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Outline

Partial overview of some techniques from computational optimization of
possible relevance to sparse reconstruction.

Illustrating the effectiveness of `1 for sparsity.

Other regularizers for other structures.

Prox-Linear methods

Implementation for different regularizers
Extensions
Enhancements
Identifying the optimal manifold and using higher-order info

Augmented Lagrangian

Stochastic gradient methods: some recent results.
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Sparse / Regularized Optimization

Many applications need structured, approximate solutions of optimization
formulations, rather than exact solutions.

More Useful, More Credible

Structured solutions are easier to comprehend / use / actuate.
They correspond better to prior knowledge.
Extract just essential meaning from the data, not less important effects.

Less Data Needed

Structured solution lies in lower-dimensional spaces than ambient space
⇒ need to gather / sample less data to capture it.

The structural requirements have deep implications for how we formulate
and solve these problems. There’s a lot of variety in the properties and
contexts of the various applications.

Compressed sensing problems fit these principles. Also machine learning
and many application areas e.g. medical imaging, geophysics, power grids,
control.
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`1 and Sparsity

Use of ‖x‖1 has long been known to promote sparsity in x . Also, it’s
convex, and avoids discrete variables (associated with limits on cardinality
‖ · ‖0) in the formulation.

Weighted form: min f (x) + τ‖x‖1, for some τ > 0.

`1-constrained form (variable selection): min f (x) subject to ‖x‖1 ≤ T .

Function-constrained form: min ‖x‖1 subject to f (x) ≤ f̄ .

In compressed sensing, ‖ · ‖1 is (provably) a perfect surrogate for ‖ · ‖0.

Recover x ∈ Rn from observations y ∈ Rm given Ax = y with
known sensing matrix A ∈ Rm×n.

Additionally, know that x is sparse: ‖x‖0 � n.
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When Does `1 Work?

Elementary analysis from W. Yin and Y. Zhang, SIAG Views and News 19 (2008), using Kashin

(1977) and Garnaev and Gluskin (1984).

Suppose that x̄ is the minimum-cardinality solution of the
underdetermined linear equations Ax = y , where A ∈ Rm×n with m < n.

x̄ = arg min ‖x‖0 s.t. Ax = y .

S ⊂ {1, 2, . . . , n} be the support of x̄ ;

k := ‖x̄‖0 = |S |;
Z = Sc .

The 1-norm form is:
min ‖x‖1 s.t. Ax = y . (1)

x̄ solves this problem too provided

‖x̄ + v‖1 ≥ ‖x̄‖1 for all v ∈ N(A).
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‖x̄ + v‖1 = ‖x̄S + vS‖1 + ‖vZ‖1

≥ ‖x̄S‖1 + ‖vZ‖1 − ‖vS‖1

= ‖x̄‖1 + ‖v‖1 − 2‖vS‖1

≥ ‖x̄‖1 + ‖v‖1 − 2
√

k‖v‖2.

Hence, x̄ solves (1) provided that

1

2

‖v‖1

‖v‖2
≥
√

k for all v ∈ N(A).

In general we have only:

1 ≤ ‖v‖1

‖v‖2
≤
√

n

However this ratio tends to be significantly larger than 1 if v is restricted
to a random subspace.
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Specifically, if the elements of A ∈ Rm×n are choosen iid from N(0, 1), we
have with high probability that

‖v‖1

‖v‖2
≥ C

√
m√

log(n/m)
, for all v ∈ N(A),

for some constant C . (Concentration of measure.)

Thus, with high prob, x̄ solves (1) if

m ≥ 4

C 2
k log n.

Conclusion: The required number m of random linear observations is a
multiple of k log n — typically much less than n.
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Ratio ‖v‖1/‖v‖2 in R3

Plotting ‖v‖1 on sphere {v : ‖v‖2 = 1}. Blue: ‖v‖1 ≈ 1. Red:
‖v‖1 ≈

√
3. Ratio is smallest along the principal axes.

Dot: N(A) for a random A ∈ R2×3.
Equator: N(A) for a random A ∈ R1×3.
(Both usually avoid smaller values of ‖v‖1.)

Stephen Wright (UW-Madison) Regularized Optimization SPARS11, June 2011 8 / 55



Ratio ‖v‖1/‖v‖2 on Random Null Spaces

Random A ∈ R4×7, showing ratio ‖v‖1 for v ∈ N(A) with ‖v‖2 = 1

Blue: ‖v‖1 ≈ 1. Red: ratio ≈
√

7.
‖v‖1 is well away from the lower bound of 1 over the whole nullspace.
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Ratio ‖v‖1/‖v‖2 on Random Null Spaces

The effect grows more pronounced as m/n grows.
Random A ∈ R17×20, showing ratio ‖v‖1 for v ∈ N(A) with ‖v‖2 = 1.

Blue: ‖v‖1 ≈ 1. Red: ‖v‖1 ≈
√

20.
‖v‖1 is far from lower bound throughout.
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Extensions of `1: Group Regularizers

There may be a natural relationship between some components of x . We
could thus group the components, and select or deselect at the group level.

Use “sum of `∞” or “sum of `2” regularizers:

m∑
k=1

‖x[k]‖∞,
m∑

k=1

‖x[k]‖2,

where [k] (for k = 1, 2, . . . ,m) represent subsets of the components of x .

The subvectors x[k] can be overlapping or non-overlapping. (The latter are
generally easier to deal with.)
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Examples: Separable Groups

Simultaneous variable selection (select a subset of variables to explain a
number of observation vectors simultaneously, for a fixed design matrix)
(e.g. Turlach, Venables, Wright, 2005):

min
X

1

2
‖Y − AX‖2

F + τ

m∑
i=1

‖Xi ,·‖∞.

Fitting observations sparsely from a fixed dictionary:

min
X

1

2
‖Y − AX‖2

F + τ

n∑
j=1

c(X·,j ),

where c(·) = ‖ · ‖∞, or a more general function. e.g. (Jenatton et al,
2010) define c to be a regularizer for hierarchical overlapping groups, and
minimizes over A as well (sparse dictionary learning).
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Examples: Overlapping Groups

(Ding et al, 2011): Learning graphical models from multivariate Bernoulli
outcomes. Each group = all descendants of a node in a directed graph.
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Examples: Tree-Structured Groups

In a wavelet representation U = Wx coefficients x can be arranged in a
quadtree, exposing a hierarchical relationship between them.

Subtree structure of natural images can be exposed by

imposing it explicitly (Baraniuk et al., 2010);
inducing via group regularizers (Jenatton et al., 2010: For any two
non-disjoint groups [k] and [l ], have [k] ⊂ [l ] or [l ] ⊂ [k]) Also (Rao
et al., 2011; talk on Tuesday).
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Reformulating Overlapping Groups

Formulate the problem with overlapping-group regularizer as one with
separable groups plus equality constraints, using replication of variables:

min
x

f (x) + τ

m∑
k=1

‖x[k]‖

can be rewritten as

min
x̄ ,x1,x2,...,xm

f (x̄) + τ

m∑
k=1

‖xk
[k]‖ s.t. xk

i = x̄i , i ∈ [k], k = 1, 2, . . . ,m.

By using a quadratic penalty to (approximately) enforce the constraints,
can get an approximate solution to the overlapping-group regularized
problem by solving a non-overlapping-group problem:

min
x̄ ,x1,x2,...,xm

f (x̄) + τ

m∑
k=1

‖xk
[k]‖+

µ

2

m∑
k=1

∑
i∈[k]

(xk
i − x̄i )

2.
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An Alternative Overlapping Group Norm

Can get an alternative overlapping norm by relaxing the constraints
x̄i = xk

i , k = 1, 2, . . . ,m in the previous formulation to

x̄i =
1

Ni

∑
k:i∈[k]

xk
i ,

where Ni is the number of groups containing element i . By substituting
for x̄ , we again obtain a formulation with non-overlapping-groups, but the
solutions have different properties.

For this regularizer, the support of optimal x tends to be a union of
selected groups, whereas for the usual group regularizer the support tends
to be the complement of the union of non-selected groups.

(Jacob, Obozinski, Vert, 2009)
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Total-Variation Regularization

Given intensity measures Uij for i , j = 1, 2, . . . ,N (a 2D grid), define the
variation at grid point (i , j) as∥∥∥∥[Ui+1,j − Uij

Ui ,j+1 − Uij

]∥∥∥∥
2

.

(zero iff Uij , Ui+1,j , Ui ,j+1 all have the same intensity).

Total Variation obtained by summing across the grid:

TV(U) :=
1

N2

N−1∑
i=1

N−1∑
j=1

∥∥∥∥[Ui+1,j − Uij

Ui ,j+1 − Uij

]∥∥∥∥
2

.

Forces most grid points (i , j) to have the same intensities as their
neighbors. (Rudin, Osher, Fatemi, 1992)

Denoising: Given observed intensities F ∈ RN×N , solve

min
U∈RN×N

1

2
‖U − F‖2

F + τTV(U).
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Matrix Estimation / Completion

Given an m × n matrix M in which only certain elements are known:

Ω ⊂ {(i , j) | i = 1, 2, . . . ,m, j = 1, 2, . . . , n}.

Find a matrix X with “nice structure” such that Xij ≈ Mij for (i , j) ∈ Ω.

Example: Netflix

Desirable structures:

Low rank: induced by nuclear norm ‖X‖∗ (sum of singular values)
(Recht, Fazel, Parrilo, 2010) or “max norm” (Lee at al., 2010).

Sparsity: Induced by element-wise 1-norm:
∑

i ,j |Xij |.
Both: combine these regularizers.
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Algorithms: Many Techniques Used

Large-scale optimization: optimal first-order, gradient projection,
second-order, continuation, coordinate relaxation, interior-point,
augmented Lagrangian, conjugate gradient, semismooth Newton ...

Nonsmooth optimization: cutting planes, subgradient methods,
successive approximation, smoothing, prox-linear methods, ...

Dual and primal-dual formulations / methods

Numerical linear algebra

Stochastic approximation, sampled-average approximation.

Heuristics

Also a LOT of domain-specific knowledge about the problem structure and
the type of solution demanded by the application.
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Prox-Linear Methods: Foundation

For the setting
min

x
φτ (x) := f (x) + τc(x).

At xk , solve this subproblem for new iterate xk+1:

PLS: xk+1 = arg min
z
∇f (xk )T (z − xk ) + τc(z) +

1

2αk
‖z − xk‖2

2,

for some choice of αk > 0 (see below).

Works well when this subproblem is easy to formulate and solve.

If c is vacuous, this reduces to gradient descent, with a line search.

A fundamental approach that goes by different names in different settings,
e.g. IST, Forward-Backward Splitting, SpaRSA.
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The Prox-Linear Subproblem

Requires evaluation of ∇f .

In compressed sensing, requires multiplication by A and AT —
inexpensive for partial FFT, wavelets, etc.

Variants use subvector of ∇f or estimate of ∇f based on only part of
the data. (See below.)

Formulate the subproblem equivalently as

min
z

1

2

∥∥∥z −
[
xk − αk∇f (xk )

]∥∥∥2

2
+ ταk c(z),

which is an application of the Moreau proximality operator (“shrink
operator”) associated with c :

Sσ(x) = arg min
z

1

2
‖z − x‖2

2 + σc(z).
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Calculating the Shrink Operator

There are closed-form solutions for some important regularizers:

c(x) = ‖x‖1 : Sσ(x)i =


0 if xi ∈ [−σ, σ],

xi + σ if xi < −σ,

xi − σ if xi > σ.

c(x) = ‖x‖2 :

{
0 if ‖x‖2 ≤ σ;

(1− σ/‖x‖2)x otherwise.

c(x) = ‖x‖∞ : closed-form solution obtained after a sort of |xi |, i = 1, 2, . . . , n.

Separable groups: Separate the shrink operator and solve separately:

Sσ(x[k]) = arg min
z[k]

1

2
‖z[k] − x[k]‖2

2 + σc(z[k]).
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Tree-structured Groups

For tree-structure groups, the sum-of-`2 and sum-of-`∞ can also be
calculated efficiently (Jenatton et al, 2010).

Order the groups such that either [k] ⊂ [l ] or [k] ∩ [l ] = ∅ for all
k < l .

Perform the shrink in sequence to subsets [1], [2], . . . , [m].

One pass through the groups suffices.
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(General) overlapping groups

Dual formulation of Sσ(x):

max
ξ1,ξ2,...,ξm

−1

2
‖x−

m∑
k=1

ξk‖2+
1

2
‖x‖2

2 s.t. ‖ξk‖∗ ≤ σ, (ξk )i = 0 for all i /∈ [k].

where ‖ · ‖∗ is the dual of the norm in the regularized (i.e. ‖ · ‖2 for ‖ · ‖2,
‖ · ‖1 for ‖ · ‖∞).

This is a convex quadratic program. Can solve by

block coordinate relaxation

gradient projection

algorithm for quadratic min-cost network flow (Mairal et al, 2010).
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Shrinking with the TV-norm

min
U∈RN×N

1

2
‖U − F‖2

F + τTV(U)

=
1

2
‖U − F‖2

F +
τ

N2

N−1∑
i=1

N−1∑
j=1

‖Aij U‖2,

where Aij is an 2× N2 matrix with four ±1s and the rest zeros. Dual is

max
w∈W

1

2
‖Aw − vec(F )‖2

2,

where W = {(w1,w2, . . . ,wN2) |wi ∈ R2, ‖wi‖2 ≤ 1}. A is an N2 × 2N2

matrix whose columns are AT
ij .

Can solve dual efficiently by gradient projection (Zhu, Wright, Chan,
2010) with various choices of steplength.

Many other algorithms, e.g. (Chambolle, 2004), primal-dual method of
(Zhu, Chan, 2008)
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Shrinking with the Nuclear Norm

Shrink operator with the nuclear norm is

min
Z

1

2
‖Z − Y k‖2

F + σ‖Z‖∗.

Can solve explicitly using a singular value decomposition of Y k , followed
by an adjustment (shrink) of the singular values.

Code: SVT: Compute a partial SVD (largest singular values) using
Lanczos. (Cai, Candès, Shen, 2008)

Shrinking with the max-norm is also efficient (Lee et al. 2010).
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A Prox-Linear Method

e.g. one of the variants of SpaRSA: (Wright, Nowak, Figueiredo, 2008).

At iteration k :

Solve for current αk to find candidate solution xk+:

xk+ = arg min
z
∇f (xk )T (z − xk ) + τc(z) +

1

2αk
‖z − xk‖2

2,

Decrease αk as needed until sufficient decrease is obtained:

φτ (xk )− φτ (xk+) ≥ ‖xk+ − xk‖3
2.

Increase αk by a constant factor (but enforce αk ≤ αmax) in
preparation for next iteration.

All accumulation points are minimizers. (Not surprising, as it’s a convex
problem.) No global rate in general (i.e. linear/exponential convergence or
sublinear e.g. 1/k rate).
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Many Variants / Enhancements

Nonmonotone method using a Barzilai-Borwein choice of parameter
αk (another SpaRSA variant).

Basic IST: Chooses αk ≡ ᾱ < 1/L. Guarantees descent in φτ at every
iteration.

Continuation in the regularization parameter τ . Solve a sequence of
problems for different τ , from large to small, and warm start.

Block Coordinate Relaxation: Calculate just a partial gradient
(subvector of ∇f ) at each iteration.

Accelerated first-order methods (e.g. FISTA, NESTA).

Debiasing: When c(x) = ‖ · ‖1, switch to a local “debiasing” phase
once the correct set of nonzeros is identified and discard the
regularization term. RIP ⇒ linear convergence in this phase.
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Accelerated First-Order Methods

Can exploit the research on methods for smooth convex optimization that
use gradients, but do better than simply stepping in the negative gradient
direction −∇f (x). (Nesterov)

They generate two (or three) intertwined sequences. Typically:

Get the next x-sequence iterate from a short gradient-descent step
from the latest y -sequence element

Get the next y -sequence element by extrapolating from the last two
x-sequence iterates.

FISTA (Beck and Teboulle, 2008): min f , L = Lipschitz const for ∇f :

0: Choose x0; set y1 = x0, t1 = 1;

k : xk ← yk − 1
L∇f (yk );

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk + tk−1
tk+1

(xk − xk−1).
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Two Sequences: {xk} and {yk}

k

xk

y
k+1

y
k+2

xk+1

xk−1

y
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Analysis is short but not very intuitive. f (xk ) converges to its optimal
value f ∗ at a “fast” sublinear rate of O(1/k2).

Can extend to the regularized problem min f (x) + τc(x) by replacing the
step yk → xk by the prox-linear subproblem, with αk ≡ 1/L.

Practically, less sensitive to τ than prox-linear.

Similar approaches can achieve a linear / exponential rate when f is
strongly convex. (Nesterov, 2004)
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Block-Coordinate Relaxation

Suitable for problems with separable group regularizers.

min
x

f (x) + τ

m∑
l=1

cl (x[l ]).

where f is smooth; each Pq is closed, proper, convex. Assume that
{x[q] : q ∈ Q} is a partition of the components of x .

At iteration xk , choose a subset Qk ⊂ {1, 2, . . . ,m} and solve
µk ∈ [µmin, µtop]:

min
d
∇f (xk )T (z−xk )+

µk

2
‖z−xk‖2

2+τ
∑
l∈Qk

cl (z[l ]) s.t. z[l ] = xk
[l ] for l /∈ Qk .

Increase µk until sufficient decrease, e.g.

φτ (xk )− φτ (z) ≥ ‖z − xk‖3
2.

Set xk+1 = z .
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“Generalized Gauss-Seidel” condition: For some T and all k, require

Qk ∪ Qk−1 ∪ · · · ∪ Qk−T = {1, 2, . . . ,m}.

Possibly replace xk+1 by an improved step e.g. by improving φτ further on
the current manifold defined by Qk and zk , possibly using second-order
information.

Global Convergence Result: If ∇f is locally Lipschitz on a neighborhood
of the level set {x |φτ (x) ≤ φτ (x0)} and if {φτ (xk )} is bounded below,
then all accumulation points are critical.

(Tseng, Yun, 2009; Wright, 2010).
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Prox-Linear for a Composite Minimization Framework

(Lewis, Wright, 2008) Analyze convergence of a basic descent algorithm
for prox-linear by embedding in the framework of composite minimization:

min h(p(x))

where p : Rn → Rm is smooth, h : Rm → R is partly smooth and
prox-regular (i.e. locally convex to within a quadratic fudge term).

Allows some nonconex regularizers to be used, e.g.

|x |∗ =
n∑

i=1

(1− e−α|x |i ),

for some α > 0. (Mangasarian, 1999), (Jokar and Pfetsch, 2007).

h can be extended-valued — can enforce hard constraints.

Subproblems are:

min
z

h(p(xk ) +∇p(xk )T (z − xk )) +
1

2αk
‖z − xk‖2

2.
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The prox-linear framework is broadly the same in this setting, but we may
need to modify the z obtained from the subproblem slightly to ensure that

p(xk ) +∇p(xk )T (z − xk ) ∈ dom h;

Put φτ = f + τc into this framework by defining

p(x) :=

[
f
x

]
, h(p) := p1 + τc([p2, p3, . . . , pn+1]).
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Manifolds and Partial Smoothness

Although the regularizer c is usually nonsmooth, we can often identify a
smooth manifold in Rn along which c behaves like a smooth function.

Manifold: Surface in M⊂ Rn that can be parametrized by smooth vector
functions in the neighborhood of some point x̄ ∈M, e.g. z(s) ∈M where
z : Rt → Rn, for all s in a neighborhood of 0 ∈ Rt , where z is smooth
near 0.

Partial Smoothness: (Lewis, 2003) φ is partly smooth with respect to
manifold M at a point x̄ ∈M if it behaves smoothly along M, with no
collapse in dimension of its generalized gradient.

(i) φ|M is C 2;

(ii) φ is subdifferentially regular at all z ∈M near z̄ , with ∂h(z) 6= ∅;
(iii) aff ∂h(z̄) is a translate of NM(z̄);

(iv) ∂h :M→→ Rm is continuous at z̄ .
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Examples: Partial Smoothness

Contours of a function on R2 partly smooth at z̄ with respect to the
one-dimenional manifold M.

M

z
_

Key Example: If c(x) = ‖ · ‖1, the manifold M at x̄ is the set of points x
near x̄ with the same nonzero structure as x̄ .
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Identification of M
If the optimum x∗ lies on a manifold M, it may be possible to identify M
without knowing x∗. Thus, we could apply fast methods to the restriction
φ|M during final steps — possibly much lower dimension than the full
space Rn.

Requires a nondegeneracy condition: Replace

criticality: 0 ∈ ∂φτ (x∗)

by strict criticality: 0 ∈ ri ∂φτ (x∗).

For φτ (x) = f (x) + τ‖x‖1, the criticality conditions are:

[∇f (x∗)]i


= τ if x∗i < 0,

= −τ if x∗i > 0,

∈ [−τ, τ ] if x∗i = 0,

whereas strict criticality replaces [−τ, τ ] by the open interval (−τ, τ) in
the last line (i.e. no “borderline” components).
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Identification of M

Identification Result: If the Prox-Linear algorithm converges to a
nondegenerate point x∗, if f is locally Lipschitz there, and c is partly
smooth at x∗ with respect to manifold M, then xk ∈M for all k
sufficiently large.

For the `1 case, this means that for all k sufficiently large, xk has the
same nonzero structure as x∗.

Can modify prox-linear algorithms to seek an enhancement of each new
iterate, i.e. after calculating an xk+1 giving sufficient decrease from the
prox-linear subproblem, possibly replace it by an enhanced point that

Decreases the objective further;

Is not too much further away from xk ;

Lies on the same manifold as the original xk+1.
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Reduced Second-Order Steps

Use curvature information to enhance steps on the reduced problem φτ |M.

This has been done for regularized logistic regression: f (x) + τ‖x‖1, where
f is a log-likelihood function of the form:

f (x) =
m∑

i=1

`(di , yi ; x).

Abuse notation: M⊂ {1, 2, . . . , n} are the likely nonzeros of x∗

(determined heuristically, but supported by the identification theory
above). Enhance xk by solving for the reduced Newton direction:

[∇2f (xk )]MMδ = −[∇f (xk )]M.

(Shi et al, 2008). Can approximate the Hessian by sampling terms
randomly from the summation over i = 1, 2, . . . ,m (Byrd et al, 2010).
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Augmented Lagrangian

A classical method: For closed convex Ω:

min
x∈Ω

p(x) subject to Ax = b.

Generate iterates xk together with Lagrange multiplier estimates λk from:

xk is approximate solution of

min
x∈Ω

p(x) + (λk )T (Ax − b) +
µk

2
‖Ax − b‖2

2;

update Lagrange multipliers:

λk+1 = λk + µk (Axk − b).

(If p convex, need only µk > 0.)
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Constrained Formulation

Given
min

x
f (x) + τc(x),

“duplicate” the variable and write as an equality constrained problem:

min
z,u

f (z) + τc(u) subject to u = z .

Augmented Lagrangian:

(zk , uk ) := min
z,u

f (z) + τc(u) + (λk )T (u − z) +
µk

2
‖u − z‖2

2,

λk+1 := λk + µk (uk − zk ).

The minz,u problem is usually still too hard to solve (u and z are coupled
via final penalty term). However can take alternating steps in z and u.
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Alternating Directions

(Eckstein and Bertsekas, 1992)

zk := min
z

f (z) + τc(uk−1) + (λk )T (uk−1 − z) +
µk

2
‖uk−1 − z‖2

2,

uk := min
u

f (zk ) + τc(u) + (λk )T (u − zk ) +
µk

2
‖u − zk‖2

2,

λk+1 := λk + µk (uk − zk ).

Approximate minimization for z and u may now be much simpler. e.g. for
compressed sensing:

The second minimization is the “shrink operator” (easy);

The first one is linear system with coefficient matrix (AT A + σI )
(solve approximately - can be efficient in special cases).

The subproblems are not vastly different from prox-linear subproblems:

λk is asymptotically similar to the gradient term in prox-linear;

The quadratic term is the same.
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Use in Sparse Optimization

Extensions and variants of these ideas have been much studied recently,
and applied in various contexts. Examples:

Compressed sensing (Yang and Zhang, 2009; Code: YALL1),
(Goldfarb, Ma, Scheinberg, 2010)

Image processing (Figueiredo and Bioucas-Dias, 2010, 2011;
Goldstein and Osher, 2008)

Video processing, matrix completion, sparse principal components
(Goldfarb, Ma, Scheinberg, 2010).

Can be melded with (accelerated) first-order methods (Goldfarb, Ma,
Scheinberg, 2010).
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Stochastic Gradient Algorithms

Typically work with objective f for which:

f convex but possibly nonsmooth.

Can’t get function values f (x) cheaply.

At any feasible x , have access only to an unbiased estimate of the
subgradient ∂f .

Common settings are:
f (x) = EξF (x , ξ),

where ξ is a random vector with distribution P over a set Ξ. Also the
special case:

f (x) =
1

m

m∑
i=1

fi (x),

where each fi is convex and nonsmooth.
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Subgradients

For each x in domain of f , g is a subgradient of f at x if

f (z) ≥ f (x) + g T (z − x), for all z ∈ domf .

Right-hand side is a supporting hyperplane.

The set of subgradients is called the subdifferential, denoted by ∂f (x).

When f is differentiable at x , have ∂f (x) = {∇f (x)}.

We have strong convexity with modulus µ > 0 if

f (z) ≥ f (x)+g T (z−x)+
1

2
µ‖z−x‖2, for all x , z ∈ domf with g ∈ ∂f (x).
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“Classical” Stochastic Approximation

Consider f (x) = 1
m

∑m
i=1 fi (x).

At each iteration, choose ξ ∈ {1, 2, . . . ,m} randomly, and use ∇fξ(x) as
the unbiased estimate of ∇f .

Assume that there is M such that ‖∇fi (x)‖2 ≤ M for all x of interest.

Basic SA Scheme: At iteration k, choose ξk i.i.d. from {1, 2, . . . .m},
choose some αk > 0, and set

xk+1 = xk − αk∇fξk
(xk ).

When f is strongly convex, the analysis of convergence of E (‖xk − x∗‖2)
is fairly elementary - see Nemirovski et al (2009). Steps αk = 1/(kµ) lead
to sublinear convergence

1

2
E (‖xk − x∗‖2) ≤ Q

2k
, for Q := max

(
‖x0 − x∗‖2,

M2

µ2

)
.
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What if µ is unknown, or zero?

The steplength choice αk = 1/(kµ) requires knowledge of the modulus µ.
An underestimate of µ can greatly degrade the performance of the method
(see example in Nemirovski et al. 2009).

Robust Stochastic Approximation approach has a rate 1/
√

k (in
function value convergence), and works for weakly convex nonsmooth
functions and is not sensitive to choice of parameters in the step length.

This is the approach that generalizes to mirror descent (Nemirovski et al,
2009).

Stephen Wright (UW-Madison) Regularized Optimization SPARS11, June 2011 48 / 55



Robust SA

At iteration k :

set xk+1 = xk − αk∇fξk
(xk ) as before;

define a weighted average of iterates so far:

x̄k =

∑k
i=1 αi x

i∑k
i=1 αi

.

For any θ > 0 (not critical), choose step lengths to be

αk =
θ

M
√

k
.

Then E [f (x̄k )− f (x∗)] converges to zero with rate approximately
(log k)/k1/2. The choice of θ is not critical.

Stephen Wright (UW-Madison) Regularized Optimization SPARS11, June 2011 49 / 55



Robust Constant-Step Approach: HOGWILD!

(Nui et al., 2011)

Set a target ε for E [f (xk )− f (x∗)];
Estimate convexity modulus µ, bound M, Lipschitz constant L for ∇f ;
Choose ϑ ∈ (0, 1) and set

αk ≡
ϑεµ

2LnM2

Then have E [f (xk )− f (x∗)] ≤ ε for all

k ≥ 2LnM2 log(L‖x0 − x∗‖2/ε)

µ2ϑε
.

Unlike the basic SA scheme, this one is robust to knowledge of the
convexity modulus µ: an underestimate of µ yields only a linear increase in
the number of iterations.

Obtain a 1/k rate except for the log term. We can remove this term by
implementing a “backoff” scheme — periodically reduce the setpoint for
αk by a factor β ∈ (0, 1).
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Parallelizing HOGWILD!

Assume that each fi depends on only a few components of x — say
ei ⊂ {1, 2, . . . , n}. Assume that ei are generally small, and generally do
not overlap too much.

Parallel implementation assumes that x is stored centrally, and updated by
numerous processors that run the following loop (asynchronously):

sample ξi ∈ {1, 2, . . . ,m} uniformly;

read the ei components of x from central storage and evaluate ∇fi (x)

choose j ∈ ei and update xj ← xj − α[∇fi (x)]j ;

Assume that the “lag” in iterations between when any processor reads x
and updates it is bounded by τ .

The steplength strategy outlined above still works for the parallel variant,
with similar convergence rate. The expressions for α and number of steps k
incorporate various quantities that characterize index sets {e1, e2, . . . , em}.
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HOGWILD! Computations

The parallel asymchronous version has been implemented on a dual Xeon
machine (6 cores each × 2 hyperthreading). Used to solve very large
sparse support vector machines problems on large data sets.

Matrix completion:

Netflix: 17, 770× 480, 189 with 100M nonzeros;

KDD Cup: 625, 000× 1M with 252M nonzeros;

synthetic Jumbo problem: 10M × 10M with 2G nonzeros.

20 passes through the data, adjusting α between epochs.

About 2.5 hours for Jumbo problem.

Up to 10 threads implemented; speedups up to 7 observed.
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Regularized Dual Averaging

(Nesterov, 2009) For min f (x) with f convex, nonsmooth. Use
subgradients gi ∈ ∂f (xi ) and average, to obtain

ḡk =
1

k

k∑
i=1

gi .

Step:

xk+1 := min
x

ḡ T
k x +

γ√
k
‖x − x0‖2

2, for some constant γ > 0.

Possibly average the iterates x1, x2, x3, . . . too.

Extended to min 1
T

∑T
t=1 ft(x) + τc(x) by Xiao (2010).
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Manifold Identification in RDA

Under convexity assumptions, can show that ḡk approaches ∇f (x∗) in
expectation, with decreasing variance, at rate k−1/4. (Faster if f is
strongly convex).

Thus, under the usual assumptions of partial smoothness of φτ and
nondegeneracy at x∗, a dense sequence of (non-averaged) iterates {xk}
eventually stays on the optimal manifold M, with probability
1− O(k−1/4).

(The O(·) constant does not depend on problem dimension n.)

Motivates a 2-phase algorithm in which we switch to a different strategy
(e.g. approximate reduced Newton method) on the low-dimensional
manifold identified by RDA.

(Lee, Wright, 2011)
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Conclusions

Have sketched only some of the computational techniques relevant to
sparse optimization.

A thriving and fully interdisciplinary field.

The literature is expanding rapidly, with researchers from the
“applications” areas making fundamental contributions to
optimization theory and algorithms.

THANKS!
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