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Outline

Data Analysis, Machine Learning, Data Science

Context: Data Science

Relating Data Science and Optimization

Formulating 14 specific data science problems as continuous
optimization problems
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Optimization and Data Science

Optimization is being revolutionized by its interactions with machine
learning and data analysis.

New algorithms, and new interest in old algorithms;

Challenging formulations and new paradigms;

Renewed emphasis on certain topics: convex optimization algorithms,
complexity, structured nonsmoothness, now nonconvex optimization.

Large research community now working on the machine learning /
optimization spectrum. The optimization / ML interface is a key
component of many top conferences (ISMP, SIOPT, NIPS, ICML,
COLT, ICLR, AISTATS, ...) and journals (Math Programming,
SIOPT, ....).
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Data Science
Related Terms: AI, Data Analysis, Machine Learning, Statistical Inference,
Data Mining.

Extract meaning from data: Understand statistical properties, learn
important features and fundamental structures in the data.

Use this knowledge to make predictions about other, similar data.

Highly multidisciplinary area!

Foundations in Statistics;

Computer Science: AI, Machine Learning, Databases, Parallel
Systems, Architectures (GPUs);

Optimization provides a toolkit of modeling / formulation and
algorithmic techniques.

Modeling and domain-specific knowledge is vital: “80% of data analysis is
spent on the process of cleaning and preparing the data.”
[Dasu and Johnson, 2003].

(Most academic research deals with the other 20%.)
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Typical Setup

After cleaning and formatting, obtain a data set of m objects:

Vectors of features: aj , j = 1, 2, . . . ,m.

Outcome / observation / label yj for each feature vector.

The outcomes yj could be:

a real number: regression

a label indicating that aj lies in one of M classes (for M ≥ 2):
classification

no labels (yj is null):

I subspace identification: Locate low-dimensional subspaces that
approximately contain the (high-dimensional) vectors aj ;

I clustering: Partition the aj into a few clusters.

(Structure may reveal which features in the aj are important /
distinctive, or enable predictions to be made about new vectors a.)
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Fundamental Data Analysis Task

Seek a function φ that:

approximately maps aj to yj for each j : φ(aj) ≈ yj , j = 1, 2, . . . ,m.

if there are no labels yj , or if some labels are missing, seek φ that
does something useful with the data {aj}, e.g. assigns each aj to an
appropriate cluster or subspace.

satisfies some additional properties — simplicity, structure — that
make it “plausible” for the application, robust to perturbations in the
data, generalizable to data instances beyond the training set.

Can usually define φ in terms of some parameter vector x — thus
identification of φ becomes a data-fitting problem: Find the best x .

Objective function in this problem often built up of m terms that capture
mismatch between predictions and observations for data item (aj , yj).

The process of finding φ is called learning or training.
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What’s the use of the mapping φ?

Analysis: φ — especially the parameter x that defines it — reveals
structure in the data. Examples:

I Feature selection: reveal the components of vectors aj that are
most important in determining the outputs yj ;

I Uncovers some hidden structure, e.g.

F reveals low-dimensional subspaces that contain the aj ;
F find clusters that contain the aj ;
F defines a decision tree that defines the mapping aj → yj .

Prediction: Given new data vectors ak , predict outputs yk ← φ(ak).
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Complications

The data items (aj , yj) available for training and testing are viewed as an
empirical sample drawn from some underlying reality. Want our
conclusions to generalize to the unknown underlying set.

noise or errors in aj and yj . Would like φ (and x) to be robust to
such errors. Regularized formulations are used.

avoid overfitting to the training data. Again, generalization /
regularization can be used.

missing data: Vectors aj may be missing elements (but may still
contain useful information).

missing labels: Some or all yj may be missing or null —
semi-supervised or unsupervised learning.

online learning: Data (aj , yj) arrives in a stream.
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Continuous Optimization and Data Analysis

Optimization is a major source of algorithms for machine learning and data
analysis.

Optimization Formulations translate statistical principles (e.g. risk,
likelihood, significance, generalizability) into measures and functions
that can be solved algorithmically.

Optimization Algorithms provide practical means to solve these
problems, but they must be tailored to the structure and context.

Duality is valuable in several cases (e.g. kernel learning).

Nonsmoothness appears often as a regularization device, but often in
a highly structured way that can be exploited by algorithms.
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ML’s Influence on (Continuous) Optimization
The needs of ML (including summation form, nonsmooth regularization)
has caused revival, reexamination, and development of known approaches,
particularly first-order and “zero order” methods.

stochastic gradient

accelerated gradient

coordinate descent

conditional gradient (Frank-Wolfe)

sparse and regularized optimization e.g. forward-backward.

augmented Lagrangian, ADMM

(sampled Newton and quasi-Newton)

This trend continues in nonconvex formulations:

stochastic gradient

steepest descent (+ noise)

trust-region methods

Nonlinear conjugate gradient, L-BFGS, Newton-conjugate gradient.
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1https://blogs.sas.com/content/subconsciousmusings/2017/04/12/

machine-learning-algorithm-use/
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There’s a lot of continuous optimization here (yellow)!
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Microsoft Azure cheat sheet (optimization in yellow)

ANOMALY DETECTION

One-class SVM

PCA-based anomaly detection Fast training

>100 features, 
aggressive boundary

CLUSTERING

K-means

TWO-CLASS CLASSIFICATION

Two-class decision forest

Two-class boosted decision tree

Two-class decision jungle

Two-class locally deep SVM

Two-class SVM 

Two-class averaged perceptron

Two-class logistic regression

Two-class Bayes point machine
Two-class neural network

>100 features, 
linear model

Accuracy, 
fast training 

Accuracy, 
fast training, 

large memory 
footprint
Accuracy, 

small memory 
footprint

>100 features

Accuracy, long 
training times

Fast training, 
linear model

Fast training, 
linear model

Fast training, 
linear model

Discovering 
structure

Finding unusual 
data points

Predicting values

Predicting 
categories

Three or 
more

START

Two

REGRESSION

Ordinal regression

Poisson regression

Fast forest quantile regression

Linear regression

Bayesian linear regression

Neural network regression

Decision forest regression

Boosted decision tree regression

Data in rank ordered categories

Predicting event counts

Predicting a distribution

Fast training, linear model

Linear model, small data sets

Accuracy, long training time

Accuracy, fast training

Accuracy, fast training, 
large memory footprint

MULTI-CLASS CLASSIFICATION

Multiclass logistic regression

Multiclass neural network

Multiclass decision forest

Multiclass decision jungle

One-v-all multiclass

Fast training, linear model

Accuracy, long training times

Accuracy, fast training

Accuracy, small memory footprint

Depends on the two-class 
classifier, see notes below

Microsoft Azure Machine Learning: Algorithm Cheat Sheet

© 2015 Microsoft Corporation. All rights reserved.          Created by the Azure Machine Learning Team          Email: AzurePoster@microsoft.com              Download this poster: http://aka.ms/MLCheatSheet

This cheat sheet helps you choose the best Azure Machine Learning Studio 
algorithm for your predictive analytics solution. Your decision is driven by 
both the nature of your data and the question you’re trying to answer.
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Application I: (Linear) Least Squares

min
x

f (x) :=
1

2

m∑
j=1

(aTj x − yj)
2 =

1

2
‖Ax − y‖2

2.

[Gauss, 1799], [Legendre, 1805]; see [Stigler, 1981].

Here the function mapping data to output is linear: φ(aj) = aTj x .

`2 regularization reduces sensitivity of the solution x to noise in y .

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖2
2.

`1 regularization yields solutions x with few nonzeros:

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1.

Feature selection: Nonzero locations in x indicate important
components of aj .
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Application II: Robust Linear Regression
Least squares motivated statistically by assumption of Gaussian errors in
observations yj . What if the errors are distributed otherwise, or contain
“outliers”?

Use statistics to write down a likelihood function for x given y , then find
the maximum likelihood estimate — optimization! General form is

min
x

1

m

m∑
j=1

`(aTj x − yj) + λR(x)

where ` is loss function and R is regularizer.

` and R could be convex or nonconvex.

Tukey biweight: `(θ) = θ2/(1 + θ2). Nonconvex: outliers don’t affect
solution much.

Nonconvex separable regularizers R such as SCAD and MCP behave
like ‖ · ‖1 at zero, but flatten out for larger x .
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Application III: Matrix Completion

Regression over a structured matrix: Observe a matrix X by probing it
with linear operators Aj(X ), giving observations yj , j = 1, 2, . . . ,m. Solve
a regression problem:

min
X

1

2m

m∑
j=1

(Aj(X )− yj)
2 =

1

2m
‖A(X )− y‖2

2.

Each Aj may observe a single element of X , or a linear combination of
elements. Can be represented as a matrix Aj , so that Aj(X ) = 〈Aj ,X 〉.

Seek the “simplest” X that satisfies the observations. Nuclear-norm
(sum-of-singular-values) regularization term induces low rank on X :

min
X

1

2m
‖A(X )− y‖2

2 + λ‖X‖∗, for some λ > 0.

[Recht et al., 2010]
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Explicit Low-Rank Parametrization

Compact, nonconvex formulation is obtained by parametrizing X directly:

X = LRT , where L ∈ Rm×r , R ∈ Rn×r ,

where r is known (or suspected) rank.

min
L,R

1

2m

m∑
j=1

(Aj(LRT )− yj)
2.

(No need for regularizer — rank is hard-wired into the formulation.)

Despite the nonconvexity, near-global minima can be found when Aj are
incoherent. Use appropriate initialization [Candès et al., 2014],
[Zheng and Lafferty, 2015] or the observation that all local minima are
near-global [Bhojanapalli et al., 2016].
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Application IV: Nonnegative Matrix Factorization

Given m × n matrix Y , seek factors L (m × r) and R (n × r) that are
element-wise positive, such that LRT ≈ Y .

min
L,R

1

2
‖LRT − Y ‖2

F subject to L ≥ 0, R ≥ 0.

Applications in computer vision, document clustering, chemometrics, . . .

Could combine with matrix completion, when not all elements of Y are
known, if it makes sense on the application to have nonnegative factors.

If positivity constraint were not present, could solve this in closed form
with an SVD, since Y is observed completely.
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Application V: Sparse Inverse Covariance
Let Z ∈ Rp be a (vector) random variable with zero mean. Let
z1, z2, . . . , zN be samples of Z . Sample covariance matrix (estimates
covariance between components of Z ):

S :=
1

N − 1

N∑
`=1

z`z
T
` .

Seek a sparse inverse covariance matrix: X ≈ S−1.

X reveals dependencies between components of Z : Xij = 0 if the i and j
components of Z are conditionally independent.

Do nodes i and j influence each other directly, or only indirectly via other
nodes?

Obtain X from the regularized formulation:

min
X
〈S ,X 〉 − log det(X ) + λ‖X‖1, where ‖X‖1 =

∑
i ,j |Xij |.

[d’Aspremont et al., 2008, Friedman et al., 2008].
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Reveals Network Structure. Example with p = 6.

6
1

2

3

4

5

X =



∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0
0 ∗ ∗ 0 ∗ 0
0 ∗ 0 ∗ ∗ 0
0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
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Application VI: Sparse Principal Components (PCA)
Seek sparse approximations to the leading eigenvectors of the sample
covariance matrix S .

For the leading sparse principal component, solve

max
v∈Rn

vTSv = 〈S , vvT 〉 s.t. ‖v‖2 = 1, ‖v‖0 ≤ k ,

for some given k ∈ {1, 2, . . . , n}. Convex relaxation replaces vvT by an
n × n positive semidefinite proxy M:

max
M∈SRn×n

〈S ,M〉 s.t. M � 0, 〈I ,M〉 = 1, ‖M‖1 ≤ R,

where | · |1 is the sum of absolute values [d’Aspremont et al., 2007].

Adjust the parameter R to obtain desired sparsity.

Could also get a nonconvex relaxation by replacing ‖v‖0 by ‖v‖1:

max
v∈Rn

vTSv s.t. ‖v‖2 = 1, ‖v‖1 ≤ R.
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Application VII: Sparse + Low-Rank

Given Y ∈ Rm×n, seek low-rank M and sparse S such that M + S ≈ Y .

Applications:

Robust PCA: Sparse S represents “outlier” observations.

Foreground-Background separation in video processing.

I Each column of Y is one frame of video, each row is a single
pixel evolving in time.

I Low-rank part M represents background, sparse part S represents
foreground.

Convex formulation:

min
M,S
‖M‖∗ + λ‖S‖1 s.t. Y = M + S .

[Candès et al., 2011, Chandrasekaran et al., 2011]
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Sparse + Low-Rank: Compact Formulation

Compact formulation: Variables L ∈ Rn×r , R ∈ Rm×r , S ∈ Rm×n sparse.

min
L,R,S

1

2
‖LRT + S − Y ‖2

F + λ‖S‖1 (fully observed)

min
L,R,S

1

2
‖PΦ(LRT + S − Y )‖2

F + λ‖S‖1 (partially observed),

where Φ represents the locations of the observed entries.
[Chen and Wainwright, 2015, Yi et al., 2016].
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Application VIII: Subspace Identification
Given vectors aj ∈ Rn with missing entries, find a subspace of Rn such
that all “completed” vectors aj lie approximately in this subspace.

If Ωj ⊂ {1, 2, . . . , n} is the set of observed elements in aj , seek X ∈ Rn×d

such that
[aj − Xsj ]Ωj

≈ 0,

for some sj ∈ Rd and all j = 1, 2, . . . .
[Balzano et al., 2010, Balzano and Wright, 2014].

Application: Structure from motion. Reconstruct opaque object from
planar projections of surface reference points.
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Application IX: Linear Support Vector Machines

Each item of data belongs to one of two classes: yj = +1 and yj = −1.

Seek (x , β) such that

aTj x − β ≥ 1 when yj = +1;

aTj x − β ≤ −1 when yj = −1.

The mapping is φ(aj) = sign(aTj x − β).

Design an objective so that the jth loss term is zero when φ(aj) = yj ,
positive otherwise. A popular one is hinge loss:

H(x , β) =
1

m

m∑
j=1

max(1− yj(aTj x − β), 0).

Add a regularization term (λ/2)‖x‖2
2 for some λ > 0 to maximize the

margin between the classes.
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Regularize for Generalizability
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Application X: Nonlinear SVM

Data aj , j = 1, 2, . . . ,m may not be separable neatly into two classes
yj = +1 and yj = −1. Apply a nonlinear transformation aj → ψ(aj)
(“lifting”) to make separation more effective. Seek (x , β) such that

ψ(aj)
T x − β ≥ 1 when yj = +1;

ψ(aj)
T x − β ≤ −1 when yj = −1.

Leads to the formulation:

min
x

1

m

m∑
j=1

max(1− yj(ψ(aj)
T x − β), 0) +

1

2
λ‖x‖2

2.

Can avoid defining ψ explicitly by using instead the dual of this QP.
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Nonlinear SVM: Dual

Dual is a quadratic program in m variables, with simple constraints:

min
α∈Rm

1

2
αTQα− eTα s.t. 0 ≤ α ≤ (1/λ)e, yTα = 0.

where Qk` = yky`ψ(ak)Tψ(a`), y = (y1, y2, . . . , ym)T , e = (1, 1, . . . , 1)T .

No need to choose ψ(·) explicitly. Instead choose a kernel K , such that

K (ak , a`) ∼ ψ(ak)Tψ(a`).

[Boser et al., 1992, Cortes and Vapnik, 1995]. “Kernel trick.”

Gaussian kernels are popular:

K (ak , a`) = exp(−‖ak − a`‖2/(2σ)), for some σ > 0.
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Nonlinear SVM
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Application XI: Logistic Regression

Binary logistic regression is similar to binary SVM, except that we seek a
function p that gives odds of data vector a being in class 1 or class −1,
rather than making a simple prediction.

Seek odds function p parametrized by x ∈ Rn:

p(a; x) := (1 + ea
T x)−1.

Choose x so that p(aj ; x) ≈ 1 when yj = 1 and p(aj ; x) ≈ 0 when yj = −1.

Choose x to minimize a negative log likelihood function:

L(x) = − 1

m

 ∑
yj=−1

log(1− p(aj ; x)) +
∑
yj=1

log p(aj ; x)


Sparse solutions x are interesting because the indicate which components
of aj are critical to classification. Can solve: minz L(z) + λ‖z‖1.
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Multiclass Logistic Regression

Have M classes instead of just 2. M can be large e.g. identify phonemes
in speech, identify line outages in a power grid.

Labels yj` = 1 if data point j is in class `; yj` = 0 otherwise; ` = 1, . . . ,M.

Find subvectors x[`], ` = 1, 2, . . . ,M such that if aj is in class k we have

aTj x[k] � aTj x[`] for all ` 6= k .

Find x[`], ` = 1, 2, . . . ,M by minimizing a negative log-likelihood function:

f (x) = − 1

m

m∑
j=1

[
M∑
`=1

yj`(aTj x[`])− log

(
M∑
`=1

exp(aTj x[`])

)]

Can use group LASSO regularization terms to select important features
from the vectors aj , by imposing a common sparsity pattern on all x[`].
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Application XII: Atomic-Norm Regularization

Seek an approx minimizer of f (x) such that x combines a small number of
fundamental elements — atoms. Define the atomic norm of x via its
“minimal” representation in terms of the set A of atoms (possibly infinite):

‖x‖A := inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0

}
.

Compressed Sensing: x ∈ Rn: Atoms are ±ei , where
ei = (0, 0, . . . , 0, 1, 0, . . . , 0)T ; then ‖x‖A = ‖x‖1.

Low-rank Matrix Problems: x ∈ Rm×n: Atoms are the rank-one
matrices (infinite); then ‖ · ‖A is the nuclear norm.

Signal processing with few frequencies: x(t) =
∑k

j=1 cj exp(2πifj t):
signal with k frequencies. Atoms are af := exp(2πift) for any f .

Image processing: Atoms are subtrees of wavelet coefficients.

Can solve with Frank-Wolfe, gradient projection [Rao et al., 2015].
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Application XIII: Community Detection in Graphs

Given an undirected graph, find “communities” (subsets of nodes) such
that nodes inside a given community are more likely to be connected to
each other than to nodes outside that community.

Probability p ∈ (0, 1) of being connected to a node within your community,
and q ∈ (0, p) of being connected to a node outside your community.
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Community Detection: Formulation
Given adjacency matrix A such that

Aij =

{
1 if nodes i and j are connected

0 if nodes i and j are not connected,

together with probabilities p and q (both assumed known), find a partition
matrix X that defines the communities:

Xij =

{
1 if nodes i and j are in same community

0 if nodes i and j are not in same community.

Likelihood function is

p(Aij |Xij , p, q) =


p if Aij = 1 and Xij = 1

1− p if Aij = 0 and Xij = 1

q if Aij = 1 and Xij = 0

1− q if Aij = 0 and Xij = 0.
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Community Detection: Formulation

The max-log-likelihood problem has the form

max
partition matrix X

〈X ,A− λJn〉,

where Jn is the n × n matrix of all ones and

λ =
log(1− q)− log(1− p)

log p − log q + log(1− q)− log(1− p)
.

[Li et al., 2018] This is not tractable, so seek relaxations.
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Community Detection: Relaxations

Convex relaxation:

max
X
〈X ,A− λJn〉, s.t. X � 0, X ≥ 0, Xii = 1, i = 1, 2, . . . , n.

When there are just two communities of similar size, then under some
(strong) conditions on p, q, this relaxation will recover the correct X
[Li et al., 2018, Theorem 2.1].

Nonconvex relaxation: Write X = 1
2 (xxT + Jn), where ideally x ∈ Rn has

xi =

{
1 if i is in community 1

−1 if i is in community 2.

Then write
max
x
〈xxT + Jn,A− λJn〉, s.t. ‖x‖2 ≤ 1,

and replace xi ← sign(xi ) for all i to get a prediction.
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Application XIV: Deep Learning

output nodes

input nodes

hidden layers

Inputs are the vectors aj , out-
puts are a prediction about aj
belonging to each class (e.g.
multiclass logistic regression).

At each layer, inputs are con-
verted to outputs by a linear
transformation composed with
an element-wise function σ:

a`+1 = σ(W `a` + g `),

where a` is node values
at layer `, (W `, g `) are
parameters in the network.
Nowadays, the ReLU function
σ(t) = max(t, 0) is popular.
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Training Deep Learning Networks

The network contains many parameters — (W `, g `), ` = 1, 2, . . . , L —
that are selected by training on the data (aj , yj), j = 1, 2, . . . ,m.
Objective has the form:

1

m

m∑
j=1

h(x ; aj , yj)

where x = (W 1, g 1,W 2, g 2, . . . ) are the parameters in the model and h
measures the mismatch between observed output yj and the outputs
produced by the model.

Nonlinear, Nonconvex, Nonsmooth.

Many software packages available for training: Caffe, PyTorch, Tensor
Flow, Theano,... Many run on GPUs.
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Overparametrization in Neural Networks

Number of parameters (elements in x) is often vastly greater than the
number of data points — sometimes by 1-2 orders of magnitude — yet
recent experience shows that “overfitting” is not necessarily a problem!

Training such networks can often achieve “zero loss,” that is, all items in
the training data set are correctly classified. Two big questions arise.

1. Isn’t this overfitting? Yet such models often generalize well, flouting
conventional wisdom.

2. Why is Stochastic Gradient (SGD) reliably finding the global
minimum of a nonsmooth, nonlinear, nonconvex problem?

We have only started to get some intuition on these issues. See for
example [Li and Liang, 2018].
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Overparametrization

In an overparametrized network, we suspect that:

There are many solutions;

A randomly chosen initial point for the weights will be close to one of
the solutions;

You have to change few (if any) ReLU activations to get from the
initial point to the solution;

Gradient descent (or stochastic gradient descent with big enough
batches) will get us from the initial point to the solution efficiently.

This remains an active area of investigation, with important consequences
for the understanding of why neural networks are so effective in some
applications.
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Adversarial Machine Learning

Deep learning classifiers can be fooled with a carefully chosen attack.

(Szegedy et al, Dec 2013): Train digits in the MNIST set, apply carefully
chosen perturbation. NN misclassifies, even though it’s visually obvious
what the digit should be.

Note that a random perturbation is OK, even when large. But a small,
carefully crafted perturbation causes misclassification.
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Adversarial ML: The Issues

1. Can we generate efficiently the “carefully chosen perturbations” that
break the classifier?

2. Can we train the network to be robust to perturbations of a certain
size?

3. Can we verify that a given network will continue to give the same
classification when we perturb a given training example x by any
perturbation of a given size ε > 0?

For 1, various optimization formulations have been proposed, depending
on the type of classification done. Usually constrained nonlinear.

To implement 2, we can use robust optimization techniques (but these are
expensive) or selectively generate perturbed data examples and re-train.

Mixed-integer programming formulations have been devised for 3. Very
expensive even for small networks and data sets (e.g. MNIST, CIFAR).
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Training for Robustness

Instead of incurring a loss h(x ; aj , yj) for parameters x and data item
(aj , yj) as above, define the loss to be the worst possible loss for all a
within a ball of radius ε centered at aj . That is,

max
vj :‖vj‖≤ε

h(x ; aj + vj , yj).

Thus, the training problem becomes the following min-max problem:

min
x

1

m

m∑
j=1

max
vj :‖vj‖≤ε

h(x ; aj + vj , yj).

The inner “max” problems can at least be solved in parallel and sometimes
in closed form. We can also often generate a generalized gradient w.r.t. x ,
and so implement a first-order method for the outer loop.

But this is expensive in general!
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Summary

Continuous optimization provides powerful frameworks for formulating and
solving problems in data analysis and machine learning.

I haven’t talked about the contributions of discrete optimization, which are
being promoted more and more.

BUT it’s usually not enough to just formulate these problems and use
off-the-shelf optimization technology to solve them. The algorithms need
to be customized to the problem structure (in particular, large amount of
data) and the context.

Research in this area has exploded over the past decade and is still going
strong, with a great many unanswered questions. (Many of them in deep
learning.)
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