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Dynamic Kernel Code Optimization1

Abstract
We have developed a facility for run-time optimization of a commodity operating system kernel. This facility is a firs
towards an evolving operating system, one that adapts and changes over time without need for rebooting. Our infr
ture, currently implemented on UltraSPARC Solaris 7, includes the ability to do a detailed analysis of the running ke
binary code, dynamically insert and remove code patches, and dynamically install new versions of kernel function
first use of this technology, we have implemented a run-time kernel version of the code positioning I-cache optimiz
and obtained noticeable speedups in kernel performance. We performed run-time code positioning on the kerne
read-side processing routine while running a Web client benchmark. We found that the code positioning optimiz
reduced the I-cache miss stall time of this function by 35.4% and improved the function’s overall performance by 21

The primary contributions of this paper are the first run-time kernel implementation of code positioning, and an
structure for turning an unmodified commodity kernel into an evolving one. Two further contributions are made in k
performance measurement. First, we describe a means for converting wall time instrumentation-based kernel m
ments into virtual (i.e., CPU) time measurements via instrumentation of the kernel’s context switch handlers. Seco
provide a simple and effective algorithm for deriving control flow edge execution counts from basic block execution c
which contradicts the widely held belief that edge counts cannot be derived from block counts.

1 Introduction
This paper studies dynamic optimization of a commodity operating system kernel. We describe a mechanism for re
the code of almost any kernel function with an alternate implementation, enabling installation of run-time optimizatio
a proof of concept, we demonstrate a dynamic kernel implementation of Pettis and Hansen’s code positioning
optimizations [17]. We applied code positioning to UltraSPARC Solaris 7 TCP kernel code while running a Web
benchmark, reducing the time that the TCP read-side processing routine (tcp_rput_data) spent idled due to I-cache misse
by 35.4%. This led to a 21.3% speedup in each invocation oftcp_rput_data and a 7.1% speedup in the benchmark’s elaps
run-time, demonstrating that even I/O workloads can incur enough CPU time to benefit from I-cache optimization.

Code positioning consists of three optimizations:
• Procedure splitting. Also called outlining [16], this optimization segregates frequently-executed (hot) basic blocks

cold ones, to reduce I-cache pollution. Cold code is prevalent in kernels, due to extensive error checking.
• Basic block positioning.A function’s blocks are reordered to increase straight-lined execution in the common c

Advantages include increasing the amount of code that is executed between taken conditional branches, de
I-cache internal fragmentation due to un-executed code that shares a line with common code, and reducing unco
branches.

• Procedure positioning.This optimization places the code of functions that exhibit temporal locality adjacent in mem
to reduce the chances of I-cache conflict misses.

Pettis and Hansen implemented code positioning in a feedback-directed customized compiler for user code, which
the optimizations off-line and across an entire program. In contrast, our implementation is performed on kernel co
entirely at run-time. Only a selected set of functions need be optimized at one time, not the entire kernel.

Our implementation is the first on-line kernel version of code positioning. In the bigger picture, our dynamic k
optimization framework is a first step towardevolving operating system kernels, which dynamically modify their code at
their own behest in response to their environment. An evolving operating system is a continuous on-line process, re
each new evolution of the code to become a first class part of the code base. We treat newly modified or installed cod
same way as previously existing code, enabling the inclusion of new code in future measurements and optimizatio

An evolving system is more general than a dynamic feedback system [8], which chooses between several distin
cies at run-time. A dynamic feedback system hard-codes the logic for driving the adaptive algorithm, the measu
code, all policies, and the logic for switching between policies. An evolving system does not hard-wire these comp
The successful implementation of a dynamic optimization on an unmodified commercial kernel (that was not w
expecting to be so optimized) provides evidence that a commodity kernel can be made into an evolving one.
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2 Run-time Kernel Code Positioning Algorithm
As a demonstration of the mechanisms necessary to support an evolving kernel, we have implemented run-time ker
positioning within the KernInst dynamic kernel instrumentation system [24]. KernInst consists of three components: a
level GUI kperfmonwhich generates instrumentation code for performance measurement, a low-level privileged
instrumentation serverkerninstd, and a small pseudo device driver/dev/kerninstwhich aids kerninstd when the need arise
to operate from within the kernel’s address space. Kerninstd also performs a structural analysis of the kernel’s m
code, calculating control flow graphs and a call graph, as well as performing an interprocedural live register analys

We perform code positioning as follows: (1) A function to optimize is chosen. This is the only step requiring
involvement. (2) KernInst determines if the function has an I-cache bottleneck. If so, basic block execution counts ar
ered for this function and its frequently called descendants. From these counts, a group of functions to optimize is
(3) An optimized re-ordering of these functions is chosen and installed into the running kernel. Interestingly, once th
mized code is installed, the entire code positioning optimization is repeated (once) – optimizing the optimized cod
reasons discussed in Section 2.1.3.

2.1 Measurement Steps

The first measurement phase determines whether an I-cache bottleneck exists, making code positioning wor
Assuming the optimization goes forward, the second measurement step collects basic block execution counts for t
specified function and a subset of its call graph descendants.

Code positioning is performed not only on the user-specified function, but also the subset of its call graph desc
that significantly affects its I-cache performance. We call the collective set of functions afunction group; the user-specified
function is the group’sroot function. The intuitive basis for the function group is to gain control over I-cache behavior wh
the root function executes. Because the group contains the “hot” subset of the root function’s descendants, once the
entered via a call to its root function, control will likely stay within the group until the root function returns.

2.1.1 Is There an I-Cache Bottleneck?
The first measurement step checks whether code positioning might help. Kperfmon generates instrumentation code
sure the I-cache stall time of the root function, as well as the virtual (or CPU) time of that function. The ratio of thes
measurements gives the fraction of that function’s virtual time that is stalled due to an I-cache miss. If it is above
definable threshold (arbitrarily set to 10% by default), then the algorithm continues.

KernInst collects timing information for a desired code resource (function or basic block) by inserting instrumen
code that starts a timer at the code’s entry point, and stops the timer at the code’s exit point(s). The entry instrume
reads and stores the current time, such as the processor’s cycle counter. The exit instrumentation re-reads the time
the delta to an accumulated total. Changing the underlying event counter that is read on entry and exit (e.g., us
UltraSPARC I-cache stall cycle counter [23]) enables measurements other than timing. This measurement frame
calledinterval counter accumulation, because the instrumentation accumulates an event (such as elapsed cycles whe
suring time). A new interval counting metric can be created out of any underlying monotonically increasing event co

Measurements made using this framework areinclusive; any events that occur in calls made by the code being measu
are included. This inclusion is vital when measuring I-cache stall time, because a function’s callees contribute to its
behavior. By contrast, sampling-based profilers can collect inclusive time measurements only by performing an ex
stack back-trace on each sample, effectively prohibiting the frequent sampling that is used by dcpi [1] and Morph
obtain accurate profiles without the need for long run-times.

Another key aspect of this framework is that it accumulateswall timeevents, notvirtual timeevents. That is, it includes
any events that occur while a thread is context switched out after having started, but before having stopped accum
This trait is desirable for certain metrics (particularly I/O latency), but not for CPU metrics such as I-cache stall cycle
virtual execution time. Section 4 shows how we use additional dynamic instrumentation of the kernel’s context switc
dlers to convert a wall time based metric into a virtual time one.

2.1.2 Collecting Basic Block Execution Counts
The second measurement phase performs a breadth-first call graph traversal, collecting basic block execution coun
function that is called at least once while the root function is active (i.e., is on the call stack). The block counts are u
determine which functions are hot (these are included in the group), and to divide basic blocks into hot and cold se

The traversal begins by dynamically instrumenting the root function to collect its basic block counts. After allowin
instrumented system to run for a short time (the default is 20 seconds), the instrumentation is removed and the bloc
are examined. For each block in the function that was executed at least once, the statically identifiable callee functio
their block counts measured in the same way. Pruning is applied to the call graph traversal in two cases. First, a func
has already had its block execution counts collected is not re-measured. Second, a function that is only called from
basic block whose execution count is zero is not measured.

Because indirect function calls (i.e., through a function pointer) are not in the call graph, a function reached on
such calls will not have its block counts measured. Such functions will not have a chance to be included in the grou
Page 2
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2.1.3 Measuring Block Counts Only When Called by the Root Function
When collecting basic block execution counts for the root function’s descendants, we wish to count only those exe
that affect the root function’s I-cache behavior. In particular, a descendant function that is called by the root functio
also be called from elsewhere in the kernel having nothing to do with the root function. The latter case should
included when KernInst collects basic block execution counts.

KernInst achieves this more selective block counting by performing code positioning twice – re-optimizing the
mized code. (The first time, the group is generated using block counts that were probably too high.) Code replacem
installation of a new version of a function (discussed in Section 3), is performed solely on the root function; the no
group functions only are invoked while the optimized root function is on the call stack. This technique ensures tha
sured block counts during re-optimization include only executions when the root function is on the call stack, even
the counting instrumentation code does not explicitly perform this check.

Collecting block counts in a single pass, without re-optimization, could require predicating block counting instrum
tion code with a test for whether the code was called (directly or indirectly) from the root function. We could use instru
tation that sets a flag whenever the root function is on the call stack; the flag would be tested by block co
instrumentation code [12,13]. However, beyond the extra run-time cost, thread-safety would require per-thread flag
corresponding extra complexity [26].

2.2 Choosing the Block Ordering

Three steps are taken in choosing the ordering of basic blocks within the optimized group. First, the set of funct
include in the group is chosen. Second, procedure splitting is applied to each such function, segregating the group-
blocks from the cold blocks. Third, basic block ordering is applied within the distinct hot and cold sections of each
function. These steps determine the ordering of basic blocks within the group, which are emitted contiguously in
memory, implicitly performing procedure placement.

Among the functions that had their basic block execution counts measured, the optimized group includes those
at least onehot block. A hot basic block is one whose measured execution frequency, when the root function is on th
stack, is greater than 5% of the frequency that the root function is called. (The threshold is user-adjustable.) The nu
calls to the root function is usually the number of times that its entry basic block is invoked. However, if the entry
block has any predecessors (as in a function that begins with a while loop), the sum of its predecessor edge count(s
tracted from the block’s execution count. Section 5 discusses obtaining edge counts.

We perform procedure splitting first. Each group function is segregated into hot and coldchunks; a chunk is a contigu-
ous layout of either all of the hot, or all of the cold, basic blocks of a function. The test for a hot block is the sam
described above, except that a function’s entry block is always placed in the hot chunk, and always at the beginning
chunk, for simplicity. Pettis and Hansen consider any block that is executed at least once to be hot. KernInst can mi
behavior by setting the user-defined hot block threshold to 0%, since an execution count of zero is always conside

To aid optimization, not only are the hot and cold blocks of a single function segregated, but all group-wide hot b
are segregated from the group-wide cold blocks. In other words, procedure splitting is applied group-wide.

Basic block positioning chooses a layout ordering for the basic blocks within a chunk. Specifically, edge exe
counts are used to choose an ordering for a chunk’s basic blocks that facilitates straight-lined execution in the comm
We discuss positioning of hot basic blocks (block positioning is also applied to the function’s cold chunk, but this is
tively unimportant, because cold blocks are seldom executed). The algorithm that we use for block positioning is a
of Pettis and Hansen’s. Given a function’s control flow graph and its corresponding execution counts, edge cou
derived using the algorithm of Section 5. Through a weighted traversal of these edge counts, each basic block of th
tion’s hot chunk is placed in achain, a sequence of contiguous blocks that is optimized for straight-lined execution.
motivation behind chains is to place the more frequently taken successor block immediately after the block conta
branch. In this way, some unconditional branches can be eliminated. For a conditional branch, placing the likelies
two successors immediately after the branch allows the fall-through case to be the more commonly executed pa
reversing the conditional being tested by the branch instruction, if appropriate). In general, the number of basic blo
instructions) in a chain gives the expected distance between taken branches, assuming that edge counts can a
approximate path counts [4]. The more instructions between taken branches, the better the I-cache utilization and t
the mispredicted branch penalty. Ideally, a function’s hot chunk is covered by a single chain.

2.3 Emitting and Installing the Optimized Code

After segregating each function’s basic blocks into hot and cold chunks (through procedure splitting) and chooses a
ing of blocks within those chunks (through block positioning), KernInst generates the optimized group and insta
group’s code into the kernel.

KernInst parses each group function’s machine code into a relocatable representation. This representation a
optimized version of a function to be re-emitted with arbitrary basic block ordering, even to the point of interleavin
blocks of different functions, as required by group-wide procedure splitting. In general, basic blocks can be reordere
Page 3
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maintaining semantics by adjusting branch displacements, adding unconditional branches, and rewriting jump table
lar to what is statically performed by EEL for user-level programs [15].

Group functions are emitted in a relocatable form, because the group’s location in kernel memory is as yet unkno
example of a relocatable element is an inter-chunk branch, whose displacement is unknown until the distance b
chunks is defined. Call instructions specify the address of the callee; the call instruction is later patched to cont
proper PC-relative offset. Note that a call or inter-procedural branch to a function chosen for inclusion in the gr
altered to call the group’s version. (If the call were left unaltered, then the non-group destination would be called, de
the optimization.) Jump table data is another relocatable element; an entry depends on the displacement between
instruction and the destination basic block, and so is represented as the difference between two labels.

Once the group’s relocatable code is emitted, it is sent to kerninstd with a request to download the code, with a s
chunk ordering, into a contiguous area of kernel memory. (On SPARC Solaris, kernel code must be placed in the low
of the address space, to ensure that the PC-relative SPARC call instruction always has sufficient displacement to
intended destination.) At this time, kerninstd also resolves the code’s relocatable elements, much like a linker. The c
ous group layout has two consequences. First, it implicitly performs procedure placement. Second, it ensures that
± 512 KB and the± 8 MB displacement provided by the two classes of SPARC branch instructions is enough to tra
control between any two chunks in the group. After the group’s code is downloaded into kernel space, code repla
(Section 3) redirects all calls to the root function to the group’s optimized version of that function.

Pettis and Hansen’s method of emitting branches between hot and cold basic blocks differs from KernInst’s. In th
tem, any such branch is redirected to a nearby stub, which performs a long jump. Although these stubs are infreque
cuted (because transfers between hot and cold blocks seldom occur), they increase total hot code size. For each bra
a hot to a cold block within a function, a stub is placed at the end of that function’s hot blocks. This layout ensures th
blocks of multiple functions cannot be contiguously laid out for minimal I-cache footprint, because the stubs, whic
effectively small but cold basic blocks, reside between the hot chunks.

After installation, KernInst analyzes the group’s functions like all other kernel functions, parsing their control
graphs, performing a live-register analysis, and updating the call graph. This first-class treatment of runtime-generat
allows the new functions to be instrumented (so the speedup achieved by the optimization can be measured, for e
and even re-optimized (a requirement, as discussed in Section 2.1.3). Procedure splitting and the consequent interl
functions within the optimized group required improving KernInst’s control flow graph parsing algorithm. A function
can contain several disjoint chunks. The chunk bounds must be provided, so branches can properly be recognized
procedural or inter-procedural, and so basic blocks that fall through to another function can be identified.

3 Code Replacement
Code replacement is the primary mechanism that enables run-time kernel optimization and evolving kernels. It allo
code of any kernel function to be dynamically replaced (en masse) with an alternate implementation. This section de
the design and implementation of code replacement.

Code replacement is implemented on top of KernInst’s splicing primitive. The entry point of the original functio
spliced to jump to the new version of the function. Code replacement takes about 68µs if the original function resides in the
kernelnucleusand about 38µs otherwise. (The Solaris nucleus is a 4 MB range covered by a single I-TLB entry.) If a si
branch instruction cannot jump from the original function to the new version of the function, then a springboard [24] i
to achieve sufficient displacement. If a springboard is required, then a further 170µs is required if the springboard resides i
the nucleus, and 120µs otherwise.

The above framework incurs overhead each time the function is called. This overhead often can be avoided, by p
calls to the original function to directly call the new version of the function. This optimization can be applied for all
cally identifiable call sites, but not to indirect calls through a function pointer. Replacing one call site takes about 36µs if it
resides in the nucleus, and about 18µs otherwise. To give a large-scale example, replacing the functionkmem_alloc,
including patching of its 466 call sites, takes about 14 ms. Kernel-wide, functions are called an average of 5.9 times
standard deviation of 0.8. (This figure excludes indirect calls, which cannot be analyzed statically.)

The cost of installing the code replacement (and of later restoring it) is higher than you might expect, because/dev/kern-
inst performs an expensiveundoable writefor each call site. Undoable writes are logged by/dev/kerninst, which reverts
code to its original value by if the front-end GUI or kerninstd exit unexpectedly.

Kerninstd analyzes the replacement (new) version of a function at run-time, creating a control flow graph, calcul
live register analysis, and updating the call graph in the same manner as kernel code that was recognized at kernin
tup. This uniformity is important because it allows tools built on top of kerninstd to treat the replacement function as
class. For example, when kperfmon is informed of a replacement function, it updates its code resource display, and
the user to measure and even re-optimize the replacement function as any other.

Dynamic code replacement is undone by restoring the patched call sites (if any), then un-instrumenting the jum
the entry of the original function to the entry of the new version. This ordering ensures atomicity; until code replac
undoing has completed, the replacement function is still invoked due to the jump from the original to new version.
code replacement, when no call sites were patched, is undone in 65µs if the original function lies in the nucleus, and 40µs
Page 4
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otherwise. If a springboard was used to reach the replacement function, then it is removed in a further 85µs if it resided in
the nucleus, and 40µs otherwise. Each patched call site is restored in 30µs if it resided in the nucleus, and 16µs otherwise.

4 Virtualization
Instrumentation that measures interval event counts by starting (stopping) accumulation on entry (exit) to a chosen
measureswall timeevents. Specifically, events that occur while a thread is context switched out in the middle of that
tion are included. This inclusion is desirable for blocking metrics such as I/O latency, but is undesirable forvirtual time
metrics, which are subsets of CPU execution time. An example of a virtual time metric is the I-cache stall time metri
in this study (Section 2.1.1). This section describes extra instrumentation, of the kernel’s context switch routine
enables creation of a virtual time metric out of any wall time metric.

4.1 Instrumentation Code

Virtualization splices the following code into the kernel’s context switch routines:
• On switch-out: stop every currently active virtual accumulator that was started by the thread presently being sw

out. (An accumulator is the data structure that stores the accumulated total. It also contains fields indicating w
accumulation is presently active, and a snapshot of the underlying event counter when the accumulator was last

• On switch-in: re-start all virtual accumulator(s) that were stopped by the most recent switch-out of the thread pre
being switched in.

The implementation of the switch-out instrumentation code is simplified by the observation that, on a uniprocess
presently active virtualized accumulator must have been started exclusively by the currently running thread. (Multip
sor issues are discussed below.)

For context switch-in instrumentation code, we maintain a hash table, indexed by thread ID, whose entries
pointers to the virtual accumulators that were stopped at the most recent switch-out of that thread. Any number of
may presently be switched out after having started, and before having stopped, the same accumulator. Therefore,
table entries can contain pointers to the same accumulator. In particular, there is one accumulator for the actively
thread, plus per-switched-out-thread information for accumulators that are presently stopped due to virtualizatio
hybrid approach compares favorably to per-thread accumulators, which adds complexity and space and time overh

Context switch-out instrumentation code first allocates a vector from a free list. This vector will gather pointers
accumulators that were stopped by virtualization. It then loops through all accumulators, invoking a metric-specific r
(that depends on the metric’s underlying event counter) which stops the accumulator if it was started. When done, th
is added to the hash table, indexed by thread ID. No synchronization is required, because the context switch rout
always invoked with the interrupt priority level set to prevent scheduling. Context switch-out instrumentation code
bytes, and executes in about 0.65µs. (Timings of instrumentation code in this paper were obtained by having Kern
instrument its own instrumentation code.)

Context switch-in instrumentation code is comparatively simple. It uses the ID of the newly running thread as an
into the hash table, obtaining a vector of pointers to the accumulators that need to be restarted. When completed, th
is returned to a free pool, and the hash table entry for this thread is removed. Context switch-in instrumentation cod
bytes, and executes in about 0.58µs.

Virtualization requires identifying all of the kernel’s context switch-out and switch-in sites. KernInst can virtua
around most interrupts, because they run as kernel threads, which can block like any other. However, high-priorit
rupts (such as ECC error detection) can preempt the kernel’s scheduler, and thus also our virtualization instrum
code, so we do not insert virtualization instrumentation code in high-priority interrupt handlers.

4.2 Multiprocessor Virtualization

A key assumption made by context switch instrumentation code, that only a single thread can accumulate events a
does not hold for a multiprocessor. The invariant can be restored by using per-processor accumulators. Additiona
processor accumulators ensure that different processors will not actively compete for write access to the same s
causing undue cache coherence overhead.

A virtualized accumulator that was started on one CPU is always stopped on the same CPU, even in the pres
migration. On Solaris, migration only occurs for a presently switched-out thread. Therefore, context switch-out virtu
tion code, still running on the original CPU, stopped the accumulator. Context switch-in virtualization code re-sta
accumulator on the new CPU. Stopping an accumulator on the same CPU on which is was started is important be
on-chip register serving as an event counter (such as elapsed cycles or cache misses) may not be in sync across 

Despite the above invariant, migration must be prevented in the middle of a start or stop primitive, which we acco
by raising the processor’s interrupt priority level for the primitive’s (short) duration. This solution prevents a race con
where a thread can start CPUA’s version of the accumulator after having just migrated to CPUB.

With per-CPU versions of a single logical accumulator, the virtualization framework is still a hybrid: one accumu
per CPU to represent the actively running thread(s), plus a hash table entry for each thread that is presently switc
after having started (but before having stopped) one or more virtual accumulators.
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5 Calculating Edge Execution Counts from Block Execution Counts
In this section, we describe a simple and effective algorithm for deriving control flow graph edge execution count
basic block execution counts. Edge execution counts are required for effective block positioning, but KernInst do
presently implement an edge splicing mechanism which would allow direct measurement of edge counts. However,
found that 99.6% of Solaris control flow graph edge counts can be derived from basic block counts. This result impl
simple instrumentation (or sampling) that measures block counts can be used in place of technically more difficu
count measurements.

The results of this section tend to contradict the widely-held belief that while block counts can be derived from
counts, the converse does not hold. Although that limitation is true in the general case of arbitrarily structured contr
graphs [18], our technique is effective in practice. Furthermore, the algorithm may be of special interest to sampling
profilers such as dcpi [1], Morph [27], gprof [11], and VTune [14], which can directly measure block execution coun
cannot directly measure edge execution counts.

5.1 Algorithm

We assume that a function’s control flow graph is available and that the execution counts of the function’s basic blo
known. Our algorithm calculates the execution counts of all edges of a function, precisely when possible, and appro
otherwise. Two simple formulas are used: the sum of a basic block’s predecessor edge counts equals the block
which also equals the sum of that block’s successor edge counts. For a block whose count is known, if all but one of
decessor (successor) edge counts are known, then the unknown edge count can be precisely calculated: the blo
minus the sum of the known edge counts. The algorithm repeats until convergence, after which all edge counts that
precisely derived from block counts were so calculated.

The second phase of the algorithm approximates the remaining, unknown edge execution counts (if any). Two fo
bound the count of such an edge: (1) the count can be no larger than its predecessor block’s execution count minus
of that block’s calculated successor edge counts, and (2) the edge’s execution count can be no larger than its s
block’s execution count minus the sum of that block’s calculated predecessor edge counts. We currently use the m
of these two values as an imprecise approximation of that edge’s execution count. There are alternative choices,
evenly dividing the maximum allowable value among the unknown edges. However, since edge counts can usually
cisely derived, approximation is rarely needed, making the issue relatively unimportant.

5.2 An Example

Figure 1 contains a control flow graph from Pettis and Hansen’s
paper [17], which was used to demonstrate why edge measure-
ments are more useful than block measurements. Precise edge
counts for this graph can be derived from its block counts, as fol-
lows. First, blockB has only one predecessor edge(A,B)and only
one successor edge(B,D), whose execution counts must each
equalB’s count (1000). Now, edge(A,C) is the only successor ofA
whose count is unknown. Its count is 1 (A’s count of 1001 minus
the count of its known successor edge, 1000). Next, edge(C,C) is
the only remaining unknown predecessor edge of C. Its count
equals 2000 (C’s block count of 2001 minus the count of its
known predecessor edge, 1). Finally, edge(C,D) is the only
unknown successor ofC. Its count equals 1 (C’s block count of
2001 minus the count of its known successor edge, 2000).

5.3 Results and Analysis

Applying the above algorithm to the Solaris kernel reveals that
99.6% of its control flow graph edge counts can be derived from
basic block counts. Furthermore, for 97.8% of kernel functions, we can precisely calculate counts for every one o
control flow graph edges. Thus, with few exceptions, collecting block counts is sufficient to derive edge counts. Th
clusion is especially useful for sampling-based profilers, which cannot directly measure edge counts.

Even where edge counting can be directly measured, deriving edge counts from block counts may be preferable
it can be less expensive. Specifically, basic block counting instrumentation can be placed anywhere in that block
with sufficient scratch registers to execute the instrumentation code without register spilling is often possible. Our liv
ister analysis of the machine code of the Solaris 7 kernel shows that an average of 9.0 integer registers do not con
values (and thus may be used as scratch registers) at a given machine code instruction.

However, judging by the number of instrumentation sites (and not on their individual costs), edge instrumenta
cheaper than block instrumentation [3]. It would be useful to leverage previous work in minimizing the number of
block counters. Probert [18] provides a provably minimum set of basic block instrumentation sites via a source cod

Figure 1: Deriving Edge Counts From Block Counts
The count for edge (X, Y) can be calculated if it is the onl
unknown successor count of block X, or the only unknow
predecessor count of block Y. Repeated application ca
often calculate all edge counts, as in this example (an

augmented Figure 3 from [17]).

A
block count=1001

B
block count=1000

C
block count=2001

D
block count=1001

1000 1 2000

11000
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formation, though only for “well-delimited” programs, where each control statement (e.g., if or while) is matched w
corresponding delimiter. We posit that the set of functions for which every edge count can be calculated are isomo
the set of “well-delimited” functions, enabling Probert’s work to be leveraged in reducing block measurement cost.

6 Experimental Results
As a concrete demonstration of the efficacy of run-time kernel code positioning, this section presents initial results
mizing the I-cache performance of the Solaris kernel while running a Web client benchmark. We study the performa
tcp_rput_data (and its callees), the major TCP function that processes incoming network data.tcp_rput_data is called thou-
sands of times per second in the benchmark, and has poor I-cache performance: about 36% of its execution time is
I-cache misses. Using our prototype implementation of code positioning, we reduced the time per invocat
tcp_rput_data in our benchmark from 6.6µs to 5.44µs, a speedup of 21.3%. (We concentrate on optimizing theper invoca-
tion cost oftcp_rput_data, to achieve an improvement that scales with its execution frequency.)

6.1 Benchmark

We used the GNUwget tool [10] to fetch 34 files totaling about 28 MB of data, largely comprised of Postscript, compre
Postscript, and PDF files. The benchmark contained ten simultaneous connections, each running thewget program as
described over a 100 MB/sec LAN. The client machine had a 440 MHz UltraSPARC-IIi processor.

The benchmark spends much of its time in TCP code. In particular, the read-side of a TCP connection is stresse
cially tcp_rput_data, which processes data that has been received over an Ethernet connection and recognized a
packet. We chose to perform code positioning ontcp_rput_data because of its size (about 12K bytes of code across 6
basic blocks), which suggests there is room for I-cache improvement in this function.

6.2 Performance of tcp_rput_data Before Code Positioning

To determine whethertcp_rput_data is likely to benefit from code positioning, we measured the inclusive virtual execut
time that it spends in I-cache misses. The result is surprisingly high; each invocation oftcp_rput_data takes about 6.6µs, of
which about 2.4µs is idled waiting for I-cache misses. In other words,tcp_rput_data spends about 36% of its execution
time in I-cache miss processing.

The measured basic block execution counts oftcp_rput_data and its descendants estimate the hot set of basic blo
during the benchmark’s run. The measured counts are an approximation, both because code reached via an indire
not measured, and because the measurement includes block executions without regard to whether the group’s roo
is on the call stack. These approximate block counts were used to estimate the likely I-cache layout of the subset
blocks that are hot, based on KernInst’s default interpretation that the hot blocks are those which are executed ove
frequently astcp_rput_data is called. The estimate is shown in Figure 2a.

Two conclusions about I-cache performance can be drawn from Figure 2a. First, having greater than 2-way set
tivity in the I-cache would have helped. The hot subset oftcp_rput_data and its descendants cannot execute without I-cac
conflict misses. Second, even if the I-cache were fully associative, it may be too small to effectively run the benchma
bottom of Figure 2a estimates that 244 I-cache blocks (about 7.8K) are needed to hold the hot basic blocks oftcp_rput_data
and its descendants, which is about half of the total I-cache size. Because other code, particularly Ethernet and IP

0 0 0 0 1 1 1 0 1 1 0 0 0 1 2 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 1 0 0 0 0 0 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 2 0 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 0 0 0 0 0 1 1 1 1 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 0 1 1 3 3 3 3 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 2 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 2 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
2 2 3 2 2 1 2 2 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 1 1 1 1 2 2 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 3 4 4 4 3 4 4 4 3 2 1 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total # of cache blocks: 244 (47.7% of the I-Cache size) Total # of cache blocks: 132 (25.8% of the I-Cache size)
(a) Before Optimization (b) After Optimization

Figure 2: I-cache Layout of the Hot Blocks of tcp_rput_data and its Descendants (before and after optimization)
Each cell represents a 32-byte I-cache block with a count of how many hot basic blocks, with distinct I-cache tags, fall ot

block. There are 256 cache blocks (8K bytes). The UltraSPARC I-cache is 16K 2-way set associative. Highlighted cells hav
than two addresses mapping to that I-cache block, indicating a likely conflict.
Page 7



likely

ong the

figure
addi-

3.6 sec-
ation of

is sec-

s mod-
y-
m
ts data

ts, wit
e, and
ests the
ode.)

ict stalls.
ing code that invokestcp_rput_data, is also executed thousands of times per second, the total set of hot basic blocks
exceeds the capacity of the I-cache.

6.3 The Performance of tcp_rput_data After Code Positioning

We performed code positioning to improve the inclusive I-cache performance oftcp_rput_data. Figure 2b presents the
I-cache layout of the optimized code, estimated in the same way as in Figure 2a. There are no I-cache conflicts am
group’s hot basic blocks, which could have fit comfortably within the confines of an 8K direct-mapped I-cache.

Figure 3 shows the functions in the optimized group along with the relative sizes of the hot and cold chunks. The
demonstrates that procedure splitting is effective, with 77.4% of the group’s code consisting of cold basic blocks. In
tion, block positioning is also effective, with the hot chunk of most group functions covered by a single chain.

Code positioning resulted in a 7.1% speedup in the benchmark’s end-to-end run-time, from 36.0 seconds to 3
onds. To explain the speedup, we used kperfmon to measure the performance improvement in each invoc
tcp_rput_data. Pre- and post-optimization numbers are shown in Figure 4.

6.4 Analysis of Code Positioning Limitations

Code positioning performs well unless there are indirect function calls among the hot basic blocks of the group. Th
tion analyzes the limitations that indirect calls placed on the optimization oftcp_rput_data (and System V streams code in
general), to quantify how the present inability to optimize across indirect calls constrains code positioning.

The System V streams code has enough indirect calls to limit what can presently be optimized to a single stream
ule (TCP, IP, or Ethernet). Among the measured hot code oftcp_rput_data and its descendants, there are two frequentl
executed indirect function calls. Both calls are made fromputnext, a stub routine that forwards data to the next upstrea
queue by indirectly calling the next module’s stream “put” procedure. This call is made when TCP has completed i

Function
JumpTable

Data
Hot Chunk

bytes
# Chains in
Hot Chunk

Cold Chunk
bytes

tcp/tcp_rput_data 56 1980 10 11152
unix/mutex_enter 0 44 1 0
unix/putnext 0 160 1 132
unix/lock_set_spl_spin 0 32 1 276
genunix/canputnext 0 60 1 96
genunix/strwakeq 0 108 1 296
genunix/isuioq 0 40 1 36
ip/mi_timer 0 156 1 168
ip/ip_cksum 0 200 1 840
tcp/tcp_ack_mp 0 248 1 444
genunix/pollwakeup 0 156 1 152
genunix/timeout 0 40 1 0
genunix/.div 0 28 1 0
unix/ip_ocsum 0 372 4 80
genunix/allocb 0 132 1 44
unix/mutex_tryenter 0 24 1 20
genunix/cv_signal 0 36 1 104
genunix/pollnotify 0 64 1 0
genunix/timeout_common 0 204 1 52
genunix/kmem_cache_alloc 0 112 1 700
unix/disp_lock_enter 0 28 1 12
unix/disp_lock_exit 0 36 1 20
Totals 56 4260 34 14624

Figure 3: The Contents of the Optimized tcp_rput_data Group
The group contains a new version of tcp_rput_data, and the hot subset of its statically identifiable call graph descendanh
code positioning applied. The group’s layout consists of 56 bytes of jump table data, followed by 4,260 bytes of hot cod

finally 14,624 bytes of cold code. (Although mutex_enter is in the group, mutex_exit is not, because a Solaris trap handler t
PC register against mutex_exit’s code bounds. To avoid confusing this test, KernInst excludes mutex_exit from group c

Measurement Original Optimized Change

I-cache stall time per invocation 2.40 µs 1.55 µs -0.85 µs (-35.4%)
Branch mispredict stall time per invocation 0.38 µs 0.20 µs -0.18 µs (-47.4%)
IPC (instructions per cycle) 0.28 0.38 +0.10 (+35.7%)

Total virtual execution time per invocation 6.60 µs 5.44 µs -1.16 µs (21.3% speedup)

Figure 4: Measured Performance Improvements in tcp_rput_data After Code Positioning
The performance of tcp_rput_data has improved by 21.3%, mostly due to fewer I-cache stalls and fewer branch mispred
Page 8
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processing (verifying check sums and stripping off the TCP header from the data block), and is ready to forward th
cessed data upstream. Because callees reached by hot indirect function calls cannot currently be optimized, we
opportunity to include the remaining upstream processing code in the group. At the other end of the System V stre
using TCP’s data processing function as the root of the optimized group, we missed the opportunity to include down
data processing code performed by the Ethernet and IP protocol processing.

Across the entire kernel, functions make an average of 6.0 direct calls (standard deviation 10.6) and just 0.2
calls (standard deviation 0.8). However, because indirect calls tend to exist routines that are invoked throughout the
any large function group will likely contain at least one such call.

7 Related Work

7.1 Measurement

An alternative to our instrumentation is sampling, as in dcpi [1], gprof [11], Morph [27], or VTune [14]. Sampling mea
virtual time events by periodically reading the PC, and assigning the time since the last sample at that location. Alth
is simple and has constant perturbation, sampling has several limitations. First, it may be hard to accurately assign e
instructions. For example, dcpi samples via periodic traps. With modern processors having imprecise, variable-
interrupts, it is hard to know which instruction trapped without hardware support [7]. Second, while sampling can m
virtual time, it cannot easily measure wall time, such as I/O latency. These measurements would require a call stac
trace of all blocked threads per sample. But accuracy dictates frequent sampling, making back-tracing prohibitive
sampling cannot easily measure inclusive metrics (ones that include activity of callees), as required to identify a
exhibiting poor I-cache performance. Inclusive measurements with sampling requires assigning time for all the rout
the call stack. Aside from the expense, back-traces can be inaccurate due to tail-call optimizations, in which a
removes its stack frame (and thus its call stack entry) before transferring control to the callee. Tail-call optimizatio
common, occurring about 3,800 times in Solaris kernel code.

Our basic block counting overhead could be lowered by combining block sampling and Section 5’s algorithm for
ing edge counts. Another approach, NET prediction, maintains instrumentation but reduces its cost in estimating p
cution counts [9]. In NET, instrumentation is incremental, initially counting just path head executions. Addit
instrumentation collects full path counts, for paths with hot head execution counts. NET can be performed using sa
when augmented with our block counts-to-edge counts algorithm and a means to derive path counts from edge co

We note that KernInst’s optimization is orthogonal to the means of measurement, because the logic for an
machine code, re-ordering it, and installing it into a running kernel is orthogonal to how the new ordering is obtaine

7.2 Dynamic Optimization

Previous work has been performed on I-cache kernel optimization of kernel code [16, 20, 22, 25], although the foc
been on static, not dynamic, optimization.

Dynamo [2] is a user-level run-time optimization system for HP-UX programs. Dynamo uses NET prediction via
pretation to collect hot instruction sequences, which are then placed in a software cache. Code in the software ca
cutes at full speed, thus ameliorating the initial expense of interpretation. Similar in spirit to KernInst’s evolving frame
Dynamo has several differences. First, it only runs on user-level code. It would be difficult to port Dynamo to a k
because interpreting a kernel is more difficult. Even if possible, the overhead of kernel interpretation may be unacc
because the entire system is affected by a kernel slowdown. Second, Dynamo expands entire hot paths, so the sa
block can appear multiple times. This expansion can result in a code explosion when the number of executed paths
The PA8000 on which Dynamo runs may be able to handle code explosion, because it has an unusually large
(1 MB). This same is not likely to be true for the UltraSPARC-II’s 16K I-cache.

Synthetix [19] performs specialization on a modified commodity kernel. However, it requires specialized code
plates to be pre-compiled into the kernel. Synthetix also requires a pre-existing level of indirection (a call through a p
to change implementations of a function, which incurs a slight performance penalty whether or not specialized co
been installed, and limits the number of points that can be specialized.

An evolving framework was proposed for the VINO extensible kernel [21]. Built-in code would detect high reso
utilization, triggering an off-line heuristic to suggest an algorithmic change, which is examined by simulating its exe
using inputs from previously gathered traces and logs. If deemed superior, the new version of the function is instal
note that a custom kernel is not required for most of these steps, specifically installing measurement and trace-g
code at run-time, simulatingin situ a new algorithm, and dynamically installing that algorithm in place of the existing o

8 Future Work
Calls via function pointers are not included in an optimized group because they are not recognized in the call gra
versal. With additional kernel instrumentation (at an indirect call site), the call graph can be updated when a her
unseen callee is encountered, allowing indirect callees to be included in an optimized group [5].
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User involvement in choosing the group’s root function can be removed by automating the search for functions
poor I-cache performance. Such a search can be performed by traversing the call graph using inclusive measurem

Other than emitting all hot chunks before any cold chunks, the placement of functions within a group is arbitrary
future work, basic block positioning can be performed across procedure call bounds, allowing a chain to contain
blocks from different functions. This change would execute longer sequences of straight-lined code in the common

Because non-root group functions are always invoked while the root function is on the call stack, certain invarian
hold that enable further optimizations [6]. For example, a variable may be constant, allowing constant propagation a
code elimination. Other optimizations include inlining, specialization, and super-blocks.
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