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Abstract nel code and entirely at run-time. The dynamic nature of our

We have developed a facility for run-time optimization of alnfrastructure allows the optimization to be focused on a
commodity operating system kernel. Our infrastructure,des'red portion of the kernel’s code; there is no need to opti-

currently implemented on UltraSPARC Solaris 7, includegMize the entire system en masse, as is common with static
the ability to do a detailed analysis of the running kernel'st€chniques. o _ , ,
binary code, dynamically insert and remove code patches, Our mplementanon |s.the f|rs.t on-line kernel version of
and dynamically install new versions of kernel functions. A<°de positioning. In the bigger picture, our dynamic kernel
a first use of this technology, we have implemented a run@Ptimization framework is a first step towasiolving oper-
time kernel version of the code positioning I-cache optimi-2ting system kemelsvhich dynamically modify their code
zations. We performed run-time code positioning on the ker@! their own behest in response to their environment.
nel's TCP read-side processing routine while running a Weh, .
client benchmark, reducing the I-cache miss stall time 01"Z Algorithm
this function by 35.4% and improved the function’s overallAs a demonstration of the mechanisms necessary to support
performance by 21.3%. an evolving kernel, we have implemented run-time kernel
The primary contributions of this paper are the first code positioning within the Kerninst dynamic kernel instru-
run-time kernel implementation of code positioning, and anmentation system [15]. Kerninst contains three compo-
infrastructure for run-time kernel optimizations. A further nents: a high-level GUI kperfmon which generates
contribution is made in performance measurement. We proinstrumentation code for performance measurement, a low-
vide a simple and effective algorithm for deriving control level privileged kernel instrumentation serkerninstd and
flow edge execution counts from basic block executio@ small pseudo device drivédev/kerninstvhich aids kern-
counts, which contradicts the widely held belief that edgenstd when the need arises to operate from within the ker-

counts cannot be derived from block counts. nel's address space. Kerninstd also performs a structural
analysis of the kernel's machine code, calculating control
1 Introduction flow graphs and a call graph, as well as performing an inter-

This paper studies dynamic optimization of a commodityProcedural live register analysis. _
operating system kernel. We describe a mechanism for Ve perform code positioning as follows: (1) A function
replacing the code of almost any kernel function with an!© OPtimize is chosen. This is the only step requiring user
alternate implementation, enabling installation of run-time/nvolvement. (2) Kerinst determines if the function has an
optimizations. As a proof of concept, we demonstrate d-cache bottleneck. If so, basic block execution counts are
dynamic kernel implementation of Pettis and Hansen’s cogdathered for this function and its frequently called descen-
positioning I-cache optimizations [10]. We applied code_da”ts' From these cpunts, a group _of functions to optlmlge
positioning to Solaris TCP kernel code while running a Web!S chosen. (3) An optimized re-ordering of these functions is
client benchmark, reducing the I-cache stall time of the TCFEhosen and installed into the running kernel. Interestingly,
read-side processing routine by 35.4%. This led to a 21.398"C€ the optimized code is installed, the entire code posi-
speedup in each invocation @fp_rput_data and a 7.1% tlor!lng optimization is repeate_d (once)_— opﬂ_rmzmg the
speedup in the benchmark’s elapsed run-time, demonstra?pt'm'zed code — for reasons discussed in Section 2.1.3.

ing that even 1/0 workloads can incur enough CPU time to2.1 Measurement Steps

benefit from I-cache optimization. . .
P The first measurement phase determines whether an I-cache

Pettis and Hansen implemented code positioning in ) . o ;
feedback-directed custorgized compiler f%r user gcode%ottleneck exists, making code positioning worthwhile.
Next, basic block execution counts are collected for the

applying the optimizations off-line and across an entire pro-

gram. In contrast, our implementation is performed on kerUser-specified function and a subset of its descendants.

1. This work is supported in part by Department of Energy Grant DE-FG02-93ER25176, Lawrence Livermore National Lab grant B504964, NSF grants
CDA-9623632 and EIA-9870684, and VERITAS Software Corporation. The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.
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Code positioning is performed not only on the user- The traversal begins by dynamically instrumenting the
specified function, but also the subset of its call graphroot function to collect its basic block counts. After the
descendants that significantly affects its I-cache perforinstrumented kernel runs for a short time (the default is 20
mance. We call the collective set of functiondumction  seconds), the instrumentation is removed and the block
group; the user-specified function is the groupi®t func-  counts are examined. The set of statically identifiable
tion. The intuitive basis for the function group is to gain callees of this function then have their block counts mea-
control over I-cache behavior while the root function exe-sured in the same way. Pruning is applied to the call graph
cutes. Because the group contains the hot subset of the romaversal in two cases: a function that has already had its
function’s descendants, once the group is entered via a catlock execution counts collected is not re-measured, and a
to its root function, control will likely stay within the group function that is only called from within a basic block whose
until the root function returns. execution count is zero is not measured.

Because Kernlinst does not currently keep indirect func-

- ? . . . . ..
211 _IS There an I-Cache Bottleneck? _ tion calls (i.e., through a function pointer) in its call graph, a
The first measurement step checks whether code positiofgnction called only indirectly will not have its block counts

ing might help. Kerninst instruments the kernel to obtainmeasured. Ramifications are discussed in Section 5.4.
the root function’s I-cache stall time and its CPU time. If

the ratio of these measurements is above a user-definabfel.3 Measuring Block Counts Only When Called by
threshold (10% by default), then the algorithm continues. the Root Function
Kerninst collects timing information for a desired code When collecting basic block execution counts for the root
resource (function or basic block) by inserting instrumentafunction’s descendants, we wish to count only those execu-
tion code that starts a timer at the code’s entry point, andions that affect the root function’s I-cache behavior. In par-
stops the timer at the code’s exit point(s). The entry instruticular, a descendant function that is called by the root
mentation reads and stores the current time, such as the privnction may also be called from elsewhere in the kernel
cessor’s cycle counter. The exit instrumentation re-reads thieaving nothing to do with the root function.
time and adds the delta to an accumulated total. Changing Kernlinst achieves this more selective block counting by
the underlying event counter that is read on entry and exiperforming code positioning twice — re-optimizing the opti-
(e.g. using the UltraSPARC I-cache stall cycle counter [14])mized code. Because code replacement, the installation of a
enables measurements other than timing. new version of a function (Section 3), is performed solely
Measurements made using this frameworkincfusive ~ on the root function, non-root group functions only are
any events that occur in calls made by the code being meanvoked while the optimized root function is on the call
sured are included. This inclusion is vital when measuringstack. This invariant ensures that measured block counts
I-cache stall time, because a function’s callees contribute tduring re-optimization include only executions when the
its I-cache behavior. By contrast, sampling-based profilersoot function is on the call stack; instrumentation code need
can collect inclusive time measurements only by perform-not explicitly perform this check.
ing an expensive stack back_—trace on eagh sample. 2.2 Choosing the Block Ordering: Code
Another key aspect of this framework is that it accumu'Positioning
lateswall time events, noCPU timeevents. That is, it con-
tinues to accumulate events when context switched outAmong the functions whose basic block execution counts
This trait is desirable for certain metrics (particularly 1/0 were measured, the optimized group contains those with at
latency), but not for metrics such as I-cache stall time andeast onehot block A hot basic block is one whose mea-
CPU execution time. Fortunately, this problem can besured execution frequency, when the root function is on the
solved with additional kernel instrumentation — of the low- call stack, is greater than 5% of the frequency that the root
level context switch handlers — to exclude events that occufunction is called. (The threshold is user-adjustable.)
while context-switched out. The complete version of this ~ Procedure splitting is performed first. Each group func-
paper [16] describes this process. tion is segregated into hot and cattiunks a chunk is a
) ) ) contiguous layout of either all of the hot, or all of the cold,
2.1.2 Collecting Basic Block Execution Counts basic blocks of a function. We always place a function’s
The second measurement phase performs a breadth-first calitry block at the beginning of its hot chunk, for simplicity.
graph traversal, collecting basic block execution counts of  To aid optimization, not only are the hot and cold blocks
any function that is called at least once while the root funcof a single function segregated, but all group-wide hot
tion is active (on the call stack). The block counts are useglocks are segregated from the group-wide cold blocks. In
to determine which functions are hot (these are included imther words, procedure splitting is applied group-wide.
the group), and to divide basic blocks into hot and cold sets.  Basic block positioning chooses a layout ordering for
the basic blocks within a chunk. Edge execution counts,
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derived using the algorithm in Section 4, are used to chooseTLB entry.) If a single branch instruction cannot jump
an ordering for a chunk’s basic blocks that facilitatesfrom the original function to the new version of the func-
straight-lined execution in the common case. Through dion, then a springboard [15] is used to achieve sufficient
weighted traversal of these edge counts, each basic block displacement. If a springboard is required, then a further
the function’s hot chunk is placed inchain a sequence of 170ys is required if the springboard resides in the nucleus,
contiguous blocks that is optimized for straight-lined execu-and 12Qus otherwise.

tion [10]. The motivation behind chains is to place the more  The above framework incurs overhead each time the
frequently taken successor block immediately after thdunction is called. This overhead often can be avoided, by
block containing a branch. In this way, some unconditionalpatching calls to the original function to directly call the
branches can be eliminated. For a conditional branch, placew version of the function. This optimization can be
ing the likeliest of the two successors immediately after theapplied for all statically identifiable call sites, but not to
branch allows the fall-through case to be the more comindirect calls through a function pointer. Replacing one call
monly executed path (after reversing the conditional beingite takes about 3fs if it resides in the nucleus, and about
tested by the branch instruction, if appropriate). In generall8 ps otherwise. To give a large-scale example, replacing
the number of basic blocks (or instructions) in a chain giveghe functionkmem_alloc, including patching of its 466 call
the expected distance between taken branches. The mos#es, takes about 14 ms. Kernel-wide, functions are called
instructions between taken branches, the better the I-cacla average of 5.9 times, with a standard deviation of 0.8.
utilization and the lower the mispredicted branch penalty(This figure excludes indirect calls, which cannot be ana-
Ideally, a function’s hot chunk is covered by a single chain.lyzed statically.)

The cost of installing the code replacement (and of later
restoring it) is higher than you might expect, because
After ordering the group’s contents, Kerninst generates th@dev/kerninst performs an expensiwendoable writgfor each
optimized code and installs it into the running kernel. call site. Undoable writes are logged lagv/kerninst, which

In order to emit functions with a new ordering, Kerninst reverts code to its original value by if the front-end GUI or
first parses each function’s machine code into a relocatablerninstd exit unexpectedly.
representation. Next, it emits the group code, which mustbe Kerninstd analyzes the replacement (new) version of a
relocatable, because its kernel address has not yet be@inction at run-time, creating a control flow graph, calculat-
determined. Procedure calls are treated specially; if théng a live register analysis, and updating the call graph in
callee is a group function, then the call is redirected to thahe same manner as kernel code that was recognized at
group’s version of that function. Kerninstd then allocateskerninstd startup. This uniformity is important because it
space for the code and resolves relocatable elements, mughlows tools built on top of kerninstd to treat the replace-
like a dynamic linker. Further details are in the longer ver-ment function as first-class. For example, when kperfmon is
sion of this paper [16]. informed of a replacement function, it updates its code

After installation via code replacement (Section 3) onresource display, and allows the user to measure and even
the group’s root function, Kerninst analyzes the group’sre-optimize the replacement function as any other.
functions like all other kernel functions. This analysis Dynamic code replacement is undone by restoring the
includes parsing function control-flow graphs, performing apatched call sites, then un-instrumenting the jump from the
live-register analysis, and updating the call graph. The firstentry of the original function to the entry of the new ver-
class treatment of runtime-generated code allows the negion. This ordering ensures atomicity; until code replace-
functions to be instrumented (so the speedup achieved byient undoing has completed, the replacement function is
the optimization can be measured, for example) and evestill invoked due to the jump from the original to new ver-
re-optimized (a requirement, as discussed in Section 2.1.3)jon. Basic code replacement, when no call sites were

patched, is undone in 5 if the original function lies in
3 Code Replacement the nucleus, and 4fs otherwise. If a springboard was used
Code replacement is the primary mechanism that enablds reach the replacement function, then it is removed in a
run-time kernel optimization, allowing the code of any ker- further 85ps if it resided in the nucleus, and 4@ other-
nel function to be dynamically replaced (en masse) with arwise. Each patched call site is restored inu30f it resided
alternate implementation. in the nucleus, and 3& otherwise.

Code replacement is implemented on top of Kerninst's
splicing primitive [15]. The entry point of the original func-
tion is spliced to jump to the new version of the function.

Code replacement takes about&8if the original function
resides in the kernehucleusand about 3§s otherwise.
(The Solaris nucleus is a 4 MB range covered by a single

2.3 Emitting and Installing the Optimized Code
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4 Calculating Edge Execution Counts from 4.2 An Example

Block Execution Counts Figure 1 contains a control flow graph used by Pettis and

In this section, we describe a simple and effective algorithmHansen to demonstrate why edge measurements are more

for deriving control flow graph edge execution counts fromuseful than block measurements. Precise edge counts for

basic block execution counts. Edge execution counts arthis graph can be derived from its block counts, as follows.

required for effective block positioning, but Kerninst does First, blockB has only one predecessor ed§eB) and only

not presently implement an edge splicing mechanism whictone successor edg®,D), whose execution counts must

would allow direct measurement of edge counts. Howevereach equaB's count (1000). Now, edgéA,C) is the only

we have found that 99.6% of Solaris control flow graphsuccessor oA whose count is unknown. Its count is &g

edge counts can be derived from basic block counts. Thisount of 1001 minus the count of its known successor edge,

result implies that simple instrumentation (or sampling) thati000). Next, edggC,C) is the only remaining unknown

measures block counts can be used in place of technicallyredecessor edge of C. Its count equals 2008 block

more difficult edge count measurements. count of 2001 minus the count of its known predecessor
The results of this section tend to contradict the widely-edge, 1). Finally, edgéC,D) is the only unknown successor

held belief that while block counts can be derived from edgeof C. Its count equals 1d's block count of 2001 minus the

counts, the converse does not hold. Although that limitatiorcount of its known successor edge, 2000).

is true in the general case of arbitrarily structured control

flow graphs, our technique is effective in practice. Further- A

more, the algorithm may be of special interest to sampling- block count=100

based profilers [1, 7, 8, 18], which can directly measure y

block execution counts but cannot directly measure edge

execution counts. B

] block count=100(
4.1 Algorithm

We assume that a function’s control flow graph is available,

along with execution counts of the function’s basic blocks. block C?um:loo

Our algorithm calculates the execution counts of all edges ]

of a function, prgcisely when possible, and approximateq Figure 1: Deriving Edge Counts From Block Counts

otherwise. Two simple formulas are used: the sum of abasic  The count for edge (X, Y) can be calculated if it is the only

block's predecessor edge counts equals the block’s count, unknown successor count of block X, or the only unknown

which also equals the sum of that block’s successor edge predecessor count of block Y. Repeated application can often

counts. For a block whose count is known, if all but one of calculate all edge counts, as in this example (an augmented

its predecessor (successor) edge counts are known, then the Figure 3 from [10]).

unknowp edge count can be precisely calculated: the bloclf 3 Results and Analysis

count minus the sum of the known edge counts. The algo- ) ) )

rithm repeats until convergence, after which all edge count§PPlying the above algorithm to the Solaris kernel reveals

that could be precisely derived from block counts were sghat 99.6% of its control flow graph edge counts can be

calculated. derived from basic block counts. Furthermore, for 97.8% of
The second phase of the algorithm approximates anyernelfun_ctions,we can precisely calculate C(_)unts for every

remaining, unknown edge execution counts. Two formulag®ne of their control flow graph edges. Thus, with few excep-

bound the count of such an edge: (1) the count can be n#ons, collecting block counts is sufficient to derive edge

larger than its predecessor block's execution count minu§OUNts. This conclusion is especially useful for sampling-

the sum of that block’s calculated successor edge count®ased profilers, which cannot directly measure edge counts.

and (2) the count can be no larger than its successor block’s Even where edge counting can be directly measured,

execution count minus the sum of that block’s calculatedderiving edge counts from block counts may be preferable

predecessor edge counts. We currently use the minimum &cause sampling can make it less expensive. For example,

these two values as an imprecise approximation of thafiCPi [1] obtains accurate measurements by sampling 5200

edge’s execution count. There are alternative choices, sudines per second, yet the system overhead is only 1-3%.

as evenly dividing the maximum allowable value among all

unknown edges. However, since most edge counts can be

precisely derived, approximation is rarely needed, making

the issue relatively unimportant.

C
block count=200]
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5 Experimental Results other wordsjcp_rput_data spends about 36% of its execu-

As a concrete demonstration of the efficacy of run-time ker 0N time in I-cache miss processing. _
nel code positioning, this section presents initial results in "€ measured basic block execution counts of
optimizing the I-cache performance of the Solaris kernefcP_"Put_data and its descendants estimate the hot set of

while running a Web client benchmark. We study the perPasic blocks during the benchmark’s run. The measured
formance ofcp_rput_data (and its callees), which processes counts are an approximation, both because code reached via

incoming network datacp_rput_data is called thousands of an indirect call is not measured, and because the measure-

times per second in the benchmark, and has poor l-cacH@ent includes block executions without regard to whether

performance: about 36% of its time is spent in I-cachef‘he group’s root function is on the call stack. These approx-

misses. Using our prototype implementation of code posi-'mate block counts were used to estimate the likely I-cache
tioning, we reduced the time per invocationef_rput_data layout of the subset of these blocks that are hot (those which

in our benchmark from 6.@s to 5.44us, a speedup of &r€ executed over 5% as frequently @p_rput_data is
21.3%. (We concentrate on optimizing tper invocation ~ Called). The estimate is shown in Figure 2a.

cost oftcp_rput_data, to achieve an improvement that scales WO conclusions about I-cache performance can be
with its execution frequency.) drawn from Figure 2a. First, having greater than 2-way set

associativity in the I-cache would have helped, because the
5.1 Benchmark hot subset ofcp_rput_data and its descendants cannot exe-

We used the GNUwget tool [6] to fetch 34 files totaling Ccute without I-cache conflict misses. Second, even if the
about 28 MB of data, largely comprised of Postscript, com--cache were fully associative, it may be too small to effec-
pressed Postscript, and PDF files. The benchmark containdlyely run the benchmark. The bottom of Figure 2a esti-
ten simultaneous connections, each runningwhet pro- ~ mates that 244 I-cache blocks (about 7.8K) are needed to

gram as described over a 100 MB/sec LAN. The clienthold the hot basic blocks atp_rput_data and its descen-
machine had a 440 MHz UltraSPARC-Ili processor. dants, which is about half of the total I-cache size. Because

The benchmark spends much of its time in the read sid€ther code, particularly Ethernet and IP processing code
of TCP code, especiallgp_rput_data. We chose to perform that invokestcp_rput_data, is also executed thousands of
code positioning ofcp_rput_data because of its size (about times per second,_the total set of hot basic blocks likely
12K bytes of code across 681 basic blocks), which suggesg@xceeds the capacity of the I-cache.

5.2 tcp_rput_data Performance: Before We performed code positioning to improve the inclusive
To determine whetheep_rput_data is likely to benefit from  |-cache performance atp_rput_data. Figure 2b presents
code positioning, we measured the inclusive CPU time thathe I-cache layout of the optimized code, estimated in the
it spends in I-cache misses. The result is surprisingly high§ame way as in Figure 2a. There are no I-cache conflicts
each invocation oftcp_rput_data takes about 6.s, of ~among the group’s hot basic blocks, which could have fit
which about 2.4is is idled waiting for I-cache misses. In comfortably within an 8K direct-mapped I-cache.

ojojojoOoj1f1|1|0|1|1|]0|0]|0O|1]|2]2 oj1j1j1/1|1|1|1|1|1|1|1]|1|1|1|1
1112|222 |2|2|2|1|1|1]1|1|1]|0 i1/j1(11j1}|1j1}j1(1j1|1|1|1]1|1]|1
1/1|1|2|2|2|1/0|0|0|0O|O0|1|2|2]|1 i1/j1(1f41fj212|12}j1}j1(1j1|1|1|1]|1 1|1
1/1|1j12|1|1f1/1|12|12|1/0|0|0|0]|O 1/1(1f1j1|1j1}j1f(1|1|1|1|1]|1|1]|1
ojoj1f12j2|j0|1j1|83|2|2|1|1]1|1|1 i1/j1(11j1|1}j1}j1(1j1|1|1|1]1|1]|1
212j0|j0fl0OjO0O|jO|2|1|1|1|2|2|2|1]|2 i1/j1(1f1|2}|12}j1}j1f(1j1|1|1|1]|1|1]|1
21112 |2|2|0|1]1|3|3[3|3|1]2]3 1/1(1f1j1|1j1}j1f(1|1|1|1|1]1|1]|1
1/13/2j1|1(0}j1|1|2|]0|0|0|O0O|O|O0]|O i1/j1f(141j1|1j1}j1(1j1|1|1|1]1|1]|1
o|{0lO0O|2|1|1|21|1j1|1|1]1|1]|0|0]|1 1/1/1|/1|1|0|0|O|O|O]|O|O|O|O|O]|DO
212182 |2|1|2|2j1|0f|0|1|1|1|1]|1 ojojojoj0|jO0O|jO|jO|O|lO|O|O]jJO|O|O]|O
i1/,0/]0/0|0|O|O]|O|O|O|2]|0O|0O|O|O]O ojojojoj0|jO|]O|O|O|O|O]|]O]|O|O]O]O
ojojojojojo|jOoO|j1|0|1|0|0O]|1]|0|1]|1 ojojojojo0o|jO|O|O]j]O|O|O]O]|O|O]O]O
i1/,1/0|j0|O0|O|lO|JO|O|JO|1]|0O|O0O|0O|0O0]O ojojojoj0|jO0O|jO|O|O|O|O|O]jJO|O|O]|O
ojojojo|1j2|1|1}|1|1|2|2|1|2]|1]|2 ojojojoj0|jO|]O|O|O|O|O]|]O]|O|O]O]O
3|3|4|4|4[3|4|4/4|83|2]1]|0]2]|2]|1 ojojojoj0|jO|O|O|]O|O|O]|]O]|O|O]O]O
oj0ojo0ojO0OjO0OfO|O|2|1]|]1]1|0]|]0|0|0]|O o|0j0OjO0O|O0O|O|]O|]O|O|O|O|O]J]O|]0O0O]|O]|O
Total # of cache blocks: 244 (47.7% of the |-Cache size Total # of cache blocks: 132 (25.8% of the |-Cache size
(a) Before Optimization (b) After Optimization

Figure 2: I-cache Layout of the Hot Blocks of tcp_rput_data and its Descendants (Before and After Optimization)
Each cell represents a 32-byte I-cache block with a count of how many hot basic blocks with distinct I-cache tags, reStue there
UltraSPARC I-cache is 16K, 2-way set associative; highlighted cells (those with counts greater than two) indicate a ligely confl
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Figure 3 shows the functions in the optimized group[ peasurement Original | Optimized Change
along with the relative sizes of the hot and cold chunks. Th

. o ) . [1-$ stall time/invoc 2.40 ps 1.55 ps -35.4%
figure demonstrates that procedure splitting is effectiveiz . cnmisoredi
J o ) predict o
with 77.4% of the group’s code consisting of cold basic|stall ime/invoc 0.38ps | 0.20ps -47.4%
blocks. Block positioning is also effective, with the hot [IPC (instrucsicycle) 0.28 0.38 +35.7%
chunk of most group functions covered by a single chain. [cpy timefinvoc 6.60 i 5.441s | 21.3% speedup
Jump| Hot |#Chaing Cold Figure 4: Measured Performance Improvements in
Function Table| Chunk | in Hot | Chunk tcp_rput_data After Code Positioning
Data | bytes | Chunk | bytes The performance of tcp_rput_data has improved by 21.3%, mostly
tcpltep_rput_data 56 1980 10 11152 due to fewer I-cache stalls and fewer branch mispredict stalls.
unix/mutex_enter 0 44 1 0
unix/putnext 0 160 1 132 module (TCP, IP, or Ethernet). Among the measured hot
unix/lock_set_spl_spin 0 32 1 276 code oftcp_rput_data and its descendants, there are two fre-
genunix/canputnext 0 60 1 96 guently-executed indirect function calls. Both calls are
genunix/strwakeq 0 108 1 296 made fromputnext, a stub routine that forwards data to the
?p?r’;‘f”t'i’:gzl:'oq 8 1‘?6 1 13668 next upstream queue by indirectly calling the next module’s
ipfip__cksum 0 500 1 840 stream “put.“ procedure. Thl_s call is made when TCP has
tcpltcp_ack_mp 0 248 1 444 completed its data processing (verifying check sums and
genunix/pollwakeup 0 156 1 152 stripping off the TCP header from the data block), and is
genunix/timeout 0 40 1 0 ready to forward the processed data upstream. Because
genunix/.div 0 28 L 0 callees reached by hot indirect function calls cannot cur-
unix/ip_ocsum 0 372 4 80 v b timized iss th tunity to include th
genunix/alioch ) 132 1 22 renty_ e optimized, we miss the opportunity to include the
unix/mutex_tryenter 0 24 1 20 remaining upstream processing code in the group. At the
genunix/cv_signal 0 36 1 104 other end of the System V stream, by using TCP’s data pro-
genunix/polnotify 0 64 1 0 cessing function as the root of the optimized group, we
genunix/timeout_common 0 204 L 52 missed the opportunity to include downstream data process-
genunix/kmem_cache_alloc 0 112 1 700 . d £ d by the Eth t and IP -
unix/disp_lock_enter ) 8 1 7 ing code performe y the emet an processing.
unix/disp_lock_exit 0 36 1 20 Across the entire kernel, functions make an average of
Totals 56 4260 34 14624 6.0 direct calls (standard deviation 10.6) and just 0.2 indi-
Figure 3: The Optimized tcp_rput_data Group rect calls (standard deviation 0.8). However, because indi-

The group contains a new version of tcp_rput_data, and the hotrect calls tend to exist routines that are invoked throughout
subset of its statically identifiable call graph descendants, with the kernel, any large function group will likely contain at
code positioning applied. The group’s layout consists of 56 bytes ofeast one such call.
jump table data, followed by 4,260 bytes of hot code, and finally
14,624 bytes of cold code. (Although mutex_enter is in the groupg Related Work
mutex_exit is not, because a Solaris trap handler tests the PC
register against mutex_exit’s code bounds. To avoid confusing thi$-1 Measurement

test, Kerninst excludes mutex_exit from group code.) An alternative to our instrumentation is sampling [1, 7, 8,

Code positioning resulted in a 7.1% speedup in thel8]. Sampling measures CPU time events by periodically
benchmark’s end-to-end run-time, from 36.0 seconds tdeading the PC, and assigning the time since the last sample
33.6 seconds. To explain the speedup, we used kperfmon & that location. Although it is simple and has constant per-
measure the performance improvement in each invocatiofrbation, sampling has several limitations. First, modern
of tcp_rput_data. Pre- and post-optimization numbers are CPUs having imprecise exceptions with variable delay may
shown in Figure 4. require hardware support to accurately assign events to
instructions [5]. Second, while sampling can measure CPU
time, it can only measure wall time with a prohibitive call
Code positioning performs well unless there are indirecstack back-trace of all blocked threads per sample. Third,
function calls among the hot basic blocks of the group. Thissampling can only measure inclusive metrics by assigning
section analyzes the limitations that indirect calls placed ortime for all routines on the call stack for each sample. Aside
the optimization oftcp_rput_data (and System V streams from the expense, stack back-traces can be inaccurate due to
code in general), to quantify how the present inability totail-call optimizations, in which a caller removes its stack
optimize across indirect calls constrains code positioning. frame (and thus its call stack entry) before transferring con-

The System V streams code has enough indirect calls ttrol to the callee. Tail-call optimizations are common, found
limit what can presently be optimized to a single streamsabout 3,800 times in Solaris kernel code.

5.4 Analysis of Code Positioning Limitations
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