generation strategy for the `2-`1

problem above.)

See Joel for details!
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Active-Set / Pivoting Methods

LARS / LASSO: trace the solution path for a range of values of the
regularization parameter.

For the formulation

min
1

2
‖Ax − y‖22 + τ‖x‖1

the solution is x = 0 for τ ≥ ‖AT y‖∞. Can decrease τ progressively from
this value, seeking breakpoints at which another component of x moves
away from zero.

The approach can be implemented carefully in a way that requires only
matrix-vector multiplications with A and AT , and storage of the “active”
columns of A. Possibly suitable for very sparse signals.

SolveLasso function in the SparseLab toolbox.
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QP Formulation and Gradient Projection

Can formulate as bound-constrained least squares by splitting

x = u − v , (u, v) ≥ 0,

and writing

least sq: min
u≥0,v≥0

φ(u, v) :=
1

2
‖A(u − v)− y‖22 + τ1Tu + τ1T v .

Gradient of objective is[
∇uφ(u, v)
∇vφ(u, v)

]
=

[
ATA(u − v)− AT y + τ1
−ATA(u − v) + AT y + τ1

]
.

Set
(ūk+1, v̄k+1) =

[
(uk , vk)− α(∇uφ

k ,∇vφk)
]
+

for α > 0. Then possibly do a second “internal” line search, choosing
γ ∈ [0, 1] to reduce φ, and setting

(uk+1, vk+1) =
[
(uk , vk) + γ

{
(ūk+1, v̄k+1)− (uk , vk)

}]
+

.
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Variants: Choice of αk and γk

α minimizes φ along projection of −∇φ onto the current face
(“GPSR-Basic” variant).
Barzilai-Borwein: Choose αk to mimic behavior of inverse Hessian
over the step just taken. Then step mimics a Newton step:

−αk∇φ ∼ −[∇2φ]−1∇φ.

e.g., do a least-squares fit to get α−1
k :[

(uk , vk)− (uk−1, vk−1)
]
≈ α−1

k

[
∇φ(uk , vk)−∇φ(uk−1, vk−1)

]
.

Many variations (e.g. cyclic).
Can accept α even if it increases φ (nonmonotone), or backtrack until
φ is reduced, by setting αk ← αk/2 repeatedly.

For choice of γk , use either

γk = 1, or
γk is the minimizer of φ along the line from (uk , vk) to (ūk+1, v̄k+1)
(gives monotonic decrease in φ).
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Gradient Projection Properties

Can make large changes to the active manifold on a single step (like
interior-point, unlike pivoting).

Each iteration is cheap: 2-3 multiplications with A or AT .

Would reduce to steepest descent if there were no bounds.

For very sparse problems (large τ) can sometimes identify the correct
active set in few iterations.

Once the correct nonzero components of x are identified, the
approach reduces to steepest descent on subspace of nonzero
components.

Benefits from warm starting.
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Final Stages, Debiasing

When the support of x has been identified correctly for a given τ , GPSR
reduces to steepest descent on a convex quadratic, on the reduced space
of nonzero xj .

This quadratic has Hessian ĀT Ā, where Ā is the column submatrix of A
corresponding to support of x . When the support is small and the
restricted isometry property holds, ĀT Ā ≈ I , so steepest descent is not too
slow.

GPSR optionally postprocesss x with a debiasing step: Discard the
regularization term, and apply conjugate gradient (CG) to the reduced
problem. Since ĀT Ā ≈ I , CG converges rapidly.

(Similar observations are key to analysis of CoSaMP.)
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Larger Support: Continuation Strategy

When the support is not so sparse, GPSR is much slower to both identify
the correct support and to converge in its final stages.

How interesting are such problems? Are there interesting practical
problems for which we care about instances like this?

Other approaches are also slower on these cases.

Can alleviate with a continuation strategy: Solve for a decreasing sequence
of τ values:

τ1 > τ2 > · · · > τm,

using the solution for τi to warm-start for τi+1.

If you really want the solution for τm only, need only approximate
solutions for τ1, τ2, . . . , τm−1.

Typically faster than solving for τm alone from a cold start.
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SpaRSA: Separable Approximation

Formulation:

min
1

2
‖Ax − y‖22 + τ‖x‖1.

From iterate xk , get step d by solving

min
d
∇q(xk)Td +

1

2
αkdTd + τ‖xk + d‖1.

Can view the αk term as

an approximation to the Hessian: αk I ≈ ∇2q = ATA;

Lagrange multiplier for a trust-region constraint ‖d‖2 ≤ ∆.

Subproblem is trivial to solve in O(n) operations, since it is separable in
the components of d .

Related to GPSR, also to previously proposed approaches, e.g. iterative
shrinking-thresholding, proximal forward-backward splitting [Combettes].
Main difference is adaptive choice of αk .
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SpaRSA Variants and Properties

IST makes a large, constant choice αk ≡ α (or at least requires all αk

to be greater than α).

Can choose αk using Barzilai-Borwein strategies.

Not obvious to extend the “basic” GPSR strategy for choosing αk to
SpaRSA.

Can get monotone variants by doing backtracking αk ← αk/2 until
the objective is decreased (sufficiently).

Generalizes nicely to regularizers other than `1:

sum-of-`2;
sum-of-`∞;
hierarchical regularization terms?

In each case the subproblem decomposes; closed-form solutions can
be found in O(n) time.

Continuation strategy can be used.
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Nesterov’s Primal-Dual Approach

Solves subproblems of same type as SpaRSA.

For a technique like SpaRSA that directly manipulates αk , proves
convergence of the objective function to its optimal value at rate k−1.

Proposes a more complex “accelerated” scheme in which each iterate
zk is a linear combination of two vectors:

An vector xk obtained from the SpaRSA subproblem
An vector vk obtained from a subproblem with a modified linear term
(a weighted average of gradients AT (Ax − y) encountered at earlier
iterations.

Similar methods known to engineers as two-step and heavy-ball
methods.

Proves convergence of objective value at rate k−2.
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Computational Results

A small explicit problem with an easy signal (not very sparse).

A is 1024× 4096, elements from N(0, 1).

True signal x has 160 nonzeros with value ±1.

Observations y include noise of variance σ2 = 10−4.

Choose τ = 0.1‖AT y‖∞ — sufficient to recover the signal accuracy
(after debiasing). Continuation not needed for this value.

Compare several codes:

FPC [Hale, Yin, Zhang, 2007]

l1 ls [Kim et al, 2007]

SpaRSA: monotone and nonmonotone, BB selection of initial αk .

GPSR: monotone and “basic”

Nesterov’s accelerated scheme.

IST
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iterations time

l1 ls 13 10.5
FPC 111 2.47
IST 55 1.35
GPSR (monotone) 52 1.15
GPSR (basic) 39 1.64
SpaRSA (monotone) 35 .90
SpaRSA (nonmonotone) 33 .72
Nesterov-AC 157 17.57

Table: Results for Spikes test problem (times in secs on a MacBook)
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Effectiveness of Continuation

Tested a similar example for different values of τ with continuation
turned on/off.

Plot total runtime against β = ‖AT y‖∞/τ .

Benchmarked against l1 ls, whose runtimes are less sensitive to this
value.

Showed large advantage for continuation over a one-off approach, for
GPSR codes. (SpaRSA results are similar.)
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MRI Data: Sum-of-`2 Regularizer: Comparison with EM

Regularization term of the form
∑M

l=1 ‖x[l ]‖2, for a disjoint collection of
subvectors x[l ].

Table: Computational Results From X = 0 Starting Point. Times in seconds..
∗maximum iteration count reached.

EM SpaRSA SpaRSA-monotone
τ its time its time its evals time final cost blocks
0.7 8961 2464. 60 18. 30 53 14. 1.6(−6) 2
0.5 10000∗ 2749.∗ 90 26. 80 129 34. 1.5(−6) 4
0.4 10000∗ 2754.∗ 90 26. 70 117 31. 1.3(−6) 4
0.3 life’s too short 210 60. 140 248 64. 1.2(−6) 4
0.2 to run these 360 102. 210 369 95. 9.6(−7) 8
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TV-Regularized Image Denoising

Work with the formulation:

min
u

P(u) :=

∫
Ω
|∇u| dx +

λ

2
‖u − f ‖22.

The first term is the (nonsmooth) TV-reg term, while the second is the
data-fitting term.

Can’t apply GPSR or SpaRSA approaches directly, after discretization, as

Doesn’t seem possible to come up with a constrained formulation
with a feasible set that allows easy projection (needed for GPSR);

The SpaRSA subproblem has the same form as the original problem
(since ATA = λI ) and hence just as hard to solve.

However, if we discretize and take the dual we obtain a problem amenable
to gradient-projection approaches.
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Dual Formulation

Redefine the TV seminorm:∫
Ω
|∇u| = max

w∈C1
0 (Ω), |w |≤1

∫
Ω
∇u · w = max

|w |≤1

∫
Ω
−u∇ · w .

Rewrite the primal formulation as

min
u

max
w∈C1

0 (Ω), |w |≤1

∫
Ω
−u∇ · w +

λ

2
‖u − f ‖22.

Apply min-max theorem to exchange min and max, and do the inner
minimization wrt u explicitly:

u = f +
1

λ
∇ · w .

Thus obtain the dual:

max
w∈C1

0 (Ω), |w |≤1
D(w) :=

λ

2

[
‖f ‖22 −

∥∥∥∥ 1

λ
∇ · w + f

∥∥∥∥2

2

]
.
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Discretization

Assume Ω = [0, 1]× [0, 1], discretization with an n × n regular grid, where
uij approximates u at [

(i − 1)/(n − 1)
(j − 1)/(n − 1)

]
∈ Ω.

The discrete approximation to the TV norm is thus

TV(u) =
∑

1≤i ,j ,≤n

‖(∇u)i ,j‖,

where

(∇u)1i ,j =

{
ui+1,j − ui ,j if i < n

0 if i = n

(∇u)2i ,j =

{
ui ,j+1 − ui ,j if j < n

0 if j = n.

Stephen Wright (UW-Madison) Sparse Optimization Caltech, 21 April 2008 44 / 57



By reorganizing the N = n2 components of u into a vector v ∈ RN , and f
into a vector g ∈ RN , we write the discrete primal ROF model as

min
v

N∑
l=1

‖AT
l v‖2 +

λ

2
‖v − g‖22,

where Al is an N × 2 matrix with at most 4 nonzero entries (+1 or −1).

Introduce a vector representation x ∈ R2N of w : Ω→ R2. Obtain the
discrete dual ROF (scaled and shifted):

min
x∈X

1

2
‖Ax − λg‖22

where X := {(x1; x2; . . . ; xN) ∈ R2N : xl ∈ R2,

‖xl‖2 ≤ 1 for all l = 1, 2, . . . ,N},

where A = [A1,A2, . . . ,AN ] ∈ RN×2N .

Stephen Wright (UW-Madison) Sparse Optimization Caltech, 21 April 2008 45 / 57

Set X ⊂ R2N is a Cartesian product of N unit balls in R2. Projections
onto X are trivial. Can apply similar gradient projection ideas as in GPSR.
(Curvature of the boundaries of X adds some interesting twists.)

The discrete primal-dual solution (v , x) is a saddle point of

`(v , x) := xTAT v +
λ

2
‖v − g‖22.

Since the discrete primal is strictly convex, we have:

Proposition. Let {xk} be any sequence in X whose accumulation points
are all stationary for the dual problem. Then {vk} defined by

vk = g − 1

λ
Axk

converges to the unique solution of the primal problem.

Fortunately, we can prove that the required property of {xk} holds for
many gradient projection algorithms.
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Previous Methods

Embedding in a parabolic PDE [ROF, 1992]

Apply Newton-like method to the optimality conditions for a
smoothed version, in which |∇u| is replaced by

√
|∇u|2 + β.

Parameter β > 0 is decreased between Newton steps (path-following).
[Chan, Golub, Mulet, 1999]

Semismooth Newton on a perturbed version of the optimality
conditions. [Hintermüller, Stadler, 2006]

SOCP [Goldfarb, Yin, 2005].

First-order method similar to gradient projection with fixed step size.
[Chambolle, 2004]
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Gradient Projection Variants

min
x∈X

F (x), where F (x) :=
1

2
‖Ax − λg‖22

GP methods choose αk and set

xk(αk) := PX (xk − αk∇F (xk)),

then choose γk ∈ (0, 1] and set

xk+1 := xk + γk(xk(αk)− xk).

Choosing αk and γk :

αk ≡ α constant, converges for α < 0.25.

Barzilai-Borwein formulae; cyclic variants; alternating variants that
switches adaptively between the formulae.

γk ≡ 1 (non-monotone) or γk minimizes F in [0, 1] (monotone).
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Sequential Quadratic Programming

Optimality conditions for the dual: There are Lagrange multipliers zl ∈ R,
l = 1, 2, . . . ,N, such that

AT
l (Ax − λg) + 2zlxl = 0, l = 1, 2, . . . ,N,

0 ≤ zl ⊥ ‖xl‖2 − 1 ≤ 0.

At iteration k, define the active set Ak ⊂ {1, 2, . . . ,N} as the l for which
‖xk

l ‖ = 1, and do a Newton-like step on the system

AT
l (Ax − λg) + 2xlzl = 0, l = 1, 2, . . . ,N,

‖xl‖22 − 1 = 0, l ∈ Ak ,

zl = 0, l /∈ Ak .

Still use the Hessian approximation ATA ≈ α−1
k I .

Leads to the formula

∆xk
l = −

(
1/αk + 2zk

l

)−1 {
[∇F (xk)]l + 2zk

l xk
l

}
, l = 1, 2, . . . ,N.
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Computational Results

Two images: SHAPE (128× 128) and CAMERAMAN (256× 256).

Gaussian noise added with variance .01.

λ = 0.045 for both examples.

Tested many variants. Report here on

Chambolle, with α ≡ .248

Nonmonotone GPBB

Nonmonotone GBPP with SQP augmentation

GPABB - alternating adaptively between BB formulae

CGM with adaptively decreasing β.

Convergence declared when relative duality gaps falls below tol.
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Figure: SHAPE: original (left) and noisy (right)
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Figure: Denoised SHAPE: Tol=10−2 (left) and Tol=10−4 (right).

Little visual difference between loose and tight stopping criterion:
“convergence in the eyeball norm.”
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SHAPE Results

tol=10−2 tol=10−3 tol=10−4 tol=10−5

Alg its time its time its time its time

Chambolle 18 0.22 168 1.97 1054 12.3 7002 83.4
GPBB-NM 10 0.18 48 0.79 216 3.6 1499 25.9
GPCBBZ-NM 10 0.24 50 1.12 210 4.7 1361 31.5
GPABB 13 0.29 57 1.20 238 5.0 1014 22.6
CGM 6 5.95 10 10.00 13 12.9 18 19.4

Table: Runtimes (MATLAB on MacBook) for Denoising Algorithms

Nonmonotone GPBB generally reliable. Most GPBB variants
dominate Chambolle.

CGM becomes the fastest between 10−4 and 10−5.
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Figure: CAMERAMAN: original (left) and noisy (right)
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Figure: Denoised CAMERAMAN: Tol=10−2 (left) and Tol=10−4 (right).
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CAMERAMAN Results

tol=10−2 tol=10−3 tol=10−4 tol=10−5

Alg its time its time its time its time

Chambolle 27 1.07 163 6.46 827 32.8 3464 137.8
GPBB-NM 16 0.86 48 2.59 183 9.7 721 39.2
GPCBBZ-NM 16 1.17 53 3.91 202 14.6 729 53.8
GPABB 16 1.06 47 3.11 179 11.9 563 37.4
CGM 6 12.53 10 21.15 14 29.7 16 34.1

Table: Runtimes (MATLAB on Linux PC) for Denoising Algorithms
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