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Outline

Sketch some computational optimization techniques for sparse /
regularized optimization.

Regularized formulations: `1 and other regularizers.

Prox-Linear methods

Implementation for different regularizers
Extensions and enhancements
Identifying the optimal manifold.

Stochastic gradient methods.

Hogwild!
Regularized Dual Averaging

Includes joint work with S. Lee, A. Lewis, B. Recht, C. Ré, F. Niu.
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Sparse / Regularized Optimization

Many applications need structured, approximate solutions of optimization
problems, rather than exact solutions.

More Useful, More Credible

Structured solutions are easier to comprehend / use / actuate.
They correspond better to prior knowledge.
Extract just essential meaning from the data, not less important effects.

Less Data Needed

Structured solution lies in lower-dimensional spaces than ambient space
⇒ need to gather / sample less data to capture it.

How do we formulate and solve problems to promote the desired structure
in the solutions? Depends on the context and structure of the application,
but there are important common threads e.g. nonsmooth regularizers.

Examples: compressed sensing, machine learning, many application areas
in medical imaging, geophysics, power grids, control.
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`1 and Sparsity

Often seek a sparse approximate minimizer of f : one with few nonzeros.

Use of ‖x‖1 norm has long been known to promote sparsity in x . Also, it’s
convex, and avoids discrete variables (associated with cardinality ‖ · ‖0) in
the formulation.

Weighted form: min f (x) + τ‖x‖1, for some τ > 0.

`1-constrained form (variable selection): min f (x) subject to ‖x‖1 ≤ T .

Function-constrained form: min ‖x‖1 subject to f (x) ≤ f̄ .
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Compressed Sensing

In compressed sensing, ‖ · ‖1 is (provably) a perfect surrogate for ‖ · ‖0.

Recover x ∈ Rn from observations y ∈ Rm given Ax = y with
known sensing matrix A ∈ Rm×n.

Additionally, know that true solution x∗ is sparse: ‖x‖0 � n.

The additional knowledge of sparsity makes it possible to find the exact
solution x∗ even when the system Ax = y is underdetermined.

Donoho (2006), Donoho & Tanner: estimate number of observations
m in terms of ambient space dimension and number of nonzeros.

Candès, Tao, Romberg (2004, 2006): Restricted Isometry (RIP).

Zhang (2008): `1/`2 on random subspaces.

Candès and Recht (2011): elementary analysis for Gaussian A.

Chandrasekaran et al. (2010): Gaussian observations with general
regularizers.
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Other Structures, Other Regularizers

Aim to design the regularizer to induce a desired structure, while keeping
the optimization problem tractable.

Group Regularizers: There may be a natural relationship between some
components of x . We could thus group the components, and select or
deselect at the group level.

Use “sum of `∞” or “sum of `2” regularizers:

m∑
k=1

‖x[k]‖∞,
m∑

k=1

‖x[k]‖2,

where [k] (for k = 1, 2, . . . ,m) represent subsets of the components of x .

The subvectors x[k] can be overlapping or non-overlapping. (The latter are
generally easier to deal with.)
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Examples: Separable Groups

Simultaneous variable selection (select a subset of variables to explain a
number of observation vectors simultaneously, for a fixed design matrix)
(e.g. Turlach, Venables, Wright, 2005):

min
X

1

2
‖Y − AX‖2F + τ

m∑
i=1

‖Xi ,·‖∞.

Fitting observations sparsely from a fixed dictionary:

min
X

1

2
‖Y − AX‖2F + τ

n∑
j=1

c(X·,j),

where c(·) = ‖ · ‖∞, or a more general function. e.g. Jenatton et al.
(2010) define c to be a regularizer for hierarchical overlapping groups, and
minimizes over A as well (sparse dictionary learning).
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Examples: Overlapping Groups

General overlapping: (Ding, Wahba, Zhu, 2011): Learning graphical
models from multivariate Bernoulli outcomes. Each group = all
descendants of a node in a directed graph.

Overlapping, with tree struture: In a wavelet representation U = Wx of a
natural image, coefficients x can be arranged in a quadtree, exposing a
hierarchical relationship.

Can impose this structure explicitly
(Baraniuk et al., 2010), or induce via
group regularizers (Jenatton et al.,
2010), (Rao et al., 2011).
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Total-Variation Regularization

Given intensity measures Uij for i , j = 1, 2, . . . ,N (a 2D grid), define the
variation at grid point (i , j) as∥∥∥∥[Ui+1,j − Uij

Ui ,j+1 − Uij

]∥∥∥∥
2

.

(zero iff Uij , Ui+1,j , Ui ,j+1 all have the same intensity).

Total Variation obtained by summing across the grid:

TV(U) :=
1

N2

N−1∑
i=1

N−1∑
j=1

∥∥∥∥[Ui+1,j − Uij

Ui ,j+1 − Uij

]∥∥∥∥
2

.

Forces most grid points (i , j) to have the same intensities as their
neighbors. (Rudin, Osher, Fatemi, 1992)
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Matrix Estimation / Completion

Given an m × n matrix M in which only certain elements are known:

Ω ⊂ {(i , j) | i = 1, 2, . . . ,m, j = 1, 2, . . . , n}.

Find a matrix X with “nice structure” such that Xij ≈ Mij for (i , j) ∈ Ω.

Desirable structures:

Low rank: induced by nuclear norm ‖X‖∗ (sum of singular values)
(Recht, Fazel, Parrilo, 2010) or “max norm” (Lee at al., 2010).

Sparsity: Induced by element-wise 1-norm:
∑

i ,j |Xij |.
Both: combine these regularizers.

Example formulation:

min
X

1

2
‖AX − b‖22 + τ‖X‖∗.
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Algorithms: Many Techniques Used

Large-scale optimization: optimal first-order, gradient projection,
second-order, continuation, coordinate relaxation, interior-point,
augmented Lagrangian, conjugate gradient, semismooth Newton ...

Nonsmooth optimization: cutting planes, subgradient methods,
successive approximation, smoothing, prox-linear methods, ...

Dual and primal-dual formulations / methods

Numerical linear algebra

Stochastic approximation, sampled-average approximation.

Heuristics

Also much domain-specific knowledge about the problem structure and the
type of solution demanded by the application.
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A Fundamental Method: Prox-Linear

For the setting
min
x

φτ (x) := f (x) + τc(x).

At xk , solve this subproblem for new iterate xk+1:

PLS: xk+1 = arg min
z
∇f (xk)T (z − xk) + τc(z) +

1

2αk
‖z − xk‖22,

for some choice of αk > 0 (see below).

Works well when this subproblem is easy to formulate and solve.

c vacuous ⇒ reduces to gradient descent, with a line search.

c is an indicator function for a closed convex set X ⇒ reduces to gradient
projection.

A fundamental approach that goes by different names in different settings,
e.g. IST, Forward-Backward Splitting, SpaRSA.
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The Prox-Linear Subproblem

Requires evaluation of ∇f . e.g. In compressed sensing, requires
multiplication by A and AT — inexpensive for partial FFT, wavelets, etc.

Formulate the subproblem equivalently as

min
z

1

2

∥∥∥z − [xk − αk∇f (xk)
]∥∥∥2

2
+ ταkc(z),

which is an application of the Moreau proximality operator (shrink
operator) associated with c :

Sσ(x) = arg min
z

1

2
‖z − x‖22 + σc(z).

This operator is easy and cheap to compute for simple regularizers: ‖ · ‖1,
‖ · ‖2, ‖ · ‖∞: O(n) or O(n log n) operations.

Also easy for non-overlapping group norms (because of separability).
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Calulating the Shrink

Tree-structured groups: Do a partial ordering of the groups, smaller
to larger, then apply shrink in order (Jenatton et al., 2010)
General overlapping groups: More complicated. Can solve using
duality and block-coordinate relaxation, gradient projections, or
min-cost network flow (Mairal et al., 2010).
Total Variation: Solve a denoising problem:

min
U∈RN×N

1

2
‖U − F‖2F + τTV(U).

(Chambolle, 2004) (Zhu, Chan, Wright, 2009).
Nuclear Norm:

min
Z

1

2
‖Z − Y k‖2F + σ‖Z‖∗.

Can solve explicitly using a singular value decomposition of Y k ,
followed by an adjustment (shrink) of the singular values.
SVT: Compute a partial SVD (largest singular values) using Lanczos.
(Cai, Candès, Shen, 2008)
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A Prox-Linear Method

e.g. one of the variants of SpaRSA: (Wright, Nowak, Figueiredo, 2008).

At iteration k :

Solve for current αk to find candidate solution xk+:

xk+ = arg min
z
∇f (xk)T (z − xk) + τc(z) +

1

2αk
‖z − xk‖22,

Decrease αk as needed until sufficient decrease is obtained:

φτ (xk)− φτ (xk+) ≥ ‖xk+ − xk‖32.

Increase αk by a constant factor (but enforce αk ≤ αmax) in
preparation for next iteration.

All accumulation points are minimizers. (Not surprising, as it’s a convex
problem.) No global rate in general (i.e. linear/exponential convergence or
sublinear e.g. 1/k rate).
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Variants / Enhancements / Extensions

Basic IST: αk ≡ ᾱ < 1/L. Guarantees descent in φτ at every
iteration.

Nonmonotone method using a Barzilai-Borwein choice of parameter
αk (another SpaRSA variant).

Continuation in the regularization parameter τ . Solve a sequence of
problems for different τ , from large to small, and warm start.

Block Coordinate Relaxation: Calculate just a partial gradient
(subvector of ∇f ) at each iteration. Align the partial gradients with
group boundaries. (Tseng and Yun, 2009), (Wright, 2010)

Accelerated first-order methods (e.g. FISTA, NESTA).

Debiasing: When c(x) = ‖ · ‖1, switch to a local “debiasing” phase
once the correct set of nonzeros is identified and discard the
regularization term. RIP ⇒ linear convergence in this phase.

Composite Minimization: h(c(x)) where c : Rn → Rm is smooth and
h : Rm → R is prox-regular. (Lewis & Wright, 2008)

Stephen Wright (UW-Madison) Regularized Optimization ICIAM, Vancouver, July 2011 16 / 35



Optimal Manifold and its Identification

Given the solution x∗, the optimal manifold M is a well behaved surface
passing through x∗ such that

it can be parametrized by a small number of variables (relative to n);

The regularizer c behaves smoothly along M.

Example: For `1 regularization, M is the set of points near x∗ with the
same nonzero elements as x∗:

M = {x ∈ Rn | x∗i = 0⇒ xi = 0}.

Can be parametrized by ‖x∗‖0 variables.

Near x∗, ‖ · ‖1 is smooth — linear in fact:

−
∑
x∗i <0

xi +
∑
x∗i >0

xi .
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Identification of M

Some algorithms can identify the optimal manifold M without knowing
x∗. Thus, can switch to a different method for searching on M, which
typically has much lower dimension than n.

Requires a nondegeneracy condition: Replace

criticality: 0 ∈ ∂φτ (x∗)

by strict criticality: 0 ∈ ri ∂φτ (x∗).

Prox-linear methods identify M from points sufficiently close to x∗. So
does a regularized dual averaging method that we describe below....
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Stochastic Gradient Algorithms

Solves min f (x) where

f convex but possibly nonsmooth.

Can’t get function values f (x) cheaply.

At any feasible x , have access only to an unbiased estimate of the
subgradient ∂f .

Some Definitions: For each x in domain of f , g is a subgradient of f at x if

f (z) ≥ f (x) + gT (z − x), for all z ∈ domf .

f is strongly convex with modulus µ > 0 if

f (z) ≥ f (x)+gT (z−x)+
1

2
µ‖z−x‖2, for all x , z ∈ domf with g ∈ ∂f (x).
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“Classical” Stochastic Approximation

Consider

f (x) =
1

m

m∑
i=1

fi (x),

where each function fi depends only a small subset of the components of
x , denoted by [i ] ⊂ {1, 2, . . . , n}. Thus ∇fi (x) is nonzero only in the
components [i ].

At iteration k , choose ξk ∈ {1, 2, . . . ,m} randomly, and use ∇fξk (x) as the
unbiased estimate of ∇f .

Assume that there is M such that ‖∇fi (x)‖2 ≤ M for all x of interest.
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Basic SA and it Properties

At iteration k , choose ξk i.i.d. from {1, 2, . . . .m}, choose some αk > 0,
and set

xk+1 = xk − αk∇fξk (xk).

When f is strongly convex, (with modulus µ) the analysis of convergence
of E (‖xk − x∗‖2) is fairly elementary (Nemirovski et al, 2009).

Steps αk = 1/(kµ) lead to sublinear convergence

1

2
E (‖xk − x∗‖2) ≤ Q

2k
, for Q := max

(
‖x0 − x∗‖2, M

2

µ2

)
.

To reduce E (‖xk − x∗‖2) to less than ε, need O(1/ε) iterations.
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What if µ is unknown, or zero? Robust SA

The steplength choice αk = 1/(kµ) requires knowledge of the modulus µ.
An underestimate of µ can greatly degrade the performance of the method
(see example in Nemirovski et al. 2009).

Robust Stochastic Approximation works for weakly convex nonsmooth
functions and is not sensitive to choice of parameters in the step length.

set xk+1 = xk − αk∇fξk (xk), with αk = θ
M
√
k

, for some θ > 0 (not

critical);

define a weighted average of iterates so far:

x̄k =

∑k
i=1 αix

i∑k
i=1 αi

.

Then E [f (x̄k)− f (x∗)] converges to zero with rate approximately
(log k)/k1/2.
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Robust Constant-Step Approach: HOGWILD!

(Niu, Recht, Ré, Wright, 2011)

Set a target ε for E [f (xk)− f (x∗)];
Estimate convexity modulus µ, bound M, Lipschitz constant L for ∇f ;
Choose ϑ ∈ (0, 1) and set

αk ≡
ϑεµ

2LnM2

Then have E [f (xk)− f (x∗)] ≤ ε for all

k ≥ 2LnM2 log(L‖x0 − x∗‖2/ε)
µ2ϑε

.

Unlike the basic SA scheme, this one is robust to knowledge of the
convexity modulus µ: an underestimate of µ yields only a linear increase in
the number of iterations.

Obtain a 1/k rate, except for the log term. (We can remove this term by
implementing a “backoff” scheme: periodically reduce the setpoint for αk

by a factor β ∈ (0, 1).)
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Parallelizing HOGWILD!

SGD seems inherently serial, but there are several parallel versions:

Master-Worker (Bertsekas & Tsitsiklis, 1985)

Round-Robin (Langford et al., 2009)

Average between Runs (Zinkevich et al., 2010)

All require synchronization — parallelism degrades due to lock contention.

Idea: Get rid of locking! Allow different processors to update a centrally
stored x vector independently of each other.

Each processor run this process (independently and unsynchronized):

1 Sample ξ ∈ {1, 2, . . . ,m};
2 Read subvector x[ξ] and calculate ∇fξ(x);

3 For v ∈ [ξ], update xv ← xv − α[∇fξ(x)]v ;

Assume atomicity only of the single-component update in Step 3.
Updates can be old by the time they are made.
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Hogwild! Convergence

Performs best when the groups [i ] are small and don’t overlap much.
Define constants that quantify this:

Ω := max
i=1,2,...,m

|[i ]|,

∆ :=
1

m
max

v=1,2,...,n
|i = 1, 2 . . . ,m | v ∈ [i ]|

ρ :=
1

m
max

i=1,2,...,m

∣∣∣̂i = 1, 2, . . . ,m | [̂i ] ∩ [i ] 6= ∅
∣∣∣

Assume ‖∇fi (x)‖ ≤ M; µI � ∇2f � LI . Assume that longest delay
between reading x and updating it is τ steps.

For k ≥ 2LM2(1 + 6τρ+ 6τ2Ω∆1/2) log(L‖x0 − x∗‖2/ε)
µ2ε

,

then after k steps with constant stepsize α, we have E
[
f (xk)− f ∗

]
≤ ε.
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Hogwild! Computations

Shows speedups on a 10-core machine.

Round-Robin (Langford et al, 2009) is slower by a factor of 2-8.
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Hogwild! Speedups

RR: Round-Robin. AIG: Same as Hogwild! but locks the full subvector
vector [ξ] while updating. (Hogwild! just locks individual indices.)
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Regularized Dual Averaging

(Nesterov, 2009) For min f (x) with f convex, nonsmooth.

Average all subgradients gi ∈ ∂f (x i ) visited so far, to obtain

ḡk =
1

k

k∑
i=1

gi .

Step:

xk+1 := min
x

ḡT
k x +

γ√
k
‖x − x0‖22, for some constant γ > 0.

Possibly average the primal iterates x1, x2, x3, . . . too:

x̄k =
1

k

k∑
i=1

x i .
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Extension to Regularized Formulation

Xiao (2010) extended the approach to the regularized, online setting

min φτ (x) :=
1

m

m∑
t=1

ft(x) + τc(x),

for which the subproblem is

xk+1 := min
x

ḡT
k x + τc(x) +

γ√
k
‖x − x0‖22.

Xiao proves convergence in expectation, for averaged iterates:

E
[
φτ (x̄k)− φτ (x∗)

]
≤ O(k−1/2).
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Manifold Identification

Assumes that x∗ is a nondegenerate solution (0 ∈ ri [∇f (x∗) + τ∂c(x∗)])
and a strong local minimizer on the optimal manifoldM.

Averaged gradients approach ∇f (x∗) in probability:

P (‖ḡk −∇f (x∗)‖ > ε) = O(ε−2k−1/4).

Most of the sequence {xk} converges to x∗:

P
(
‖xk − x∗‖ > ε

)
< O(ε−2k−1/4) when k ∈ S,

where for any k the sequence S contains all but a fraction of O(k−1/4) of
the elements of {1, 2, . . . , k}.

For the same subsequence S, we have for optimal manifold M:

P(xk /∈M) ≤ O(k−1/4).

Constants in the O(·) terms don’t depend on problem dimension.
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Two-Phase Algorithm: RDA+

The manifold identification properties suggest a two-phase strategy:

Use RDA to identify a reduced space containing optimal manifold M;

Run a different method on this reduced space, more suited to lower
dimensions: more accurate gradients, reduced Newton-like steps.

(Use a heuristic to decide when to switch.)

Implemented on `1 regularized logistic regression, where optimal manifold
M is the set of points in Rn with the same nonzero structure as x∗.

Switch when the nonzeros of successive iterates xk has settled down, and
add zero components that are “close” to moving away from zero, to get a
superset of M. Run LPS (a prox-linear algorithm with reduced Newton
steps) on the reduced space.
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Tests with MNIST

Standard data set in machine learning: identify handwritten digits.

Compare RDA+ with

straight RDA

straight LPS (on the full space)

SGD

Truncated Gradient (“shrinks” on every 10th step)
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Comparing Runtimes and Sparsity

Stephen Wright (UW-Madison) Regularized Optimization ICIAM, Vancouver, July 2011 33 / 35



Stochastic Gradient References

S. Lee and S. Wright, “Manifold Identification of Dual Averaging
Methods for Regularized Stochastic Online Learning,” ICML, 2011.
Longer version submitted to JMLR, July 2011. (Posted to
Optimization Online last night.)

F. Niu, B. Recht, C. Ré, and S. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” June, 2011.
Submitted.
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Summary

Have discussed some recent work in regularized optimization and
stochastic gradient methods.

There’s a confluence of interest between the two, particularly in
machine learning.

Many issues remain:

Design of regularizers to induce desired structure.
Enhancements of prox-linear that work better in practice.
Setting step length parameters in stochastic gradient.
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