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ABSTRACT

Enterprises today face several challenges when hostieglifbusiness

applications in the cloud. Central to many of these chaksrig the
limited support for control over cloud network functionsich as,
the ability to ensure security, performance guaranteesadation,
and to flexibly interpose middleboxes in application depieyts.
In this paper, we present the design and implementation of/aln
cloud networking system called CloudNaaS. Customers caat-le
age CloudNaas to deploy applications augmented with a rich a
extensible set of network functions such as virtual netwiedta-
tion, custom addressing, service differentiation, anditflexinter-
position of various middleboxes. CloudNaa$S primitivesdirectly
implemented within the cloud infrastructure itself usingtispeed
programmable network elements, making CloudNaa$S higtily ef

cient. We evaluate an OpenFlow-based prototype of ClouSNaa

and find that it can be used to instantiate a variety of netvtomk-
tions in the cloud, and that its performance is robust evéhariace
of large numbers of provisioned services and link/deviderfas.

Categories and Subject Descriptors

C.2.3 [COMPUTER-COMMUNICATIONNETWORKS ]: Net-
work Operations

General Terms
Design, Performance

Keywords
Datacenter, Virtual Network

1. INTRODUCTION

Cloud computing is an emerging new model for the delivery

and consumption for IT resources. Given the economic appehl
agility of this model, both small and large companies aredas-
ingly leveraging cloud computing for their workloads [4&]4De-
spite this growing adoption, however, key challenges remdien
migrating line-of-business production applications,luiing lack
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of fine-grained security, privacy, audit compliance, umjictable
performance, and poor reliabiliti T48].

Underlying many of these challenges is thlesent or limited
control available to customers to configure the netwarkcur-
rent cloud computing environments. The cloud network modsl
largely focused on providing basic reachability using dyi@or
static IP addresses assigned to customer VMs, with basiedfire
capabilities available at each virtual server. Several tketvork
functions are generally not available, e.g., fine-graineshvork iso-
lation for security or service differentiation, policy4®d routing
through middleboxes (for intrusion detection or audit ctiemze),
control over addressing, and optimizations like protocoteder-
ation, path control, and distributed caching for improvesifor-
mance and availability.

In this paper, we present the design, implementation, aaldav
tion of CloudNaasS (Cloud Networking-as-a-Service), a rmeking
framework that extends the self-service provisioning nadé¢he
cloud beyond virtual servers and storage to include a ri¢lose
accompanying network services. CloudNaaS gives custodeers
ploying their applications on the cloud access to virtuaimoek
functions such as network isolation, custom addressingicge
differentiation, and the ability to easily deploy a varietly mid-
dlebox appliances to provide functions such as intrusidgadi®n,
caching, or application acceleration. Unlike solutionsedzh on
third-party add-on virtual appliances and overlay netwoloud-
Naa$S primitives are implemented within the cloud infrastaue,
and hence are highly efficient and transparent to cloud tsread
end-users. In CloudNaa$, all of these network servicesrafied
in a single, extensible framework. This model has the paknt
to save cost and complexity compared to the current apprivach
which cloud customers must integrate a variety of point tsahs
from cloud providers and third parties to implement netviagk
services.

The design of CloudNaaS leverages techniques such as seftwa
defined networking to provide flexible and fine-grained colntrf
the network (e.g., with OpenFlow-enabled devices), irdioa to
provide added control over addressing, and host-basadhvirt
switches to extend the network edge into hypervisors. Inram e

ronment as large and dynamic as a cloud, however, a number of

challenging issues must be addressed. For example, netigerk
vices are limited in the amount of control state, such as A@ked
tables, that they can maintain, and the rate at which statebea
updated. Also, the dynamic nature of customer applicatants
infrastructure failures or downtime requires that netwsekvices
be maintained or re-established under varying amounts wifnch
in the system. Our design and implementation of CloudNaasS in
cludes algorithms and optimizations that reduce the imp&ittese



hardware limitations, and also improve its ability to mam#ge dy-
namic nature of cloud-delivered services.
The contributions of CloudNaaS may be summarized as follows

e design of an integrated provisioning system for cloud agapli
tions and network services with simple and flexible integfac
for customers to specify network requirements

optimizations to improve scalability and overcome hardwar
limitations of network devices to support cloud-scale riteHt
nancy with tens of thousands of application deployments and
hundreds of thousands of VMs

an implementation of the system, with experimental and
simulation-based evaluation using a variety of commonalou
application workload models

We demonstrate the benefits of CloudNaaS using extension ex-

periments and simulation experiments on a prototype imptem
tion. The flexibility of CloudNaa$S in supporting network giees
in the cloud is demonstrated through evaluation in a latbésstvith
commercial programmable network switches. Using this remnvi
ment, we validate that fine-grained access control, VLANeoh
isolation, service differentiation, IP address mappinmg] middle-
box interposition can be easily specified and deployed uSiagd-
NaasS.
We evaluate the performance and scalability of CloudNaagjus

a number of emulated scenarios with typical multi-tier iatgive

Static
Addressing

Network
Functions
EC2 ]
EC2+VLAN
EC2 w/VPCIZ]
VPN-Cubed]b]
CloudNaaS

On-path ACL

Middlebox

Layer 2
Broadcast

QoS

<|Z|Z|Z|Z
<|<[z|<|z
<|z|z|z|z
<| <[ <] <|<
<|<[«|z|z

Table 1: Policies supported by the networking layers of vamwus
clouds.

2.1 Limitation of Current Cloud Networking
Mechanisms

Below, we focus on three important challenges that arise fro
limited control over the networking capabilities in curtertbouds.

In each case, we suggest a design requirements to addrdss eac
limitation.

Limitation 1: Application performance. Many tiered applica-
tions require some assurances of the bandwidth betweeerserv
stances to satisfy user transactions within an acceptabéeftame
and meet predefined SLAs. For instance, the “thumbnail”iappl
cation described if[32] generates and sends differentoresof
photos between the business logic servers before they aiéyfin
returned to the user. Insufficient bandwidth between theseess,
e.g., at times of high cloud utilization, will impose signdint la-
tency on user interactions_[32]. Also, recent studies [3hpto

and batch application models. We focus on the performance of the slow rise in the average latency within the EC2 cloudsitg

CloudNaas in the face of dynamics such as network and hdst fai
ures, and also as the number of customers and the size ofiln cl
varies. We use realistic reference applications includtmgractive
n-tiered and batch applications. CloudNaa$S scales to thardics

of a large cloud with 270K VMs by recovering (i.e., re-estsiing
network services as well as connectivity) from link failsi@nd de-
vice failures in well under .1 seconds and 6 seconds, resphct
By using techniques such as caching and precomputatioprthe
cessing overhead and recomputation time for recovery isced
significantly.

Our evaluation shows that CloudNaaS imposes low memory over
head on the network devices in the cloud, requiring, for gxam
only 96 MB of memory per endhost. We also show that simple
heuristics can be employed to effectively manage limiteivagk
device memory for holding the forwarding state for large Aum
bers of cloud tenants. These heuristics help reduce netsvaitkh
memory usage by 96-99% compared to naive routing and forward
ing, thereby helping CloudNaaS scale to host many enterpips
plications. Our experiments show that our network aware VM
placement strategy, in which VMs belonging to the same agpli
tion deployment are placed topologically near each otkdugetter
able to accommodate network service requests, partigutarbp-
plications with many VMs. Network-aware placement redutes
pathlength between VMs belonging to such applications kgca f
tor of 3, and can support nearly 10% more applications than no
network-aware algorithms.

2. BACKGROUND

In this section, we motivate the need for additional netwlexel
support when moving typical multi-tier enterprise appiioas to
the cloud. First, we argue that the lack of sufficient netwsu-
port in current clouds deters enterprises from redeployfiegr ap-
plications, and then we identify the design requiremerds alow
our system to overcome these challenges.

due to oversubscription. Thus, without explicit contradyiations

in cloud workloads and oversubscription can cause delayand-
width to drift beyond acceptable limits, leading to SLA \dtibns

for the hosted applications.

Requirement:Cloud tenants should be able to specify bandwidth
requirements for applications hosted in the cloud, engwsimilar
performance to on-premise deployments.

Limitation 2: Flexible middlebox interposition. Enterprises
deploy a wide variety of security middleboxes in their daaters,
such as deep packet inspection (DPI) or intrusion detestistems
(IDS), to protect their applications from attacks. These aifiten
employed alongside other middleboxEs][23] that perfornd loal-
ancing [3], caching[[27] and application accelerationl [18]hen
deployed in the cloud, an enterprise application shouldicoa to
be able to leverage this collection of middlebox functions.

Today, there are a limited number of solutions to address thi
need. IDS providers, such as SourceFirg [14], have stadel-p
aging their security software into virtual appliances tta be de-
ployed within the cloud. Similarly, EC2 provides a virtualad
balancer appliance for cloud-based applicatibihs [6]. tofwtely,
there is no means today to specify and control middleboxetrav
sal, i.e., the series of virtual appliances that traffic $tharaverse
before arriving at, or after leaving, a node in the entempapplica-
tion. A common practice when using virtual appliances iswsiall
all the virtual appliances in the same VM as the applicatiemvey.
However, this approach can degrade application performaig:
nificantly. It also increases the cost of the cloud-basedogearent
as the customer will have to buy as many appliance instarses a
there are application servers.

Requirementideally, tenants should have the ability to realize an
identical data-plane configuration in the cloud to on-piamithis
includes the ability to flexibly interpose a variety of middbxes
such as firewalls, caches, application accelerators, aadi bal-
ancers.

Limitation 3: Application rewriting for consistent networ k
operation. The cost and difficulty of application rewriting places
a significant barrier to migrating enterprise application® the
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Figure 1: Various steps in the CloudNaaS framework.

cloud. Applications may need to be rewritten or reconfiguoee
fore deployment in the cloud to address several networkiedl
limitations. Two key issues are: (i) lack of a broadcast dioma
abstraction in the cloud and (2) cloud-assigned IP addse&se
virtual servers.

Cloud providers such as EC2 do not allow broadcast traffil; [20
which precludes important mechanisms such as broadcastiba
failover. Applications may have to be rewritten to emploteaiate
failover mechanisms in the cloud. For example, backendbdat
servers must be rewritten to use other failover mechanismls as
Layer-3 heartbeat$ [45] and third-party cluster resouremagers
(e.g., PaceMakef12]).

When writing configuration files for their applications, sewemp-
plications may have hardcoded IP addresses for serversiouga
tiers or for external services on which the applicationsathep(see
examples in[36]). When redeploying applications withie tdhoud,
virtual servers are likely to be given new addresses in thedl
requiring, at a minimum, updates to their configurationsp&el-
ing on whether or not the services that the applications it
have also been migrated into the cloud, further updatesntigio
rations may be necessary. Configurations can be quite carfple
production 3-Tier application§29], hence retooling thenensure
consistency in IP addresses is challenging and difficultitoraate.
Requirement:Applications should require little or no rewriting to
handle networking (i.e., applications should run “out &f Hox” as
much as possible), in particular for IP addresses and favarét
dependent failover mechanisms.

As mentioned in Sectiolll 1, some cloud providers do support
some specific network-level functionality, but these araegally
point solutions that only partially address the limitasatescribed
above. For example, in Tadl® 1, we list a number of networlcfun
tions and consider to what extent they are supported by some c
mercially available cloud servidksWe see that each of the avail-
able mechanisms addresses a subset of the desired funetiutes
CloudNaas provides a framework with more comprehensive sup
port for network-layer policies in the cloud.

3. RELATED WORK

Network services have started to receive more attentiogntbc
from cloud providers, but the network support is primardygeted
at a small set of capabilities. For example, Amazon recesly
tended its VPN services to include secure connectivity dtated
virtual instances with the ability to segment them into setsrand
specify private address ranges and more flexible networksjC]L
Similarly, the Microsoft Windows Azure virtual network pridles
services for customers to integrate on-premise applioati@6].
Both Amazon and Azure also provide network-related addesn s
vices such as traffic load balancing across clustered VMbcan-
tent distribution services using their distributed platfis.

!Note that EC2+VLAN is not actually available, but represesm
laasS service with the ability for customers to create VLANS.

There are also a number of third-party providers of network-
related services delivered as virtual cloud appliancesneSavail-
able functions include fast data replicatibih [8], applicatacceler-
ation [T7] and intrusion prevention [l14]. Another delivenodel
is via overlays using nodes in the cloud to provide serviceh as
custom addressing and encrypted communicatidrd [4, 5].

Both of these types of cloud network services (i.e., clotmioed
or third-party) address some of the gaps discussed in $EtiBut
neither offers a single cloud networking framework thatmans a
wide variety of services without the need to integrate rpistiof-
ferings from multiple vendors, each with its own service miaghd
management interface. Overlays have the advantage of gingpo
a greater variety of services, but usually with a negativeant on
performance. In CloudNaaS, an extensive list of servicesha
provided under a single framework (from both customer aoda!
provider perspectives), while also retaining the perfarogand
efficiency of a network-level solution.

The research community has also advanced its view of the re-

quirements and challenges in deploying diverse workloadfé
cloud [22 [47]. Some network-related issues have beenfaglyi
addressed, including better control over routiagl [35], rovand-
width [24,[31], architectures for access control, privaog ésola-
tion in the cloud[[51-33], or reducing disruption of sendaturing
migration [50]. Our goals are broader in the sense that QNaa®
spans services that include access control, performantaian,
and control over network paths, e.g., through intermeégrCon-
trol over middlebox placement in data centers has been &so b
considered in prior researdh [34] — our approach for maragiiu-
dleboxes is conceptually similar to this work. Other recentk
has also suggested frameworks for network services, egesa
control in the cloud[[44], or distributed network managet{Z&],
but these focus primarily on security issues and are nogiated
with cloud provisioning.

Some experimental platforms also have similar goals to &lou
Naa$, in terms of providing some measure of control overastbed
network [21,[30]. In Emulab, for example, users can spedify t
network topology and link characteristics using a modeliaug-
guage similar to popular network simulation tools. Sinaesthen-
vironments are designed for experimentation, they expossid-
erable low-level control over the network. In a multi-tehatoud
environment the network services exposed to customerstodssl
standardized, and designed to support application neduk than
low-level control over the network infrastructure for eratibn.

4. CloudNaaS SYSTEM DESIGN

In this section, we describe the architectural componehtseo
CloudNaas cloud networking framework and their interattior his
high-level description is followed by more details on theide and
implementation of each component.

CloudNaasS overview. Figure[ illustrates the sequence of main
operations in CloudNaasS.

First, a cloud customer or tenant uses a simple policy laggua
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Figure 2: Example 3-tier application

to specify the network services required by his applica(ieiy-

ure[d(a)). We describe the syntax and semantics of the nietwor

policy specification below in Secti¢n?%.1.

Next, the network policy is translated from the high leveheo
structs into a canonical description of the desired netwawin-
munication patterns and network services; we refer to thitha
“communication matrix” (Figurgll (b)). This represents tbgical

rent clouds such as Amazon EC2 and Windows Azure. For exam-
ple, our policy language could work with EC2’s virtual inste
identifiers when specifying network policies.

While the CloudNaas policy language is just one candidatengm
a number of possibilities, we have found it to be sufficienteal-
ize the requirements outlined in Sectldn 2, and also exténsind
intuitive to use. The constructs in the CloudNaaS policyylage

view of the resource demand of the customer. At the end of this could also be leveraged in ongoing work to develop standdtsA

step, the communication matrix is used to determine thavaiti

placement of the new VMs such that the cloud is able to satisfy

the largest number of global policies in an efficient manrfigris

is done based on the knowledge of other customers’ requiteme
and/or their current levels of activity. This step deterasnvhether
it is possible to map the new customer’s logical requiremsénto
the cloud’s physical resources.

We then translate the logical communication matrix alonthwi
knowledge of the placement of VM locations into networkdev
directives (i.e., configuration commands or rules) for desiin the
cloud (FigurddL (c)). The customer's VM instances are degdoy
by creating and placing the specified number of VMs. We dbscri
this in Sectio ZR.

The final step is to install the configuration commands orsule
into the devices within the network (Figurk 1 (d)), therebyating
the necessary physical communication paths that satisfctis-
tomer’s needs. In addition, address-rewriting rules aséaintiated
within appropriate network locations to ensure that agpions can
use custom IP addresses within the cloud. We describe thievas
steps in Sectiof4l 3. The new cloud application deployneetiitein
ready to run as per the customer’s specifications.

CloudNaaS componentsThe CloudNaasS architecture consists of
two primary communicating components, namely dheud con-
troller and thenetwork controller The cloud controller manages
both the virtual resources and the physical hosts, and stgpfBls
for setting network policies. It addresses the steps showig-
ure[d (a) and (b). The network controller is responsible fanim
toring and managing the configuration of network devices a w
as for deciding placement of VMs within the cloud. It handies
tasks outlined in Figurd 1 (c) and (d).

4.1 Network Policy Specification

As part of the CloudNaaS system, we have developed a policy

language that cloud customers can use to specify netwovicesr
associated with their application deployments. The Claagaibl
specification language complements user-facing constioatur-

for cloud networking in efforts such as OpenStdcK [11].

4.1.1 Network Policy Constructs

Our policy language provides a set of constructs for idgimgf
the set of VMs that comprise an application and their netveeik
vices. The basic abstraction is that of a virtual networksegt that
connects VMs together. Various functions and capabilitiey be
attached to a virtual network segment to define its behaViaiffic
is only allowed to reach a VM over an explicitly defined virttonat-
work segment, hence providing a secure “default-off” moddlis
approach can be used to provide standard templates of nesenr
vices and segments that implement pre-defined policies, (e
security). A brief description of the main constructs isagivbelow.
A more detailed description may be found [n][25].

e addr ess: specify a custom (e.qg., private) address for a virtual
machine. Other VMs on the same virtual network segment will
be able to reach it using either the specified private address
the cloud address.

e group: create a logical group containing one or more virtual
machines. Grouping VMs with similar function, e.g., mensber
of a cluster, makes it possible for modifications to applyoasr
the entire group without requiring changing the servicacted
to individual VMs.

e m ddl ebox: name and initialize a new virtual middlebox by
specifying its type and a configuration file. The list of amble
middleboxes and their configuration syntax is supplied ke th
cloud provider.

e networ kser vi ce: specify a set of capabilities to attach to a
virtual network segment. The current CloudNaaS implemen-
tation supports 3 services: i) layer 2 broadcast domains, i
link QoS (either standard best-effort or bandwidth resgova
in Mbps), and iii) middlebox interposition (list of middlekes
that must be traversed in sequence). A virtual network segme
may contain a combination of these three services.

e Vvi rtual net: virtual network segments connect groups of



addr ess dbserverl= {128.1.104.103}

addr ess dbserver2={128.1.104.13}

gr oup frontend= {httpdserver}

gr oup businesslogie {jboss1,jboss2, jposs3}

gr oup backend- {dbserverl, dbserver2}

m ddl ebox Class= {type=classifier, config=""}

mi ddl ebox DPI = {type=dpi, config=""}

net wor kser vi ce protectFrontEnd=
{I2broadcast=no, qos=standard, mb=DPI}

net wor kser vi ce connectBlL=

{I2broadcast=no, qos=standard, mb=none }

net wor kser vi ce reservedBW

{I2broadcast=no, gos=10mbs, mb=Class}

net wor kser vi ce allowFailover=
{I2broadcast=yes, qos=standard, mb=none}

vi rtual net allowFailover(backend)

vi rtual net protectFrontEnd(frontend, EXTERNAL)
vi rtual net connectBL(frontend,businesslogic)
vi rtual net reservedBW(businesslogic,backend)

O~NOUTDWNPRE
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Figure 3: Network policies for example 3-tier application

VMs and are associated with network services. A virtual net-

VM (row and column, respectively) should permit packetssaf
whether layer 2 broadcast is allowed, or layer 3 traffic isvaéd,

or both are allowed. And when layer 3 traffic is allowed, th&en
also specifies bandwidth reservations and any middleboriisal
required by traffic between the endpoints. The matrix is thessed

to the network controller which interfaces with the prograable
switches.

(2) prior to placing a VM on a physical host, the cloud controller
consults the network controller to determine which hosescandi-
dates for placing the VM. The network controller utilizeslage-
ment algorithm designed to minimize the network state angi-ma
mize the performance and the number of virtual networks ¢hat
be supported in the cloud (described further in Sedfioh 4.3)

(3) manages a software programmable virtual switch on each phys
ical host that supports network services for tenant apidina. The
software switch is configured to connect any number of vintoz-
chines to the physical network. The software switches aueiakr
for extending network control beyond the physical switchesl
into the end-hosts themselves. Once configured, the clond co

work can span 1 or 2 groups. With a single group, the ser- troller informs the network controller of the location ofetlsoft-

vice applies to traffic between all pairs of VMs in the group.
With a pair of groups, the service is applied between any VM
in the first group and any VM in the second group. Virtual

networks can also connect to some pre-defined groups, such a

EXTERNAL, which indicates all endpoints outside of the cloud.

4.1.2 Network Policy Example

To illustrate how the policy language is used in practice, we
show an example specification for the 3-tier applicationlalep

ment shown in FigurEl2. In this example, middleboxes are used

to perform deep packet inspection for incoming traffic arsbab
perform packet classification to distinguish high prionigguests
between the business logic and backend database servetise In
backend, a broadcast-based failover mechanism is useafiéir n
cation in case the current master fails [7]. The databasesealso
use customer-specified addresses.

Figure[® shows the corresponding network service spediicat
using the constructs described above. The customer astfigns
enterprise addresses to the database VMs (lines 1-2), dineésle
groups for the VMs in each tier (lines 3-5). The two middles®x
are named next, both using the default configuration (lin€g).6
The next lines define the network services required for each v
tual network segment (lines 8-11). Note that #tandard, i.e.,
best-effort, service is also defined to establish basic ecinrity
between the front-end server and the business logic tie.ofter
services specify middlebox traversal, bandwidth reseswmat or
layer 2 broadcast services. Finally, the last lines attastwork
segments between or within corresponding groups of VM¢lin
12-15).

4.2 Cloud Controller

In a typical cloud, the cloud controller is responsible faxmag-
ing physical resources, monitoring the physical machip&sing
virtual machines, and allocating storage. The controk&rcts to
new requests or changes in workload by provisioning newuairt
machines and allocating physical resources. CloudNaashest
the cloud controller in several ways in order to facilitaggtler con-
trol over the network:

(1) accepts network policy specifications (in addition to resisie
for VMs) and parses them to generate a communication marix f
the tenant's resources. The matrix captures the requirestfen
the network between tenant VMs. An entry in the matrix intbsa
whether the virtual network between the source and therdegin

ware switches and subsequently sends updates about tHesset o
tual machines attached to the switches (e.g., if a VM is read@r
moves to a different host).

%4.3 Network Controller

The network controller is a new component that CloudNaaS in-
troduces into the cloud management system. It is resp@nibl
configuring virtual network segments throughout the cloydiap-
ping the logical requirements in the communication matnitoo
the physical network resources. It also controls resourees,
by determining VM placement and performing re-mapping when
available resources change, to ensure that tenant recgritsrare
consistently satisfied in an efficient manner.

User
policies

Setup virtual Cloud Controller

Switch on host
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VM
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Figure 4: Internal components of the network controller.

Figure[4 shows the main modules of the network controller. It
takes two inputs from the cloud controller: the communimatina-
trix for a new request, and a list of physical hosts and albgla
resources on each physical host. In addition, the netwankalber
collects the current status of switches and links (alondn Witk
utilizations) and the current mapping of flows correspogdimthe
virtual network segments deployed in the cloud’s physiedvork.
The cloud monitor module periodically polls the devices ftiois
state, but it can also receive triggered state updates frevices
when they come up or when they detect a neighbor failure.

Based on these inputs, the controller first invokes the phace
optimizer to determine the best location to place VMs wittiia
cloud (and reports it to the cloud controller for provising). The



controller then uses the network provisioner module to geehe
set of configuration commands for each of the programmable de
vices in the network and configures them accordingly to int&ite
the tenant’s virtual network segment. A similar set of acsionust
be taken by the network provisioner when remapping tenatiali
network segments in case of network failures. In additiothese
basic actions, the network provisioner performs other@bfiinc-
tions in the network, such as tearing down a tenant’s apiica
and installing address rewriting rules in host virtual shiés. We
discuss these tasks in more detail below.

Provisioning and De-provisioning Virtual Network Segmens
To provision a virtual network segment between a pair ofaattre-
sources (VMs, or a VM and a middlebox), the network controlle
first determines the constraints that apply to the path batvike
resources based on the requested attributes. The cotstaimre-
sult in various computations. They might involve simply fimgla
loop-free path when the user requests best-effort convitgychie-
tween two VMs, or identifying the amount of bandwidth needed

virtual network segments. The algorithm attempts to packs\fot
a specific virtual network segment on the same physical Itoesn,
within the same rack, then on hosts behind the same aggraghi
vices, and finally on any available physical host with sudfitica-
pacity. This ensures that VMs on the same virtual networkresg
are co-located within the same region of the data center exsgn
possible. To distribute load and improve tolerance to el fail-
ures, when handling a new virtual network segment, the #fgar
starts placing VMs into a randomly chosen rack with suffitfese
capacity (or else at the rack with the highest available ciaga
Addresses RewritingThe final important function of the net-
work provisioner is to perform address mapping to allow ente
prises to reuse existing addresses (i.e., custom addggssifo
achieve this, the cloud controller provides the networktmler
with a map of the VM names to their custom addresses as well
as the set of VMs communicating within them as indicated @& th
policy specification by the cloud customer. For each VM in the
list, the network controller installs a rewriting rule inglsoftware

along a path when QoS is required. Once the constraints haveswitch resident on the hosts for the set of VMs communicatiitg

been gathered, the network controller searches the grdfgttre
ing the current network state and resources for a physidalthat
satisfies these constraints. We use widest-shortest [o8} -
putations for generating paths with QoS requirements, dsti@h
shortest-paths for best-effort paths, and spanning trgerigims
for generating broadcast paths.

If a path is found, the controller generates the appropcate
figuration commands and executes them on the network devites
the path. The nature of the configuration commands geneisted
specific to the type of programmable devices used in the mktwo
We discuss the details of how rules are created and allotatie
appropriate devices while taking into account limited setemem-
ory in SectiofGlI.

De-provisioning the virtual network segments belonging twis-
tomer application happens in a similar fashion; we omit teils
for brevity.

VM Placement using bin-packingOne of the key optimiza-
tions in CloudNaas is the joint placement of virtual mackingth
virtual network segment provisioning. The programmablivoek
devices used in our design provide the fine-grained coremplired
for per-customer network services, but, as we discuss biel@ec-
tion[@, they have limited resources available to store dtat¢he
virtual network segments. Hence, the objective of the otition
is to place a VM so that the number of networking entries that t
controller installs on the physical network devices is mmizied.
We further try to minimize the number of network devices bedw
communicating VMs to reduce network latency and limit the im
pact of oversubscription in the cloud network topology (elp-
tween server racks located behind different aggregatiottsesii.
This has the benefit of improving application performancaddi-
tion to reducing state in the network devices.

We formulate the placement algorithm as an optimizatiorbpro
lem that searches through the set of available physicastiosan
optimal location to place a VM. The constraints are to (1xpla
VMs on a physical host with sufficient free capacity to supploe
VM'’s minimum resource requirements and (2) to ensure thaitth p
exists between all communicating VMs. For efficiency andesipe
we employ abin-packing heuristi|first-fit decreasing) that sorts
virtual network segments according to the number of comoatni
ing VMs. The virtual network segments to be created are psag
in order, starting by determining placement of the VMs inldrger

2Recently proposed network topology designs can also hefp-to
prove the “east-west” VM-to-VM bandwidth in cloud data censt
by reducing or eliminating oversubscription.

it. This rule translates the destination address from ttstorn ad-
dress to the cloud-assigned address before forwarding.otfer
VMs or traffic using cloud addresses, rules are installedfdor
warding without rewriting the destination address. In sasbere
VMs are migrated, the rewriting rules are recreated at thE@p
priate software switches on the new hosts. Thus, we leveyage
grammability of the cloud, in particular the software swigs to
enable customer applications to use their own custom asides
schemes.

5. PROTOTYPE IMPLEMENTATION

In this section, we describe our prototype of the CloudNaaS
cloud networking framework.

OpenNebula cloud controller. We leverage the OpenNebula 1.4
cloud framework to implement the cloud controller compdnefn
CloudNaaS. We chose OpenNebula as it provides an idengtal s
of abstractions to users as many prominent laaS providecs, &
EC2, 3Tera, and Eucalyptus. We modified the OpenNebula sourc
to accept user requirements specified using the languageilokss

in §47, to keep the generate the communication matrix, ferde
VM placement decisions to the network controller and toansate
and configure software switches on hosts. Our modificatiozrew
limited to 226 lines of code. We also built a parser to congeticy
specifications into communication matrices. Our Perl-baseser
has 237 lines.

NOX and OpenFlow for network control. We utilize OpenFlow-
enabled switches (specifically, HP Procurve 6400 serietckes
flashed with the OpenFlow 1.0 firmware) within our lab-basedd s
up. We chose OpenFlow because using OpenFlow does noteequir
a forklift change to the network; in most cases a simple firnewva
upgrade of switches is sufficient.

The OpenFlow framework provides an API that allows exter-
nal software control of the flow tables of network switches |
particular, it allows an authenticated software controfienning
NOX [9] to dynamically install, update and delete flow-leesl-
tries in switch flow tables. It also provides a variety of magisms
to track network state (e.g., switch and link states). TheX\On-
troller can also be configured to read state from externaicasu

We implemented the CloudNaaS network controller atop NOX
using 2468 lines of C++ code. We interfaced the network con-
troller with cloud controller; the network controller caastly polls
the cloud controller and pulls new/updated communicati@irim
ces and VM mappings as and when they are available. We imple-
mented the full set of functionality outlined in Sectionl#n8lud-



ing, provisioning and de-provisioning virtual networksaraling
host and network dynamics, VM placement and providing mecha
nisms for address rewriting. Our controller runs on a comityod
Linux machine (2.4 GHZ, 4 cores, 4GB RAM).
We implemented end-host software switches using Open e8wit
For completeness, we also implemented the following fomsti
(1) NAT functionality at the cloud gateway to allow custosiéo
use cloud-assigned internal IPs for their applicationss, filmction
is configured and controlled by the network controller, a2)}dXRP
functionality within customer applications; similar toHzaine [26],
we redirect all ARP traffic to the network controller who thero-
vides the appropriate responses.

6. ADDRESSING PRACTICAL ISSUES

In managing the mapping of customer virtual network segment
to the physical network the network controller in CloudNd&eS to
handle several challenges, namely: (i) installing fonirgdstate
to implement tenant policies while being constrained bywoekt
device processing and memory limitations, and (ii) engutimat
network policies persist in the face of dynamics such ascgeand
link failures. In this section, we discuss the techniquesdusy
CloudNaas to deal with these practical issues.

6.1 Hardware Device Limitations

CloudNaaS uses the fine-grained control provided by prograbhe
devices to provide Quality-of-Service guarantees, miolabeinter-
position, tenant-defined broadcast domains, and addresiing.
The drawback of using fine-grained controls to realize theese
vices is the state explosion they create in network devicessing
the APIs provided by OpenFlow and NOX to configure the net-
work, CloudNaa$ create3(V x N?) forwarding entrieper device
within the network, wheré is the number of virtual networks and
N is the number of virtual machines using these virtual neksor

Forwarding entries are stored in Ternary Content-Addiglssa
Memories (TCAMSs) which are limited in size, ultimately litimig
the number of forwarding entries and virtual networks tteat be
instantiated. Unless this memory is carefully managed ay mot
be possible to support a large number of virtual networkshin t
cloud.

Below, we present several optimizations implemented anéte
work controller to mitigate these limitations. These op#ations
leverage the distinction between host-based switchesQipenFlow-
capable software switches on the physical hosts, and Eiy3pen-
Flow switches in the network. Flow tables in the former amre
in the much larger host memory (DRAM), providing space for

many more rules, as opposed to the limited TCAMs used in the

latter. The goal of these optimizations is to provide CloadN
with fine-grained control while limiting the in-network sea

Optimization 1: Best-effort traffic Our first optimization is
used for configuring flow table rules for best effort traffitwlorks
simply as follows: we install full flow-based rules in the tiss
virtual switch, and simple destination-based rules in thgsgal
switches (i.e., source addresses are wild-carded in tter ledse).
This optimization leverages the observation that bestteffaffic
can be aggregated along a small collection of network pdthss,
each in-network device needs only to maintain rules for astmo
one spanning tree per destination, thereby reducing stoegire-
ments fromO(N?) to O(N) per virtual network, whereV is the
number of virtual machines in each virtual network. We iltage
this optimization in Figur&€l5. In (a), we show the rule-setliit
ferent devices without the optimization. Device D carrieBdsv
table rules. As shown in (b), with the optimization device @ds
4 flow table rules, a 33% reduction.
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Figure 5: A network with 4 hosts, 4 switches, and 4 VMs. The
flow table for each switch is displayed in a white rectangle.
The flow entries in each table have the following format: {Src
IP:Dest IP:ToS:InPort}- > OutPort with a * indicating a wild-
card.

Using destination-based forwarding prevents middlebaxer-
sal, however. To allow middlebox traversal, CloudNaaSailfst
rules in the software switches of the source VM and subsdquen
middleboxes that encapsulate and tunnel packets from theeo
VM or current middlebox to the next middlebox.

Optimization 2: QoS traffic. The second optimization extends
the idea for best-effort traffic to traffic with QoS requiremt® The
behavior of host-based software switches remains quaétathe
same as above. However, in-network switches forward ondkesb
of both the destination information as well as the type-afxe
(ToS) bits in the packet header. ToS bits are used to select th
appropriate queue for network traffic.

If multiple reserved paths to the same destination use the sa
underlying devices and links, then only one entry is needed p
physical device. If a pair of paths only share some links agd d
vices, then the controller uses different ToS values fohegzath,
which leads to separate entries in the in-network switctrespp-
timization is less effective in this situation. Althougtsseeffec-
tive, this approach reduces the storage requirements @¢ni?)
to O(S = N) per virtual network, wheréV is the number of virtual
machines and' is the maximum number of alternate paths from
any switch to the virtual machine.

Optimization 3: Forwarding entry aggregation. Given that
the earlier optimizations allow for simple destination éddgor-
warding, we can use the wildcard feature to aggregate fatwar
ing entries with the same output port, in a fashion similahow
IP address aggregation is done in Internet routers. To &sere
the efficiency, we assign contiguous addresses to VM plaeed b
hind the same Top-of-Rack (ToR) switch. This results in gaih
O((S) = N/P), whereS is the number of distinct paths to a ToR
switch, V is the number of virtual machines, aitlis the size of
prefix assigned to each ToR switch.

As we show in Sectiofll 7, the above optimizations coupled with
our bin-packing placement heuristic (Secfiad 4.3) resutlibstan-



tial savings in network device switching memory, therebipimg
support several thousands of complex enterprise services.

6.2 Cloud Dynamics

Network services must be able to withstand dynamic events in
the cloud, such as link failures, device failures, or chanigethe
network policy specification. To handle these events, Ql@aab
employs precomputation and caching to reduce the impace-of d
vice or link failures on network services.

Policy Changes and Host/VM dynamics: When host condi-
tions change due to oversubscription or failure, the clamroller
may migrate a customer’s VM to another host and regenerate th
communication matrix. The cloud controller also regeresahe
communication matrix when a customer submits changes tteltis
work policies. When the matrix is regenerated, the cloudrotier
informs the network controller of the new matrix, which thieig-
gers reprovisioning of the corresponding virtual networ® do
this without causing significant disruption to existing dets, the
network controller performs reprovisioning for only theastged
portions of the communication matrix.

Devicellink failures: When devices or links fail, virtual net-
works may be rendered invalid. In such situations, CloudiNeaars
down and re-provisions all virtual networks which are degent
on the failed links or devices. To reduce downtime CloudNe@S
ploys precomputation and caching of alternate paths. Meaa®
maintains an association between devices / links and thef siet
pendent virtual networks, thus allowing it to quickly deténe the
virtual networks to re-provision when a particular link ogvice
fails. To reduce the time to re-provision these virtual raks,
CloudNaasS precomputes network state for different faikoenar-
ios. In our current implementation CloudNaaS precomputss n
work state to handle failure of core and aggregation layeices
— a small number of devices having significant state. Faibfre
these devices can be resolved by simply looking up and limgjal
the precomputed and cached network rules.

7. CloudNaaS SYSTEM EVALUATION

In this section, we present an experimental evaluation ef th
CloudNaasS prototype in both a lab-based cloud as well agja-lar
scale emulated cloud. In Sectionl7.1, we describe our stondad
experimental setup.

Ouir first goal is to demonstrate the key primitives suppoited
CloudNaas, validating the ability to flexibly specify andtantiate
a variety of network functions in the cloud and to help mirdmi
application rewrites and reconfigurations due to addressianges
in the cloud (Sectioh712).

We then conduct a variety of experiments examining vari@ys k
aspects of CloudNaaS. In Sectionl7.3, we examine the imgact o
various optimizations described in Sectidn 6 and theiritgbib
help CloudNaaS operate in a scalable fashion under netwark d
vice resource constraints. In Sectfonl 7.4, we study theopadnce
of the network controller in terms of the overhead of virtne-
work computation at scale, and the ability to ensure thattbed
operates gracefully under failures. We also examine theanpf
the bin-packing placement heuristic in facilitating thergskion of
a large number of virtual network requests from applicatiand in
supporting high application performance.

On the whole, our experiments also show that CloudNaasS is
flexible in that it can support a variety of enterprise apgiion re-
quirements, and its performance scales well as the numipzoaif
sioned services grows, and when reconstituting the virisaork
after a link or device failure in clouds of varying sizes, piés host
and network device resource constraints.

OpenNebula
Cloud Controller
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Controller
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Figure 6: Experimental testbed.

7.1 Experiment Setup

We deployed and validated CloudNaaS on a cloud testbed con-
sisting of 5 physical hosts and 5 network switches conneated
shown in Figurdgd6. Four of the five hosts are available for dlgpl
ing virtual machines, while the fifth (Host5) is used to rue tton-
troller services (i.e., cloud controller and network cofiegr each
within a different VM). The 5 programmable network devices a
24 port HP Procurve 6400 switches with 20 1Gbps ports.

Simulator: In the absence of a real large-scale testbed to study
the impact of the proposed optimizations and the performanic
the network controller, we instead developed a simulatondalel
the network controller. We emulate various network eveste/ell
as the messages exchanged from the cloud controller ancethe n
work devices to the network controller (e.g., the controksages
sent to the network controller by the switches when a linkufei
occurs or when the switch is powered on). We also simulate the
user policy files and the equivalent communication matrat the
cloud controller would send to the network controller. Tetwwork
controller operates as usual, determining VM placementcama-
puting the required flow table entries for each switch basethe
placement of the VMs, but does not install the entries. This a
proach allows us to focus on the performance of the network co
troller in a large-scale setting unconstrained by the simktapol-
ogy of our lab testbed. In our simulations, the network calier
is deployed on a 2.40GHz quad core Intel Xeon PC with 4GB of
memory running Ubuntu 10.

Workloads: In these experiments, we use two types of refer-
ence enterprise applications: interactive multi-tieregleations
and batch multi-tiered applications. We generate netwaotlcies
and communication matrices consisting of varying sizesn(oer
of VMs) and numbers of each type of service.

Our interactive application model is typical of many entesp
applications which separate presentation (front-tigapligation
(business-logic tier), and data (database) componenssétability
and performance (e.g., SAP RI3]18]).

For a “small”-sized interactive application, we use 5 VMs; i
cluding 2 VMs for redundant databases, and a single VM foheac
of the other 2 tiers. For the medium sized interactive apilin,
we expand this model to 12 VMs allowing for redundancy at all
tiers and introducing middle-boxes for IDS and DPI. Finaftyr
the large sized 3-tier application, we build on the mediuzedi
model by further increasing the number VMs in the front-ted
the business-logic tiers to accommodate a larger user thesttal
number of VMs is 19.

For the interactive applications, the following networkpitives
are employed: (1) a VLAN isolating the application from athe
applications in the cloud, (2) QoS requirements betweerirtme-
tier and business-logic tier, and (3) on path middleboxeérsal



between the front-end and end-users. The QoS requirenweritef
different interactive applications are proportional te gize of the
applications with the small requiring 20Mbps, the middleuieing
70Mbps, and the large requiring 100Mbps on the paths comgect
the front-tier to the business-logic servers.

For the batch application, we model Microsoft's SharePdat
ployments — we derive the networking requirements from #fe r
erence architecturé [B8] for small, medium, and large @nisgs
which (as with the interactive applications describediegridif-
fer in the number of VMs hosting employee facing IIS and atso i
the number of VMs in the service that are used to crawl, index,
search data. The batch application consists of a clusteMsf ¥sed
to host 1IS and MSSQL applications and a second cluster of VMs
used to crawl and index the data in websites and databasesl sto
in the first cluster stored. The network requirements forlibich
applications are a VLAN isolating the service from othervesgss
in the cloud.

Topology: For our data center network model, we consider a
canonical 3-tier network (consisting of Top-of-Rack (TORjgre-
gation, and core switches) and Fat-TrEel [19]. For each mktwo
model, we generate three topologies with 6K, 20K, and 30Ksphy
ical hosts capable of running a maximum of 54K, 140K, and 270K
VMs. In each topology, a physical hosts can support at mos¥1s V
and each physical host is connected to an edge switch wittbpd G
link.

We consider 3-tier topologies with 200, 500, and 1000 ToRcweis,
each connected to 30 hosts. For the 3-tier network, thesecdater
models each have 2 core switches, and 20, 50, and 100 switches
the aggregation layer, respectively. As is typical, eacR Switch
has two 10Gbps uplinks to the aggregation layer, and agtjoega
switches are dual-homed to the core layer with 10Gbps links.

For the Fat-Tree topologies, we folloW]19], varying thepa-
rameter to accommodate varying numbers of physical hosts. A
links in the Fat-Tree topologies are assumed to be 1Gbps.

7.2 Functional Validation

We begin by demonstrating the flexibility and functionaldf/
CloudNaas in implementing several different network fiors
and policies.

By submitting different network policies to the user intaré,
we were able to implement, within the confines of the cloué, th
different enterprise application networking scenariofowe We
perform the testing on the cloud testbed discussed earlier.

Our initial application deployment uses a policy that eeabl
point-to-point reachability between VMs 1-3 (which are pdrt
of the application deployment), but not to/from VMs belamgito
other applications (VMs 4-6). For the purpose of this eviadua

Size of Ruleset| # of Large Interactive Apps| Memory (in MB)
65536 3276 33
131072 6553 37
196608 9830 57
262144 13107 77
327680 16384 94

Table 2: Resource impact of flow entries in Open vSwitch.

in Sectior}. We instantiated file transfers from VM1 to VM2dan
simultaneously from VM5 to VM4 which are deployed on the same
hosts as VM1 and VM2, respectively. We observe, with the &id o
IPerf, that flows between VM1 and VM2 received the requested
share of link bandwidth on the paths shared with flows between
VM4 and VM5.

Middlebox Interposition: To validate the correctness of our
framework to interpose virtual middleboxes on the netwoalhp
we modified our policy between VM1, VM2 and VM3 to force all
traffic to and from VM1 through an DPI middle-box implemented
in snort. Over several runs of the experiments, we observat t
it takes an average of 12ms to modify the path so that traffimfr
VM2 to VM1 is directed through VM8, where the DPI function is
hosted.

Address Rewriting: Finally, we demonstrated the ability of en-
terprise customers to retain their current IP addressiigcannec-
tivity as they move their applications to the cloud. We dgptba
simple client-server application with the client in VM3 aserver
on VM2. The client is configured to refer to the server in VM2 by
its original globally routable IP address. Without the addr map-
ping policy installed, VM3 is unable to communicate with VM2
since each VM has been assigned a new private IP address in the
cloud. After adding a policy to remap VM2's original addrees
observe that traffic from VM3 is able to reach VM2.

7.3 Impact on Cloud Infrastructure

The design of CloudNaasS introduces a number of changes to the
cloud infrastructure. In this section, we summarize oureots-
tions of the resource overheads of these changes.

One significant change is the modification of the cloud cdletro
to generate and transfer the communication matrix to thevorét
controller. Our experience with CloudNaaS revealed litbgative
impact in terms of memory and CPU overhead in the cloud man-
agement system due to this change. Another change that might
raise some concern for a cloud provider is the introductibthe
Open vSwitch [[ID] at each host, which requires instantiati
TAP interfaces[[15] in place of the standard KVM public biegdg
We observed that the resource usage of the TAP interfacesimas
imal, and should not impact the number of VMs that can be sup-

we force the VMs to be placed as shown — this set-up helps us ported.

study how effective CloudNaaS's primitives are under vasiin-
teresting situations. Note that we evaluate the placenigatitnm
(SectiorZB) and the benefits it offers later in this section

VLAN: In the VLAN scenario, we modify the baseline policy
above to place VM2 and VM3 in the same VLAN (broadcast do-
main) to enable the broadcast-based fail-over service. &kiéied
that VM2 and VM3 are able to communicate and then failed the
application running in VM2. The VLAN configuration allowed
VM3 to correctly detect the failure and take over the role luf t
primary.

Quality-of-Service: To demonstrate the QoS primitive, we mod-
ify the baseline policy to reserve 900Mbps for traffic betw&dvi1l
and VM2. In this case, the Quality-of-Service constraiut bt re-
sult in a change to the underlying paths, though in generawa n
path may be computed to meet the requirement, as descridest ea

In examining the overhead of installing rulesets into Op8wiich,
we find that the memory consumption is not significant. Téble 2
shows the amount of memory consumed by the virtual switch. We
observe that a virtual switch is able to store 300K entriesfi-s
cient to support the virtual network segments for 16K laretgeeB
applications when viewed across the entire data centezssthan
100MB (of the 4GB available to the Open vSwitch) of memory
per host. With a limit of 300K rules, CloudNaas is able to cidie
on average 10K forwarding rules, or 1.8K virtual networkrsegts
for each VM on the host — indicating that most practical \attoet-
work segments sizes can be supported for each VM deploydteon t
host for even large applications. We conclude that the based
Open vSwitches are able to efficiently hold a significant antof
state and thus support our optimizations which increasartsunt
of forwarding rules and state at the edge.



Algorithms Virtual Switchf ToR| Agg | Core [# of Large App!
Default Placement 365 13K [235K]|1068K| 4K
w/o optimizations
Default Placement + 0% 3% [ 21%( 39% 6.7K
Destination Forwarding
Default Placement + 0% 2% | 20%]| 30% 5.4K
Qos Forwarding
Default Placement 0% 93%]95% | 99% 12.2K
+ Qos + Destination + Prefi

Table 3: Results indicating effect of flow entry optimizations

and the default VM placement strategy on switches at each tie
The bottom four rows show the percentage reduction in flow
table size.

Algorithms Virtual Switch| ToR | Agg|Core|# of Large App
Bin-Packing 313 5K [13K|20K 15K
w/o optimizations
Bin-Packing + 0% 49% [47%| 46% 15.7K
Destination Forwarding

Bin-Packing + 0% 41% |40%|40%) 15.6K

Qos Forwarding

Bin-Packing + 0% 99.8%]|99%(99% 15.9K

Qos + Destination + Prefix

Table 4: Results indicating effect of flow entry optimizations
and the bin-packing VM placement strategy on switches at edc
tier. The bottom four rows show the percentage reduction in
flow table size.

In Sectior®, we described several optimizations to the oktw
provisioning algorithm to reduce the number of forwardindes
in the network switches. Here, we show the quantitative thpa
of those optimizations on the network state for the case ofipr
sioning 16K large instances of the reference interactiy#ication
(i.e., 270K VMs) in the largest data center model (i.e., 1T08
switches). Tablg]l3 shows the maximum number of flow table en-
tries across the switches in each of the 3 tiers of the datgecen
plus the Open vSwitches at the hosts. Our goal is to indi¢ee t
relative benefits offered by our optimizations. The first slvows
the maximum number of flow table entries with no optimizasion
Subsequent rows show the number of entries after applying ea
optimization separately and the last row shows the impaatl aff
the optimizations taken together.

The best effort and QoS forwarding optimizations achieve- su
stantial benefits each. As the results show, moving up frenmtst
virtual switch layer toward the data center core resultsrieater
benefits from the optimization since there are more flowslalvks
for consolidation. On the whole, the optimizations are abigeld
between 93% and 99% reduction in flow table usage across diffe
rent network switches. Finally, we observe that employiacetul
placement decisions using our bin-packing heuristic tesalfur-
ther reduction of the state for the ToR and Agg devices (TEhle
With all our optimizations taken together, we can suppor9Kk5
large interactive applications simultaneously, which is hore
that what can be supported without any optimizations (Taple

7.4 Network Controller Performance

Next, we evaluate the ability of CloudNaaS’s network colfeero
to scale to provisioning and managing a large number of airtu
networks in a large-scale cloud data center.

7.4.1 Impact of Placement
Placement of VMs plays a crucial role in determining the per-
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Figure 7: Number of virtual network segments successful sup
ported by CloudNaaS under the bin-packing and the default
placement strategies as a percentage of those supported by a
optimal placement strategy.

1
0.9 r
0.8 -
0.7
0.6 -
0.5
0.4 ¢

0.2

0.1
0 2 4 6 8
Length of path (# of physical links in path)

CDF

0

10

Default == Heuristic sssssss

Figure 8: Length of paths, in # of links, between different VMs
under different VM placement strategies.

egy used by current cloud platforms, namely OpenNelhuladaé]
Eucalyptus[[4D]. The default placement algorithm used bth bo
platforms is a striping algorithm which aims to spread VMsoas
physical hosts in a round robin fashion. Due to space cdngira
we only present our findings for deploying Large interactarel
batch services (Lg), medium interactive and batch seriekesl),
and an equal combination (Eq) of small, medium, and larger-int
active and batch services on the canonical DC topology; tekyve
we observed similar findings for the Fat-Tree topology.

First, we examine the impact of placement on the ability ef th
network to satisfy the varying QoS requirements placed by the
different applications. Figuild 7, presents a bar graph efrthim-
ber of virtual network segments admitted as a fraction ofidesl
number that can be accommodated by an optimal placement algo
rithm. The figure shows that both placement schemes satiisfy a
QoS requirements when only small and medium-sized intigeact
applications are run within the cloud. However, when onlgéa
sized services are used then our placement algorithm ig@ish-
isfy all requests whereas as uninformed placement appidemies
roughly 10% of the requests: in each case when a virtual m&two
segment is denied, the default placement algorithm is ertalsat-
isfy one or more of the network QoS requirements specifiechby t
virtual network segment.

To determine the performance implications of the diffefgate-

formance between VMs, the number of QoS requests that can bement algorithms, we examine the length of the paths between c

satisfied, and the amount of state within the network. In $eis-
tion, we examine the benefits of careful VM placement. We com-
pare our bin-packing heuristic against the default placeragat-

municating VMs in Figur€l8 for the requests that were acakjte
each case. For simplicity, we show our results only for large
teractive applications. We observe that paths are in geskoater
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Figure 9: Virtual network segment computation time for Larg e
interactive applications on a tree topology with 30K hosts.

with our placement algorithm: 99% of the paths created utieg
heuristic are less than 2 links long indicating that thesbgpaever
leave the ToR. The naive strategy results in longer pathsnially

resulting in poorer application performance due to gregtrac-

tion with cross traffic.

7.4.2 Virtual Network Computation

First, we examine the time taken to initialize several larger-
active applications. Recall that each 3-tier applicationtains a
relatively large number of virtual machines and a complexase
virtual networks and policies. We assume the canonicalitree-
connect.

Figure[® shows the amount of time taken to simultaneously in-
stantiate network services for as many as 270K VMs in totedah
across nearly 16K instances of the large interactive agipdio (this
is the number of large interactive application instances tan be
“packed” onto the physical hosts using our placement algar;
details later in this section). The total time consists & time
to compute corresponding flow table entries and paths in éte n
work. The controller would additionally need to install tHew
table entries in the appropriate switches — this time is aptured
in our experiments, but is expected to take less than 10miguer
entry [46]. From the figure, we observe that it takes abouslifi0
total to instantiate the virtual network services for th@RA/Ms in
the cloud. This delay is relatively small when considering over-
all service provisioning time, including virtual machineopision-
ing. For example, experiments in Amazon EC2 showed thatiprov
sioning 20 small virtual machine instances can take 180 ttzat
this time grows with the number of instances being deplofd]. [
We found similar scaling properties for other referenceliapp
tions and application mixes, as well as for the Fat-Treedatenect
(omitted for brevity).

7.4.3 Failure Handling

When data center elements such as links, switches, or lekts f
the virtual networks must be remapped and re-installed store
service. In this series of experiments, we measure the ipeaicce
of the network controller in re-establishing functionaitual net-
works in data centers of varying sizes when different conepts
fail. For simplicity, we focus on a scenario consisting afjin-
teractive application instances and a 3-tier network togpl

In our failure model, a link, switch, or host is randomly seél
to fail. We measure the time taken by CloudNaaS'’s network con
troller to recalculate the configuration state to be pushatie de-
vices. We ignore the time to receive failure notificationsichhis
bounded by the frequency of device polling, and also the tione
install state in the device which is, again, assumed less1Ams.

CDF

CDF

Recovery Time (in Seconds)

(b)

Figure 10: Virtual network segment recomputation time unde

link failures for large interactive applications on a tree topol-

ogy with 30K hosts. (a) Without caching and precomputation
(b) With caching and precomputation of core and aggregation
devices.

We run each experiment around 150 times to generate thédistr
tion of re-computation times.

Link and Switch Failures. To understand the impact of link
failures, we randomly select and delete a link from the togg|
triggering the network controller to deprovision pathstthse the
failed link, and reprovision them on alternate links. Werai@e the
recovery time for links with and without our precomputatiand
caching. We observe in FiguEe]10, that without precompamati
and caching the median recovery time for the largest clouth wi
270K VMs is 2s, and the worst case is under 10s. With caching
and precomputation, we observe that the median recovesyftim
the largest cloud is reduced to 0.2s. In examining the ragove
time for device failures, not shown here due to space cdnsira
we observe that these numbers are in general an order of taegni
worse than the link failure numbers. We note that by extentie
precomputation algorithm to precompute for the edge swialie
can reduce the recovery for all links and device to a condtane
of under 0.2 second (Cache look-up time). However, doirsfii
require allocating more memory for the cache.

Host Failures. In our experiments with host failures, we ran-
domly select a host to fail and delete it from the topology.isTh
triggers the cloud controller to update the state of thectdie VMs
and notify the network controller to remap the correspogdiir-
tual networks. FigurEZ11 shows the time for the network calfer
to do this; we can see that, compared to provisioning, this vary
little time. While provisioning requires searching the gjnaand
calculating paths, remapping requires only a look up in a datic-
ture followed by a control message sent to the appropriatieises

(Sectiorh).

8. ADDITIONAL CONSIDERATIONS

In this section, we briefly address some additional conatiters
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Figure 11: Virtual network deprovision time under host fail -
ures for large interactive applications on a tree topology \ith
30K hosts.

toward a more complete network services platform offerimghie
cloud. As we do not lay out details of how these additionalises
can be implemented in this limited space, they should beiderex

as subjects for future work.

OpenFlow Programmable Devicedn our current prototype we
use Openflow switches as the programmable devices withimahe
work. However, our design is not tied to the OpenFlow platfor
and API. As stated earlier, the choice of programmable désvid-
fects the set of configuration commands that are generatad, h
these commands are pushed to the devices, and how the effects
the commands are undone from the devices. However, we believ
irregardless of the type of programmable devices usedgetbes
vices will have physical limitations and the general optations
described in sectidn@.1 will be required to overcome suslrie
tions.

Furthermore, unlike other programmable devices, the OlosnF
platforms offers the advantage of easy deployment. Manyjcdev
vendors including Cisco, HP, and NEC have developed firmware
patches that transform existing data center grade switnte®pen-
Flow enabled switches. Given these firmware patches, weuaeli
that out current implementation of CloudNaaS can be eadipted
and deployed by many existing cloud providers.

Managing Cloud Network Services: In this paper we described
CloudNaas network services and primitives related prilpéoithe
data plane, e.qg., traffic isolation, middleboxes, and QaSindpor-
tant additional set of services are also needed for engerpenants
to monitor and manage the cloud virtual network, similar tioaiv
they could do in a traditional data center. For example, weesa
tend the CloudNaaS framework to allow users to attach mongp
reporting, and logging functions to virtual network de\sceThe

management data can be processed and made available ama cont

uous feed, or uploaded to a management application in thelclo
that provides the ability to visualize the virtual networbevations.
Careful optimization is of course necessary to ensure gyiedthe
network data, and to limit the overhead of collecting andgrait-
ting management data.

WAN Extension: Although cloud providers do not typically con-
trol the wide-area portion of the network, enhanced netvsak
vices that extend from the cloud into the WAN would furthenbfit
applications, particularly those that need to integraté emnterprise-
side service. This could be achieved by integrating theuairt
network in the cloud with a cooperating ISP or overlay networ
provider. The CloudNaaS framework can be extended to stippor
new primitives that identify endpoints outside the cloudttare to
be integrated. The network controller can negotiate anaygath,
for example, to provision wide-area paths that provide Sjoeser-

vices such as service differentiation, WAN accelerati@tadiedu-
plication, encryption, etc.

9. CONCLUSION

We presented CloudNaaS, a network service platform that en-
ables tenants to leverage many of the network functions eteed
for production enterprise applications to run in laaS cku®ur
prototype design and implementation of CloudNaasS leverage-
grammable network devices and supports isolation, miad{énc-
tions, and Quality-of-Service, and helps minimize appiaarewrites
and reconfigurations by allowing applications to use existd-
dress spaces. CloudNaasS primitives are specified as padiofid
deployment, and are installed in the network data planensatto
ically, as the corresponding virtual servers are instamdia We
demonstrated the flexibility of CloudNaaS in supporting anau
ber of network functions in the cloud using a typical muigrt
application model in our lab testbed with commercial OpenrI
enabled network devices. We showed how fine-grained acoess c
trol, VLAN-based isolation, service differentiation, amidddlebox
interposition can be easily specified and deployed in seseenar-
ios. We also showed that CloudNaaS performs well in the féce o
large numbers of provisioning requests, and network and dys
namics. We showed that our optimizations for VM placemeidt an
for forwarding table aggregation help in making more effextise
of the resources of the cloud’s physical hosts and netwovices,
thus helping the cloud scale to support a multitude of enitap
applications.
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