CS 784 DATA MODELS PROJECT

Department of Computer Science University of Wisconsin – Madison

Shuang Wu

Table of Contents

Workflow	. 2
Plan	. 2
Debugging Iteration 1	. 2
Important Note for Debugging Iteration 1	. 3
Debugging Iteration 2	. 3
Important Note for Debugging Iteration 2	. 4
The Basic Strategy for Entity Matching	. 4
Special Rule for Title	. 5
Some False Positive and False Negative Case	. 6
Result	. 8
Six Learning Methods 1st time Cross Validation	. 8
1st Learning Based Matcher Selected	. 9
Debugging Iteration 1	. 9
1st Round by random state = 0 on Splitting G	9
2nt Round by random_state = 50 on Splitting G	. 9
3rd Round by random state = 120 on Splitting G	11
Overall Improvement After Debugging Iteration 1	12
Debugging Iteration 2	12
Add Feature Vector	13
Add exact_match For title and author	14
Add year_match	14
Add one_author_match	14
Add Special Rule For title	15
Create Positive and Negative Rules	16
Test and Compare Each Rule's Effect on Random Forest	16
Test and Compare Each Rule's Effect on Naive Bayes	17
Important Note for Adding Rules	18
Comparison	18
Random Forest	19
Decision Tree	19
Support Vector Machine	20
Naive Bayes	20
Linear Regression	21
Logistic Regression	21
Final Best Matcher Result	22
Misc	22
Approximate Time Estimation	22
••	

1. Workflow

2. Plan

<u>**Debugging Iteration 1**</u>: Repeating $(1 \rightarrow 2 \rightarrow 3)$ until no more FN and FP cases corresponding to ambiguity and incorrect label data appears

Split table G using random_state = 0, DO first cross validation on table H

Remove error tuple pairs, split table G and table I using random_state = 0
Split H using random_state = 0, do step2 and repair mislabeled data
Split H using random_state = 1, do step2 and repair mislabeled data
Split H using random_state = 2, do step2 and repair mislabeled data
Split H using random_state = 3, do step2 and repair mislabeled data

Remove error tuple pairs, split table G and table I using random_state = 20
Split H using random_state = 0, do step2 and repair mislabeled data
Split H using random_state = 1, do step2 and repair mislabeled data
Split H using random_state = 2, do step2 and repair mislabeled data
Split H using random_state = 3, do step2 and repair mislabeled data

Remove error tuple pairs, split table G and table I using random_state = 30 # Split H using random_state = 0, do step2 and repair mislabeled data # Split H using random_state = 1, do step2 and repair mislabeled data # Split H using random_state = 2, do step2 and repair mislabeled data # Split H using random_state = 3, do step2 and repair mislabeled data

Split finalized table G using random_state = 0 again, do the second cross validation on table H to show the overall accuracy improvement by cleaning golden table G.

important note for Debugging Iteration 1:

- a. In the process of resolving data ambiguity and incorrect label issues, I do the iteration broadly on table G instead of just splitting locally on table H. This will to a large extent ensure correct data on both table J and table I in order to reduce number of FP and FN tuple pairs on final table J evaluation.
- b. Using different random_state during splitting table G and table H will enable us to see all the FP and FN cases corresponding to data ambiguity and incorrect label.

Debugging Iteration 2: Repeating $(1 \rightarrow 2 \rightarrow 4)$ until no more FN and FP cases appears

- # Split H using random_state = 0, do step2 and add rule 1 to matcher Y and do CV on the table H to compute the matcher's accuracy
- # Split H using random_state = 100, do step2 and add rule 2 to matcher Y and do CV on the table H to compute the matcher's accuracy
- # Split H using random_state = 200, do step2 and add rule 3 to matcher Y and do CV on the table H to compute the matcher's accuracy

important note for Debugging Iteration 2:

- a. The most confusing part in this matching scenario is, many books (with the same title) might have many different versions. For those cases, I treat different versions of the book as different books. As for some very ambiguous pairs, I went a third party (Amazon and noble & barnes) to check if they really match
- b. But first of all, all the book pairs with different "title" are treated as different books. However, the challenge is how can we say the the "title" are different. Three common cases are given below:
 - case 1 Messi 2016 Updated Edition VS. Messi 2014 Updated Edition
 - case 2 Golfâs Finest Par Threes VS. Golfs Finest Par Threes
 - case 3 Suarez â 2016 Updated Edition VS. Ronaldo â 2016 Updated Edition

Virtually the case 1 is not matching pair but the case 2 is a matching pair. Thus we can not just simply use rules such as

<not match if 'title_title_jac_qgm_3_qgm_3(ltuple, rtuple) < 0.9' is true>
to improve accuracy.

c. Based on observations from a and b above, I designed a more logical rule to make decision. The basic strategy is:

Special rule for title:

More specifically for a special case (title):

Finally this trigger will solve some issues like those:

	Value
record_id	1818
publisher	Icon Books
date	Aug 06, 2015
description	Luis SuĂ;rez is one of the most brilliant and controversial players in world football.Signed by Ba
language	English
title	Suarez à 2016 Updated Edition
url	https://itunes.apple.com/us/book/suarez-2016- updated-edition/id988699203?mt=11
rating_value	nan
price	7.99
author	Luca Caioli
rating_star	0.0
seller	Directebooks Ltd
short_description	The Extraordinary Story Behind Football's Most Explosive Talent
length	240
genre	Soccer
page_id	988699203

		Value
record	_id	11057
ISBN		9.78190685094e+12
descrip	otion	Season after season, Cristiano Ronaldo continues to prove that he is one of footballâs true greats. A thre
price		7.99
date		August 2015
publish	ner	Icon Books
review	_count	nan
title		Ronaldo à 2016 Updated Edition
rating	value	nan
author		Luca Caioli
length		240
short_	description	The Obsession For Perfection

Left Tuple

	Value
record_id	909
publisher	Tuttle Publishing
date	Aug 07, 2012
description	The illustrations are clear and the instructions are simple, and a reasonabl
language	English
title	Practical Karate Volume 4
url	https://itunes.apple.com/us/book/practical- karate-volume-4/id957275633?mt=11
rating_value	nan
price	6.99
author	Donn F. Draeger & Masatoshi Nakayama
rating_star	0.0
seller	The Perseus Books Group, LLC
short_description	Defense Against Armed Assailants
length	122
genre	Sports & Outdoors
page_id	957275633

Value
6508
9.78146290516e+12
"Simple, clear, easy to learnâlDispenses with hours of needed to practice for the
9.95
July 2012
Tuttle Publishing
nan
Practical Karate volume 1
nan
Donn F. Draeger, Masatoshi Nakayama
112
Fundamentals of Self-Defense

Left Tuple			Right Tuple	
	Value			Value
record_id	2385		record_id	10067
publisher	McGraw-Hill Education	1	ISBN	9.78007178268e+12
date	Apr 16, 2010	1	description	Do you have what it takes?Youâre alone in the wilderness with nothing but a knife and the clothes
description	An essential guide to everything you need to stay sheltered, fed, healthy, and safe in the backcountry		price	18.0
language	English		date	May 2006
title	Wilderness Survival Handbook : Primitive Skills for Short-Term Survival and Long-Term Comfort		publisher	McGraw-Hill Education
url	https://itunes.apple.com/us/book/wilderness-survival- handbook/id498457182?mt=11	1	review_count	nan
rating_value	nan	1	title	Wilderness Survival
price	14.99		rating_value	nan
author	Michael Pewtherer	1	author	Mark Elbroch, Michael Pewtherer
rating_star	0.0	1	length	288
seller	The McGraw-Hill Companies, Inc.		short_description	Living Off the Land with the Clothes on Your Back and the Knife on Your Belt
short_description	nan			
length	288	1		
genre	Outdoors	1		
page_id	498457182	1		
		1		

Left Tuple

	Value					
publisher	Vertebrate Publishing					
date	Jul 01, 2014					
escription To those who went to the War straight from school and survived it, the problem of wha						
language	English					
title	Snow on the Equator					
url	https://itunes.apple.com/us/book/snow-on- the-equator/id896714427?mt=11					
rating_value	nan 5.99					
price						
author	H.W. Tilman & Jim Perrin					
rating_star	0.0					
seller	The Perseus Books Group, LLC					
short_description	nan					
length	300					
genre	nre Mountaineering					
none id	896714427					

	Value
record_id	1592
ISBN	9.78190946115e+12
description	To those who went to the War straight from school and survived it, the problem of what t
price	17.5
date	September 2015
publisher	Vertebrate Publishing
review_count	nan
title	Snow on the Equator
rating_value	nan
author	H.W. Tilman, Sir Chris Bonington
ength	300
short_description	Mount Kenya, Kilimanjaro and the great African odyssey

3. Results

a. For each of the six learning methods for the first time for these methods on I(H): split table G with random_state = 20

precision:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
0	DecisionTree	<magellan.matcher.dtmatcher.dtmatcher a<="" object="" th=""><th>5</th><th>0.916667</th><th>0.875000</th><th>0.937500</th><th>0.809524</th><th>1.000000</th><th>0.907738</th></magellan.matcher.dtmatcher.dtmatcher>	5	0.916667	0.875000	0.937500	0.809524	1.000000	0.907738
1	RF	<magellan.matcher.rfmatcher.rfmatcher a<="" object="" th=""><th>5</th><th>0.916667</th><th>0.933333</th><th>0.933333</th><th>0.947368</th><th>1.000000</th><th>0.946140</th></magellan.matcher.rfmatcher.rfmatcher>	5	0.916667	0.933333	0.933333	0.947368	1.000000	0.946140
2	SVM	<magellan.matcher.svmmatcher.svmmatcher object<="" th=""><th>5</th><th>0.840000</th><th>0.882353</th><th>0.823529</th><th>0.900000</th><th>1.000000</th><th>0.889176</th></magellan.matcher.svmmatcher.svmmatcher>	5	0.840000	0.882353	0.823529	0.900000	1.000000	0.889176
3	NB	<magellan.matcher.nbmatcher.nbmatcher a<="" object="" th=""><th>5</th><th>0.880000</th><th>0.937500</th><th>0.882353</th><th>0.894737</th><th>1.000000</th><th>0.918918</th></magellan.matcher.nbmatcher.nbmatcher>	5	0.880000	0.937500	0.882353	0.894737	1.000000	0.918918
4	LogReg	<magellan.matcher.logregmatcher.logregmatcher< th=""><th>5</th><th>0.913043</th><th>0.937500</th><th>0.823529</th><th>0.900000</th><th>1.000000</th><th>0.914815</th></magellan.matcher.logregmatcher.logregmatcher<>	5	0.913043	0.937500	0.823529	0.900000	1.000000	0.914815
5	LinReg	<magellan.matcher.linregmatcher.linregmatcher< th=""><th>5</th><th>0.840000</th><th>0.882353</th><th>0.937500</th><th>0.947368</th><th>0.933333</th><th>0.908111</th></magellan.matcher.linregmatcher.linregmatcher<>	5	0.840000	0.882353	0.937500	0.947368	0.933333	0.908111

recall:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
0	DecisionTree	<magellan.matcher.dtmatcher.dtmatcher a<="" object="" th=""><th>5</th><th>1.000000</th><th>0.823529</th><th>0.9375</th><th>0.944444</th><th>0.928571</th><th>0.926809</th></magellan.matcher.dtmatcher.dtmatcher>	5	1.000000	0.823529	0.9375	0.944444	0.928571	0.926809
1	RF	<magellan.matcher.rfmatcher.rfmatcher a<="" object="" th=""><th>5</th><th>1.000000</th><th>0.823529</th><th>0.8750</th><th>1.000000</th><th>0.928571</th><th>0.925420</th></magellan.matcher.rfmatcher.rfmatcher>	5	1.000000	0.823529	0.8750	1.000000	0.928571	0.925420
2	SVM	<magellan.matcher.svmmatcher.svmmatcher object<="" th=""><th>5</th><th>0.954545</th><th>0.882353</th><th>0.8750</th><th>1.000000</th><th>1.000000</th><th>0.942380</th></magellan.matcher.svmmatcher.svmmatcher>	5	0.954545	0.882353	0.8750	1.000000	1.000000	0.942380
3	NB	<magellan.matcher.nbmatcher.nbmatcher a<="" object="" th=""><th>5</th><th>1.000000</th><th>0.882353</th><th>0.9375</th><th>0.944444</th><th>1.000000</th><th>0.952859</th></magellan.matcher.nbmatcher.nbmatcher>	5	1.000000	0.882353	0.9375	0.944444	1.000000	0.952859
4	LogReg	<magellan.matcher.logregmatcher.logregmatcher< th=""><th>5</th><th>0.954545</th><th>0.882353</th><th>0.8750</th><th>1.000000</th><th>1.000000</th><th>0.942380</th></magellan.matcher.logregmatcher.logregmatcher<>	5	0.954545	0.882353	0.8750	1.000000	1.000000	0.942380
5	LinReg	<magellan.matcher.linregmatcher.linregmatcher< th=""><th>5</th><th>0.954545</th><th>0.882353</th><th>0.9375</th><th>1.000000</th><th>1.000000</th><th>0.954880</th></magellan.matcher.linregmatcher.linregmatcher<>	5	0.954545	0.882353	0.9375	1.000000	1.000000	0.954880

f1:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
0	DecisionTree	<magellan.matcher.dtmatcher.dtmatcher a<="" object="" th=""><th>5</th><th>0.956522</th><th>0.848485</th><th>0.937500</th><th>0.871795</th><th>0.962963</th><th>0.915453</th></magellan.matcher.dtmatcher.dtmatcher>	5	0.956522	0.848485	0.937500	0.871795	0.962963	0.915453
1	RF	<magellan.matcher.rfmatcher.rfmatcher a<="" object="" th=""><th>5</th><th>0.956522</th><th>0.875000</th><th>0.903226</th><th>0.972973</th><th>0.962963</th><th>0.934137</th></magellan.matcher.rfmatcher.rfmatcher>	5	0.956522	0.875000	0.903226	0.972973	0.962963	0.934137
2	SVM	<magellan.matcher.svmmatcher.svmmatcher object<="" th=""><th>5</th><th>0.893617</th><th>0.882353</th><th>0.848485</th><th>0.947368</th><th>1.000000</th><th>0.914365</th></magellan.matcher.svmmatcher.svmmatcher>	5	0.893617	0.882353	0.848485	0.947368	1.000000	0.914365
3	NB	<magellan.matcher.nbmatcher.nbmatcher a<="" object="" th=""><th>5</th><th>0.936170</th><th>0.909091</th><th>0.909091</th><th>0.918919</th><th>1.000000</th><th>0.934654</th></magellan.matcher.nbmatcher.nbmatcher>	5	0.936170	0.909091	0.909091	0.918919	1.000000	0.934654
4	LogReg	<magellan.matcher.logregmatcher.logregmatcher< th=""><th>5</th><th>0.933333</th><th>0.909091</th><th>0.848485</th><th>0.947368</th><th>1.000000</th><th>0.927656</th></magellan.matcher.logregmatcher.logregmatcher<>	5	0.933333	0.909091	0.848485	0.947368	1.000000	0.927656
5	LinReg	<magellan.matcher.linregmatcher.linregmatcher< th=""><th>5</th><th>0.893617</th><th>0.882353</th><th>0.937500</th><th>0.972973</th><th>0.965517</th><th>0.930392</th></magellan.matcher.linregmatcher.linregmatcher<>	5	0.893617	0.882353	0.937500	0.972973	0.965517	0.930392

b. After the first time CV, RF is chosen as best classifier because it has highest accuracy of 94.61%

<magellan.matcher.rfmatcher.rfmatcher a<="" object="" td=""><td>5</td><td>0.916667</td><td>0.933333</td><td>0.933333</td><td>0.947368</td><td>1.000000</td><td>0.946140</td></magellan.matcher.rfmatcher.rfmatcher>	5	0.916667	0.933333	0.933333	0.947368	1.000000	0.946140
1	1	1	1				1

c. Debugging Iteration 1 (data ambiguity and incorrect label):

1st round by random_state = 0 on splitting G

I splits H into U and V five times with different random_state number, and repair the mislabeled tuple pairs on table G. One of the FP and FN cases is like this:

Left Tuple			Right Tuple	
	Value			Value
record_id	2973		record_id	5851
publisher	Falcon Guides		ISBN	9.78076276778e+12
date	Feb 01, 2011	1	description	Backpacker magazineâs Outdoor Knots brings you essential mind gear from the two most res
description	Backpacker's Using a GPS: Digital Trip Planning, Recording, and Sharing is a complete guide to		price	11.99
language	English		date	February 2011
title	Backpacker Magazine's Using a GPS	1	publisher	Falcon Guides
url	https://itunes.apple.com/us/book/backpacker- magazines-using/id938494836?mt=11		review_count	nan
rating_value	nan	•	title	Backpacker Magazine's Outdoor Knots
price	11.99]	rating_value	nan
author	Bruce Grubbs		author	Clyde Soles
rating_star	0.0		length	96
seller	The Rowman & Littlefield Publishing Group		short_description	The Knots You Need To Know
short_description	Digital Trip Planning, Recording, And Sharing			
length	96]		
genre	Outdoors			
page_id	938494836			
		1		

both split on G and H with random_state = 0, after 1st round of cleaning, we get

- # precision: 97.44% (38/39) → 97.56% (40/41)
- # recall: 90.48% (38/42) → 93.02% (40/43)
- # F1: $93.83\% \rightarrow 95.24\%$
- # False positive: 1 (out of 39 positive predictions) \rightarrow 1 (out of 41 positive predictions)
- # False negative: 4 (out of 101 negative predictions) → 3 (out of 99 negative predictions)

2nd round by random_state = 50 on splitting G

I splits H into U and V five times with different random_state number, and repair the mislabeled tuple pairs on table G. One of the FP and FN cases is like this:

Left Tuple			Right Tuple	
	Value]		Value
record_id	177		record_id	6452
publisher	Triumph Books		ISBN	9.78161749074e+12
date	Mar 01, 2010		description	162-0: Imagine a Red Sox Perfect Season imagines that season by identifying the m
description	162-0: Imagine a Twins Perfect Season imagines that season by identifying the mo		price	11.99
language	English		date	March 2010
title	162-0: Imagine a Twins Perfect Season		publisher	Triumph Books
uri	https://itunes.apple.com/us/book/162-0- imagine-twins-perfect/id708499380?mt=11		review_count	nan
rating_value	nan	•	title	162-0: Imagine a Red Sox Perfect Season
price	11.99		rating_value	nan
author	Dave Wright		author	Mark Cofman, Tony Massaroti
rating_star	0.0		length	304
seller	Chicago Review Press, Inc. DBA Independent Publishers Group		short_description	The Greatest Wins!
short_description	The Greatest Wins!			
length	304			
genre	Baseball			
page_id	708499380			

split on G with random_state = 50 and split on H with random_state = 0, after 2nd round of cleaning, we get

precision: 97.56% (40/41) → 100.0% (40/40)

- # recall: 97.56% (40/41) \rightarrow 97.56% (40/41)
- $\# F1: 97.56\% (40/41) \rightarrow 98.77\%$
- # False positive: 1 (out of 41 positive predictions) \rightarrow 0 (out of 40 positive predictions)
- # False negative: 1 (out of 99 negative predictions) → 1 (out of 100 negative predictions)

3rd round by random_state = 120 on splitting G

	Value		Value
record_id	6480	record_id	8598
publisher	Charlesbridge	ISBN	9.78160734509e+12
date	Sep 01, 2009	description	Touchdown! These tales from the gridiron will set fans abuzz. Fun, fille.
description	This book hits a grand slam right out of the park! No diehard devotee of the	price	8.99
language	English	date	July 2011
title	Book of Baseball Stuff	publisher	Charlesbridge
url	https://itunes.apple.com/us/book/book- of-baseball-stuff/id801564884?mt=11	review_count	nan
rating_value	nan	title	Book of Football Stuff
price	8.99	rating_value	nan
author	Ron Martriano	author	Ron Martirano
rating_star	0.0	length	192
seller	Random House, LLC	short_description	nan
short_description	nan		
length	192		
genre	Baseball		
page_id	801564884		

I splits H into U and V five times with different random_state number, and repair the mislabeled tuple pairs on table G. One of the FP and FN cases is like this:

Split on G with random_state = 120 and split on H with random_state = 0, after 3rd round of cleaning, we get

precision: 100.0% (38/38)→ 100.0% (38/38) # recall: 97.44% (38/38) → 100.0% (38/38) # F1: 98.7% → 100.0%

False positive: 0 (out of 38 positive predictions) \rightarrow 0 (out of 38 positive predictions)

False negative: 1 (out of 102 negative predictions) \rightarrow 0 (out of 102 negative predictions)

After finishing Debugging Iteration 1, we can see how much overall accuracy improvement by doing CV on H (split on G with random_state = 20 as did the first time CV).

precision:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
0	DecisionTree	<magellan.matcher.dtmatcher.dtmatcher a<="" object="" th=""><th>5</th><th>0.947368</th><th>1.000000</th><th>0.952381</th><th>1.0</th><th>1</th><th>0.979950</th></magellan.matcher.dtmatcher.dtmatcher>	5	0.947368	1.000000	0.952381	1.0	1	0.979950
1	RF	<magellan.matcher.rfmatcher.rfmatcher a<="" object="" th=""><th>5</th><th>1.000000</th><th>1.000000</th><th>1.000000</th><th>1.0</th><th>1</th><th>1.000000</th></magellan.matcher.rfmatcher.rfmatcher>	5	1.000000	1.000000	1.000000	1.0	1	1.000000
2	SVM	<magellan.matcher.svmmatcher.svmmatcher object<="" th=""><th>5</th><th>1.000000</th><th>1.000000</th><th>0.833333</th><th>1.0</th><th>1</th><th>0.966667</th></magellan.matcher.svmmatcher.svmmatcher>	5	1.000000	1.000000	0.833333	1.0	1	0.966667
3	NB	<magellan.matcher.nbmatcher.nbmatcher a<="" object="" th=""><th>5</th><th>1.000000</th><th>1.000000</th><th>1.000000</th><th>1.0</th><th>1</th><th>1.000000</th></magellan.matcher.nbmatcher.nbmatcher>	5	1.000000	1.000000	1.000000	1.0	1	1.000000
4	LogReg	<magellan.matcher.logregmatcher.logregmatcher< th=""><th>5</th><th>1.000000</th><th>1.000000</th><th>0.952381</th><th>0.9</th><th>1</th><th>0.970476</th></magellan.matcher.logregmatcher.logregmatcher<>	5	1.000000	1.000000	0.952381	0.9	1	0.970476
5	LinReg	<magellan.matcher.linregmatcher.linregmatcher< th=""><th>5</th><th>0.900000</th><th>0.916667</th><th>1.000000</th><th>1.0</th><th>1</th><th>0.963333</th></magellan.matcher.linregmatcher.linregmatcher<>	5	0.900000	0.916667	1.000000	1.0	1	0.963333

recall:

Γ	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
0	DecisionTree	<magellan.matcher.dtmatcher.dtmatcher a<="" object="" th=""><th>5</th><th>1</th><th>1.000000</th><th>1.00</th><th>1</th><th>0.894737</th><th>0.978947</th></magellan.matcher.dtmatcher.dtmatcher>	5	1	1.000000	1.00	1	0.894737	0.978947
1	RF	<magellan.matcher.rfmatcher.rfmatcher a<="" object="" th=""><th>5</th><th>1</th><th>1.000000</th><th>1.00</th><th>1</th><th>0.894737</th><th>0.978947</th></magellan.matcher.rfmatcher.rfmatcher>	5	1	1.000000	1.00	1	0.894737	0.978947
2	SVM	<magellan.matcher.svmmatcher.svmmatcher object<="" th=""><th>1</th><th>0.909091</th><th>1.00</th><th>1</th><th>0.947368</th><th>0.971292</th></magellan.matcher.svmmatcher.svmmatcher>		1	0.909091	1.00	1	0.947368	0.971292
3	NB	<magellan.matcher.nbmatcher.nbmatcher a<="" object="" th=""><th>1</th><th>0.909091</th><th>0.95</th><th>1</th><th>0.842105</th><th>0.940239</th></magellan.matcher.nbmatcher.nbmatcher>		1	0.909091	0.95	1	0.842105	0.940239
4	LogReg	<magellan.matcher.logregmatcher.logregmatcher< th=""><th>5</th><th>1</th><th>0.909091</th><th>1.00</th><th>1</th><th>0.947368</th><th>0.971292</th></magellan.matcher.logregmatcher.logregmatcher<>	5	1	0.909091	1.00	1	0.947368	0.971292
5	LinReg	<magellan.matcher.linregmatcher.linregmatcher< th=""><th>5</th><th>1</th><th>1.000000</th><th>1.00</th><th>1</th><th>0.947368</th><th>0.989474</th></magellan.matcher.linregmatcher.linregmatcher<>	5	1	1.000000	1.00	1	0.947368	0.989474

f1:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
0	DecisionTree	<magellan.matcher.dtmatcher.dtmatcher a<="" object="" th=""><th>5</th><th>0.972973</th><th>1.000000</th><th>0.975610</th><th>1.000000</th><th>0.944444</th><th>0.978605</th></magellan.matcher.dtmatcher.dtmatcher>	5	0.972973	1.000000	0.975610	1.000000	0.944444	0.978605
1	RF	<magellan.matcher.rfmatcher.rfmatcher a<="" object="" th=""><th>5</th><th>1.000000</th><th>1.000000</th><th>1.000000</th><th>1.000000</th><th>0.944444</th><th>0.988889</th></magellan.matcher.rfmatcher.rfmatcher>	5	1.000000	1.000000	1.000000	1.000000	0.944444	0.988889
2	SVM	<magellan.matcher.svmmatcher.svmmatcher object<="" th=""><th>5</th><th>1.000000</th><th>0.952381</th><th>0.909091</th><th>1.000000</th><th>0.972973</th><th>0.966889</th></magellan.matcher.svmmatcher.svmmatcher>	5	1.000000	0.952381	0.909091	1.000000	0.972973	0.966889
3	NB	<magellan.matcher.nbmatcher.nbmatcher a<="" object="" th=""><th>5</th><th>1.000000</th><th>0.952381</th><th>0.974359</th><th>1.000000</th><th>0.914286</th><th>0.968205</th></magellan.matcher.nbmatcher.nbmatcher>	5	1.000000	0.952381	0.974359	1.000000	0.914286	0.968205
4	LogReg	<magellan.matcher.logregmatcher.logregmatcher< th=""><th>5</th><th>1.000000</th><th>0.952381</th><th>0.975610</th><th>0.947368</th><th>0.972973</th><th>0.969666</th></magellan.matcher.logregmatcher.logregmatcher<>	5	1.000000	0.952381	0.975610	0.947368	0.972973	0.969666
5	LinReg	<magellan.matcher.linregmatcher.linregmatcher< th=""><th>5</th><th>0.947368</th><th>0.956522</th><th>1.000000</th><th>1.000000</th><th>0.972973</th><th>0.975373</th></magellan.matcher.linregmatcher.linregmatcher<>	5	0.947368	0.956522	1.000000	1.000000	0.972973	0.975373

Now RF and NB are the best learning-based matchers.

Debugging Iteration 2 (add rules as triggers on matcher Y):

From the previous part, we already know the so-far best precision/recall/f1 based on the H :

0	precision	5	1.000000	0.944444	1.000000	1	1	0.988889
1	recall	5	0.954545	1.000000	0.941176	1	1	0.979144
2	f1	5	0.976744	0.971429	0.969697	1	1	0.983574

I add short_description and delete price, and then extract feature vectors.

```
# add one more feature vector from this
feat_table = mg.get_features_for_matching(A, B)
feat_subset_iter1 = feat_table[3:29]
feat_subset_iter2 = feat_table[32:43]
feat_subset_iter3 = feat_table[47:54]
feat_subset_all = feat_subset_iter1.append(feat_subset_iter2)
feat_subset_all = feat_subset_all.append(feat_subset_iter3)
# to this
feat_table = mg.get_features_for_matching(A, B)
feat_subset_iter1 = feat_table[3:29]
feat_subset_iter2 = feat_table[3:29]
feat_subset_iter2 = feat_table[3:29]
feat_subset_iter2 = feat_table[3:29]
feat_subset_iter2 = feat_table[3:250]
feat_subset_all = feat_subset_iter1.append(feat_subset_iter2)
```

Then we could improve recall a little bit from $0.979144 \rightarrow 0.988235$

```
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 0.349 sec
```

	Metric	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
0	precision	5	1	0.944444	1.000000	1	1	0.988889
1	recall	5	1	1.000000	0.941176	1	1	0.988235
2	f1	5	1	0.971429	0.969697	1	1	0.988225

After this, I do CV by all the machine learning algorithm on H, and RF is still the best matcher so far, so I continue to debug on RF...

1st round by random_state = 0 on splitting H 2nd round by random_state = 120 on splitting H

3rd round by random_state = 500 on splitting H

Some cases of FP and FN has been shown in Plan section above. Thus I will directly show you the final results with adding rules during debugging.

```
add exact_match for title and author:
```

```
feature1 = mg.get_feature_fn("exact_match(ltuple['title'], rtuple['title'])", mg._match_t, mg._match_s)
mg.add_feature(feat_table, 'title_title_exm', feature1)
feature2 = mg.get_feature_fn("exact_match(ltuple['author'], rtuple['author'])", mg._match_t, mg._match_s)
mg.add_feature(feat_table, 'author_author_exm', feature2)
```

add year_match:

```
# x, y will be of type pandas series e.g. 19-march-15 & march-15
def match_exact_date(x, y):
    if type(x['date']) == int or type(y['date']) == int or type(x['date']) == float or type(y['date']) == float:
        return False
    x_dateSet = x['date'].split(', ')
    y_dateSet = y['date'].split(' ')
    if len(x_dateSet) > 1 and len(y_dateSet)> 1:
        if(x_dateSet[1] == y_dateSet[1]):
            return False
Date rule = 'match exact_date'
```

```
mg.add_blackbox_feature(feat_table, Date_rule, match_exact_date)
```

add one_author_match:

```
# x, y will be of type pandas series e.g. 19-march-15 & march-15import re
def match_one_author(x, y):
    x_dateSet = re.split(r'[&,]\s*', x['author'])
    y_dateSet = re.split(r'[&,]\s*', y['author'])
    if len(x_dateSet) > len(y_dateSet):
        small = y_dateSet
        large = x_dateSet
    else:
        small = x_dateSet
        large = y_dateSet
    small_size = len(small)
    large_size = len(large)
    for index1 in range(0, small_size):
        if small[index1].strip() == large[index2].strip():
            return True
    return False
```

Author_rule = 'match_one_author'
mg.add_blackbox_feature(feat_table, Author_rule, match_one_author)

add special rule for title:

```
def match title with tolerance(x, y):
 # x, y will be of type pandas series
 # get title attribute
 x_title = x['title']
y_title = y['title']
 x_titleSet = x_title.split(' ')
 y_titleSet = y_title.split(' ')
 # decide which one is shorter, so it can aviod cases like :
 # Wilderness Survival & Wilderness Survival Handbook : Primitive Skills for Short-Term Survival and Long-Term Comfort
 # they are actually the same book, but one of thier title is abbreviated
 if len(x_titleSet)> len(y_titleSet):
    longer_String = x_titleSet
shorter_String = y_titleSet
 else:
    shorter_String = x_titleSet
    longer_String = y_titleSet
 # compare each character in both string
 for index in range(0,len(shorter_String)):
    if(shorter_String[index].strip() != longer_String[index].strip()):
        word_in_shorter_String = shorter_String[index].strip()
word_in_longer_String = longer_String[index].strip()
        # volume 101 & volume 102
        if word_in_shorter_String.isdigit() or word_in_longer_String.isdigit():
           return False
        # if the size of each strings is the same or 1 character longer than the shorter one, do the following
        # bigger than 1 is a trade-off for misspelling e.g. Golfâs & Golfs
        # in this case, we can only accept one letter incorrect
        else:
            if abs(len(word_in_shorter_String) - len(word_in_longer_String) > 1):
                # give up the negative rule directly and return true
                return True
            if len(word_in_shorter_String) > len(word_in_longer_String):
                longer_word = word_in_shorter_String
                shorter word = word in longer String
            else:
                shorter word = word in shorter String
                longer_word = word_in_longer_String
            count = 0 # count for # of letter no matching
            total = 0
            pointer1 = 0 # pointer for each letter on the shorter word
            pointer2 = 0 # pointer for each letter on the longer word
            #e.g. Gâolf & Golf
            for index2 in range(0, len(shorter_word)):
                total += 1
                if len(word_in_shorter_String) == len(word_in_longer_String):
                    if shorter_word[index2] != longer_word[index2]:
                         count += 1
                else:
                     while shorter_word[pointer1] != longer_word[pointer2]:
                        count += 1
                         pointer2 += 1
                         if abs(pointer1 - pointer2) > 1:
                             return False
                    pointer1 += 1
                    pointer2 += 1
            # trade-off for error detection, if 2 out of 10 letters
            # in one word differ from each other, then we say they
             # are non-matching
            if count/total > 0.2:
                return False
 return True
```

After creating positive and negative Rule1 to Rule4:

```
# Add trigger - target false positives: use title related feature
pos_trigger1 = mg.MatchTrigger()
pos_triggerl.add_cond_rule('match_exact_date(ltuple, rtuple) and title_title_jac_ggm_3_ggm_3(ltuple, rtuple) > 0.8
                           and author_author_exm(ltuple, rtuple)', feat_table)
pos_trigger1.add_cond_status(True)
pos_trigger1.add_action(1)
pos trigger2 = mg.MatchTrigger()
pos_trigger2.add_cond_rule('match_exact_date(ltuple, rtuple) and match_one_author(ltuple, rtuple)
                          and length_length_exm(ltuple, rtuple)
                          and title_title_jac_ggm_3_ggm_3(ltuple, rtuple) > 0.8', feat_table)
pos_trigger2.add_cond_status(True)
pos trigger2.add action(1)
pos trigger3 = mg.MatchTrigger()
pos trigger3.add cond rule('match exact date(ltuple, rtuple) and match one author(ltuple, rtuple)
                           and title_title_exm(ltuple, rtuple)', feat_table)
pos_trigger3.add_cond_status(True)
pos_trigger3.add_action(1)
pos_trigger4 = mg.MatchTrigger()
pos_trigger4.add_cond_rule('match_exact_date(ltuple, rtuple) and match_one_author(ltuple, rtuple)
                           and title_title_jac_qgm_3_qgm_3(ltuple, rtuple) > 0.5', feat_table)
pos_trigger4.add_cond_status(True)
pos_trigger4.add_action(1)
```

(1)

2 f1

5

0.977778

Check this out, f1 of CV on H(I) by RF is 98.35% without any rules:

```
result = mg.cv_matcher_and_trigger(rf, [],
                                        table = H, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
target_attr='gold',random_state = 1200)
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 0.250 sec
   Metric
            Num folds Fold 1
                                 Fold 2
                                          Fold 3
                                                    Fold 4 Fold 5 Mean score
0 precision 5
                        1.000000
                                 0.944444
                                           1.000000
                                                                   0.988889
1 recall
            5
                       0.954545
                                 1.000000
                                          0.941176
                                                           1
                                                                   0.979144
2 f1
            5
                       0.976744
                                 0.971429
                                          0.969697
                                                                   0.983574
                                                            1
```

f1 of CV on H(I) by RF is 96.72% with only positive rules:

```
result = mg.cv_matcher_and_trigger(rf, [pos_trigger1, pos_trigger2, pos_trigger3, pos_trigger4],
                                       table = H, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
target_attr='gold',random_state = 1200)
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 2.252 sec
  Metric
            Num folds Fold 1
                                Fold 2
                                         Fold 3
                                                   Fold 4 Fold 5
                                                                   Mean score
0 precision
            5
                       0.956522
                                0.894737
                                         0.894737
                                                          0.941176
                                                                   0.937434
                                                   1
1
                       1.000000
                                1.000000
                                          1.000000
                                                          1.000000
                                                                   1.000000
  recall
            5
```

0.967273

0.969697

0.944444

0.944444

f1 of CV on H(I) by RF is 100.0% with both positive and negative rules:

```
result = mg.cv_matcher_and_trigger(rf, [pos_trigger1, pos_trigger2, pos_trigger3, pos_trigger4, neg_trigger1],
                                           table = H, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
target_attr='gold',random_state = 1200)
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 2.562 sec
             Num folds Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean score
   Metric
0 precision
             5
                                         1
                                                1
                                                       1
                                                               1
 1
   recall
             5
                         1
                                        1
                                                1
                                                       1
                                                               1
2 f1
             5
                         1
                                 1
                                        1
                                                1
                                                       1
                                                               1
```

f1 increased From $0.9835 \rightarrow 0.9672 \rightarrow 1.0$ along with adding rules

(2)

f1 of CV on H(I) by NB is 97.79% without any rules:

	meano	i tulli i oluo		1 010 2	1010 0	I Old T	1 010 0	mean soore
0	precision	5	1.000000	1	1.000000	1	1	1.000000
1	recall	5	0.909091	1	0.882353	1	1	0.958289
2	f1	5	0.952381	1	0.937500	1	1	0.977976

f1 of CV on H(I) by NB is 97.26% with only positive rules:

```
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 2.536 sec
        Num folds Fold 1
                            Fold 3
                                   Fold 4 Fold 5
                                              Mean score
  Metric
                      Fold 2
0 precision 5
                            0.894737
                                        0.941176
                                              0.947376
               0.956522
                      0.944444
                                   1
1 recall
                            1.000000
                                              1.000000
        5
                1.000000
                      1.000000
                                   1
                                        1.000000
2 f1
               0.977778 0.971429 0.944444 1
        5
                                       0.969697 0.972670
```

f1 of CV on H(I) by NB is 100.0% with both positive and negative rules:

```
result = mg.cv_matcher_and_trigger(nb, [pos_trigger1, pos_trigger2, pos_trigger3, pos_trigger4, neg_trigger1],
                                       table = H, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
target_attr='gold',random_state = 1200)
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 2.607 sec
            Num folds Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean score
  Metric
0 precision 5
                                                  1
1
                       1
  recall
            5
                              1
                                            1
                                                  1
                                                          1
2 f1
            5
                       1
                              1
                                     1
                                           1
                                                  1
                                                          1
```

f1 increased From $0.9779 \rightarrow 0.9726 \rightarrow 1.0$ along with adding rules

important note for adding rules:

- a. I only gave two examples above to show how the rules effect matchers' accuracy step by step. Basically, the positive rule is in charge of increasing recall. On the other hand, the negative rule is used to improve precision. it makes sense that positive rule assign positive label to the matching pairs once the criteria is met. The True Positive is increasing while the False Positive is increasing.
- b. The order of applying rules is: (pos_trigger1 + pos_trigger2 + pos_trigger3+pos_trigger4 + neg_trigger1)

the most important reason for adding the negative rule at the end is owing to that the positive rules are very loose compared with negative rule. Thus I need the negative rule to rectify the final result in the end. in other words, negative rule is more strong and precise in our case.

4. Comparison

Finally for each of the six learning methods, train the matcher based on that method on I, then report its precision/recall/F-1 on J.

RF:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
 # Train using feature vectors from I
rf.fit(table= H,
        exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
        target_attr='gold')
# Predict M
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 94.59% (35/37)
#Recall : 97.22% (35/36)
#F1 : 95.89%
#False positives : 2 (out of 37 positive predictions)
#False negatives : 1 (out of 83 negative predictions)
```

After adding rules : Precision : 100.0% (36/36), Recall : 100.0% (36/36), F1 : 100.0% False positives : 0 (out of 36 positive predictions) False negatives : 0 (out of 84 negative predictions)

DT:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
dt.fit(table= H,
        exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
       target_attr='gold')
# Predict M
N = dt.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
                append=True, target_attr='predicted', inplace=False)
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_triggerl.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 92.11% (35/38)
#Recall : 97.22% (35/36)
#F1 : 94.598
#False positives : 3 (out of 38 positive predictions)
#False negatives : 1 (out of 82 negative predictions)
```

After adding rules : Precision : 97.3% (36/37), Recall : 100.0% (36/36), F1 : 98.63% False positives : 1 (out of 37 positive predictions) False negatives : 0 (out of 83 negative predictions)

SVM:

```
# Get feature vectors
M = mq.extract feature vecs(J, feature table=feat subset all, attrs after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
svm.fit(table= H,
         exclude attrs=[' id', 'ltable.record id', 'rtable.record id', 'gold'],
        target_attr='gold')
# Predict M
N = svm.predict(table=M, exclude attrs=[' id', 'ltable.record id', 'rtable.record id', 'gold'],
                 append=True, target_attr='predicted', inplace=False)
# Apply trigger
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_triggerl.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 97.22% (35/36)
#Recall : 97.22% (35/36)
#F1 : 97.22%
#False positives : 1 (out of 36 positive predictions)
#False negatives : 1 (out of 84 negative predictions)
```

After adding rules : Precision : 97.22% (35/36), Recall : 97.22% (35/36), F1 : 97.22% False positives : 1 (out of 36 positive predictions) False negatives : 1 (out of 84 negative predictions)

NB:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
 # Train using feature vectors from I
nb.fit(table= H,
        exclude attrs=[' id', 'ltable.record id', 'rtable.record id', 'gold'],
        target_attr='gold')
 # Predict M
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_triggerl.execute(T4, 'predicted', inplace=False)
 # Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
 #without triggers:
 #Precision : 100.0% (35/35)
 #Recall : 97.22% (35/36)
 #F1 : 98.59%
 #False positives : 0 (out of 35 positive predictions)
#False negatives : 1 (out of 85 negative predictions)
After adding rules : Precision : 100.0% (36/36), Recall : 100.0% (36/36), F1 : 100.0%
```

False positives : 0 (out of 36 positive predictions) False negatives : 0 (out of 84 negative predictions)

LN:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
ln.fit(table= H,
        exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
       target_attr='gold')
# Predict M
N = ln.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
                append=True, target_attr='predicted', inplace=False)
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_triggerl.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 97.3% (36/37)
#Recall : 100.0% (36/36)
#F1 : 98.63%
#False positives : 1 (out of 37 positive predictions)
#False negatives : 0 (out of 83 negative predictions)
```

After adding rules : Precision : 97.3% (36/37), Recall : 100.0% (36/36), F1 : 98.63% False positives : 1 (out of 37 positive predictions) False negatives : 0 (out of 83 negative predictions)

LG:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
lg.fit(table= H,
        exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
        target_attr='gold')
# Predict M
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 97.3% (36/37)
#Recall : 100.0% (36/36)
#F1 : 98.63%
#False positives : 1 (out of 37 positive predictions)
#False negatives : 0 (out of 83 negative predictions)
```

After adding rules : Precision : 100.0% (36/36), Recall : 100.0% (36/36), F1 : 100.0% False positives : 0 (out of 36 positive predictions) False negatives : 0 (out of 84 negative predictions) For the final best learning method Y selected, train it on I, then report its precision/recall/F-1 on J. The Y is RF without rules as shown above. Its prediction on J is:

#Precision : 94.59% (35/37)
#Recall : 97.22% (35/36)
#F1 : 95.89%
#False positives : 2 (out of 37 positive predictions)
#False negatives : 1 (out of 83 negative predictions)

For the final best matcher (that is, Y*, which is the learning-based method Y plus the rules), train it on I then report its precision/recall/F-1 on J. Its prediction on J is:

#Precision : 100.0% (36/36)
#Recall : 100.0% (36/36)
#F1 : 100.0%
#False positives : 0 (out of 36 positive predictions)
#False negatives : 0 (out of 84 negative predictions)

5. Misc

a. More than 3 hours for labeling and relabeling the data. label_table method in Magellan is very convenient to label data. However, it's not friendly to be used for relabeling data.

b. Approximately 7 hours are spent to find the best learning matcher.

c. More than 50 hours are spent to play around adding rules and improvement.