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Summary

1 Sparse / Regularized Optimization

2 SVM Formulations

3 SVM Algorithms (recently proposed)

4 New optimization tools of possible interest.
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Themes

Optimization problems from machine learning are difficult (size, kernel
density, ill conditioning)

Machine learning community has made excellent use of optimization
technology. Many interesting adaptations of fundamental algorithms
that exploit the structure and fit the requirements of the application.

Several current topics in optimization may be of interest in solving
machine learning problems.
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Sparse Optimization

Traditionally, research on algorithmic optimization assumes exact data
available and precise solutions needed.

However, in many optimization applications we prefer simple, approximate
solutions to more complicated exact solutions.

simple solutions easier to actuate;

uncertain data does not justify precise solutions; regularized solutions
less sensitive to inaccuracies;

simple solution more “generalizable.”

These new “ground rules” may change the algorithmic approach altogther.

For example, an approximate first-order method applied to a nonsmooth
formulation may be preferred to a second-order method applied to a
smooth formulation.
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Regularized Formulations

Vapnik: “...tradeoff between the quality of the approximation of the given
data and the complexity of the approximating function.”

Simplicity sometimes manifested as sparsity in the solution vector (or some
simple transformation of it).

min F(x) + λR(x),

F is the model, data-fitting, or loss term (the function that would
appear in a standard optimization formulation);

R is a regularization function;

λ ≥ 0 is a regularization parameter.

R can be nonsmooth, to promote sparsity in x (e.g. ‖ · ‖1).

Smooth choices of R such as ‖ · ‖22 (Tikhonov regularization, ridge
regression) suppress the size of x and improve conditioning.
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Example: Compressed Sensing

min
x

1

2
‖Ax − b‖22 + λ‖x‖1,

where A often combines a “sensing matrix” with a basis, problem is
formulated so that there is a sparse x (few nonzeros) satisfying Ax ≈ b.

Typically A has (many) more columns than rows, and has special properties
to ensure that different sparse signals give different “signatures” Ax .

Under these assumptions the “`2-`1” formulation above can recover the
exact solution of Ax = b, in the noise-free case, if A has enough rows.

Control sparsity of recovered solution via λ.

LASSO for variable selection in least squares is similar.
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Example: TV-regularized image denoising

Given an image f : Ω→ R over a spatial domain Ω, find a nearby u that
preserves edges while removing noise. (Recovered u has large constant
regions.)

min
u

∫
Ω
(u − f )2 dx + λ

∫
Ω
|∇u| dx .

Here ∇u : Ω→ R2 is the spatial gradient of u.

λ controls fidelity to image data.

Recent work shows that gradient-projection methods on dual or
primal-dual are much faster at recovering approximate solutions than
methods with fast asymptotic convergence.
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Example: Cancer Radiotherapy

In radiation treatment planning, there are an astronomical variety of
possibilies for delivering radiation from a device to a treatment area. Can
vary beam shape, exposure time (weight), angle.

Aim to deliver a prescribed radiation dose to the tumor while avoiding
surrounding critical organs and normal tissue. Also wish to use just a few
beams. This makes delivery more practical and is observed to be more
robust to data uncertainty.
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Example: Matrix Completion

Seek an m × n matrix X of low rank that (approximately) matches certain
linear observations about its contents.

min
X

1

2
‖A(X )− b‖22 + λ‖X‖∗,

where A is a linear map from Rm×n to Rp, and ‖ · ‖∗ is the nuclear norm
— the sum of singular values.

Nuclear norm serves as a surrogate for rank of X , in a similar way to ‖x‖1
serving as a surrogate for cardinality of x in compressed sensing.

Algorithms can be similar to compressed sensing, but with more
complicated linear algebra. (Like the relationship of interior-point SDP
solvers to interior-point LP solvers.)
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Solving Regularized Formulations

Different applications have very different properties and requirements,
that require different algorithmic approaches.

Some approaches transfer between applications and can be analyzed
at a more abstract level.

Duality often key to getting a practical formulation.

Often want to solve for a range of λ values (i.e. different tradeoffs
between optimality and regularity).

Often, there is a choice between

(i) methods with fast asymptotic convergence (e.g. interior-point, SQP)
with expensive steps and

(ii) methods with slow asymptotic convergence and cheap steps, requiring
only (approximate) gradient information.

The latter are more appealling when we need only an approximate
solution. The best algorithms may combine both approaches!
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SVM Classification: Primal

Feature vectors xi ∈ Rn, i = 1, 2, . . . ,N, binary labels yi ∈ {−1, 1}.

Linear classifier: Defined by w ∈ Rn, b ∈ R: f (x) = wT
i x + b.

Perfect separation if yi f (xi ) ≥ 1 for all i . Otherwise try to find (w , b) that
keeps the classification errors ξi small (usually a separable, increasing
function of ξi ).

Usually include in the objective a norm of w or (w , b). The particular
choice ‖w‖22 yields a maximum-margin separating hyperplane.

A popular formulation: SVC-C aka L1-SVM (hinge loss):

min
w ,b,ξ

1

2
‖w‖22 + C

N∑
i=1

ξi ,

subject to ξi ≥ 0, yi (w
T xi + b) ≥ 1− ξi , i = 1, 2, . . . ,N.
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Dual

The SVC-C formulation is a convex QP. Dual is also a convex QP, in
variable α = (α1, α2, . . . , αN)T :

min
α

1

2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0,

where

Kij = (yiyj)x
T
i xj , y = (y1, y2, . . . , yN)T , 1 = (1, 1, . . . , 1)T .

KKT conditions relate primal and dual solutions:

w =
N∑

i=1

αiyixi ,

while b is Lagrange multiplier for yTα = 0. Leads to classifier:

f (x) =
N∑

i=1

αiyi (x
T
i x) + b.
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Kernel Trick, RKHS

For a more powerful classifier, can project feature vector xi into a
higher-dimensional space via a function φ : Rn → Rt and classify in that
space. Dual formulation is the same, except for redefined K :

Kij = (yiyj)φ(xi )
Tφ(xj).

Leads to classifier:

f (x) =
N∑

i=1

αiyiφ(xi )
Tφ(x) + b.

Don’t actually need to use φ at all, just inner products φ(x)Tφ(x̄). Instead
of φ, work with a kernel function k : Rn × Rn → R.

If k is continuous, symmetric in arguments, and positive definite (Mercer
kernel), there exists a Hilbert space and a function φ in this space such
that k(x , x̄) = φ(x)Tφ(x̄).
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Thus, a typical strategy is to choose a kernel k, form Kij = yiyjk(xi , xj),
solve the dual to obtain α and b, and use the classifier

f (x) =
N∑

i=1

αiyik(xi , x) + b.

Most popular kernels:

Linear: k(x , x̄) = xT x̄

Gaussian: k(x , x̄) = exp(−γ‖x − x̄‖2)
Polynomial: k(x , x̄) = (xT x̄ + 1)d

These (and other kernels) lead to dense K , often ill conditioned.
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Solving the Primal and (Kernelized) Dual

Many methods have been proposed for solving either the primal
formulation of linear classification, or the dual (usually with kernel form).
Research continues apace.

Most are based on optimization methods, or can be interpreted using the
optimization framework.

Methods compared via a variety of metrics:

CPU time to find solution of given quality (error rate, or target
objective value).

Theoretical efficiency.

Data storage requirements.

(Simplicity.) (Parallelizability.)

We’ll review several approaches, emphasizing recent developments and
large-scale problems.
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Solving the Dual

min
α

1

2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0.

Convex QP with mostly bound constraints, but

a. Dense, ill conditioned Hessian makes it tricky

b. The linear constraint yTα = 0 is a nuisance!

Many methods proposed to work with this formulation.
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Dual SVM: Coordinate Descent

(Hsieh et al 2008) Deal with the constraint yTα = 0 by getting rid of it!
Corresponds to removing the “intercept” term b from the classifier:

min
w ,b

1

2
‖w‖22 + C

N∑
i=1

ξi ,

subject to ξi ≥ 0, yiw
T xi ≥ 1− ξi , i = 1, 2, . . . ,N,

Get a convex, bound-constrained QP:

min
α

1

2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1.

Basic step: for some i = 1, 2, . . . ,N, solve this problem in closed form for
αi , holding all components αj , j 6= i fixed.
• Can cycle through i = 1, 2, . . . ,N, or pick i at random.
• Update Kα by evaluating one column of the kernel.
• Gets near-optimal solution quickly.
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Dual SVM: Gradient Projection

(Dai&Fletcher 2006) Define Ω = {0 ≤ α ≤ C1, yTα = 0} and solve

min
α∈Ω

q(α) :=
1

2
αTKα− 1Tα

by means of gradient projection steps:

αl+1 = PΩ (αl − γl∇q(αl)) ,

where PΩ denotes projection onto Ω and γl is a steplength.

PΩ not trivial, but not too hard to compute

Can choose γl using a Barzilai-Borwein formula together with a
nonmonotone (but safeguarded) procedure. Basic form of BB chooses γl

so that γ−1
l I mimics behavior of true Hessian ∇q over the latest step;

leads to

γl =
sT
l sl

sT
l yl

, where sl := αl − αl−1, yl := ∇q(αl)−∇q(αl−1).
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Dual SVM: Decomposition

Many algorithms for dual formulation make use of decomposition: Choose
a subset of components of α and (approximately) solve a subproblem in
just these components, fixing the other components at one of their
bounds. Usually maintain feasible α throughout.

Many variants, distinguished by strategy for selecting subsets, size of
subsets, inner-loop strategy for solving the reduced problem.

SMO: (Platt 1998). Subproblem has two components.

SMVlight: (Joachims 1998). Use chooses subproblem size (usually small);
components selected with a first-order heuristic. (Could use an `1 penalty
as surrogate for cardinality constraint?)

PGPDT: (Zanni, Serafini, Zanghirati 2006) Decomposition, with gradient
projection on the subproblems. Parallel implementation.
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LIBSVM: (Fan, Chen, Lin, Chang 2005). SMO framework, with first- and
second-order heuristics for selecting the two subproblem components.
Solves a 2-D QP to get the step.

Heuristics are vital to efficiency, to save expense of calculating components
of kernel K and multiplying with them:

Shrinking: exclude from consideration the components αi that clearly
belong at a bound (except for a final optimality check);

Caching: Save some evaluated elements Kij in available memory.

Performance of Decomposition:

Used widely and well for > 10 years.

Solutions α are often not particularly sparse (many support vectors),
so many outer (subset selection) iterations are required.

Can be problematic for large data sets.
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Dual SVM: Active-Set

(Scheinberg 2006)

Apply a standard QP active-set approach to Dual, usually changing
set of “free” components αi ∈ (0,C ) by one index at each iteration.

Update Cholesky factorization of “free” part of Hessian K after each
change.

Uses shrinking strategy to (temporarily) ignore components of α that
clearly belong at a bound.

(Shilton et al 2005) Apply active set to a min-max formulation (a way to
get rid of yTα = 0:

max
b

min
0≤α≤C1

1

2

[
b
α

]T [
0 yT

y K

] [
b
α

]
−

[
0
1

]T [
b
α

]
Cholesky-like factorization maintained.
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Active set methods good for

warm starting, when we explore the solution path defined by C .

incremental, where we introduce data points (xi , yi ) one by one (or in
batches) by augmenting α appropriately, and carrying on.
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Dual SVM: Interior-Point

(Fine&Scheinberg 2001). Primal-dual interior-point method. Main
operation at each iteration is solution of a system of the form

(K + D)u = w ,

where K is kernel and D is a diagonal. Can do this efficiently if we have a
low-rank approximation to K , say K ≈ VV T , where V ∈ RN×p with
p � N.

F&S use an incomplete Cholesky factorization to find V . There are other
possibilities:

Arnoldi methods: eigs command in Matlab. Finds dominant
eigenvectors / eigenvalues.

Sampling: Nyström method (Drineas&Mahoney 2005). Nonuniform
sample of the columns of K , reweight, find SVD.
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Low-rank Approx + Active Set

If we simply use the low-rank approximation K ← VV T , the dual
formulation becomes:

min
α

1

2
αTVV Tα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0,

which if we introduce γ = V Tα ∈ Rp, becomes

min
α,γ

1

2
γTγ − 1Tα s.t. 0 ≤ α ≤ C1, γ = V Tα, yTα = 0,

For small p, can solve this efficiently with an active-set QP code (e.g.
CPLEX).

Solution is unique in γ, possibly nonunique in α, but can show that the
classifier is invariant regardless of which particular α is used.

However limited testing shows that the quality of classifiers is not very
good, for small p.
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Dual SVM: Other Issues

The expense of calculating K and multiplying by it is a recurring theme,
though savings are possible via caching and shrinking.

Another possibility: “Improved Fast Gauss Transformation” (Yang et al
2004) - best suited to short feature vectors xi .

(Cao et al 2006) Parallel implementation of SMO is fairly straightforward,
by distributing rows of K around the available processors. Each processor
is responsible for maintaining a subvector of Kα.

(Catnzaro, Sundaram, Keutzer 2008) GPU implementation of SMO.
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Solving the Primal

min
w ,b,ξ

1

2
‖w‖22 + C

N∑
i=1

ξi ,

subject to ξi ≥ 0, yi (w
T xi + b) ≥ 1− ξi , i = 1, 2, . . . ,N.

Motivation: Dual solution often not particularly sparse (many support
vectors - particularly with a nonlinear kernel). Dual approaches can be
slow when data set is very large.

Methods for primal formulations have been considered anew recently.

Limitation: Lose the kernel. Need to define the feature space “manually”
and solve a linear SVM.

But see (Chapelle 2006) who essentially replaces feature vector xi by
[k(xj , xi )]j=1,2,...,N , and replaces wTw by wTKw . (The techniques below
could be applied to this formulation.)
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Primal SVM: Cutting Plane

Formulate the primal as

min
w ,b

P(w , b) :=
1

2
‖w‖22 + R(w , b),

where R is a piecewise linear function of (w , b):

R(w , b) = C
N∑

i=1

max(1− yi (w
T xi + b), 0).

Cutting-plane methods build up a piecewise-linear lower-bounding
approximation to R(w , b) based on a subgradient (possibly more than
one) calculated at the latest iterate (wk , bk). This approach used in many
other contexts.

In SVM, the subgradients are particularly easy to calculate.

(Joachims 2006) implemented as SVMperf . (Franc&Sonnenburg 2008) add
line search and monotonicity. Convergence / complexity proved.
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Primal SVM: Stochastic Gradient Descent

(Bottou) Take steps in the subgradient direction of a few-term
approximation to P(w , b), e.g. at iteration k, for some subset
Ik ⊂ {1, 2, . . . ,N}, use subgradient of

Pk(w , b) :=
1

2
‖w‖22 + C

N

|Ik |
∑
i∈Ik

max(1− yi (w
T xi + b), 0),

evaluated at current iterate (wk , bk).

Step length ηk usually decreasing with k according to a fixed schedule.

Cheap if |Ik | is small. Extreme case: Ik is a single index, selected randomly.

(Shalev-Shwartz, Singer, Srebro 2007). Pegasos: After subgradient step,
project w onto a ball {w | ‖w‖2 ≤ B}. Performance is insensitive to |Ik |.
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Primal SVM: Subgradient+quasi-Newton

(Yu et al 2008)

Maintain a quasi-Newton approximation Bk to the inverse “Hessian”
of P(w , b)

First guess of step at iteration k is Bkgk , where gk is from the
subgradient of P(wk , bk)

Adjust the step to ensure that it gives descent (requires an
approximate bundle method - complicated!)

Do a line search.

Performance similar to cutting-plane methods.
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Alternative Formulations: L2-SVM

When ξi measures classifier error for point i , use ξ2
i rather than ξi in the

objective:

min
w ,ξ

1

2
‖w‖22 +

C

2

N∑
i=1

ξ2
i , s.t. ξi ≥ 0, yiw

T xi ≥ 1− ξi , i = 1, 2, . . . ,N.

(No intercept term.) Eliminate ξi to get an unconstrained problem, with
discontinuous second derivative:

min
w

1

2
‖w‖22 +

C

2

N∑
i=1

max(0, 1− yiw
T xi )

2.

(Mangasarian 2002; Keerthi&DeCoste 2005): Apply Newton’s method
with a “Hessian” drawn from the generalized Hessian. Do a line search.
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Generalized Newton direction obtained from a regularized linear
least-squares problem of the form

min
β

1

2
‖Xw − y‖22 +

1

2C
‖w‖22,

where (X , y) contain an “active subset” of the data (xi , yi ),
i = 1, 2, . . . ,N. Can use iterative methods (LSQR) to get inexact solution.

Stephen Wright (UW-Madison) Optimization in Machine Learning
NIPS Workshop, Whistler, 12 December 2008 31

/ 49



Alternative Formulations: ‖w‖1.

Replacing ‖w‖22 by ‖w‖1 in the primal formulation gives a linear program
(e.g. Mangasarian 2006; Fung&Mangasarian 2004, others):

min
w ,b,ξ

‖w‖1 + C
N∑

i=1

ξi ,

subject to ξi ≥ 0, yi (w
T xi + b) ≥ 1− ξi , i = 1, 2, . . . ,N.

Sometimes called “1-norm linear SVM.”

Tends to produce sparse vectors w ; thus classifiers that depend on a small
set of features.

(‖ · ‖1 regularizer also used in other applications, e.g. compressed sensing).

Production LP solvers may not be useful for large data sets; the literature
above describes specialized solvers.
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Elastic Net

Idea from (Zou&Hastie 2005). Include both ‖w‖1 and ‖w‖2 terms in the
objective:

min
w ,ξ

λ2

2
‖w‖22+λ1‖w‖1+1T ξ s.t. ξi ≥ 0, yiw

T xi ≥ 1−ξi , i = 1, 2, . . . ,N.

In variable selection, combines ridge regression with LASSO. Good at
“group selecting” (or not selecting) correlated wi ’s jointly.

Has this been tried for SVM?
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Logistic Regression

Seek functions p−1(x), p1(x) that define the odds of feature vector x
having labels −1 and 1, respectively. Parametrize as

p−1(x ;w) =
1

1 + expwT x
, p1(x ;w) =

expwT x

1 + expwT x
.

Given training data (xi , yi ), i = 1, 2, . . . ,N, define log-likelihood:

L(w) =
1

2

N∑
i=1

[(1 + yi ) log p1(xi ;w) + (1− yi ) log p−1(xi ;w)]

=
1

2

N∑
i=1

[
(1 + yi ) expwT xi − 2 log(1 + expwT xi )

]
.

Add regularization term λ‖w‖1 and solve

min
w

Tλ(w) := −L(w) + λ‖w‖1.
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(Shi et al. 2008) Use a proximal regularized approach: Given iterate wk

get new iterate z by solving a subproblem with simplified smooth term:

min
z
∇L(wk)T (z − wk) +

αk

2
‖z − wk‖22 + λ‖z‖1.

Analogous to gradient projection, with 1/αk as line search parameter.
Choose αk large enough to give reduction in Tλ.

For problems with very sparse w (typical), enhance by taking a reduced
Newton-like step for L in the currently-nonzero components only.

Enhancements: Evaluate a random selection of components of ∇L (save
expense of a full evaluation - like shrinking). Use continuation in λ.

Could also use a nonmonotone algorithm, choosing αk with a
Barzilai-Borwein formula.

(Shi et al. 2008) use long feature vectors x whose components are genetic
alleles and their interactions, and label is chance of rheumatoid arthritis.
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New Tool: Optimal Gradient Methods

(Nesterov, Nemirovskii, Yudin 1983-2008) Minimize a smooth convex
function f , using only information about f and ∇f , to optimize long-term
performance.

Make use of parameters L — Lipschitz constant for ∇f — and µ —
convexity parameter for f :

f (y) ≥ f (x̄) +∇f (x̄)T (y − x̄) +
µ

2
‖y − x̄‖22

(possibly zero). (Can use estimates of these instead.)

Look to prove things about convergence of objective values f (xk)− f ∗ as
well as iterates ‖xk − x∗‖.
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Basic Gradient Methods

xk+1 = xk −
1

L
∇f (xk)

gives this estimate for convergence of the objective values:

f (xk)− f ∗ ≤ 2L

k + 4
‖x0 − x∗‖2 ∼ 1

k
,

which is sublinear.

Strongly convex case, a better choice is

xk+1 = xk −
2

L + µ
∇f (xk)

gives this estimate:

f (xk)− f ∗ ≤ L

2

(
L− µ

L + µ

)2k

‖x0 − x∗‖2

which is linear (geometric).
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Optimal Rates

Generate two or three sequences of iterates

Evaluate gradient once at each iteration

Possibly save gradient information from previous iterations.

For strongly convex case, can obtain faster (geometric) rates:

f (xk)− f ∗ ≤ C (x0, L, µ)

(
1−

√
µ

L

)k

.

When µ = 0, can obtain:

f (xk)− f ∗ ≤ C (x0, L)
1

k2
.
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Typical Schemes

Strongly convex (µ > 0): Start with y0 = x0 and generate:

xk+1 = yk −
1

L
∇f (yk); (1)

yk+1 = xk+1 +

√
L−√µ
√

L +
√

µ
(xk+1 − xk). (2)

Weakly convex: more complicated linear combination. x step is still (1),
but y step is

yk+1 = xk+1 + βk(xk+1 − xk),

where

βk = αk(1− αk)/(α2
k + αk+1),

α2
k+1 = (1− αk+1)α

2
k + qαk+1

with q = µ/L, y0 = x0, and some α0 ∈ (0, 1).
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Extensions

There are variants for convex constrained problems

min
x∈Ω

f (x)

regularized optimization (with simple nonsmooth regularizers):

min
x

f (x) + λP(x),

nonsmooth problems (see next slide) and min-max problems (Nemirovski
2005).

These methods have had some recent computational success in
compressed sensing and other applications.

The nonsmooth variant might be useful for primal SVM...
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Nesterov: Smoothing Nonsmooth Problems

(Nesterov 2005) Many convex functions f can be expressed as

f (x) := max
u∈Q

uT (Ax − b)− φ(u)

for some convex set Q and convex function φ. Define a smoothed version
fµ(x) (for µ > 0) by choosing a strongly convex d (with strong convexity
parameter 1) and setting

fµ(x) := max
u∈Q

uT (Ax−b)−φ(u)−µd(u), Gradient: ∇fµ(x) = ATuµ(x),

where uµ is the arg max in the smoothed evaluation.

Now apply optimal gradient methods to fµ.

Given an iteration budget N, fix µ ∼ N−1, run N iterations of an optimal
method on the smoothed problem to obtain objective accuracy O(N−1).
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New Tool: Primal-Dual Gradient Projection

Consider a saddle point (min-max) problem

min
v∈V

max
x∈X

`(v , x),

with `(·, x) convex for all x ∈ X and `(v , ·) concave for all v ∈ V , and V
and X are convex sets.

(When ` is quadratic and V , X are polyhedral, this is Rockafellar’s ELQP.)

Many convex optimization problems can be formulated naturally in this
framework.

Primal-dual gradient projection procedure is

xk+1 ← PX (xk + τk∇x`(v
k , xk)),

vk+1 ← PV (vk − σk∇v `(vk , xk+1)),

where τk and σk are positive steplengths.
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We’d get standard gradient projection on the “primal” problem of
maximizing the function q(x) := minv∈V `(v , x) over x ∈ X if we were to
replace the gradient step in v by

vk+1 = arg min
v∈V

`(v , xk+1).

However, it’s sometimes faster to use the “inexact” vk+1. Why?

Application to image denoising:

`(v , x) = vTAx +
λ

2
‖v − y‖22,

while V = RN and X is a simple bounded set (Cartesian product of
circles). A is sparse (discretized difference operator).

Exhaustive tests show that non-intuitive choice of step length works best:

τk = (.2 + .08k)λ = O(k), σk ≈
1

2τk
= O(k−1).

(Because of the projection onto X , steps in x are short, despite τk →∞.)
Stephen Wright (UW-Madison) Optimization in Machine Learning

NIPS Workshop, Whistler, 12 December 2008 43
/ 49



There are many ways to view this approach, but none has yet yielded
an understanding of its excellent practical performance.

Does its usefulness extend beyond image reconstruction, e.g. to SVM
formulations?
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THE END
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