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Dynamic Kernel Code Optimization1

Abstract
We have developed a facility for run-time optimization of a
commodity operating system kernel. Our infrastructure,
currently implemented on UltraSPARC Solaris 7, includes
the ability to do a detailed analysis of the running kernel's
binary code, dynamically insert and remove code patches,
and dynamically install new versions of kernel functions. As
a first use of this technology, we have implemented a run-
time kernel version of the code positioning I-cache optimi-
zations. We performed run-time code positioning on the ker-
nel’s TCP read-side processing routine while running a Web
client benchmark, reducing the I-cache miss stall time of
this function by 35.4% and improved the function’s overall
performance by 21.3%.

The primary contributions of this paper are the first
run-time kernel implementation of code positioning, and an
infrastructure for run-time kernel optimizations. A further
contribution is made in performance measurement. We pro-
vide a simple and effective algorithm for deriving control
flow edge execution counts from basic block execution
counts, which contradicts the widely held belief that edge
counts cannot be derived from block counts.

1 Introduction
This paper studies dynamic optimization of a commodity
operating system kernel. We describe a mechanism for
replacing the code of almost any kernel function with an
alternate implementation, enabling installation of run-time
optimizations. As a proof of concept, we demonstrate a
dynamic kernel implementation of Pettis and Hansen’s code
positioning I-cache optimizations [10]. We applied code
positioning to Solaris TCP kernel code while running a Web
client benchmark, reducing the I-cache stall time of the TCP
read-side processing routine by 35.4%. This led to a 21.3%
speedup in each invocation oftcp_rput_data and a 7.1%
speedup in the benchmark’s elapsed run-time, demonstrat-
ing that even I/O workloads can incur enough CPU time to
benefit from I-cache optimization.

Pettis and Hansen implemented code positioning in a
feedback-directed customized compiler for user code,
applying the optimizations off-line and across an entire pro-
gram. In contrast, our implementation is performed on ker-

nel code and entirely at run-time. The dynamic nature of o
infrastructure allows the optimization to be focused on
desired portion of the kernel’s code; there is no need to op
mize the entire system en masse, as is common with st
techniques.

Our implementation is the first on-line kernel version o
code positioning. In the bigger picture, our dynamic kern
optimization framework is a first step towardevolving oper-
ating system kernels, which dynamically modify their code
at their own behest in response to their environment.

2 Algorithm
As a demonstration of the mechanisms necessary to sup
an evolving kernel, we have implemented run-time kern
code positioning within the KernInst dynamic kernel instru
mentation system [15]. KernInst contains three comp
nents: a high-level GUI kperfmon which generates
instrumentation code for performance measurement, a lo
level privileged kernel instrumentation serverkerninstd, and
a small pseudo device driver/dev/kerninstwhich aids kern-
instd when the need arises to operate from within the k
nel’s address space. Kerninstd also performs a structu
analysis of the kernel’s machine code, calculating cont
flow graphs and a call graph, as well as performing an int
procedural live register analysis.

We perform code positioning as follows: (1) A function
to optimize is chosen. This is the only step requiring us
involvement. (2) KernInst determines if the function has a
I-cache bottleneck. If so, basic block execution counts a
gathered for this function and its frequently called desce
dants. From these counts, a group of functions to optim
is chosen. (3) An optimized re-ordering of these functions
chosen and installed into the running kernel. Interesting
once the optimized code is installed, the entire code po
tioning optimization is repeated (once) – optimizing th
optimized code – for reasons discussed in Section 2.1.3.

2.1 Measurement Steps

The first measurement phase determines whether an I-ca
bottleneck exists, making code positioning worthwhile
Next, basic block execution counts are collected for t
user-specified function and a subset of its descendants.
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Code positioning is performed not only on the user-
specified function, but also the subset of its call graph
descendants that significantly affects its I-cache perfor-
mance. We call the collective set of functions afunction
group; the user-specified function is the group’sroot func-
tion. The intuitive basis for the function group is to gain
control over I-cache behavior while the root function exe-
cutes. Because the group contains the hot subset of the root
function’s descendants, once the group is entered via a call
to its root function, control will likely stay within the group
until the root function returns.

2.1.1 Is There an I-Cache Bottleneck?
The first measurement step checks whether code position-
ing might help. KernInst instruments the kernel to obtain
the root function’s I-cache stall time and its CPU time. If
the ratio of these measurements is above a user-definable
threshold (10% by default), then the algorithm continues.

KernInst collects timing information for a desired code
resource (function or basic block) by inserting instrumenta-
tion code that starts a timer at the code’s entry point, and
stops the timer at the code’s exit point(s). The entry instru-
mentation reads and stores the current time, such as the pro-
cessor’s cycle counter. The exit instrumentation re-reads the
time and adds the delta to an accumulated total. Changing
the underlying event counter that is read on entry and exit
(e.g. using the UltraSPARC I-cache stall cycle counter [14])
enables measurements other than timing.

Measurements made using this framework areinclusive;
any events that occur in calls made by the code being mea-
sured are included. This inclusion is vital when measuring
I-cache stall time, because a function’s callees contribute to
its I-cache behavior. By contrast, sampling-based profilers
can collect inclusive time measurements only by perform-
ing an expensive stack back-trace on each sample.

Another key aspect of this framework is that it accumu-
lateswall timeevents, notCPU timeevents. That is, it con-
tinues to accumulate events when context switched out.
This trait is desirable for certain metrics (particularly I/O
latency), but not for metrics such as I-cache stall time and
CPU execution time. Fortunately, this problem can be
solved with additional kernel instrumentation – of the low-
level context switch handlers – to exclude events that occur
while context-switched out. The complete version of this
paper [16] describes this process.

2.1.2 Collecting Basic Block Execution Counts
The second measurement phase performs a breadth-first call
graph traversal, collecting basic block execution counts of
any function that is called at least once while the root func-
tion is active (on the call stack). The block counts are used
to determine which functions are hot (these are included in
the group), and to divide basic blocks into hot and cold sets.

The traversal begins by dynamically instrumenting th
root function to collect its basic block counts. After th
instrumented kernel runs for a short time (the default is
seconds), the instrumentation is removed and the blo
counts are examined. The set of statically identifiab
callees of this function then have their block counts me
sured in the same way. Pruning is applied to the call gra
traversal in two cases: a function that has already had
block execution counts collected is not re-measured, an
function that is only called from within a basic block whos
execution count is zero is not measured.

Because KernInst does not currently keep indirect fun
tion calls (i.e., through a function pointer) in its call graph,
function called only indirectly will not have its block counts
measured. Ramifications are discussed in Section 5.4.

2.1.3 Measuring Block Counts Only When Called by
the Root Function
When collecting basic block execution counts for the ro
function’s descendants, we wish to count only those exe
tions that affect the root function’s I-cache behavior. In pa
ticular, a descendant function that is called by the ro
function may also be called from elsewhere in the kern
having nothing to do with the root function.

KernInst achieves this more selective block counting b
performing code positioning twice – re-optimizing the opt
mized code. Because code replacement, the installation
new version of a function (Section 3), is performed sole
on the root function, non-root group functions only ar
invoked while the optimized root function is on the ca
stack. This invariant ensures that measured block cou
during re-optimization include only executions when th
root function is on the call stack; instrumentation code ne
not explicitly perform this check.

2.2 Choosing the Block Ordering: Code
Positioning

Among the functions whose basic block execution coun
were measured, the optimized group contains those with
least onehot block. A hot basic block is one whose mea
sured execution frequency, when the root function is on t
call stack, is greater than 5% of the frequency that the ro
function is called. (The threshold is user-adjustable.)

Procedure splitting is performed first. Each group fun
tion is segregated into hot and coldchunks; a chunk is a
contiguous layout of either all of the hot, or all of the cold
basic blocks of a function. We always place a function
entry block at the beginning of its hot chunk, for simplicity

To aid optimization, not only are the hot and cold block
of a single function segregated, but all group-wide h
blocks are segregated from the group-wide cold blocks.
other words, procedure splitting is applied group-wide.

Basic block positioning chooses a layout ordering fo
the basic blocks within a chunk. Edge execution coun
Page 2
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derived using the algorithm in Section 4, are used to choose
an ordering for a chunk’s basic blocks that facilitates
straight-lined execution in the common case. Through a
weighted traversal of these edge counts, each basic block of
the function’s hot chunk is placed in achain, a sequence of
contiguous blocks that is optimized for straight-lined execu-
tion [10]. The motivation behind chains is to place the more
frequently taken successor block immediately after the
block containing a branch. In this way, some unconditional
branches can be eliminated. For a conditional branch, plac-
ing the likeliest of the two successors immediately after the
branch allows the fall-through case to be the more com-
monly executed path (after reversing the conditional being
tested by the branch instruction, if appropriate). In general,
the number of basic blocks (or instructions) in a chain gives
the expected distance between taken branches. The more
instructions between taken branches, the better the I-cache
utilization and the lower the mispredicted branch penalty.
Ideally, a function’s hot chunk is covered by a single chain.

2.3 Emitting and Installing the Optimized Code

After ordering the group’s contents, KernInst generates the
optimized code and installs it into the running kernel.

In order to emit functions with a new ordering, KernInst
first parses each function’s machine code into a relocatable
representation. Next, it emits the group code, which must be
relocatable, because its kernel address has not yet been
determined. Procedure calls are treated specially; if the
callee is a group function, then the call is redirected to the
group’s version of that function. Kerninstd then allocates
space for the code and resolves relocatable elements, much
like a dynamic linker. Further details are in the longer ver-
sion of this paper [16].

After installation via code replacement (Section 3) on
the group’s root function, KernInst analyzes the group’s
functions like all other kernel functions. This analysis
includes parsing function control-flow graphs, performing a
live-register analysis, and updating the call graph. The first-
class treatment of runtime-generated code allows the new
functions to be instrumented (so the speedup achieved by
the optimization can be measured, for example) and even
re-optimized (a requirement, as discussed in Section 2.1.3).

3 Code Replacement
Code replacement is the primary mechanism that enables
run-time kernel optimization, allowing the code of any ker-
nel function to be dynamically replaced (en masse) with an
alternate implementation.

Code replacement is implemented on top of KernInst’s
splicing primitive [15]. The entry point of the original func-
tion is spliced to jump to the new version of the function.
Code replacement takes about 68µs if the original function
resides in the kernelnucleusand about 38µs otherwise.
(The Solaris nucleus is a 4 MB range covered by a single

I-TLB entry.) If a single branch instruction cannot jump
from the original function to the new version of the func
tion, then a springboard [15] is used to achieve sufficie
displacement. If a springboard is required, then a furth
170µs is required if the springboard resides in the nucleu
and 120µs otherwise.

The above framework incurs overhead each time t
function is called. This overhead often can be avoided,
patching calls to the original function to directly call the
new version of the function. This optimization can b
applied for all statically identifiable call sites, but not t
indirect calls through a function pointer. Replacing one ca
site takes about 36µs if it resides in the nucleus, and abou
18 µs otherwise. To give a large-scale example, replaci
the functionkmem_alloc, including patching of its 466 call
sites, takes about 14 ms. Kernel-wide, functions are cal
an average of 5.9 times, with a standard deviation of 0
(This figure excludes indirect calls, which cannot be an
lyzed statically.)

The cost of installing the code replacement (and of lat
restoring it) is higher than you might expect, becau
/dev/kerninst performs an expensiveundoable writefor each
call site. Undoable writes are logged by/dev/kerninst, which
reverts code to its original value by if the front-end GUI o
kerninstd exit unexpectedly.

Kerninstd analyzes the replacement (new) version o
function at run-time, creating a control flow graph, calcula
ing a live register analysis, and updating the call graph
the same manner as kernel code that was recognized
kerninstd startup. This uniformity is important because
allows tools built on top of kerninstd to treat the replace
ment function as first-class. For example, when kperfmon
informed of a replacement function, it updates its cod
resource display, and allows the user to measure and e
re-optimize the replacement function as any other.

Dynamic code replacement is undone by restoring t
patched call sites, then un-instrumenting the jump from t
entry of the original function to the entry of the new ver
sion. This ordering ensures atomicity; until code replac
ment undoing has completed, the replacement function
still invoked due to the jump from the original to new ver
sion. Basic code replacement, when no call sites we
patched, is undone in 65µs if the original function lies in
the nucleus, and 40µs otherwise. If a springboard was use
to reach the replacement function, then it is removed in
further 85µs if it resided in the nucleus, and 40µs other-
wise. Each patched call site is restored in 30µs if it resided
in the nucleus, and 16µs otherwise.
Page 3
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4 Calculating Edge Execution Counts from
Block Execution Counts
In this section, we describe a simple and effective algorithm
for deriving control flow graph edge execution counts from
basic block execution counts. Edge execution counts are
required for effective block positioning, but KernInst does
not presently implement an edge splicing mechanism which
would allow direct measurement of edge counts. However,
we have found that 99.6% of Solaris control flow graph
edge counts can be derived from basic block counts. This
result implies that simple instrumentation (or sampling) that
measures block counts can be used in place of technically
more difficult edge count measurements.

The results of this section tend to contradict the widely-
held belief that while block counts can be derived from edge
counts, the converse does not hold. Although that limitation
is true in the general case of arbitrarily structured control
flow graphs, our technique is effective in practice. Further-
more, the algorithm may be of special interest to sampling-
based profilers [1, 7, 8, 18], which can directly measure
block execution counts but cannot directly measure edge
execution counts.

4.1 Algorithm

We assume that a function’s control flow graph is available,
along with execution counts of the function’s basic blocks.
Our algorithm calculates the execution counts of all edges
of a function, precisely when possible, and approximated
otherwise. Two simple formulas are used: the sum of a basic
block’s predecessor edge counts equals the block’s count,
which also equals the sum of that block’s successor edge
counts. For a block whose count is known, if all but one of
its predecessor (successor) edge counts are known, then the
unknown edge count can be precisely calculated: the block
count minus the sum of the known edge counts. The algo-
rithm repeats until convergence, after which all edge counts
that could be precisely derived from block counts were so
calculated.

The second phase of the algorithm approximates any
remaining, unknown edge execution counts. Two formulas
bound the count of such an edge: (1) the count can be no
larger than its predecessor block’s execution count minus
the sum of that block’s calculated successor edge counts,
and (2) the count can be no larger than its successor block’s
execution count minus the sum of that block’s calculated
predecessor edge counts. We currently use the minimum of
these two values as an imprecise approximation of that
edge’s execution count. There are alternative choices, such
as evenly dividing the maximum allowable value among all
unknown edges. However, since most edge counts can be
precisely derived, approximation is rarely needed, making
the issue relatively unimportant.

4.2 An Example

Figure 1 contains a control flow graph used by Pettis a
Hansen to demonstrate why edge measurements are m
useful than block measurements. Precise edge counts
this graph can be derived from its block counts, as follow
First, blockB has only one predecessor edge(A,B) and only
one successor edge(B,D), whose execution counts mus
each equalB’s count (1000). Now, edge(A,C) is the only
successor ofA whose count is unknown. Its count is 1 (A’s
count of 1001 minus the count of its known successor ed
1000). Next, edge(C,C) is the only remaining unknown
predecessor edge of C. Its count equals 2000 (C’s block
count of 2001 minus the count of its known predecess
edge, 1). Finally, edge(C,D) is the only unknown successo
of C. Its count equals 1 (C’s block count of 2001 minus the
count of its known successor edge, 2000).

4.3 Results and Analysis

Applying the above algorithm to the Solaris kernel revea
that 99.6% of its control flow graph edge counts can
derived from basic block counts. Furthermore, for 97.8%
kernel functions, we can precisely calculate counts for eve
one of their control flow graph edges. Thus, with few exce
tions, collecting block counts is sufficient to derive edg
counts. This conclusion is especially useful for samplin
based profilers, which cannot directly measure edge cou

Even where edge counting can be directly measur
deriving edge counts from block counts may be preferab
because sampling can make it less expensive. For exam
dcpi [1] obtains accurate measurements by sampling 52
times per second, yet the system overhead is only 1-3%.

Figure 1: Deriving Edge Counts From Block Counts
The count for edge (X, Y) can be calculated if it is the only
unknown successor count of block X, or the only unknown

predecessor count of block Y. Repeated application can ofte
calculate all edge counts, as in this example (an augmented

Figure 3 from [10]).

A
block count=1001

B
block count=1000

C
block count=2001

D
block count=1001

1000 1 2000

11000
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5 Experimental Results
As a concrete demonstration of the efficacy of run-time ker-
nel code positioning, this section presents initial results in
optimizing the I-cache performance of the Solaris kernel
while running a Web client benchmark. We study the per-
formance oftcp_rput_data (and its callees), which processes
incoming network data.tcp_rput_data is called thousands of
times per second in the benchmark, and has poor I-cache
performance: about 36% of its time is spent in I-cache
misses. Using our prototype implementation of code posi-
tioning, we reduced the time per invocation oftcp_rput_data
in our benchmark from 6.6µs to 5.44µs, a speedup of
21.3%. (We concentrate on optimizing theper invocation
cost oftcp_rput_data, to achieve an improvement that scales
with its execution frequency.)

5.1 Benchmark

We used the GNUwget tool [6] to fetch 34 files totaling
about 28 MB of data, largely comprised of Postscript, com-
pressed Postscript, and PDF files. The benchmark contained
ten simultaneous connections, each running thewget pro-
gram as described over a 100 MB/sec LAN. The client
machine had a 440 MHz UltraSPARC-IIi processor.

The benchmark spends much of its time in the read side
of TCP code, especiallytcp_rput_data. We chose to perform
code positioning ontcp_rput_data because of its size (about
12K bytes of code across 681 basic blocks), which suggests
there is room for I-cache improvement.

5.2 tcp_rput_data Performance: Before

To determine whethertcp_rput_data is likely to benefit from
code positioning, we measured the inclusive CPU time that
it spends in I-cache misses. The result is surprisingly high;
each invocation oftcp_rput_data takes about 6.6µs, of
which about 2.4µs is idled waiting for I-cache misses. In

other words,tcp_rput_data spends about 36% of its execu
tion time in I-cache miss processing.

The measured basic block execution counts
tcp_rput_data and its descendants estimate the hot set
basic blocks during the benchmark’s run. The measur
counts are an approximation, both because code reached
an indirect call is not measured, and because the meas
ment includes block executions without regard to wheth
the group’s root function is on the call stack. These appro
imate block counts were used to estimate the likely I-cac
layout of the subset of these blocks that are hot (those wh
are executed over 5% as frequently astcp_rput_data is
called). The estimate is shown in Figure 2a.

Two conclusions about I-cache performance can
drawn from Figure 2a. First, having greater than 2-way s
associativity in the I-cache would have helped, because
hot subset oftcp_rput_data and its descendants cannot exe
cute without I-cache conflict misses. Second, even if t
I-cache were fully associative, it may be too small to effe
tively run the benchmark. The bottom of Figure 2a es
mates that 244 I-cache blocks (about 7.8K) are needed
hold the hot basic blocks oftcp_rput_data and its descen-
dants, which is about half of the total I-cache size. Becau
other code, particularly Ethernet and IP processing co
that invokestcp_rput_data, is also executed thousands o
times per second, the total set of hot basic blocks like
exceeds the capacity of the I-cache.

5.3 tcp_rput_data Performance: After

We performed code positioning to improve the inclusiv
I-cache performance oftcp_rput_data. Figure 2b presents
the I-cache layout of the optimized code, estimated in t
same way as in Figure 2a. There are no I-cache confli
among the group’s hot basic blocks, which could have
comfortably within an 8K direct-mapped I-cache.

0 0 0 0 1 1 1 0 1 1 0 0 0 1 2 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 1 0 0 0 0 0 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 2 0 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 0 0 0 0 0 1 1 1 1 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 0 1 1 3 3 3 3 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 2 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 2 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
2 2 3 2 2 1 2 2 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 1 1 1 1 2 2 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 3 4 4 4 3 4 4 4 3 2 1 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total # of cache blocks: 244 (47.7% of the I-Cache size) Total # of cache blocks: 132 (25.8% of the I-Cache size)
(a) Before Optimization (b) After Optimization

Figure 2: I-cache Layout of the Hot Blocks of tcp_rput_data and its Descendants (Before and After Optimization)
Each cell represents a 32-byte I-cache block with a count of how many hot basic blocks with distinct I-cache tags, reside ther. The
UltraSPARC I-cache is 16K, 2-way set associative; highlighted cells (those with counts greater than two) indicate a likely conict.
Page 5
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Figure 3 shows the functions in the optimized group
along with the relative sizes of the hot and cold chunks. The
figure demonstrates that procedure splitting is effective,
with 77.4% of the group’s code consisting of cold basic
blocks. Block positioning is also effective, with the hot
chunk of most group functions covered by a single chain.

Code positioning resulted in a 7.1% speedup in the
benchmark’s end-to-end run-time, from 36.0 seconds to
33.6 seconds. To explain the speedup, we used kperfmon to
measure the performance improvement in each invocation
of tcp_rput_data. Pre- and post-optimization numbers are
shown in Figure 4.

5.4 Analysis of Code Positioning Limitations

Code positioning performs well unless there are indirect
function calls among the hot basic blocks of the group. This
section analyzes the limitations that indirect calls placed on
the optimization oftcp_rput_data (and System V streams
code in general), to quantify how the present inability to
optimize across indirect calls constrains code positioning.

The System V streams code has enough indirect calls to
limit what can presently be optimized to a single streams

module (TCP, IP, or Ethernet). Among the measured h
code oftcp_rput_data and its descendants, there are two fr
quently-executed indirect function calls. Both calls a
made fromputnext, a stub routine that forwards data to th
next upstream queue by indirectly calling the next module
stream “put” procedure. This call is made when TCP h
completed its data processing (verifying check sums a
stripping off the TCP header from the data block), and
ready to forward the processed data upstream. Beca
callees reached by hot indirect function calls cannot cu
rently be optimized, we miss the opportunity to include th
remaining upstream processing code in the group. At t
other end of the System V stream, by using TCP’s data p
cessing function as the root of the optimized group, w
missed the opportunity to include downstream data proce
ing code performed by the Ethernet and IP processing.

Across the entire kernel, functions make an average
6.0 direct calls (standard deviation 10.6) and just 0.2 ind
rect calls (standard deviation 0.8). However, because in
rect calls tend to exist routines that are invoked througho
the kernel, any large function group will likely contain a
least one such call.

6 Related Work

6.1 Measurement

An alternative to our instrumentation is sampling [1, 7,
18]. Sampling measures CPU time events by periodica
reading the PC, and assigning the time since the last sam
at that location. Although it is simple and has constant pe
turbation, sampling has several limitations. First, mode
CPUs having imprecise exceptions with variable delay m
require hardware support to accurately assign events
instructions [5]. Second, while sampling can measure CP
time, it can only measure wall time with a prohibitive ca
stack back-trace of all blocked threads per sample. Thi
sampling can only measure inclusive metrics by assigni
time for all routines on the call stack for each sample. Asi
from the expense, stack back-traces can be inaccurate du
tail-call optimizations, in which a caller removes its stac
frame (and thus its call stack entry) before transferring co
trol to the callee. Tail-call optimizations are common, foun
about 3,800 times in Solaris kernel code.

Function
Jump
Table
Data

Hot
Chunk
bytes

#Chains
in Hot
Chunk

Cold
Chunk
bytes

tcp/tcp_rput_data 56 1980 10 11152
unix/mutex_enter 0 44 1 0
unix/putnext 0 160 1 132
unix/lock_set_spl_spin 0 32 1 276
genunix/canputnext 0 60 1 96
genunix/strwakeq 0 108 1 296
genunix/isuioq 0 40 1 36
ip/mi_timer 0 156 1 168
ip/ip_cksum 0 200 1 840
tcp/tcp_ack_mp 0 248 1 444
genunix/pollwakeup 0 156 1 152
genunix/timeout 0 40 1 0
genunix/.div 0 28 1 0
unix/ip_ocsum 0 372 4 80
genunix/allocb 0 132 1 44
unix/mutex_tryenter 0 24 1 20
genunix/cv_signal 0 36 1 104
genunix/pollnotify 0 64 1 0
genunix/timeout_common 0 204 1 52
genunix/kmem_cache_alloc 0 112 1 700
unix/disp_lock_enter 0 28 1 12
unix/disp_lock_exit 0 36 1 20
Totals 56 4260 34 14624

Figure 3: The Optimized tcp_rput_data Group
The group contains a new version of tcp_rput_data, and the hot
subset of its statically identifiable call graph descendants, with

code positioning applied. The group’s layout consists of 56 bytes of
jump table data, followed by 4,260 bytes of hot code, and finally
14,624 bytes of cold code. (Although mutex_enter is in the group,

mutex_exit is not, because a Solaris trap handler tests the PC
register against mutex_exit’s code bounds. To avoid confusing this

test, KernInst excludes mutex_exit from group code.)

Measurement Original Optimized Change

I-$ stall time/invoc 2.40 µs 1.55 µs -35.4%
Branch mispredict
stall time/invoc

0.38 µs 0.20 µs -47.4%

IPC (instrucs/cycle) 0.28 0.38 +35.7%

CPU time/invoc 6.60 µs 5.44 µs 21.3% speedup

Figure 4: Measured Performance Improvements in
tcp_rput_data After Code Positioning

The performance of tcp_rput_data has improved by 21.3%, mos
due to fewer I-cache stalls and fewer branch mispredict stalls
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6.2 Dynamic Optimization

Previous work has been performed on I-cache kernel opti-
mization of kernel code [9, 12, 13, 17], although the focus
has been on static, not dynamic, optimization.

Dynamo [2] is a user-level run-time optimization system
for HP-UX programs. Dynamo initially interprets code to
collect hot instruction sequences, which are then placed in a
software cache for execution at full speed. Similar in spirit
to KernInst’s evolving framework, Dynamo has several dif-
ferences. First, it only runs on user-level code. It would be
difficult to port Dynamo to a kernel because interpreting a
kernel is more difficult. Even if possible, the overhead of
kernel interpretation may be unacceptable, because the
entire system is affected by a kernel slowdown. Second,
Dynamo expands entire hot paths, so the same basic block
can appear multiple times. This expansion can result in a
code explosion when the number of executed paths is high.
The PA8000 on which Dynamo runs may be able to handle
code explosion, because it has an unusually large I-cache
(1 MB). The same is not likely to be true for the Ultra-
SPARC-II’s 16K I-cache.

Synthetix [11] performs specialization on a modified
commodity kernel. However, it requires specialized code
templates to be pre-compiled into the kernel. Synthetix also
requires a pre-existing level of indirection (a call through a
pointer) to change implementations of a function, which
incurs a slight performance penalty whether or not special-
ized code has been installed, and limits the number of
points that can be specialized.

7 Future Work
Our basic block counting overhead could be lowered by
combining block sampling and Section 4’s algorithm for
deriving edge counts. We note that KernInst’s optimization
is orthogonal to the means of measurement, because the
logic for analyzing machine code, re-ordering it, and install-
ing it into a running kernel is orthogonal to how the new
ordering is obtained.

With additional kernel instrumentation at indirect call
sites, the call graph can be updated when a heretofore
unseen callee is encountered, allowing indirect callees to be
included in an optimized group [3].

User involvement in choosing the group’s root function
can be removed by automating the search for functions hav-
ing poor I-cache performance. Such a search can be per-
formed by traversing the call graph using inclusive
measurements [3].

Because non-root group functions are always invoked
while the root function is on the call stack, certain invariants
may hold that enable further optimizations [4]. For exam-
ple, a variable may be constant, allowing constant propaga-
tion and dead code elimination. Other optimizations include
inlining, specialization, and super-blocks.
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