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Sparse Optimization: Motivation

Many applications need structured, approximate solutions of optimization
formulations, rather than exact solutions.

@ More Useful, More Credible
e Structured solutions are easier to understand.
e They correspond better to prior knowledge about the solution.
e They may be easier to use and actuate.
e Extract just the essential meaning from the data set, not the less
important effects.
@ Less Data Needed
e Structured solution lies in lower-dimensional spaces = need to gather /
sample less data to capture it.
o Choose good structure instead of “overfitting” to a particular sample.

The structural requirements have deep implications for how we formulate
and solve these problems.
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¢1 and Sparsity

A common type of desired structure is sparsity: We would like the approx
solution x € R" to have few nonzero components.

A sparse formulation of “min, f(x)" could be

Find an approximate minimizer x € R" of f such that ||x|lo < k,
where ||x]|o denotes cardinality: the number of nonzeros in x.
Too Hard!

Use of ||x||1 has long been known to promote sparsity in x. Also,
@ Can solve without discrete variables;

@ It maintains convexity.
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Regularized Formulations with ¢,

Weighted form:
min f(x) + 7||x]|1,

for some parameter 7 > 0. Generally, larger 7 = sparser x.

{1-constrained form (variable selection):

min f(x) subject to ||x||1 < T,
for some T > 0. Generally, smaller T = sparser x.
Function-constrained form:

min ||x||1 subject to f(x) < f,

for some f > min f.

Can follow up with a “debiasing” phase in which the zero components are
eliminated from the problem, and we minimize f itself over the support
identified in the variable selection phase.

Stephen Wright (UW-Madison) Sparse Optimization SIAM-OPT, May 2011 5 / 44



4«5






4«5



/1 Past and Present

{1-regularization used in statistics literature (robust estimation, regularized

regression, basis pursuit) (Chen, Donoho, Saunders, 1998; Tibshirani,
1996).

Also in geophysical inversion literature (Claerbout and Muir (1973),
Santosa and Symes (1986)), and elsewhere.

Heuristically, 1 often works - but is there rigorous justification?
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/1 Past and Present

{1-regularization used in statistics literature (robust estimation, regularized
regression, basis pursuit) (Chen, Donoho, Saunders, 1998; Tibshirani,
1996).

Also in geophysical inversion literature (Claerbout and Muir (1973),
Santosa and Symes (1986)), and elsewhere.

Heuristically, 1 often works - but is there rigorous justification?

Compressed Sensing is a fundamental class of problems for which ¢; can
provably be used as a perfect surrogate for cardinality.

Recover x € R" from observations y € R™ given Ax = y with
known sensing matrix A € R™*",

Additionally, know that x is sparse: ||x|/o < n.
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Compressed Sensing: Why Does ¢; Work?
Elementary Analysis from W. Yin and Y. Zhang, SIAG Views and News 19 (2008), using Kashin
(1977) and Garnaev and Gluskin (1984).

Suppose that X is the minimum-cardinality solution of the
underdetermined linear equations Ax = y, where A € R™*" with m < n.

X =argmin [[x|lo s.t. Ax=y.

e SC{1,2,...,n} be the support of x;
o k:=|x[lo=1Sl;
e 7 =5°.

The 1-norm form is:
min ||x||1 s.t. Ax=y. (1)

X solves this problem too provided

|+ v|l1 > ||x|l1 for all v € N(A).
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X+ vlli = [%s + vslli + [lvzllx
> [Ixs]l1 + [[vzllr — [lvslx
= [IX[l1 + [Iv[lx — 2[lvslx
> |I%llL + [[v]ls — 2Vk] V|2

Hence, X solves (1) provided that

Llivil
2vll2

> Vk for all v € N(A).

In general we have only:

%
N =
Iv][2
However this ratio tends to be significantly larger than 1 if v is restricted
to a random subspace.
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Specifically, if the elements of A € R™*" are choosen iid from N(0,1), we
have with high probability that

vl . Cym

lvl2 — Iog(n/m)’

for all v € N(A),

for some constant C. (Concentration of measure.)

Thus, with high prob, X solves (1) if

4
m > Eklogn.

The number m of random linear observations (rows of A) is a multiple of
k log n — typically much less than n.
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Ratio ||v[1/]|v|» in R3

Plotting ||v||; on sphere {v : |lv|la = 1}. Blue: ||v|j; = 1. Red:

|v|[1 ~ v/3. (Ratio is smallest along the principal axes.)

=

\o_ 4 7

Dot: N(A) for a random A € R?*3,
Equator: N(A) for a random A € R*3,
(Both usually avoid smaller values of ||v||1.)
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Ratio ||v||1/||v||2 on Random Null Spaces

Random A € R**7, showing ratio ||v||1 for v € N(A) with |v|2 =1

Blue: ||v||1 & 1. Red: ratio ~ /7. Note that ||v|1 is well away from the
lower bound of 1 over the whole nullspace.

o ) = = El= DA
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The effect grows more pronounced as m/n grows.
Random A € R17%20 showing ratio ||v||; for v € N(A) with ||v|> = 1.

Blue: [|v||1 &~ 1. Red: ||v|l1 = v/20. Note that ||v||1 is closer to upper
bound throughout.

o 5 = = El= DA
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Other Analyses of ¢; Formulations

@ Donoho (2006): Similar elements to the above. Later study by
Donoho, Tanner, others. (Bound m > 2k log n established.)

e Candes, Tao, Romberg (2004, 2006): Deterministic result based on a
Restricted Isometry Property (RIP) of matrix A.

e Requires column submatrices of A with 2k columns to be almost
orthogonal. (Almost certainly true for random matrices.)

Other A have the properties required for reconstruction: e.g. Bernoulli
random, random rows of discrete cosine / discrete Fourier transform.
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Applications of /4

Sparse Basis Signal Representations. e.g. wavelet basis: z = Wx
where x is vector of wavelet coefficients and W is inverse wavelet
transform. Formulation:

1
min =|ly — LWx][5 + 7]|x||1,
x 2

where L is linear observation operator. Allows for Gaussian noise in
observations y.

Sparse Learning, Feature Selection. From data x; € R", i =1,2,3,...
and outcomes y;, i =1,2,3,..., learn a function f that predicts outcome
y for a new vector x.

Want f to be plausible and possibly to depend on just a few components
of x (features).

e LASSO

@ regularized logistic regression

@ sparse support vector machines
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Applications of /4

Power Systems:

@ Power distribution network can become “infeasible” after a
disturbance (e.g. a transmission line failure).

@ We may be interested in the “least disruptive fix" i.e. change power
generation (on a few generation nodes) and / or shed load (on a few
load nodes) to restore feasibility.

Face Recogpnition: (J. Wright et al, 2008)
Seismic Inversion: (Herrmann et al., 2007-)
Compressive Radar.

See Rice Compressed Sensing page http://dsp.rice.edu/cs for many
other applications.
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Other Applications, Other Structures

In many applications, the solution structure desired is different from simple
sparsity — cannot be easily attained by the ¢; regularizer.

What kinds of structures are common?

How can we choose regularizers that induce the desired structure,
while retaining tractability of the optimization problem?
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Group Sparsity

There may be a natural relationship between some components of x. We
could thus group the components, and select or deselect at the group level.

Original (n = 4096, number groups = 64, active groups = 8)
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Can use “sum of /" or “sum of £5" regularizers:

m m
Do lblloss D Ixgullz,
k=1 k=1

where [k] (for k =1,2,..., m) represent subsets of the components of x.

(Turlach, Venables, Wright, 2005).
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Image Processing

Natural images are not random! They tend to have large areas of
near-constant intensity or color, separated by sharp edges.

Denoising: Given an image in which the pixels contain noise, find a
“nearby natural image.”

Can have Gaussian noise, “salt-and-pepper” noise, impulsive noise, etc.
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(a) Cameraman: Clean (b) Cameraman: Noisy
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(c) Cameraman: Denoised

[m] = =
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Total-Variation Regularization

Given intensity measures U,J fori,j=1,2,...,N (a 2D grid), define the

variation at grid point (1, j

I+LJ U
I,J+l

(zero iff Ujj, Uit1, Uijs1 all have the same intensity).

2

Total Variation obtained by summing across the grid:

N—-1N-1
. } : [ i+1j — Uu]
=1 .
N =1 j—1 I,J+1 2

Forces most grid points (/, /) to have the same intensities as their
neighbors. (Rudin, Osher, Fatemi, 1992)

Denoising: Given observed intensities F € RNXN “solve

1 >
ymin y IV = FllE +7TV(U).
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Medical Imaging

e X-ray computed tomography (CT); nuclear magnetic resonance
(MRI) and its “real-time” and “functional” variants.

e Fewer measurements = Less radiation (for CT), less time.

@ Images are natural, and a prior may be available.

Formulation features:
@ Use TV regularization to induce natural image.

o Can also use /1 regularization to penalize deviation from the prior.

Lustig (2008); Lauzier, Tang, Chen (2011).
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Angiogram
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Matrix Estimation / Completion

Given an m x n matrix M in which only certain elements are known:

Qc{(ij)]i=1,2,....,m j=1,2,....n}

Find a matrix X with “nice structure” such that Xj; = Mj; for (i,)) € Q.

Example: Netflix

Desirable structures:

@ Low rank: induced by nuclear norm || X||. (sum of singular values)
(Recht, Fazel, Parrilo, 2010) or “max norm” (Lee at al., 2010).

o Sparsity: Induced by element-wise 1-norm: -, | Xj|.
@ Both: combine these regularizers.
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Algorithms: Many Techniques Used

@ Large-scale optimization: optimal first-order, gradient projection,
second-order, continuation, coordinate relaxation, interior-point,
augmented Lagrangian, conjugate gradient, semismooth Newton ...

@ Nonsmooth optimization: cutting planes, subgradient methods,
successive approximation, smoothing, prox-linear methods, ...

Dual and primal-dual formulations / methods
Numerical linear algebra

Stochastic approximation, sampled-average approximation.

Heuristics

Also a LOT of domain-specific knowledge about the problem structure and
the type of solution demanded by the application.

Discuss just a few key techniques — but omit other important ones.
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A Useful Setting

Formulate a regularized problem
f(x) + 7c(x),

where
e nominal objective f(x), e.g. fit to data;

e regularization function or regularizer c(x) — usually convex and
nonsmooth — to induce the desired structure in x.

o regularization parameter 7 > 0. Trades off between optimizing the
nominal objective and the regularizer.
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Prox-Linear Methods
For the setting
min f(x) + 7c(x).
X
At xk, solve this subproblem for new iterate xk+1.
1
X1 = argmin VF(x*)T(z = x¥) 4+ 7¢(2) + =— ||z — x¥||3,
z 2ak
for some choice of ay > 0.

Works well when this subproblem is “easy” to formulate and solve.

o If ¢ is vacuous, this reduces to gradient descent, with a line search.

o If ap <1/L (L = Lipschitz constant for V), get descent at each
iteration and convergence.

o Adaptive a: can impose sufficient decrease criterion via
backtracking; “Barzilai-Borwein" «y for a nonmonotone approach.
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Application to ¢; Regularizer

For ¢1 regularization (c(x) = ||x||1), can solve the subproblem explicitly in
O(n) time: (“Shrink Operator”)

The other expensive steps at each iteration are computation of Vf and
computation of f (to test for acceptability of x<*1).

o Compressed Sensing. Vf(x) = AT(Ax — y): the matrix-vector
multiplications are often cheap (e.g. for discrete cosine
transformation, chirp sensing). Codes: SpaRSA, FPC.

o Logistic Regression. Evaluation of Vf less expensive after f has
been evaluated. Code: LPS.

For other regularizers e.g. TV(x), the subproblem is nontrivial, so we may
have to settle for an approximate solution. (This issue persists in
alternating direction augmented Lagrangian approaches; see below.)
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Application to Matrix Completion

Formulate matrix completion as

1
min [ AX) = bl + 71X,

XeRan 2

where A(X) = [A; @ X]i=12

1%ty

p and || X]|. is the nuclear norm.

“Shrink operator” (subproblem) is
min =12 = Y¥2 + 7]Z]...
Z 20y

Can solve explicitly using a singular value decomposition of Y.

Code: SVT: Compute a partial SVD (largest singular values) using
Lanczos. (Cai, Candés, Shen, 2008)

Same framework works with max-norm (Lee et al. 2010).
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Prox-Linear: Theory and Practice

Convergence proved in the case of convex c using fairly standard analysis
(monotone and nonmonotone line search variants, gradient descent). (e.g.
Wright, Figueiredo, Nowak 2008)

Theory from forward-backward splitting methods also useful. (Combettes
and Wajs, 2005)

Can extend the theory beyond convexity, to prox-regular functions. (Lewis
and Wright, 2008)

In practice, speed of convergence depends heavily on 7.
@ Larger 7 (sparser solution): convergence often very fast;

@ Smaller 7: can be miserably slow (or fails).

Continuation helps: solve for a decreasing sequence of 7 values, using
previous solution as the starting point for the current 7.
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Other Enhancements

@ Block-coordinate: Take steps in just a subset of components at each
iteration (need only partial gradient). (Tseng and Yun, 2009; Wright,
2011)

e Estimation of the optimal manifold (i.e. the nonzero coefficients, in
the case of ¢1) and consequent reduction of the search space. (Shi et
al., 2008)

@ Use (approximate) second-order information, e.g. in logistic regression
(Byrd et al., 2010; Shi et al, 2008)
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Accelerated First-Order Methods

Can exploit the research on methods for smooth convex optimization that
use gradients, but do better than simply stepping in the negative gradient
direction —V£(x). (Nesterov)

They generate two (or three) intertwined sequences. Typically:

@ Get the next x-sequence iterate from a short gradient-descent step
from the latest y-sequence element

@ Get the next y-sequence element by extrapolating from the last two
Xx-sequence iterates.

FISTA (Beck and Teboulle, 2008): min f, L = Lipschitz const for Vf:

0: Choose xp; set y1 = xp, t1 = 1,
k: Xi < Vi — %Vf(yk);

tri1 <—%<1+\/1+4tﬁ>;

t—1 o
Yier1 = X+ e (X — xi-1)-
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Analysis is short but not very intuitive. f(xx) converges to its optimal
value f* at a “fast” sublinear rate of O(1/k?).

Can extend to the regularized problem min f(x) + 7¢(x) by replacing the
step yx — Xxx by the prox-linear subproblem, with oy = 1/L.

Practically, less sensitive to 7 than prox-linear.

Similar approaches can achieve a geometric rate when f is strongly
convex. (Nesterov, 2004)
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Stochastic Gradient Methods

For min f(x) (f convex, nonsmooth), stochastic approximation methods
(SA or SGD) may be useful when a cheap estimate of a subgradient
Of (x¥) is available:

Xk+1 = Xk — Vk8k> E(gk) € Of (xx),

for steplength ~y, > 0.

Exact evaluation of f or a subgradient may require a complete scan
through the data — but gx could be obtained from a single data element.

The machine learning community is very interested in these methods.

Acceptable solutions may be obtained without even looking at some of the
data, if random sampling is done.

(Robbins and Monro, 1951)
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Regularized Dual Averaging

(Nesterov, 2009) For min f(x) with f convex, nonsmooth. Use
subgradients g; € 9f(x;) and average, to obtain

Step:
X1 = min gl x + lHX — x5, for some v > 0.
X \/E
Possibly average the iterates xj, x2, x3,... too.

Described for min 2 37, fi(x) + 7¢(x) by Xiao (2010).

The (non-averaged) primal iterates can almost surely identify the optimal
manifold on which x* lies. e.g. when c(x) = ||x||1, identify the nonzero
components. (Lee and Wright, 2010)
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Augmented Lagrangian

A classical method: For closed convex Q:

min p(x) subject to Ax = b.
x€Q

Generate iterates x¥ together with Lagrange multiplier estimates A* from:

e x* is approximate solution of

min p(x) + (M) T (Ax — b) + %HAX — blj3;

x€EQ

@ update Lagrange multipliers:

ML = 2K (AxK — b)),
(If p convex, need only i > 0.)
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Constrained Formulation

Given
min f(x) + 7c(x),

“duplicate” the variable and write as an equality constrained problem:

min f(z) + 7c(u) subject to u = z.
zZ,u

Augmented Lagrangian:

(2%, %) = min f(z) + 7c(u) + (V)T (v —2) + %Hu — 2|3,

z,u

AR = XK g (uk = 25).

The min, , problem is usually still too hard to solve (u and z are coupled
via final penalty term). However can take alternating steps in z and w.
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Alternating Directions
(Eckstein and Bertsekas, 1992)
2= min £(2) + re(u 1) + ()T (W - 2) + Bkt - 2],
uk = min £(2¥) + e(u) + (V)T (u— 24) + Efllu — 243,
NHL = AR (0K — 29,

Approximate minimization for z and u may now be much simpler. e.g. for
compressed sensing:

@ One of these minimizations is the “shrink operator” (easy);

o The other is linear system with coefficient matrix (AT A+ o/) (solve
approximately).

The subproblems are not vastly different from prox-linear subproblems:
e )\ is asymptotically similar to the gradient term in prox-linear;
@ the quadratic term is the same.
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Use in Sparse Optimization

Extensions and variants of these ideas have been much studied recently,
and applied in various contexts. Examples:

e Compressed sensing (Yang and Zhang, 2009; Code: YALL1),
(Goldfarb, Ma, Scheinberg, 2010)

@ Image processing (Goldstein and Osher, 2008; Figueiredo and
Bioucas-Dias, 2010, 2011)

@ Video processing, matrix completion, sparse principal components
(Goldfarb, Ma, Scheinberg, 2010).

Can be melded with (accelerated) first-order methods (Goldfarb, Ma,
Scheinberg, 2010).
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To Conclude, Some Observations

Sparse optimization has wealth of diverse applications.

Formulations are key, particularly design of regularizers.

Exciting forum for algorithm design:
e Assembling known tools
e Designing and analyzing new tools
e Fitting to the application and context.

The interdisciplinary nature of optimization is especially evident in
sparse optimization!
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