CS 784 DATA MODELS PROJECT

Department of Computer Science
University of Wisconsin - Madison

Shuang Wu

Table of Contents

Workflow 2
Plan 2
Debugging Iteration 1 2
Important Note for Debugging Iteration 1 3
Debugging Iteration 2 3
Important Note for Debugging Iteration 2 4
The Basic Strategy for Entity Matching 4
Special Rule for Title 5
Some False Positive and False Negative Case 6
Result 8
Six Learning Methods 1st time Cross Validation 8
1st Learning Based Matcher Selected 9
Debugging Iteration 1 9
1st Round by random_state $=0$ on Splitting G 9
2nt Round by random_state $=50$ on Splitting G 9
3rd Round by random_state $=120$ on Splitting G 11
Overall Improvement After Debugging Iteration 1 12
Debugging Iteration 2 12
Add Feature Vector 13
Add exact match For title and author 14
Add year_match 14
Add one_author_match 14
Add Special Rule For title 15
Create Positive and Negative Rules 16
Test and Compare Each Rule's Effect on Random Forest 16
Test and Compare Each Rule's Effect on Naive Bayes 17
Important Note for Adding Rules 18
Comparison 18
Random Forest 19
Decision Tree 19
Support Vector Machine 20
Naive Bayes 20
Linear Regression 21
Logistic Regression 21
Final Best Matcher Result 22
Misc 22
Approximate Time Estimation 22

1. Workflow

2. Plan

 ambiguity and incorrect label data appears

> \# Split table G using random_state $=0$, DO first cross validation on table H
> \# Remove error tuple pairs, split table G and table I using random_state $=0$
> \# Split H using random_state $=0$, do step2 and repair mislabeled data \# Split H using random_state $=1$, do step2 and repair mislabeled data \# Split H using random_state $=2$, do step2 and repair mislabeled data \# Split H using random_state $=3$, do step2 and repair mislabeled data
\# Remove error tuple pairs, split table G and table I using random_state $=\mathbf{2 0}$ \# Split H using random_state $=0$, do step2 and repair mislabeled data \# Split H using random_state = 1, do step2 and repair mislabeled data \# Split H using random_state $=\mathbf{2}$, do step2 and repair mislabeled data \# Split H using random_state $=3$, do step2 and repair mislabeled data
\# Remove error tuple pairs, split table G and table I using random_state = 30 \# Split H using random_state $=0$, do step2 and repair mislabeled data \# Split H using random_state $=1$, do step2 and repair mislabeled data \# Split H using random_state $=2$, do step2 and repair mislabeled data \# Split H using random_state $=3$, do step2 and repair mislabeled data
\# Split finalized table G using random_state = 0 again, do the second cross validation on table H to show the overall accuracy improvement by cleaning golden table \mathbf{G}.

important note for Debugging Iteration 1:

a. In the process of resolving data ambiguity and incorrect label issues, I do the iteration broadly on table G instead of just splitting locally on table H . This will to a large extent ensure correct data on both table J and table I in order to reduce number of FP and FN tuple pairs on final table J evaluation.
b. Using different random_state during splitting table \mathbf{G} and table H will enable us to see all the FP and FN cases corresponding to data ambiguity and incorrect label.

Debugging Iteration 2: Repeating ($1 \rightarrow 2 \rightarrow 4$) until no more FN and FP cases appears

\# Split H using random_state $=\mathbf{0}$, do step2 and add rule 1 to matcher Y and do CV on the table H to compute the matcher's accuracy \# Split H using random_state = 100, do step2 and add rule 2 to matcher Y and do CV on the table H to compute the matcher's accuracy \# Split H using random_state $=200$, do step2 and add rule 3 to matcher Y and do CV on the table H to compute the matcher's accuracy

important note for Debugging Iteration 2:

a. The most confusing part in this matching scenario is, many books (with the same title) might have many different versions. For those cases, I treat different versions of the book as different books. As for some very ambiguous pairs, I went a third party (Amazon and noble \& barnes) to check if they really match
b. But first of all, all the book pairs with different "title" are treated as different books. However, the challenge is how can we say the the "title" are different. Three common cases are given below:

$$
\begin{array}{ll}
\text { case } 1 \text { - } & \text { Messi } 2016 \text { Updated Edition VS. Messi } 2014 \text { Updated Edition } \\
\text { case } 2 \text { - } & \text { Golfâs Finest Par Threes VS. Golfs Finest Par Threes } \\
\text { case } 3 \text { - } & \text { Suarez â } 2016 \text { Updated Edition VS. Ronaldo â } 2016 \text { Updated Edition }
\end{array}
$$

Virtually the case 1 is not matching pair but the case 2 is a matching pair. Thus we can not just simply use rules such as
<not match if 'title title jac qgm 3 qgm 3(ltuple, rtuple) <0.9' is true> to improve accuracy.
c. Based on observations from a and b above, I designed a more logical rule to make decision. The basic strategy is:

Special rule for title:

More specifically for a special case (title):

Finally this trigger will solve some issues like those:

Right Tuple	
	Value
recordid	11057
ISBN	$9.78190685094 \mathrm{e}+12$
description	Season after season, Cristiano Ronaldo continues to prove that he is one of footballâs true greats. A thre...
price	7.99
date	August 2015
publisher	Icon Books
review_ount	nan
tite	Ronaldo â 2016 Updated Edition
rating_value	nan
author	Luca Caioli
length	240
short_description	The Obsession For Perfection

Left Tuple

	Value
record_id	909
publisher	Tuttle Publishing
date	Aug 07, 2012
description	The illustrations are clear and the instructions are simple, and a reasonabl...
language	English
title	Practical Karate Volume 4
url	https://itunes.apple.com/us/book/practical- karate-volume-4/id957275633?mt=11
rating_value	nan
price	6.99
author	Donn F. Draeger \& Masatoshi Nakayama
rating_star	0.0
seller	The Perseus Books Group, LLC
short_description	Defense Against Armed Assailants
length	122
genre	Sports \& Outdoors
page_id	957275633

Right Tuple

	Value
record_id	6508
ISBN	$9.78146290516 e+12$
description	"Simple, clear, easy to learnâ'Dispenses with hours of needed to practice for the ...
price	9.95
date	July 2012
publisher	Tuttle Publishing
review_count	nan
title	Practical Karate volume 1
rating_value	nan
author	Donn F. Draeger, Masatoshi Nakayama
length	112
short_description	Fundamentals of Self-Defense

Left Tuple	
	2385
record_id	McGraw-Hill Education
publisher	Apr 16, 2010
date	An essential guide to everything you need to stay sheltered, fed, healthy, and safe in the backcountry...
description	English Whilderness Survival Handbook: Primitive Skills for Short-Term Survival and Long-Term Comfort
language	https://itunes.apple.com/us/book/wilderness-survival- handbook/id498457182?mt=11
title	nan
url	14.99
rating_value	Michael Pewtherer
price	0.0
author	The McGraw-Hill Companies, Inc.
rating_star	nan
seller	288
short_description	Outdoors
length	498457182
genre	page_id

Right Tuple	
10067 record_id $9.78007178268 \mathrm{e}+12$ ISBN Do you have what it takes?Youâre alone in the wilderness with nothing but a knife and the clothes ... description 18.0 price May 2006 date McGraw-Hill Education publisher nan review_count Wilderness Survival title nan rating_value Mark Elbroch, Michael Pewtherer author 288 longth Living Off the Land with the Clothes on Your Back and the Knife on Your Belt short_description 	

3. Results

a. For each of the six learning methods for the first time for these methods on I(H): split table G with random_state $=\mathbf{2 0}$
precision:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	DecisionTree	<magellan.matcher.dtmatcher.DTMatcher object a...	5	0.916667	0.875000	0.937500	0.809524	1.000000	0.907738
$\mathbf{1}$	RF	<magellan.matcher.ffmatcher.RFMatcher object a...	5	0.916667	0.933333	0.933333	0.947368	1.000000	0.946140
$\mathbf{2}$	SVM	<magellan.matcher.svmmatcher.SVMMatcher object...	5	0.840000	0.882353	0.823529	0.900000	1.000000	0.889176
$\mathbf{3}$	NB	<magellan.matcher.nbmatcher.NBMatcher object a...	5	0.880000	0.937500	0.882353	0.894737	1.000000	0.918918
$\mathbf{4}$	LogReg	<magellan.matcher.logregmatcher.LogRegMatcher ...	5	0.913043	0.937500	0.823529	0.900000	1.000000	0.914815
$\mathbf{5}$	LinReg	<magellan.matcher.linregmatcher.LinRegMatcher ...	5	0.840000	0.882353	0.937500	0.947368	0.933333	0.908111

recall:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	DecisionTree	<magellan.matcher.dtmatcher.DTMatcher object a...	5	1.000000	0.823529	0.9375	0.944444	0.928571	0.926809
$\mathbf{1}$	RF	<magellan.matcher.ffmatcher.RFMatcher object a...	5	1.000000	0.823529	0.8750	1.000000	0.928571	0.925420
$\mathbf{2}$	SVM	<magellan.matcher.svmmatcher.SVMMatcher object...	5	0.954545	0.882353	0.8750	1.000000	1.000000	0.942380
$\mathbf{3}$	NB	<magellan.matcher.nbmatcher.NBMatcher object a...	5	1.000000	0.882353	0.9375	0.944444	1.000000	0.952859
$\mathbf{4}$	LogReg	<magellan.matcher.logregmatcher.LogRegMatcher ...	5	0.954545	0.882353	0.8750	1.000000	1.000000	0.942380
$\mathbf{5}$	LinReg	<magellan.matcher.linregmatcher.LinRegMatcher ...	5	0.954545	0.882353	0.9375	1.000000	1.000000	0.954880

f1:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	DecisionTree	<magellan.matcher.dtmatcher.DTMatcher object a...	5	0.956522	0.848485	0.937500	0.871795	0.962963	0.915453
$\mathbf{1}$	RF	<magellan.matcher.ffmatcher.RFMatcher object a...	5	0.956522	0.875000	0.903226	0.972973	0.962963	0.934137
$\mathbf{2}$	SVM	<magellan.matcher.svmmatcher.SVMMatcher object...	5	0.893617	0.882353	0.848485	0.947368	1.000000	0.914365
$\mathbf{3}$	NB	<magellan.matcher.nbmatcher.NBMatcher object a...	5	0.936170	0.909091	0.909091	0.918919	1.000000	0.934654
$\mathbf{4}$	LogReg	<magellan.matcher.logregmatcher.LogRegMatcher ...	5	0.933333	0.909091	0.848485	0.947368	1.000000	0.927656
$\mathbf{5}$	LinReg	<magellan.matcher.linregmatcher.LinRegMatcher ...	5	0.893617	0.882353	0.937500	0.972973	0.965517	0.930392

b. After the first time CV, RF is chosen as best classifier because it has highest accuracy of 94.61\%

<magellan.matcher.rfmatcher.RFMatcher object a...	5	0.916667	0.933333	0.933333	0.947368	1.000000	0.946140

c.

Debugging Iteration 1 (data ambiguity and incorrect label):
1st round by random_state $=0$ on splitting G
I splits H into U and V five times with different random_state number, and repair the mislabeled tuple pairs on table G. One of the FP and FN cases is like this:

Left Tuple		Right Tuple	
	Value	Value	
record_id	2973	record_id	5851
publisher	Falcon Guides	ISBN	$9.78076276778 \mathrm{e}+12$
date	Feb 01, 2011	description	Backpacker magazineâs Outdoor Knots brings you essential mind gear from the two most res...
description	Backpacker's Using a GPS: Digital Trip Planning, Recording, and Sharing is a complete guide to ...	price	11.99
language	English	date	February 2011
title	Backpacker Magazine's Using a GPS	publisher	Falcon Guides
url	https://itunes.apple.com/us/book/backpacker-magazines-using/id938494836?mt=11	review_count	nan
rating_value	nan	title	Backpacker Magazine's Outdoor Knots
price	11.99	rating_value	nan
author	Bruce Grubbs	author	Clyde Soles
rating_star	0.0	length	96
seller	The Rowman \& Littlefield Publishing Group	short_description	The Knots You Need To Know
short_description	Digital Trip Planning, Recording, And Sharing		
length	96		
genre	Outdoors		
page_id	938494836		

both split on \mathbf{G} and H with random_state $=0$, after 1st round of cleaning, we get
\# precision: 97.44\% (38/39) $\rightarrow \mathbf{9 7 . 5 6 \%}$ (40/41)
\# recall: $\mathbf{9 0 . 4 8 \%}(\mathbf{3 8} / 42) \rightarrow \mathbf{9 3 . 0 2 \%}$ (40/43)
\# F1: 93.83\% \rightarrow 95.24\%
\# False positive: $\mathbf{1}$ (out of $\mathbf{3 9}$ positive predictions) $\rightarrow \mathbf{1}$ (out of 41 positive predictions)
\# False negative: $\mathbf{4}$ (out of $\mathbf{1 0 1}$ negative predictions) $\rightarrow \mathbf{3}$ (out of $\mathbf{9 9}$ negative predictions)

2nd round by random_state $=50$ on splitting G
I splits H into U and V five times with different random_state number, and repair the mislabeled tuple pairs on table G. One of the FP and FN cases is like this:

Left Tuple	
Value	
record_id	177
publisher	Triumph Books
date	Mar 01, 2010
description	162-0: Imagine a Twins Perfect Season imagines that season by identifying the mo...
language	English
title	162-0: Imagine a Twins Perfect Season
url	https://itunes.apple.com/us/book/162-0-imagine-twins-perfect/id708499380?mt=11
rating_value	nan
price	11.99
author	Dave Wright
rating_star	0.0
seller	Chicago Review Press, Inc. DBA Independent Publishers Group
short_description	The Greatest Wins!
length	304
genre	Baseball
page_id	708499380

Right Tuple
 record_id 6452 ISBN $9.78161749074 \mathrm{e}+12$ description 162-0: Imagine a Red Sox Perfect Season imagines that season by identifying the $\mathrm{m} . .$. price date March 2010 publisher Triumph Books review_count nan titie $162-0:$ Imagine a Red Sox Perfect Season rating_value nan author Mark Cofman, Tony Massaroti length 304 short_description The Greatest Wins!

split on G with random_state $=50$ and split on H with random_state $=0$, after 2 nd round of cleaning, we get
\# precision: $97.56 \%(40 / 41) \rightarrow \mathbf{1 0 0 . 0 \%}(40 / 40)$
\# recall: 97.56\% (40/41) \rightarrow 97.56\% (40/41)
\# F1: 97.56\% (40/41) \rightarrow 98.77\%
\# False positive: 1 (out of 41 positive predictions) $\rightarrow 0$ (out of 40 positive predictions)
\# False negative: $\mathbf{1}$ (out of $\mathbf{9 9}$ negative predictions) $\rightarrow \mathbf{1}$ (out of $\mathbf{1 0 0}$ negative predictions)

3rd round by random_state $=120$ on splitting G

I splits H into U and V five times with different random_state number, and repair the mislabeled tuple pairs on table G. One of the FP and FN cases is like this:

Left Tuple

	Value
record_id	6480
publisher	Charlesbridge
date	Sep 01, 2009
description	This book hits a grand slam right out of the park! No diehard devotee of the ...
language	English
title	https://itunes.apple.com/us/book/book- of-baseball-stuff/id801564884?mt=11
url	nan
rating_value	8.99
price	Ron Martriano
author	0.0
rating_star	Random House, LLC
seller	nan
short_description	Baseball
length	192
genre	page_id
Bo1564884	

Right Tuple

	Value
record_id	8598
ISBN	9.78160734509 e+12
description	Touchdown! These tales from the gridiron will set fans abuzz. Fun, fille... price date publisher
review_count	nan
title	Book of Football Stuff
rating_value	nan
author	Ron Martirano
length	192
short_description	nan

Split on G with random_state $=120$ and split on H with random_state $=\mathbf{0}$, after 3rd round of cleaning, we get
\# precision: 100.0\% (38/38) $\rightarrow \mathbf{1 0 0 . 0 \%}(38 / 38)$
\# recall: 97.44\% (38/38) \rightarrow 100.0\% (38/38)
\# F1: 98.7\% $\rightarrow \mathbf{1 0 0 . 0} \%$
\# False positive: $\mathbf{0}$ (out of $\mathbf{3 8}$ positive predictions) $\rightarrow \mathbf{0}$ (out of $\mathbf{3 8}$ positive predictions)
\# False negative: $\mathbf{1}$ (out of $\mathbf{1 0 2}$ negative predictions) $\rightarrow \mathbf{0}$ (out of $\mathbf{1 0 2}$ negative predictions)

After finishing Debugging Iteration 1, we can see how much overall accuracy improvement by doing CV on H (split on G with random_state $=20$ as did the first time CV).

precision:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	DecisionTree	<magellan.matcher.dtmatcher.DTMatcher object a...	5	0.947368	1.000000	0.952381	1.0	1	0.979950
$\mathbf{1}$	RF	<magellan.matcher.ffmatcher.RFMatcher object a...	5	1.000000	1.000000	1.000000	1.0	1	1.000000
$\mathbf{2}$	SVM	<magellan.matcher.svmmatcher.SVMMatcher object...	5	1.000000	1.000000	0.833333	1.0	1	0.966667
$\mathbf{3}$	NB	<magellan.matcher.nbmatcher.NBMatcher object a...	5	1.000000	1.000000	1.000000	1.0	1	1.000000
$\mathbf{4}$	LogReg	<magellan.matcher.logregmatcher.LogRegMatcher ...	5	1.000000	1.000000	0.952381	0.9	1	0.970476
$\mathbf{5}$	LinReg	<magellan.matcher.linregmatcher.LinRegMatcher ...	5	0.900000	0.916667	1.000000	1.0	1	0.963333

recall:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	DecisionTree	<magellan.matcher.dtmatcher.DTMatcher object a...	5	1	1.000000	1.00	1	0.894737	0.978947
$\mathbf{1}$	RF	<magellan.matcher.rfmatcher.RFMatcher object a...	5	1	1.000000	1.00	1	0.894737	0.978947
$\mathbf{2}$	SVM	<magellan.matcher.svmmatcher.SVMMatcher object...	5	1	0.909091	1.00	1	0.947368	0.971292
$\mathbf{3}$	NB	<magellan.matcher.nbmatcher.NBMatcher object a...	5	1	0.909091	0.95	1	0.842105	0.940239
$\mathbf{4}$	LogReg	<magellan.matcher.logregmatcher.LogRegMatcher ...	5	1	0.909091	1.00	1	0.947368	0.971292
$\mathbf{5}$	LinReg	<magellan.matcher.linregmatcher.LinRegMatcher ...	5	1	1.000000	1.00	1	0.947368	0.989474

f1:

	Name	Matcher	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	DecisionTree	<magellan.matcher.dtmatcher.DTMatcher object a...	5	0.972973	1.000000	0.975610	1.000000	0.944444	0.978605
$\mathbf{1}$	RF	<magellan.matcher.ffmatcher.RFMatcher object a...	5	1.000000	1.000000	1.000000	1.000000	0.944444	0.988889
$\mathbf{2}$	SVM	<magellan.matcher.svmmatcher.SVMMatcher object...	5	1.000000	0.952381	0.909091	1.000000	0.972973	0.966889
$\mathbf{3}$	NB	<magellan.matcher.nbmatcher.NBMatcher object a...	5	1.000000	0.952381	0.974359	1.000000	0.914286	0.968205
$\mathbf{4}$	LogReg	<magellan.matcher.logregmatcher.LogRegMatcher ...	5	1.000000	0.952381	0.975610	0.947368	0.972973	0.969666
$\mathbf{5}$	LinReg	<magellan.matcher.linregmatcher.LinRegMatcher ...	5	0.947368	0.956522	1.000000	1.000000	0.972973	0.975373

Now RF and NB are the best learning-based matchers.

Debugging Iteration 2 (add rules as triggers on matcher Y):
From the previous part, we already know the so-far best precision/recall/f1 based on the H :

```
result = mg.cv_matcher_and_trigger(rf, [], table = H,
    exclude_attrs=['_id', 'ltable.id', 'rtable.id', 'gold'],
    target_attr='gold',random_state = 1200)
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 0.335 sec
```

	Metric	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	precision	5	1.000000	0.944444	1.000000	1	1	0.988889
$\mathbf{1}$	recall	5	0.954545	1.000000	0.941176	1	1	0.979144
$\mathbf{2}$	f1	5	0.976744	0.971429	0.969697	1	1	0.983574

I add short_description and delete price, and then extract feature vectors.

```
# add one more feature vector from this
feat_table = mg.get_features_for_matching(A, B)
feat_subset_iter1 = feat_table[3:29]
feat_subset_iter2 = feat_table[32:43]
feat_subset_iter3 = feat_table[47:54]
feat_subset_all = feat_subset_iterl.append(feat_subset_iter2)
feat_subset_all = feat_subset_all.append(feat_subset_iter3)
# to this
feat_table = mg.get_features_for_matching(A, B)
feat_subset_iter1 = feat_table[3:29]
feat_subset_iter2 = feat_table[32:50]
feat_subset_all = feat_subset_iter1.append(feat_subset_iter2)
```

Then we could improve recall a little bit from $0.979144 \rightarrow 0.988235$

```
result = mg.cv_matcher_and_trigger(rf, [], table = H,
    exclude_attrs=['_id', 'ltable.id', 'rtable.id', 'gold'],
    target_attr='gold',random_state = 1200)
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 0.349 sec
```

	Metric	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	precision	5	1	0.944444	1.000000	1	1	0.988889
$\mathbf{1}$	recall	5	1	1.000000	0.941176	1	1	0.988235
$\mathbf{2}$	f1	5	1	0.971429	0.969697	1	1	0.988225

After this, I do CV by all the machine learning algorithm on H , and RF is still the best matcher so far, so I continue to debug on RF...
1st round by random_state $=0$ on splitting H
2nd round by random_state = 120 on splitting H

3rd round by random_state = 500 on splitting H

Some cases of FP and FN has been shown in Plan section above. Thus I will directly show you the final results with adding rules during debugging.

add exact_match for title and author:

```
featurel = mg.get feature fn("exact match(ltuple['title'], rtuple['title'])", mg. match t, mg. match s)
mg.add_feature(feāt_table,' 'title_title_exm', featurel)
feature2 = mg.get_feature_fn("exact_match(ltuple['author'], rtuple['author'])", mg._match_t, mg._match_s)
mg.add feature(feat table, 'author_author_exm', feature2)
```

add year_match:

```
# x, y will be of type pandas series e.g. 19-march-15 & march-15
def match_exact_date(x, y):
    if type(x['date']) == int or type(y['date']) == int or type(x['date']) == float or type(y['date']) == float:
        return False
    x dateSet = x['date'].split(', ')
    y_dateSet = y['date'].split(' ')
    if len(x_dateSet) > 1 and len(y_dateSet)> 1
        if(x_dateSet[1] = y_dateSet[1]):
            return True
    return False
```

Date_rule = 'match_exact_date'
mg.add_blackbox_feature(feat_table, Date_rule, match_exact_date)
add one_author_match:

```
# x, y will be of type pandas series e.g. 19-march-15 & march-15import re
def match_one_author(x, y):
    x dateSet = re.split(r'[&,]\s*', x['author'])
    y_dateSet = re.split(r'[&,]\s*', y['author'])
    if len(x_dateSet) > len(y_dateSet):
        small = y_dateSet
        large = x_dateSet
    else:
        small = x_dateSet
        large = Y_dateSet
    small_size = len(small)
    large_size = len(large)
    for indexl in range (0, small_size):
        for index2 in range(0, large_size):
            if small[index1].strip() == large[index2].strip():
                return True
    return False
```

Author_rule = 'match_one_author'
mg.add_blackbox_feature(feat_table, Author_rule, match_one_author)
add special rule for title:

```
def match_title_with_tolerance(x, y):
    # x, y will be of type pandas series
    # get title attribute
    x_title = x['title']
y_title = y['title']
x_titleSet = x_title.split(' ')
y_titleSet = y_title.split(' ')
# decide which one is shorter, so it can aviod cases like :
# Wilderness Survival & Wilderness Survival Handbook : Primitive Skills for Short-Term Survival and Long-Term Comfort
# they are actually the same book, but one of thier title is abbreviated
if len(x_titleSet)> len(y_titleSet):
    longer_String = x_titleSet
    shorter_String = y_titleSet
else:
    shorter_String = x_titleSet
    longer_String = y_titleSet
# compare each character in both string
for index in range(0,len(shorter_String)):
    if(shorter_String[index].strip() != longer_String[index].strip()):
        word_in_shorter_String = shorter_String[index].strip()
        word_in_longer_S
        # volume 101 & volume 102
        if word_in_shorter_String.isdigit() or word_in_longer_String.isdigit():
            return False
        # if the size of each strings is the same or 1 character longer than the shorter one, do the following
        # bigger than l is a trade-off for misspelling e.g. Golfâs & Golfs
        # in this case, we can only accept one letter incorrect
        else:
            if abs(len(word_in_shorter_String) - len(word_in_longer_String) > 1):
            # give up the negative rule directly and return true
                    return True
            if len(word_in_shorter_String) > len(word_in_longer_String):
                    longer_word = word_in_shorter_String
                    shorter_word = word_in_longer_String
            else:
                    shorter_word = word_in_shorter_String
                            longer_word = word_in_longer_String
            |
            count = 0 # count for # of letter no matching
            total = 0
            pointer1 = 0 # pointer for each letter on the shorter word
            pointer2 = 0 # pointer for each letter on the longer word
            #e.g. Gâolf & Golf
            for index2 in range(0, len(shorter_word)):
            total += 1
            if len(word_in_shorter_String) == len(word_in_longer_String):
                    if shorter_word[index2] != longer_word[index2]:
                    count += 1
                    else:
                            while shorter_word[pointer1] != longer_word[pointer2]:
                    count += 1
                    pointer2 += 1
                    if abs(pointer1 - pointer2) > 1:
                        return False
                            pointer1 += 1
                pointer2 += 1
            # trade-off for error detection, if 2 out of 10 letters
            # in one word differ from each other, then we say they
            # are non-matching
            if count/total > 0.2:
            return False
return True
```


After creating positive and negative Rule1 to Rule4:

```
# Add trigger - target false positives: use title related feature
pos_trigger1 = mg.MatchTrigger()
pos_triggerl.add_cond_rule('match_exact_date(ltuple, rtuple) and title_title_jac_qgm_3_qgm_3(ltuple, rtuple) > 0.8
                                    and author author exm(ltuple, rtuple)', feat table)
pos_trigger1.add_cond_status(True)
pos_trigger1.add_action(1)
pos_trigger2 = mg.MatchTrigger()
pos_trigger2.add_cond_rule('match_exact_date(ltuple, rtuple) and match_one_author(ltuple, rtuple)
                                    and length_length_exm(ltuple, rtuple)
                                    and title title_jac_qgm_3_qgm_3(ltuple, rtuple) > 0.8', feat_table)
pos_trigger2.add_cond_status(True)
pos_trigger2.add_action(1)
pos_trigger3 = mg.MatchTrigger()
pos_trigger3.add_cond_rule('match_exact_date(ltuple, rtuple) and match_one_author(ltuple, rtuple)
                and title_title_exm(ltuple, rtuple)', feat_table)
pos_trigger3.add_cond_status(True)
pos_trigger3.add_action(1)
pos_trigger4 = mg.MatchTrigger()
pos_trigger4.add_cond_rule('match_exact_date(ltuple, rtuple) and match_one_author(ltuple, rtuple)
    and title_title_jac_qgm_3_qgm_3(ltuple, rtuple)}>0.\mp@subsup{5}{}{\prime}\mathrm{ ', feat_table)
pos_trigger4.add_cond_status(True)
pos_trigger4.add_action(1)
```


(1)

Check this out, f 1 of CV on $\mathrm{H}(\mathrm{I})$ by RF is 98.35% without any rules:

```result = mg.cv_matcher_and_trigger(rf, [], table = H, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'], target_attr='gold',random_state = 1200) result['cv_stats']```									
```0% 100% [#####] \| ETA[sec]: 0.000 Total time elapsed: 0.250 sec```									
	Metric	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score	
0	precision	5	1.000000	0.944444	1.000000	1	1	0.988889	
1	recall	5	0.954545	1.000000	0.941176	1	1	0.979144	
2	$f 1$	5	0.976744	0.971429	0.969697	1	1	0.983574	

f 1 of CV on $\mathrm{H}(\mathrm{I})$ by RF is 96.72% with only positive rules:

f1 of CV on $\mathrm{H}(\mathrm{I})$ by RF is 100.0% with both positive and negative rules:

```
result \(=\mathrm{mg} . \mathrm{cv}_{\mathrm{m}}\) matcher_and_trigger(rf, [pos_trigger1, pos_trigger2, pos_trigger3, pos_trigger4, neg_trigger1],
    table \(=\bar{H}\), exclude_att \(\bar{r} s=[\) '_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
    target_attr='gold',random_state \(=1200\) )
result['cv_stats']
0\% \(100 \%\)
[\#\#\#\#\#] | ETA[sec]: 0.000
Total time elapsed: 2.562 sec
```

	Metric	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	precision	5	1	1	1	1	1	1
$\mathbf{1}$	recall	5	1	1	1	1	1	1
$\mathbf{2}$	f 1	5	1	1	1	1	1	1

f1 increased From $0.9835 \rightarrow \mathbf{0 . 9 6 7 2} \boldsymbol{\rightarrow} \mathbf{1 . 0}$ along with adding rules
(2)
f1 of CV on $\mathrm{H}(\mathrm{I})$ by NB is 97.79% without any rules:

```
result = mg.cv_matcher_and_trigger(nb, [],
            table = H, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
            target_attr='gold',\overline{random_state = 1200)}
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 0.230 sec
```

	Metric	Num folds	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean score
$\mathbf{0}$	precision	5	1.000000	1	1.000000	1	1	1.000000
$\mathbf{1}$	recall	5	0.909091	1	0.882353	1	1	0.958289
$\mathbf{2}$	f 1	5	0.952381	1	0.937500	1	1	0.977976

f1 of CV on $\mathrm{H}(\mathrm{I})$ by NB is $\mathbf{9 7 . 2 6 \%}$ with only positive rules:

f 1 of CV on $\mathrm{H}(\mathrm{I})$ by NB is 100.0% with both positive and negative rules:

```
result = mg.cv_matcher_and_trigger(nb, [pos_trigger1, pos_trigger2, pos_trigger3, pos_trigger4, neg_trigger1],
    table = \overline{H}, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
    target_attr='gold',\overline{random_state = 1200)}
result['cv_stats']
0% 100%
[#####] | ETA[sec]: 0.000
Total time elapsed: 2.607 sec
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & Metric & Num folds & Fold 1 & Fold 2 & Fold 3 & Fold 4 & Fold 5 & Mean score \\
\hline \(\mathbf{0}\) & precision & 5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(\mathbf{1}\) & recall & 5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(\mathbf{2}\) & f 1 & 5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
```

f1 increased From $0.9779 \rightarrow \mathbf{0 . 9 7 2 6} \boldsymbol{\rightarrow} \mathbf{1 . 0}$ along with adding rules

important note for adding rules:

a. I only gave two examples above to show how the rules effect matchers' accuracy step by step. Basically, the positive rule is in charge of increasing recall. On the other hand, the negative rule is used to improve precision. it makes sense that positive rule assign positive label to the matching pairs once the criteria is met. The True Positive is increasing while the False Positive is increasing.
b. The order of applying rules is:
(pos_trigger1 + pos_trigger2 + pos_trigger3+pos_trigger4 + neg_trigger1)
the most important reason for adding the negative rule at the end is owing to that the positive rules are very loose compared with negative rule. Thus I need the negative rule to rectify the final result in the end. in other words, negative rule is more strong and precise in our case.

4. Comparison

Finally for each of the six learning methods, train the matcher based on that method on I, then report its precision/recall/F-1 on J.

```
RF:
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
rf.fit(table= H,
    exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
        target_attr='gold')
# Predict M
N = rf.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
            append=True, target_attr='predicted', inplace=False)
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 94.598 (35/37)
#Recall : 97.22% (35/36)
#F1 : 95.89%
#False positives : 2 (out of 37 positive predictions)
#False negatives : 1 (out of 83 negative predictions)
```

After adding rules : Precision : 100.0\% (36/36), Recall : 100.0\% (36/36), F1 : 100.0\%
False positives : 0 (out of 36 positive predictions)
False negatives : 0 (out of 84 negative predictions)

DT:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
dt.fit(table= H,
    exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
    target_attr='gold')
# Predict M
N = dt.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
            append=True, target_attr='\overline{predicted', inplace=\overline{False)}}\mathbf{=}\mathrm{ ()}
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 92.118 (35/38)
#Recall : 97.22% (35/36)
#F1 : 94.59%
#False positives : 3 (out of 38 positive predictions)
#False negatives : 1 (out of 82 negative predictions)
```

After adding rules : Precision : 97.3\% (36/37), Recall : 100.0\% (36/36), F1 : 98.63\%
False positives : 1 (out of 37 positive predictions)
False negatives : 0 (out of 83 negative predictions)

```
SVM:
```

```
# Get feature vectors
```


Get feature vectors

M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
M.fillna(0, inplace=True)

Train using feature vectors from I

Train using feature vectors from I

svm.fit(table= H,
svm.fit(table= H,
exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
target_\overline{attr='gol\overline{d}')}
target_\overline{attr='gol\overline{d}')}

Predict M

Predict M

N = svm.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
N = svm.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
append=True, target_attr='predicted', inplace=False)
append=True, target_attr='predicted', inplace=False)

Apply trigger

Apply trigger

T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)

Evaluate the result

Evaluate the result

eval_result = mg.eval_matches(T5, 'gold', 'predicted')
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
mg.print_eval_summary(eval_result)
\#Without triggers:
\#Without triggers:
\#Precision : 97.22% (35/36)
\#Precision : 97.22% (35/36)
\#Recall : 97.22% (35/36)
\#Recall : 97.22% (35/36)
\#F1 : 97.22%
\#F1 : 97.22%
\#False positives : 1 (out of }36\mathrm{ positive predictions)
\#False positives : 1 (out of }36\mathrm{ positive predictions)
\#False negatives : 1 (out of 84 negative predictions)

```
#False negatives : 1 (out of 84 negative predictions)
```

After adding rules : Precision : 97.22\% (35/36), Recall : 97.22\% (35/36), F1 : 97.22\% False positives : 1 (out of 36 positive predictions)
False negatives : 1 (out of 84 negative predictions)

NB:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
nb.fit(table= H,
    exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
        target_attr='gol\overline{d')}
# Predict M
N = nb.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
            append=True, target_attr='predicted', inplace=False)
# Apply trigger
T1 = pos trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 100.0% (35/35)
#Recall : 97.22% (35/36)
#F1 : 98.59%
#False positives : 0 (out of 35 positive predictions)
#False negatives : 1 (out of }85\mathrm{ negative predictions)
```

After adding rules : Precision : 100.0\% (36/36), Recall : 100.0\% (36/36), F1 : 100.0\%
False positives : 0 (out of 36 positive predictions)
False negatives : 0 (out of 84 negative predictions)

LN:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
ln.fit(table= H,
    exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
    target_\overline{a}ttr='gol\overline{d}')
# Predict M
N = ln.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
    append=True, target_attr='predicted', inplace=False)
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#without triggers:
#Precision : 97.38 (36/37)
#Recall : 100.08 (36/36)
#F1 : 98.63%
#False positives : 1 (out of 37 positive predictions)
#False negatives : 0 (out of 83 negative predictions)
```

After adding rules : Precision : 97.3\% (36/37), Recall : 100.0\% (36/36), F1 : 98.63\%
False positives : 1 (out of 37 positive predictions)
False negatives : 0 (out of 83 negative predictions)

LG:

```
# Get feature vectors
M = mg.extract_feature_vecs(J, feature_table=feat_subset_all, attrs_after='gold')
M.fillna(0, inplace=True)
# Train using feature vectors from I
lg.fit(table= H
    exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
    target_attr='gold')
# Predict M
N = lg.predict(table=M, exclude_attrs=['_id', 'ltable.record_id', 'rtable.record_id', 'gold'],
            append=True, target_attr='\overline{predicted', inplace=}=\overline{F}alse)
# Apply trigger
T1 = pos_trigger1.execute(N, 'predicted', inplace=False)
T2 = pos_trigger2.execute(T1, 'predicted', inplace=False)
T3 = pos_trigger3.execute(T2, 'predicted', inplace=False)
T4 = pos_trigger4.execute(T3, 'predicted', inplace=False)
T5 = neg_trigger1.execute(T4, 'predicted', inplace=False)
# Evaluate the result
eval_result = mg.eval_matches(T5, 'gold', 'predicted')
mg.print_eval_summary(eval_result)
#Without triggers:
#Precision : 97.38 (36/37)
#Recall : 100.08 (36/36)
#F1 : 98.63%
#False positives : 1 (out of 37 positive predictions)
#False negatives : 0 (out of 83 negative predictions)
```

After adding rules : Precision : 100.0\% (36/36), Recall : 100.0\% (36/36), F1 : 100.0\%
False positives : 0 (out of 36 positive predictions)
False negatives : 0 (out of 84 negative predictions)

For the final best learning method Y selected, train it on I, then report its precision/recall/F-1 on J . The Y is RF without rules as shown above. Its prediction on J is:
\#Precision : 94.59\% (35/37)
\#Recall : 97.22\% (35/36)
\#F1: 95.89\%
\#False positives : 2 (out of 37 positive predictions)
\#False negatives : 1 (out of 83 negative predictions)

For the final best matcher (that is, Y^{*}, which is the learning-based method Y plus the rules), train it on I then report its precision/recall/F-1 on J. Its prediction on J is:
\#Precision : 100.0\% (36/36)
\#Recall : 100.0\% (36/36)
\#F1 : 100.0\%
\#False positives : 0 (out of 36 positive predictions)
\#False negatives : 0 (out of 84 negative predictions)

5. Misc

a. More than 3 hours for labeling and relabeling the data. label_table method in Magellan is very convenient to label data. However, it's not friendly to be used for relabeling data.
b. Approximately 7 hours are spent to find the best learning matcher.
c. More than 50 hours are spent to play around adding rules and improvement.

