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Synthesizing Formal Semantics from Executable Interpreters

ANONYMOUS AUTHOR(S)∗

Program verification and synthesis frameworks that allow one to customize the language in which one is
interested typically require the user to provide a formally defined semantics for the language. Because writ-
ing a formal semantics can be a daunting and error-prone task, this requirement stands in the way of such
frameworks being adopted by non-expert users. We present an algorithm that can automatically synthesize
inductively defined syntax-directed semantics when given (i) a grammar describing the syntax of a language
and (ii) an executable (closed-box) interpreter for computing the semantics of programs in the language of the
grammar. Our algorithm synthesizes the semantics in the form of Constrained-Horn Clauses (CHCs), a nat-
ural, extensible, and formal logical framework for specifying inductively defined relations that has recently
receivedwidespread adoption in program verification and synthesis.The key innovation of our synthesis algo-
rithm is a Counterexample-Guided Synthesis (CEGIS) approach that breaks the hard problem of synthesizing
a set of constrained Horn clauses into small, tractable expression-synthesis problems that can be dispatched
to existing SyGuS synthesizers. Our tool Synantic synthesized inductively-defined formal semantics from 14
interpreters for languages used in program-synthesis applications. When synthesizing formal semantics for
one of our benchmarks, Synantic unveiled an inconsistency in the semantics computed by the interpreter
for a language of regular expressions; fixing the inconsistency resulted in a more efficient semantics and, for
some cases, in a 1.2x speedup for a synthesizer solving synthesis problems over such a language.

1 INTRODUCTION
Recent work on frameworks for program verification and program synthesis has created tools that
are parametric in the language that is supported [5, 11, 13]. A user of such a frameworkmust define
the language of interest by giving both a syntactic specification and a formal semantic specification
of the language. The semantic specification assigns a meaning to each program in the language.
However, for most programming languages, and even for simple ones used in program-synthesis
applications, it is usually a demanding task to create a formal semantics that defines the behaviors
of the programs in the language. Obstacles include: (i) the language’s semantics might only be
documented in natural language, and thus may be ambiguous (or worse, inconsistent), and (ii) the
sheer level of detail that is involved in writing such a semantics.

Synthesizing Formal Semantics from Interpreters. In this paper, we propose an alternative
approach—based on synthesis—that is applicable to any programming language for which a com-
piler or interpreter exists. Such infrastructure serves as an operational semantics for the language,
albeit one for which anything other than closed-box access would be difficult.Thus, we take closed-
box access as a given, and ask the following question:

Is it possible to use an existing compiler or interpreter for a language 𝐿 to create a
formal semantics for 𝐿 automatically?

In this paper, we assume that the given compiler or interpreter is capable of executing any program
or subprogram in language 𝐿.

This question is natural, but answering it formally requires one to address two key challenges.
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1:2 Anon.

First, in what formalism should the formal semantics be expressed? The right formalism should
be expressive enough to capture common semantics, yet structured enough to allow synthesis to
be possible. Furthermore, the formalism should not be tied to any specific programming language—
i.e., it should be language-agnostic.

Second, how can the synthesis problem be broken down into simple enough small problems
for which one can design a practical approach? The representation of the semantics of most pro-
gramming languages is usually very large, and a monolithic synthesis approach that does not take
advantage of the compositionality of semantics definitions is bound to fail.

Our Approach. In this paper, we address both of these challenges and present an algorithm that
can automatically synthesize an inductively defined syntax-directed semantics when given (i) a
grammar describing the syntax of the language, and (ii) an executable (closed-box) interpreter for
computing the semantics of programs in the language on given inputs.

To address the first of the aforementioned challenges, we choose to synthesize the formal se-
mantics in the form of Constrained Horn Clauses (CHCs), a well-studied fragment of first-order
logic that already provides the foundation of SemGuS [6, 11], a domain- and solver-agnostic frame-
work for defining arbitrary synthesis problems. CHCs can naturally express a big-step operational
semantics, structured as an inductive definition over a language’s abstract syntax, which makes
them appropriate for compositional reasoning.

For example, the operational semantics for an assignment to a variable x in an imperative pro-
gramming language can be written as the following CHC:

J𝑒K(s1) = 𝑟1 𝑠0 = 𝑠1 ∧ 𝑟0 = 𝑠0 [𝑥 ↦→ 𝑟1]Jx := 𝑒K(s0) = 𝑟0

The CHC is defined inductively in terms of the semantics of the child term 𝑒 .
To address the second aforementioned challenge, we take advantage of the inductive structure

of CHCs and design a synthesis algorithm that inductively synthesizes the semantics of programs
in the grammar, starting from simple base constructs and moving up to more complex inductively-
defined constructs. For each construct in the language, our algorithm uses a counter-example-
guided inductive synthesis (CEGIS) loop to synthesize the semantic rule—i.e., the CHC—for that
construct. For each construct, we use input-output valuations obtained by calling the closed-box
interpreter to approximate the behavior of its child terms. Such an approximation allows us to
synthesize the semantics construct-by-construct, rather than all at once, which converts the prob-
lem of synthesizing semantics into many smaller problems that only have to synthesize part of the
overall semantics.

To evaluate our approach, we implemented it in a tool called Synantic. Our evaluation of
Synantic involved synthesizing the semantics for languages with a wide variety of features, in-
cluding assignments, conditionals, while loops, bit-vector operations, and regular expressions.The
evaluation revealed that our approach not only can help synthesize semantics of non-trivial lan-
guages but can also help debug existing semantics.

Contributions. Our work makes the following contributions:

• We introduce a new kind of synthesis problem: the semantics-synthesis problem (Section 3).
• We devise an algorithm for solving semantics-synthesis problems (Section 4). In this algo-

rithm, we harness an example-based program synthesizer (specifically a SyGuS solver) to
synthesize the constraint in each CHC.
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Synthesizing Formal Semantics from Executable Interpreters 1:3

• We implement our algorithm in a tool, called Synantic, which also supports an optimiza-
tion for multi-output productions, i.e., productions whose semantic constraints include
multiple output variables (Section 5).
• We evaluate Synantic on a range of different language benchmarks from the program-

synthesis literature. For one benchmark, the Synantic-generated semantics revealed an
inconsistency in the way the original semantics had been formalized. Fixing the inconsis-
tency in the semantics resulted in a more efficient semantics and a speedup (in some case
1.2x) for a synthesizer solving synthesis problems over such a language (Section 6)

Section 2 illustrates how our algorithm synthesizes the semantics of an imperative while-loop
language. Section 7 discusses related work. Section 8 concludes.

2 ILLUSTRATIVE EXAMPLE
Suppose we have an imperative language Imp (cf. Example 2.1), and we want to synthesize an Imp
program to automate some programming tasks. However, we find that there is no synthesizer for
Imp. Next, we remember that the SemGuS framework can synthesize programs for user-defined
languages [11]. However, when we start trying to write our synthesis problem using SemGuS, we
quickly realize Imp’s semantics is defined using an interpreter and we do not have a formal-logic-
based semantics (i.e., a set of Constrained Horn Clauses), which SemGuS requires. At this point
we are stuck, and cannot synthesize any Imp program unless we manually write the Imp semantics
as a set of CHCs, a tedious and error-prone task.

In this paper, we consider the problem of synthesizing a formal (logical) semantics for a language
from an executable interpreter. We use the Imp language described in Example 2.1 as a running
example in this section to illustrate our algorithm (and return to it in Section 4).

Example 2.1 (Syntactic Definition of Imp). Consider the grammar 𝐺Imp𝑛 that defines the syntax
of Imp for programs with 𝑛 variables x1, . . . , xn:

𝑆 F x1 B 𝐸 | · · · | xn B 𝐸 | 𝑆 ; 𝑆 | ite 𝐵 𝑆 𝑆 | while 𝐵 do 𝑆

| do 𝑆 while 𝐵 | repeat 𝑆 until 𝐵

𝐵 B false | true | ¬ 𝐵 | 𝐵 ∧ 𝐵 | 𝐵 ∨ 𝐵 | 𝐸 < 𝐸

𝐸 B 0 | 1 | x1 | · · · | xn | 𝐸 + 𝐸 | 𝐸 − 𝐸
The Imp language consists of arithmetic and Boolean expressions, statements for assignment to

the variables x1 through xn, sequential composition, if-then-else, and various looping constructs.
Imp also comes equipped with an executable interpreter IImp that assigns to each term 𝑡 ∈ L(𝐺)
its standard (denotational) semantics (e.g., arithmetic and Boolean expressions are evaluated as in
linear integer arithmetic, xi B 𝑒 takes as input a state, and outputs the input state with 𝑥𝑖 ’s value
updated by the result of evaluating 𝑒 , etc.).

Suppose that we did not know the semantics of Imp a priori; that is, suppose that we only have
access to the interpreter IImp . How can we synthesize a formal semantics for each program in𝐺Imp
using the interpreter? A naïve approach would randomly generate a large set of terms and inputs,
and try to learn a functionmapping inputs to outputs for each term. However, this approach would
only provide a semantics for the enumerated terms, and fails to generalize to the entire language. A
less naïve approachmight attempt to form amonolithic synthesis problem to synthesize a semantic
function for each production of the grammar that satisfies a set of generated example terms and
input-output pairs. However, it is known that synthesizers scale exceptionally poorly in the size
of the desired output [3], even for Imp1, which has only 17 productions, this approach would be
practically impossible.
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Nullary productions. One of the key innovations of our approach is that we synthesize the se-
mantics on a per-production basis, i.e., working one production at a time. We start by synthesizing
a semantics for nullary (leaf) productions. For Imp1, this means we synthesize a semantics for the
productions 0, 1, x1, false, and true before we synthesize the semantics of any other productions.
For a nullary production p, we synthesize a semantics of the form:

𝑥out0 = 𝑓 (𝑥 in0 )
Sem(p, 𝑥 in0 , 𝑥out0 )

which states that, because the term p has no sub-terms, the output is only a function of the input
𝑥 in0 . In our approach, we use a Counter-Example-Guided Synthesis (CEGIS) approach to synthe-
size a function 𝑓 that captures the behavior of IImp on production 𝑝 . Within the CEGIS loop, we
synthesize a candidate function 𝑓 , then verify if it is consistent with IImp (e.g., on a larger number
of inputs 𝑥 in0 ). If 𝑓 is consistent, then we have successfully learned the semantics of 𝑝; otherwise,
the verifier generates a counter-example and a new candidate semantic function 𝑓 .

Inductively synthesizing semantics. Next, our approach synthesizes the semantics for other arith-
metic and Boolean expressions. In this step, we inductively synthesize the semantics of productions
by reusing the semantics of previously learned productions to learn the semantics of new produc-
tions. At this point, we may assume that we know the semantics of all nullary productions. For
instance, suppose that we wish to next learn the semantics of +. At first, our algorithm generates
examples favoring terms like 1 + 1, x + 1, etc. that contains sub-terms whose semantics have al-
ready been learned. For t1 + t2, our algorithm generates a semantics that can rely on the semantics
of its sub-terms t1 and t2. Specifically, the semantics of t1 + t2 takes the following form:

sem(t1, 𝑥
in
1 , 𝑥

out
1 ) sem(t2, 𝑥

in
2 , 𝑥

out
2 )

𝑥 in1 = 𝑓1 (𝑥 in0 ) 𝑥 in2 = 𝑓2 (𝑥 in0 , 𝑥out1 ) 𝑥out0 = 𝑓0 (𝑥 in0 , 𝑥out1 , 𝑥out2 )
sem(t1 + t2, 𝑥

in
0 , 𝑥

out
1 )

which states that the semantics of t1 + t2 is inductively defined in terms of the semantics of t1
and the semantics of t2.The semantics enforces a left-to-right evaluation order:1 the rule expresses
that the input to t1, 𝑥 in1 , is a function of t1 + t2’s input, 𝑥 in0 , and similarly that t2’s input, 𝑥 in2 , is
a function of t1 + t2’s input, 𝑥 in0 , and t1’s output, 𝑥out1 . Finally, it also expresses that the t1 + t2’s
output, 𝑥out0 , is a function of its input, 𝑥 in0 , and the outputs of t1 (𝑥out1 ) and t2 (𝑥out2 ).

When the semantics of a sub-term ti is known (e.g., for nullary productions), we substitute its
learned semantics for sem(ti, 𝑥

in
𝑖 , 𝑥

out
𝑖 ); otherwise, we approximate its semantics using examples.

Again, we use a CEGIS loop to generate examples for the entire term t1 + t2, as well as any sub-
terms whose exact semantics have not yet been synthesized (e.g., for a sub-term that uses + or −).
The process proceeds analogously for most other productions in Imp.

Semantically recursive productions. The final interesting case is for while loops, for
which the semantics is recursive on the term itself. For semantically recursive produc-
tions, we assume that the semantics can make a recursive call (i.e., effectively acting
as if the term itself is a sub-term). We additionally synthesize a predicate determin-
ing if the recursive call should be made or not. For while b do s, we synthesize two

1We show how to overcome this restriction in Section 5.1.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Synthesizing Formal Semantics from Executable Interpreters 1:5

semantic rules, one in which the recursive call is made, and one in which it is not.
sem(b, 𝑥 in1 , 𝑥out1 ) sem(s, 𝑥 in2 , 𝑥out2 ) ¬Predrec (𝑥 in0 , 𝑥out1 , 𝑥out2 )
𝑥 in1 = 𝑓1 (𝑥 in0 ) 𝑥 in2 = 𝑓2 (𝑥 in0 , 𝑥out1 ) 𝑥out0 = 𝑓0 (𝑥 in0 , 𝑥out1 , 𝑥out2 )

sem(while b do s, 𝑥 in0 , 𝑥
out
1 )

sem(b, 𝑥 in1 , 𝑥out1 ) sem(s, 𝑥 in2 , 𝑥out2 ) sem(while b do s, 𝑥 in3 , 𝑥
out
3 ) Predrec (𝑥 in0 , 𝑥out1 , 𝑥out2 )

𝑥 in1 = 𝑓1 (𝑥 in0 ) 𝑥 in2 = 𝑓2 (𝑥 in0 , 𝑥out1 ) 𝑥 in3 = 𝑓2 (𝑥 in0 , 𝑥out1 , 𝑥out2 ) 𝑥out0 = 𝑓0 (𝑥 in0 , 𝑥out1 , 𝑥out2 , 𝑥out3 )
sem(while b do s, 𝑥 in0 , 𝑥

out
1 )

As with the previous productions, our algorithm uses a CEGIS loop to synthesize a candidate
semantics of the above form, verify its correctness, and generate a counter-example if the candidate
semantics is incorrect. While we may employ learned semantics for sub-terms, recursive calls to
a sub-term must be approximated using examples because we are still in the process of learning
its semantics. We formally define the semantics-synthesis problem that we solve in Section 3 and
explain how our synthesis algorithm works in Section 4.

Multi-output productions. In the above while-loop example, we saw that the function 𝑓0 had four
inputs that must be considered when synthesizing a term to instantiate 𝑓0. As the number of input
variables and the size of the desired result grows, synthesis scales poorly. In the above examples,
the notation is not showing the full picture. For Imp𝑛 all input and (most) output variables are an
𝑛-tuple of variables representing a state of an Imp𝑛 program. Even for just Imp2, 𝑓0 has twice as
many inputs.

To address this problem, we allow synthesizing the semantics of each output of a production
independently. For example, consider the production x0 B t (for Imp2). We generate a semantics
using two constraints 𝐹 and 𝐺 , independently. The constraint 𝐹 (resp. 𝐺) represents the pair of
functions 𝑓0 and 𝑓1 (resp. 𝑔0 and 𝑔1).

sem(t, 𝑥 in1 , 𝑥 in1 ) 𝑥 in1 = 𝑓1 (𝑥 in0 ) 𝑥out0 = 𝑓0 (𝑥 in0 , 𝑥out1 )
sem(x0 B t, 𝑥 in0 , 𝑥

out
0 )

𝐹

sem(t, 𝑥 in1 , 𝑥 in1 ) 𝑥 in1 = 𝑔1 (𝑥 in0 ) 𝑥out0 = 𝑔0 (𝑥 in0 , 𝑥out1 )
sem(x0 B t, 𝑥 in0 , 𝑥

out
0 )

𝐺

By independently synthesizing 𝐹 and 𝐺 , we reduce the burden on the underlying synthesizer;
however, now the synthesizer is allowed to return an 𝐹 and 𝐺 for which 𝑓1 ≠ 𝑔1. Thus, 𝐹 and 𝐺
have inconsistent inputs being provided to the child-term 𝑡 . We use an SMT solver to determine
if 𝑓1 and 𝑔1 are consistent for each of the example inputs to the term x0 B t. If so, we will return
either 𝑓0, 𝑔0, 𝑓1 (or 𝑓0, 𝑔0, 𝑔1 because 𝑓1 and𝑔1 are consistent on all examples—i.e., when evaluated on
the same example they return equal outputs—otherwise, we discover that 𝑓1 and𝑔1 are inconsistent
on some input and add a new constraint to ensure that the same pair of functions 𝑓1 and 𝑔1 cannot
be synthesized again. This optimization is further discussed in Section 5.3.

3 PROBLEM DEFINITION
In this paper, we consider the problem of synthesizing a formal logical semantics for a deterministic
language from an executable interpreter. While there are many possible ways to logically define a
semantics, we are interested in an approach that is language-agnostic and inductive. The SemGuS
synthesis framework has proposed using Constrained Horn Clauses as a way of defining program
semantics that meets both of our desiderata. Concretely, SemGuS already supports synthesis for
a large number of languages (which we consider in our experimental evaluation) by allowing a
user to provide a user-defined semantics. As mentioned above, in SemGuS, semantics are defined
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inductively on the structure of the grammar (i.e., per production/language construct) using logical
relations represented as Constrained Horn Clauses (CHCs) [11]. In this paper, we follow suit and
address the problem of learning a semantics of this form from an executable interpreter for the
given language. This section formalizes the semantics-synthesis problem that we consider. We
begin by detailing our representation of syntax (Section 3.1), interpreters (Section 3.2), semantics
(Section 3.3), and semantic-equivalence oracles (Section 3.4). Finally, we formalize the semantics-
synthesis problem in Section 3.4.

3.1 Syntax
We consider languages represented as regular tree grammars (RTGs). A ranked alphabet is a
tuple 〈Σ, 𝑟𝑘Σ〉 that consists of a finite set of symbols Σ and a function 𝑟𝑘Σ : Σ→ N that associates
every symbol with a rank (or arity). For any 𝑛 ≥ 0, Σ𝑛 ⊆ Σ denotes the set of symbols of rank
𝑛. The set of all (ranked) Trees over Σ is denoted by 𝑇Σ. Specifically, 𝑇Σ is the least set such that
Σ0 ⊆ 𝑇Σ and if 𝜎𝑘 ∈ Σ𝑘 and 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇Σ, then 𝜎𝑘 (𝑡1, . . . , 𝑡𝑘 ) ∈ 𝑇Σ. In the remainder of the paper,
we assume a fixed ranked alphabet 〈Σ, rkΣ〉.

A typed regular tree grammar (RTG) is a tuple𝐺 = 〈𝑁, Σ, 𝛿,T, 𝜃, 𝜏〉, where 𝑁 is a finite set of
non-terminal symbols of rank 0, Σ is a ranked alphabet, 𝛿 is a set of productions over a set of types
T, and for each non-terminal 𝐴 ∈ 𝑁 , and 𝜃𝐴 (resp. 𝜏𝐴) assigns 𝐴 an input-type (resp. output-type)
from T. Each production in 𝛿 takes the form:

𝐴0 → 𝜎
(
𝐴1, 𝐴2, . . . , 𝐴𝑟𝑘Σ (𝜎 )

)
where 𝐴𝑖 ∈ 𝑁 and 𝜎 ∈ Σ. We use L(𝐴) to denote the language of non-terminal 𝐴 and 𝛿 (𝐴) the
set of all productions associated with 𝐴 (i.e., all productions where 𝐴0 is 𝐴). In the remainder, we
assume a fixed grammar 𝐺 = 〈𝑁, Σ, 𝛿,T, 𝜃, 𝜏〉.

Example 3.1 (𝐺Imp as a Regular Tree Grammar). Consider the Imp language detailed in Section 2,
𝐺Imp is a regular tree grammar that has been stylized to ease readability. For example, the non-
terminals consist of the rank-0 symbols 𝐸, 𝐵, and 𝑆 . The productions include 𝑆 → x1 B(𝐸), 𝑆 →
;(𝑆, 𝑆), and 𝑆 → while(𝐵, 𝑆). For Imp2 (Imp with two variables 𝑥1 and 𝑥2), 𝜃𝐸 is the type Z × Z,
representing the state of the two variables, and 𝜏𝐸 is Z, representing the return type of arithmetic
expressions.

3.2 Interpreters
We consider a class of deterministic executable interpreters—i.e., a program evaluator for which
we may only observe input-output behavior.

Definition 3.2 (Interpreter). Formally, an interpreter for 𝐺 maps each non-terminal 𝐴 ∈ 𝑁 to
a partial function I𝐴 : (L(𝐴) × 𝜃𝐴) → 𝜏𝐴—with the interpretation that the interpreter maps a
program 𝑡 ∈ L(𝐴) and input value in ∈ 𝜃𝐴 to some output out ∈ 𝜏𝐴 if and only if 𝑡 starting with
the input value in terminates with the output value out.

Example 3.3 (Interpreters for Imp1). Recall the Imp language defined in Section 2. The interpreter
I for Imp consists of three base interpreters I𝐸 , I𝐵 , and I𝑆 , which are used to evaluate arithmetic
expressions, Boolean expressions, and statements, respectively. Throughout this paper, we assume
the interpreters for Imp1 (and all Imp variants) evaluate according to the standard denotational
semantics (e.g., 0 is the expression that always returns 0 regardless of input state; + is mathematical
+; while b s evaluates 𝑏, executes the loop body, and recurses if b evaluates to true and otherwise
immediately terminates; etc.).
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3.3 Semantics
We represent the big-step semantics of a language (defined by some grammar𝐺) using a set of Con-
strained Horn Clauses (CHCs) within some background theory T per production. While CHCs (at
first glance) seem limiting, this formulation of semantics has been employed by the SemGuS frame-
work to represent user-defined semantics for many languages [6, 11], including many variations of
Imp, regular expressions, SyGuS expressions within the theory of bit vectors, algebraic data types,
linear integer arithmetic.

Definition 3.4 (Constrained Horn Clause). A CHC (in theory T ) is a first-order formula of the
form:

∀𝑥1, . . . , 𝑥𝑛, 𝑥 . 𝜙 ∧ 𝑅1 (𝑥1) ∧ · · · ∧ 𝑅𝑛 (𝑥𝑛) ⇒ 𝐻 (𝑥)

where 𝑅1, . . . , 𝑅𝑛 and 𝐻 are uninterpreted relations, 𝑥1, . . . , 𝑥𝑛 and 𝑥 are variables, and 𝜙 is a
quantifier-free T -constraint over the variables.

To specify the big-step semantics of a non-terminal 𝐴 ∈ 𝑁 (for which the interpreter has type
I𝐴 : (L(𝐴) × 𝜃𝐴) → 𝜏𝐴), we introduce the semantic relation Sem𝐴 (𝑡𝐴, 𝑥 in𝐴 , 𝑥out𝐴 ), where 𝑡𝐴 is a
variable representing elements of L(𝐴), 𝑥 in𝐴 is a variable of type 𝜃𝐴, and 𝑥out𝐴 is a variable of type
𝜏𝐴. Throughout this paper, we may also use J𝑡𝐴KSem (𝑥 in𝐴 ) = 𝑥out𝐴 to denote that Sem𝐴 (𝑡𝐴, 𝑥 in𝐴 , 𝑥out𝐴 )
holds.

Example 3.5 (Semantic relations). Consider the Imp1 language introduced in Section 2; a seman-
tics for Imp1 uses the semantic relations:

Sem𝐸 : L(𝐸)×Z×Z→ bool Sem𝐵 : L(𝐵)×Z×bool→ bool Sem𝑆 : L(𝑆)×Z×Z→ bool

While CHCs are quite general and capable of defining both deterministic and non-deterministic
semantics, we limit our scope to CHCs that represent deterministic semantics. Furthermore, for a
grammar 𝐺 , we assume that each production 𝐴0 → 𝜎 (𝐴1, . . . , 𝐴𝑛) ∈ 𝐺 evaluates sub-terms in a
fixed order from left to right (i.e., for a term 𝑝 (𝑡1, . . . , 𝑡𝑛) sub-term 𝑡1 is evaluated before 𝑡2, etc.).
While this imposed order may seem too restrictive, we later show how this restriction can be lifted
by considering all permutations of sub-terms.

Definition 3.6 (Semantic Rule, Semantic Constraint). Given a production 𝐴0 → 𝑝 (𝐴1, . . . , 𝐴𝑛) a
semantic rule for 𝑝 is a CHC of the form:

Sem𝐴1 (𝑡1, 𝑥 in1 , 𝑥out1 ) . . . Sem𝐴𝑛 (𝑡𝑛, 𝑥 in𝑛 , 𝑥out𝑛 ) 𝐹 (𝑥 in0 , . . . , 𝑥 in𝑛 , 𝑥out0 , . . . , 𝑥out𝑛 )
Sem𝐴𝑛 (𝑝 (𝑡1, . . . , 𝑡𝑛), 𝑥 in0 , 𝑥out0 ) (1)

where 𝐹 is constraint over theory T , which we call a semantic constraint, that takes the form:

𝑥 in1 = 𝑓1 (𝑥 in0 ) ∧ · · ·∧𝑥 in𝑛 = 𝑓𝑛 (𝑥out1 , . . . , 𝑥out𝑛−1, 𝑥
in
0 ) ∧𝑥out0 = 𝑓0 (𝑥out1 , . . . , 𝑥out𝑛 , 𝑥 in0 ) ∧𝑃 (𝑥 in0 , 𝑥out0 , . . . , 𝑥out𝑛 )

(2)
where each 𝑓𝑖 is a function that returns a term of type 𝜃𝐴𝑖 for 𝑖 > 0 and 𝜏𝐴0 for 𝑖 = 0. The semantic
constraint also includes predicate 𝑃 (𝑥 in𝐴0

, 𝑥out𝐴1
, . . . , 𝑥out𝐴𝑛

) that determines when the semantic rule is
valid (e.g., for conditionals and loops).
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1:8 Anon.

Example 3.7 (Semantics of do_while). We give the semantics of the do_while Imp statement
below: J𝑠K(𝑥1) = 𝑥 ′1 J𝑏K(𝑥2) = 𝑟𝑏Jdo 𝑠 while 𝑏K(𝑥3) = 𝑥 ′3 𝑟𝑏 𝑥1 = 𝑥0 𝑥2 = 𝑥 ′1 𝑥3 = 𝑥 ′1 𝑥 ′0 = 𝑥 ′3Jdo 𝑠 while 𝑏K(𝑥0) = 𝑥 ′0

J𝑠K(𝑥1) = 𝑥 ′1 J𝑏K(𝑥2) = 𝑟𝑏 ¬𝑟𝑏 𝑥1 = 𝑥0 𝑥2 = 𝑥 ′1 𝑥 ′0 = 𝑥 ′1Jdo 𝑠 while 𝑏K(𝑥0) = 𝑥 ′0

The first rule executes the statement 𝑠 and then, if the guard 𝑏 is true recursively executes the
whole loop and returns the resulting value. The second rule executes the statement 𝑠 and then, if
the guard 𝑏 is false returns the output produced when executing the statement 𝑠 .

3.4 Equivalence Oracle and Semantics Synthesis Problem
For a grammar 𝐺 , a semantics Sem for 𝐺 , and an interpreter I for 𝐺 , we define when Sem is
equivalent to the semantics defined by interpreter I via an equivalence oracle.

Definition 3.8 (Equivalent, Equivalence Oracle). Given an interpreter I for a language 𝐺 , a sub-
grammar𝐺 ′ ⊆ 𝐺 , and a semantics Sem for𝐺 ′, we say that I and Sem are equivalent on𝐺 ′ if and
only if for every term 𝑡 ∈ L(𝐺 ′), input in ∈ 𝜃𝐴, and output out ∈ 𝜏 , we have:

𝐼 (𝑡, in) = out ⇔ J𝑡KSem (in) = out

An equivalence oracle E for I is a function that takes as input a semantics Sem for 𝐺 ′ and
determines if Sem is equivalent to I on 𝐺 ′. If Sem is not equivalent to I, then E returns an ex-
ample 〈in, 𝑡, out〉 for which I and Sem disagree—i.e., there is some term 𝑡 and input in such thatJ𝑡KSem (in) ≠ J𝑡KI (in)—and otherwise returns None when Sem and I are equivalent.

Given a language (a grammar and accompanying interpreter), the semantics synthesis problem
is to find some semantics of the language that is equivalent to the interpreter. We formalize the
semantics synthesis problem as follows:

Definition 3.9 (Semantics-Synthesis Problem, Solution). A semantics-synthesis problem is a
tuple P ≜ 〈𝐺,I, E〉, where 𝐺 is a grammar, I is an interpreter for 𝐺 , and E is an equivalence
oracle for I. A solution to the semantics-synthesis problem P is a semantics Sem for 𝐺 that is
equivalent to I as determined by E.

4 SEMANTICS SYNTHESIS
This section presents an algorithm SemSynth (Algorithm 1) to synthesize a semantics for a lan-
guage from an executable interpreter. The input to SemSynth is a semantics-synthesis problem
consisting of (i) a grammar 𝐺 , (ii) an executable interpreter I for 𝐺 , and (iii) an equivalence ora-
cle E for I. Upon termination, SemSynth returns a semantics Sem for 𝐺 that is equivalent to the
executable interpreter I as determined by the equivalence oracle E.

Synthesizing a semantics for arbitrary languages comes with several challenges. In general, se-
mantics are defined as complex recursively defined functions that provide an interpretation to
every program within the language. Trying to directly synthesize such a semantics is already im-
practical for relatively small languages, such as the Imp language defined in Example 2.1.

As described in Section 3.3, we consider semantics represented using logical relations defined by
a set of Constrained Horn Clauses per production of 𝐺 (cf. Definition 3.6). By formulating the de-
sired semantics as CHCs per production, SemSynth can inductively synthesize the semantics of𝐺
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Algorithm 1: Semantics-Synthesis Algorithm
1 Procedure SemSynth (𝐺 , I, E)
2 Order ← Some total ordering of productions of 𝐺 ;
3 𝑁 ← |𝐺 | ; // 𝑁 the number of productions of 𝐺.

// Assume, each production is indexed 1 to 𝑁 according to Order

4 Sem← 𝜆𝑝. ⊥ ; // Maps each production to a semantics.

5 E← 𝜆𝑝. ∅ ; // Maps each production to a set of examples.

6 𝑖 ← 1 ; // Start from production indexed by 1.

7 while 𝑖 ≤ 𝑁 do // Synthesize semantics one production at a time according to Order.

8 Sem[𝑝𝑖 ] ← SynthSemanticConstRaint(Sem, 𝑝𝑖 , 𝐸);
9 cex, 𝑝 𝑗 ← VeRify(Sem, 𝑝𝑖 ,I, E);

10 if cex ≠ None then // Counter-example found for production 𝑝 𝑗.

11 𝐸 [𝑝 𝑗 ] ← 𝐸 [𝑝 𝑗 ] ∪ {𝑐𝑒𝑥} ; // Update examples for production 𝑝 𝑗.

12 𝑖 ← 𝑗 ; // Backtrack and resynthesize production 𝑝 𝑗's semantics.

13 else
14 𝑖 ← 𝑖 + 1 ; // Proceed to synthesize next production's semantics.

15 return Sem;

one production at a time. Furthermore, SemSynth uses this flexibility to synthesize the semantics
of simpler productions and fragments of the𝐺 before synthesizing the semantics of more complex
productions/operators. Finally, by fixing the shape of the semantics (i.e., as a set of CHCs per pro-
duction), SemSynth reduces the monolithic synthesis problem to a series of first-order synthesis
problems—specifically, by using a SyGuS or sketch-based synthesizer to synthesize the constraint
of each semantic rule (CHC) defining the semantics of a production.

The remainder of this section is structured as follows: Section 4.1 provides a high-level overview
of how SemSynth solves semantic-synthesis problems, Sections 4.2 and 4.4 provide specifications
for SynthSemanticConstRaint and VeRify, which synthesize semantic constraints from exam-
ples and verify candidate semantic constraints against the interpreter, respectively. Section 4.3 de-
tails how SemSynth synthesizes the semantics of productions from examples. Finally, Section 4.5
explains how SemSynth handles semantically recursive productions.

4.1 Overview of SemSyntH
SemSynth (Algorithm 1) uses the counter-example-guided synthesis (CEGIS) paradigm to synthe-
size a semantics for 𝐺 that is equivalent to I according to the equivalence oracle E. Throughout
this section, we will use the Imp language from Example 2.1 to illustrate how SemSynth operates.

Choosing an Order. To begin, SemSynth determines an order to iterate over the productions
of 𝐺 . While any ordering is sound, we assume that SemSynth picks an order Order such that
the following property holds. Suppose the grammar 𝐺 is treated as a graph whose nodes are the
productions and non-terminals of 𝐺 and each production 𝐴0 → 𝑝 (𝐴1, . . . , 𝐴𝑛) induces an edge
from 𝐴0 to 𝑝 and from 𝑝 to each 𝐴1 through 𝐴𝑛 . If there is a path from 𝑝𝑖 to 𝑝 𝑗 , but no path from
𝑝 𝑗 to 𝑝𝑖 then 𝑝𝑖 is ordered before 𝑝 𝑗 by Order .

For example, for the Imp language, Order will order productions for arithmetic expressions, like
0, 1, and x, before the production +, and all productions for arithmetic expressions before the
assignment-statement production x B. Mutually recursive productions (e.g., sequencing (;), ite,
and while), may be explored in any order. For simplicity, we index each production by a natural
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1:10 Anon.

number from 1 to 𝑁 (the number of productions in𝐺). Next, SemSynth initializes the synthesized
semantics Sem (marking every production as initially undefined), and 𝐸 to the example set (cf.
definition 4.1) that maps each production to a set of examples.

Synthesizing a Candidate Semantics. After initialization, SemSynth iteratively synthesizes the
semantics of productions in the order defined byOrder . SemSynth employs a CEGIS loop to synthe-
size the semantics of each production. During each iteration, SemSynth first synthesizes a candi-
date semantic constraint (cf. Definition 3.6) for production 𝑝𝑖 using SynthSemanticConstRaint.
The procedure SynthSemanticConstRaint returns some semantic constraint for 𝑝𝑖 that satisfies
the set of examples 𝐸. Section 4.2 provides a formal specification of SynthSemanticConstRaint’s
operation.

SemSynth then uses the procedure VeRify to determine if the semantics synthesized thus far is
consistent with the interpreterI as determined by the equivalence oracle E. A formal specification
of VeRify is provided in Section 4.4. If VeRify determines that Sem is correct, then it returns
None, and SemSynth advances to attempt to synthesize the semantics of production 𝑝𝑖+1. If VeRify
determines that Sem does notmatch the semantics ofI, then it returns some example 𝑐𝑒𝑥 for which
Sem and I disagree. It additionally places blame on some production 𝑝 𝑗 ’s synthesized semantics.
SemSynth then updates the set of examples 𝐸 and backtracks to resynthesize the semantics of 𝑝 𝑗 .

4.2 Specification of SyntHSemanticConstraint
Before formally specifying SynthSemanticConstRaint (Section 4.2.3), we first define example
sets (Section 4.2.1) and when a semantic constraint is consistent with an example set (Section 4.2.2).

4.2.1 Example Sets. For an interpreter I, an example set 𝐸 is a set of examples consistent with I.
Definition 4.1 (Example set for interpreter I). Given an interpreter I for grammar𝐺 , an example

set 𝐸 for interpreter I maps each production 𝐴0 → 𝑝 (𝐴1, . . . , 𝐴𝑛) ∈ 𝐺 to a finite set of examples
of the form 〈in, 𝑝 (𝑡1, . . . , 𝑡𝑛), out〉, where 𝑡𝑖 ∈ 𝐿(𝐴𝑖 ) and I(𝑝 (𝑡1, . . . , 𝑡𝑛), in) = out.

Example 4.2 (Example set for Imp1). Recall the interpreter IImp1 described in Example 3.3
for language Imp1. An example set 𝐸 for IImp1 might include the examples 〈0, 0, 0〉, 〈1, 0, 0〉,
〈1, x B 0; x B x + 4, 4〉, and 〈10, while 0 < x do x B x − 1, 0〉; however, an example set for IImp
could not include any example of the form 〈𝑛, while 0 < x do x B x + 1, 𝑛′〉 where 𝑛 (the initial
value of x) is some non-negative number. Since, while 0 < x do x B x + 1 would not terminate
on the input 𝑛. The example 〈𝑛, whie 0 < x do x B x + 1, 𝑛′〉 would violate the assumption that 𝐸
only contains examples consistent with the interpreter IImp .
4.2.2 Example Consistency. In SemSynth, we use the example set 𝐸 to ensure that the semantic
constraint returned by SynthSemanticConstRaint is consistent with I for at least the examples
appearing in 𝐸.

Definition 4.3 (Consistency with Example Set). Given a production 𝐴0 → 𝑝 (𝐴1, . . . , 𝐴𝑛), a se-
mantic rule 𝑅 with semantic constraint 𝐹 of the form defined in Definition 3.6, and example set
𝐸, we say 𝑅 is consistent with 𝐸 if and only if the semantic constraint 𝐹 is consistent with 𝐸.
Furthermore, the semantic constraint 𝐹 is consistent with the example set 𝐸 if for every example〈
in𝐴0 , 𝑝 (𝑡1, . . . , 𝑡𝑛), out𝐴0

〉
∈ 𝐸 the following condition holds:

∀𝑥 in0 , . . . , 𝑥 in𝑛 , 𝑥out0 , . . . , 𝑥out𝑛 .

©«
𝑥 in0 = in0

∧ Summary(𝑡1)
. . .

∧ Summary(𝑡𝑛)
∧ 𝐹

ª®®®®®¬
⇒ 𝑥out0 = out0 (3)
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where Summary(𝑡𝑖 ) =
∨{𝑥 in𝑖 = in𝑖 ∧ 𝑥out𝑖 = out𝑖 : 〈in𝑖 , 𝑡𝑖 , out𝑖〉 ∈ 𝐸} summarizes the semantics of

𝑡𝑖 according to the examples found in 𝐸.

Example 4.4 (Example Consistency). Consider the production for the operator +, and the (correct)
semantic constraint 𝐹 ≜ 𝑥 in1 = 𝑥 in0 ∧𝑥 in2 = 𝑥 in0 ∧𝑥out0 = 𝑥out1 +𝑥out2 ; 𝐹 is consistent with the examples
〈0, x0 + 1, 1〉, 〈0, x0, 0〉, and 〈0, 1, 1〉. Specifically, the following formula is valid:

∀𝑥 in0 , 𝑥 in1 , 𝑥 in2 , 𝑥out0 , 𝑥out1 , 𝑥out2 . (𝑥 in0 = 0 ∧ (𝑥 in1 = 0 ∧ 𝑥out1 = 0) ∧ (𝑥 in1 = 0 ∧ 𝑥out1 = 1) ∧ 𝐹 ) ⇒ 𝑥out0 = 1.

4.2.3 Formal Specification of SynthSemanticConstRaint. The procedure SynthSemantic-
ConstRaint takes as input the current semantics Sem, the production 𝑝𝑖 whose semantics is to
be synthesized, and the current example set 𝐸; it returns a constraint 𝐹—of the form defined in
Definition 3.6—defining a semantics for production 𝑝𝑖 that is consistent with the example set 𝐸.

Example 4.5 (Synthesizing semantics of x B consistent with examples). Recall that for the lan-
guage Imp, the semantics of the production x B is represented as (a set of) CHC rule(s) of the
form:

Sem𝐸 (𝑒, 𝑥 in1 , 𝑥out0 ) ∧ 𝑥 in1 = 𝑓 (𝑥 in0 ) ∧ 𝑥out0 = 𝑔(𝑥 in0 , 𝑥out1 )
Sem𝑆 (x B𝑒, 𝑥 in0 , 𝑥out0 )

for some functions 𝑓 and 𝑔 (in the theory of linear integer arithmetic). The procedure call
SynthSemanticConstRaint(Sem, x B, 𝐸) synthesizes the formulas 𝑓 (𝑥 in0 ) = 𝑡𝑓 and 𝑔(𝑥 in0 , 𝑥out1 ) =
𝑡𝑔, and returns the constraint 𝐹 ≜ 𝑥 in1 = 𝑡𝑓 ∧ 𝑥out0 = 𝑡𝑔 so that 𝐹 is consistent with 𝐸.

We note that for functions expressible in a decidable first-order theory, this problem can be
exactly encoded as a Syntax-Guided Synthesis (SyGuS) problem [2] and solved by a SyGuS solver
(e.g., cvc5 [4]).

4.3 Synthesizing from Examples
To synthesize the semantics of a production, SemSynth uses the counter-example guided inductive
synthesis (CEGIS) paradigm. At a high level, SemSynth synthesizes a candidate semantics—for
productions 𝑝1 through 𝑝𝑖 , one production at a time—from a set of examples. If the candidate
semantics is incorrect, a counter-example is produced (by VeRify), which is added to the set of
examples, and a new candidate semantics is synthesized. We illustrate how SemSynth uses and
generates examples to synthesize the semantics of a nullary production in Example 4.6.

4.4 Specification of Verify
The procedure VeRify takes as input the currently synthesized semantics Sem, the production 𝑝𝑖
whose semantics was just synthesized, the interpreter I, and equivalence oracle E; it determines
if Sem is equivalent to the interpreter I for all terms in the sub-grammar 𝐺 ′ that consists of only
the productions 𝑝1 through 𝑝𝑖 . If VeRify determines that Sem is not equivalent to I, it returns a
counter-example (𝑖, 𝑡, 𝑜) and production 𝑝 𝑗 (with 1 ≤ 𝑗 ≤ 𝑖) such that 𝑡 ’s root production is 𝑝 𝑗 ,J𝑡K𝐼 (𝑖) = 𝑜 , and J𝑡KSem (𝑖) ≠ 𝑜 . Otherwise, VeRify returns None to signify that Sem is equivalent to
I for all terms within the sub-grammar 𝐺 ′.

Example 4.6 (Synthesizing Semantics of 0 for 𝐺Imp .). Recall the Imp language in Example 2.1.
SemSynth first synthesizes the semantics of the leaves of 𝐺Imp . Assume that Order assigns the

production 0 index 1 (i.e., it is the first production explored by SemSynth). During the first iter-
ation of SemSynth, the example set is empty and SynthSemanticConstRaint may return any
constraint 𝐹 of the form 𝑥out0 = 𝑓 (𝑥 in0 ). Assume that SynthSemanticConstRaint returns the con-
straint 𝑥out0 = 1. VeRify returns the counter-example 〈0, 0, 0〉, and the example set 𝐸 is updated.
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1:12 Anon.

In the next iteration, SynthSemanticConstRaint must return a constraint satisfying the up-
dated example set. For example, suppose that SynthSemanticConstRaint returns the constraint
𝑥out0 = 𝑥 in1 . Again, VeRify determines that 𝑥out0 = 𝑥 in1 is incorrect and returns the new counter-
example 〈1, 0, 0〉. The example set 𝐸 is updated with the returned counter-example.

A new iteration of the loop is run. On this loop, SynthSemanticConstRaint must return a
constraint that satisfies both of the previously returned examples. This time SynthSemantic-
ConstRaint returns the constraint 𝑥out0 = 0. This time, VeRify determines that 𝑥out0 = 0 is correct,
and SemSynth proceeds to synthesize the semantics of the next production (e.g., 1).

In Example 4.6, we see how SemSynth handles nullary (leaf) productions. SemSynth works
nearly identically for most production rules (excluding semantically recursive productions like
while loops). We demonstrate in Example 4.7 how SemSynth synthesizes a semantics for non-
nullary productions.

Example 4.7 (Synthesizing Semantics of Sequencing for Imp.). Continuing from Example 4.6, Sem-
Synth proceeds and comes to the sequencing operator (i.e., for production 𝑆 → ;(𝑆, 𝑆)). Af-
ter several attempts at synthesizing the semantics of sequencing, 𝐸 (;) contains the examples
〈0, x B 1; x B 0, 0〉, 〈0, x B 0; x B x + 1, 1〉, and 〈1, x B 0; (x B 1; x B x + 1), 2〉.

As in the nullary case, we summarise the semantics of each example sub-term using the example
set 𝐸. SemSynth then generates the formula specifying that the desired semantic constraint sat-
isfies the example set 𝐸 using the generated summaries, and produces a new semantic constraint
using SynthSemanticConstRaint. On this iteration, SynthSemanticConstRaint returns the
correct semantic constraint, VeRify determines whether it is correct, and SemSynth proceeds to
synthesize a semantics for the next production.

4.5 Synthesizing Semantics for Semantically Recursive Productions
So far, we have seen how SemSynth handles nullary productions and structurally recursive pro-
ductions (e.g., ite and sequencing). However, we have not yet seen how to handle productions that
are semantically recursive (e.g., while loops). To handle semantically recursive productions, we
augment the form of the desired constraint to be synthesized: SynthSemanticConstRaint must
synthesize a predicate 𝑃rec and two base constraints 𝐹nonrec and 𝐹rec such that for every example
〈in, 𝑝 (𝑡1, . . . , 𝑡𝑛), out〉, the following conditions hold:

Sem𝐴1 (𝑡1, 𝑥 in𝐴1
, 𝑥out𝐴1
)

. . . Sem𝐴𝑛 (𝑡𝑛, 𝑥 in𝐴𝑛
, 𝑥out𝐴𝑛
) ¬𝑃rec (𝑥 in𝐴0, 𝑥

out
𝐴1

, . . . , 𝑥out𝐴𝑛
) 𝐹non−rec (𝑥 in𝐴0, 𝑥

out
𝐴1

, . . . , 𝑥out𝐴𝑛
) 𝑥 in𝐴0

= in

𝑥out𝐴0
= out non-rec

Sem𝐴1 (𝑡1, 𝑥 in𝐴1
, 𝑥out𝐴1
) . . . Sem𝐴𝑛 (𝑡𝑛, 𝑥 in𝐴𝑛

, 𝑥out𝐴𝑛
)

Sem𝐴0 (𝑝 (𝑡1, . . . , 𝑡𝑛), 𝑥 in𝐴0

′
, 𝑥out𝐴0

′) 𝑃rec (𝑥 in𝐴0, 𝑥
out
𝐴1

, . . . , 𝑥out𝐴𝑛
) 𝐹rec (𝑥 in𝐴0, 𝑥

out
𝐴1

, . . . , 𝑥out𝐴𝑛
) 𝑥 in𝐴0

= in

𝑥out𝐴0
= out rec

where 𝑃rec determines if the non-rec or rec condition should hold. The non-recursive case is
similar to the conditions for non-semantically recursive statements (with the addition of asserting
that 𝑃rec is false). The recursive case, however additionally allows the semantics to make use of a
recursive call to the program term. Other than the change in the shape of the desired semantics,
SemSynth remains unchanged.

Example 4.8 (Synthesizing semantics of while loops for Imp.). Continuing from Example 4.7, Sem-
Synth eventually reaches the while production. We assume that the grammar 𝐺 additionally
annotates whether each production is semantically recursive.
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After several more iterations, the set 𝐸 (while) contains the examples 〈0, 𝑡, 0〉, 〈1, 𝑡, 0〉, and
〈1, 𝑡, 0〉, where 𝑡 is the term while 0 < x do x := x − 1. In this iteration, SynthSemantic-
ConstRaint gets called with a recursive summary of 𝑡 containing the three examples, and the
exact synthesized semantics for x := x − 1 and 0 < x.

In this iteration, SynthSemanticConstRaint finds the correct 𝑃rec , 𝐹non−rec and 𝐹rec . VeRify
determines that the result is indeed correct and the main loop of SemSynth terminates (because
while is the last production in the grammar). Finally, SemSynth returns the synthesized semantics
for each production.

Now that we have defined how SemSynth handles semantically recursive productions, Sem-
Synth is fully specified. Theorem 4.9 states that SemSynth is sound.

TheoRem 4.9 (SemSynth is sound). For any semantics-synthesis problem P = 〈𝐺,I, E〉, if
SemSynth(𝐺,I, E) returns a semantics Sem, then Sem is a solution to P.

PRoof. In SemSynth, we maintain the loop invariant that the synthesized semantics Sem is
correct with respect to the oracle E for productions 𝑝1 through 𝑝𝑖−1. This condition trivially holds
on the first iteration. To proceed to iteration 𝑖 + 1, VeRify must return None, which implies that
Sem is correct for productions 𝑝1 through 𝑝𝑖 . Thus the invariant is maintained. Upon back-tracking,
the invariant is trivially true (because it held for some greater iteration). Thus, upon termination
with 𝑖 = 𝑁 +1, Semmust be correct for all productions of𝐺—i.e., Sem satisfies the given semantics-
synthesis problem P. □

While Theorem 4.9 states the soundness of SemSynth, it fails to show that SemSynth will
eventually synthesize a correct semantics. Theorem 4.10 states that SemSynth makes progress.
Intuitively, it ensures that once a semantics is explored during an iteration of SemSynth, it is
never explored in any future iterations of SemSynth. However, the formal statement relaxes this
condition because back-tracking may cause (a finite number of) future iterations to explore the
same semantics.

TheoRem 4.10 (SemSynthmaKes pRogRess). For any semantics-synthesis problemP = 〈𝐺,I, E〉,
if SemSynth(𝐺,I, E) is on iteration 𝑘 of the main loop with current synthesized semantics Sem𝑘 , then
for some iteration 𝑘0 > 𝑘 , for all iterations 𝑘 ′ ≥ 𝑘0, Sem will never take the value Sem𝑘 again (i.e.,
Sem𝑘 ′ ≠ Sem𝑘 ).

PRoof. Assume the negation holds, i.e., “∀𝑘0 > 𝑘, ∃𝑘 ′ ≥ 𝑘0, Sem𝑘 ′ = Sem𝑘”. Suppose that at
iteration𝑘 , the example set is 𝐸𝑘 , and at iteration𝑘0, the example set is 𝐸0. Given that Sem𝑘 ′ = Sem𝑘 ,
those two semantics are defined for the same set of productions {𝑝1, . . . , 𝑝𝑐 }. Thus, line 10–12 of
Algorithm 1 must be executed at least once between the iterations 𝑘 and 𝑘0 (both inclusive). If
we consider the first execution of line 11 after iteration 𝑘 (and let 𝑘1 denote the current iteration
at that moment), we have that for production 𝑝 𝑗 , where (1 ≤ 𝑗 ≤ 𝑐), 𝐸𝑘 [𝑝 𝑗 ] ∪ {cex} ⊂ 𝐸0 [𝑝 𝑗 ],
where cex = (in, 𝑡, out) satisfies J𝑡KSem𝑘 (in) = J𝑡KSem𝑘′ (in) ≠ out. This situation will never happen,
because after cex is added to 𝐸 in iteration 𝑘1, on line 8, the constraints in Section 4.2 do not allowJ𝑡KSem𝑘′ (in) ≠ out. Thus we reach a contradiction. □

5 IMPLEMENTATION
This section gives details of Synantic, which implements our approach to synthesizing semantics
via the algorithm SemSynth. Synantic is developed in Scala (version 2.13), and uses cvc5 (version
1.0.3) to solve SyGuS problems—which are used within our implementation of SynthSemantic-
ConstRaint to generate candidate semantic constraints. The remainder of this section is struc-
tured as follows: Section 5.1 details how we implement SynthSemanticConstRaint. Section 5.2
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summarizes the implementation of VeRify, and explains how we approximate an equivalence or-
acle for an interpreter. Section 5.3 presents an optimization of SynthSemanticConstRaint for
productions with multiple outputs (i.e., where the output type of a production is a tuple).

5.1 Implementation of SyntHSemanticConstraint
In Section 4, SemSynth is parameterized on the procedure SynthSemanticConstRaint. On line
8 of Algorithm 1, we assume that SynthSemanticConstRaint produces a semantic constraint 𝐹
for production 𝑝𝑖 that satisfies the example set 𝐸. To accomplish this task, we construct a SyGuS
problem consisting of a grammar of allowable semantic constraints and a set of conditions to
enforce that the semantic constraint is consistent with the example set. To handle productions
whose semantics does not evaluate its child terms from left to right, we run in parallel a version
of SynthSemanticConstRaint for each permutation of the child terms and immediately return
upon any permutation’s success. In practice, for all of our benchmarks, all the productions evaluate
their children from left to right.

We defer discussion of the SyGuS grammars we use to Section 6.1 when we discuss each bench-
mark.The specification of the semantic constraint is exactly the condition specified in Equation (3).

5.2 Implementation of Verify
In Section 4, Algorithm 1 is also parameterized on the procedure VeRify (line 9), which uses the
equivalence oracle E to determine if the learned semantics Sem is consistent with the interpreter
for all terms that only uses the productions 𝑝1 through 𝑝𝑖 . In Synantic, we approximate an equiv-
alence oracle using fuzzing. Specifically, we randomly generate terms and inputs and use the in-
terpreter I to generate an output. We then use the learned constraint for 𝑝𝑖 to generate inputs to
each sub-term (from left to right), and compute outputs for each using interpreter I. In effect, we
are computing a new example set 𝐸′, and testing the semantic constraints learned so far. If any
example disagrees with the learned semantics of production 𝑝 𝑗 (for 1 ≤ 𝑗 ≤ 𝑖), the example and
production 𝑝 𝑗 are returned as a counter-example.

When VeRify fuzzes the semantics, it uses the interpreter to generate examples (i.e., terms with
corresponding input-output examples). During example generation, we set a recursion limit of
1,000 recursive calls. We discard an input—i.e., we assume the program does not terminate—if its
run exceeds the recursion depth.

5.3 Optimized SyntHSemanticConstraint for Multi-Output Productions
In Section 5.1, we described how SynthSemanticConstRaint produces and uses cvc5 to solve a
SyGuS problem to synthesize a semantic constraint that is consistent with the current example set.
However, it is well known that SyGuS solvers scale poorly as a function of the size of the desired
grammar/result. This issue is especially problematic when learning a semantic constraint for a
language in which productions have multiple outputs (e.g., statements for Imp with more than one
variable) and thus the grammar and resulting constraint grow with the number of outputs.

To address this issue, we modified SynthSemanticConstRaint to synthesize a constraint for
each output independently. However, this process may lead to constraints that do not agree on the
internal data flow of the constraints (i.e., the functions determining the input to each child term). To
remedy this issue, our implementation of SynthSemanticConstRaint uses an additional CEGIS
loop that resynthesizes the constraint for each output until all agree on the inputs to each child
term. For simplicity, we explain how this optimization works for a production that has two outputs.
Consider the case for 𝐴0 → 𝑝 (𝐴1, . . . , 𝐴𝑛) where 𝜏𝐴0 ≜ 𝜏1 × 𝜏2. In this scenario, our goal is to
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synthesize two constraints 𝐹 and 𝐺 ,

𝐹 ≜ 𝑥1 = 𝑓1 (𝑥0) ∧ · · · ∧ 𝑥𝑛 = 𝑓𝑛 (𝑥0, 𝑥 ′1, . . . , 𝑥 ′𝑛−1) ∧ 𝑥0′0 = 𝑓0 (𝑥0, 𝑥 ′1, . . . , 𝑥 ′𝑛)
𝐺 ≜ 𝑥1 = 𝑔1 (𝑥0) ∧ · · · ∧ 𝑥𝑛 = 𝑔𝑛 (𝑥0, 𝑥 ′1, . . . , 𝑥 ′𝑛−1) ∧ 𝑥0′1 = 𝑔0 (𝑥0, 𝑥 ′1, . . . , 𝑥 ′𝑛)

To determine if 𝐹 and 𝐺 agree on each child term’s input for example set 𝐸′, we generate the
formula 𝜙 shown below, for each example 〈in, 𝑝 (𝑡1, . . . , 𝑡𝑛), out〉 ∈ 𝐸′ (𝑝):

𝑥𝐹0 = 𝑥𝐺0 = in ∧ Summary(𝑡1)(𝑥𝐹1 , 𝑥
′𝐹
1 ) ∧ · · · ∧ Summary(𝑡1) (𝑥𝐹𝑛 , 𝑥

′𝐹
𝑛 ) (4)

∧ Summary(𝑡1)(𝑥𝐺1 , 𝑥
′𝐺
1 ) ∧ · · · ∧ Summary(𝑡1)(𝑥𝐺𝑛 , 𝑥

′𝐺
𝑛 ) (5)

∧ 𝐹 ∧𝐺 ∧ (𝑥𝐹1 ≠ 𝑥𝐺1 ∨ · · · ∨ 𝑥𝐹𝑛 ≠ 𝑥𝐺𝑛 ) ∧
〈
𝑥0
′𝐹
0 , 𝑥0

′𝐺
1

〉
= out (6)

which asks if 𝐹 and 𝐺 agree on the input to each child term for the given example. To make this
concept concrete, consider the following example.

Example 5.1 (Synthesizing Semantic Constraint for Multi-Output Production.). Consider the
task of synthesizing a semantics for x0 B in the language Imp2, using the examples:
〈〈0, 1〉 , x0 B x1, 〈1, 1〉〉, 〈〈0, 1〉 , x1, 1〉, 〈〈1, 1〉 , x1, 1〉.

For the above examples, SynthSemanticConstRaint might generate 𝐹 ≜ 𝑥 in1,0 = 𝑥 in0,0 ∧ 𝑥 in1,1 =
𝑥 in0,1 ∧ 𝑥out0,0 = 𝑥out1,1 and 𝐺 ≜ 𝑥 in1,0 = 𝑥 in0,1 ∧ 𝑥 in1,1 = 𝑥 in0,1 ∧ 𝑥out0,0 = 𝑥out1,1 , where 𝑥 in𝑖, 𝑗 is the 𝑗 th projection
of 𝑥 in𝑖 . While both 𝐹 and 𝐺 are consistent with the examples, the data-flow of 𝐹 is not consistent
with the data-flow of 𝐺 (i.e., in 𝐹 , 𝑥 in1,0 is assigned 𝑥 in0,0, while in 𝐺 , 𝑥 in1,0 is assigned 𝑥 in0,1). We can
construct the formula in Equation (4) for 𝐹 and 𝐺 , and find out that in 𝐹 , the variable 𝑥 in1,0

𝐹 takes
the value 0, and in 𝐺 , the variable 𝑥 in1,0

𝐺 takes value 1. Thus, 𝐹 and 𝐺 are not consistent on data-
flows to children for the provided example. We generate a new condition for the next iteration of
SynthSemanticConstRaint that asserts 𝑥 in0,0

𝐹 ≠ 0 ∨ 𝑥 in0,0
𝐺 ≠ 1.

In practice, we create a copy of each variable indexed by 𝐹 and𝐺 , respectively, to avoid clashing
variable names when encoding the constraints 𝐹 and 𝐺 within a single formula. To check the
consistency of 𝐹 and 𝐺 ’s data flows, we use cvc5 to check the satisfiability of the formula 𝜙 in
Equation (4). If 𝜙 is unsatisfiable, then 𝐹 and 𝐺 must agree on the inputs of all child terms for
the given examples. If so, then we may return either 𝐹 ∧ 𝑥02 = 𝑔0 (. . . ) or 𝐺 ∧ 𝑥01 = 𝑓0 (. . . ) (i.e.,
because 𝐹 and 𝐺 agree on all child term inputs, we may use either to constrain the data-flow to
child terms).

If 𝜙 is satisfiable, then 𝐹 and𝐺 do not agree on the input to all child terms. In this case, we find a
model that satisfies 𝜙 . If there is some subterm 𝑡𝑖 such that there is no example 〈in, 𝑡𝑖 , out〉 ∈ 𝐸 such
that in = 𝑀 (𝑥𝐹𝑖 ) or in = 𝑀 (𝑥𝐺𝑖 ), then we add the example 〈in, 𝑡,I(𝑡𝑖 , in)〉 to the set of examples,
and resynthesize the constraints 𝐹 and 𝐺 . Otherwise, we know that the sub-term summaries are
sufficient to fully specify both 𝐹 and 𝐺 for all examples in 𝐸. Thus, we must add a new constraint
that ensures the pair of constraints 𝐹 and𝐺 are never synthesized again. To do this, we add a new
constraint 𝑥𝐹0 ≠ 𝑀 (𝑥𝐹0 ) ∨ 𝑥𝐺0 ≠ 𝑀 (𝑥𝐺0 ) ∨ · · · ∨ 𝑥𝐹𝑛 ≠ 𝑀 (𝑥𝐹𝑛 ) ∨ 𝑥𝐺𝑛 ≠ 𝑀 (𝑥𝐺𝑛 ), which ensures that the
input of at least one of the child terms for either 𝐹 or 𝐺 must change. A new candidate 𝐹 and 𝐺
are then synthesized. The CEGIS loop continues until it finds a valid pair of 𝐹 and𝐺 for the set of
examples.

6 EVALUATION
The goal of our evaluation is to answer the following questions:

RQ1 Can Synantic synthesize the semantics of non-trivial languages?
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RQ2 Where is time spent during synthesis?
RQ3 Is the multi-output optimization from Section 5.3 effective?
RQ4 How do synthesized semantics compare to manually written ones?

All experiments were run on a machine with an Intel(R) i9-13900K CPU and 32 GB of memory,
running NixOS 23.10 and Scala 2.13.13. All experiments were allotted 2 hours, 4 cores of CPU, and
24 GB of memory. Cvc5 version 1.0.3 is used for SMT solving and SyGuS function synthesis. For
the total running time of each experiment, we report the median of 7 runs using different random
seeds. For every language, we record whether Synantic terminates within the given time limit of
2 hours, and when it does, we also record the set of synthesized semantic rules. A language that
does not terminate within the time limit on more than half of the seeds is reported as a timeout.

6.1 Benchmarks
We collected 14 benchmarks from the two sources discussed below. For every language discussed
in this section, we manually translated the semantics to a simple equivalent interpreter written in
Scala; our goal was then to synthesize an appropriate CHC-based semantics from the interpreter.
The one non-standard feature of our setup is that the interpreter must be capable of interpreting
the programs derived from any nonterminal in the grammar.

SemGuS benchmarks. Our first source of benchmarks is the SemGuS benchmark repository [11].
This dataset contains SemGuS synthesis problems where each problem consists of a grammar of
terms, a set of CHCs inductively defining the semantics of terms in the grammar, and a specification
that the synthesized program should meet. For our purposes, we ignored the specification and
collected the grammar plus semantics for 10 distinct languages that appear in the repository. We
do not consider languages that contain abstract data types (e.g., stacks) or require a large range of
inputs (e.g., ASCII characters) due to their poor support by the SyGuS solver. These 10 languages
gave us 10 benchmarks.

Some of the languages used in the SemGuS benchmark set are parametric (denoted by a param-
eter 𝑘), meaning that the semantics is slightly different based on a given parameter (e.g., number
of program variables for IMP and length of the input string for regular expressions). For these
benchmarks, we ran Synantic on an increasing sequence of parameter values and reported the
largest parameter value for which Synantic succeeds.

RegEx(𝑘) is a language for matching regular expressions on strings of length 𝑘 ; Given a regu-
lar expression 𝑟 and string 𝑠 of length 𝑘 (index starts from 0), the semantic functions produce a
Boolean matrix 𝑀 ∈ Bool(𝑘+1)×(𝑘+1) such that 𝑀𝑖, 𝑗 = true iff the substring 𝑠𝑖 ... 𝑗−1 matches regular
expression 𝑟—here 𝑠𝑖 ...𝑖 denotes the empty string, and by definition, 𝑀𝑖, 𝑗 = false for 𝑖 ≥ 𝑗 .

Cnf(𝑘), Dnf(𝑘) and Cube(𝑘) are languages of Boolean formulas (of the syntactic kind indicated
by their names, i.e., conjunctive normal form, disjunctive normal form, and cubes) involving up to
𝑘 variables.

Imp(𝑘) is an imperative language that contains common control flow structures, such as condi-
tionals and while loops, for programs with 𝑘 integer variables. Note that Imp includes operators
such as while and do_while for which the semantics involves semantically recursive productions
(Section 4.5). The complete semantics of Imp(𝑘) can be found in the supplementary material.

IntARith is a benchmark about basic integer calculations, like addition, multiplication, and
conditional selection. It also includes three constants whose value can be specified in the input to
the semantic relations.

BvSimple(𝑘) describes bit-vector operations involving 𝑘 bit-vector constants.
BvSimpleImp(𝑚,𝑛) is essentially a variant of BvSimple(𝑘) that augments the language with
let-expressions. Parameters𝑚 and 𝑛 mean that the language can use up to𝑚 bit-vector constants
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and 𝑛 bit-vector variables. BvSatuRate(𝑘) and BvSatuRateImp(𝑘) use the same syntaxes as
BvSimple(𝑘) and BvSimpleImp(𝑘), respectively, but operations use a saturating semantics that
never overflows or underflows.

Attribute-grammar synthesis [10]. Our second source of benchmarks is from the Panini tool for
synthesizing attribute grammars [10]. An attribute grammar (AG) associates each nonterminal
of an underlying context-free grammar with some number of attributes. Each production has a
set of attribute-definition rules (sometimes called semantic actions) that specify how the value of
one attribute of the production is set as a function of the values of other attributes of the produc-
tion. In a given derivation tree of the AG, each node has an associated set of attribute instances.
The attribute-definition rules are used to obtain a consistent assignment of values to the tree’s
attribute instances: each attribute instance has a value equal to its defining function applied to the
appropriate (neighboring) attribute instances of the tree. Effectively, AGs assign a semantics to
programs via attributes, and the underlying attribute-definition rules can be captured via CHCs.
While there are AG extensions to handle circular AGs [9, 14]—i.e., AGs in which some derivation
trees have attribute instances that are defined in terms of themselves—the work of Kalita et al.
concerns non-circular AGs.

Kalita et al. [10] present 12 benchmarks.We ignored 4 benchmarks that are either (i) not publicly
accessible, or (ii) use semantic functions that cannot be expressed in SMT-LIB and are thus beyond
what can be synthesized using a SyGuS solver—e.g., complex data structures, or (iii) identical to
existing benchmarks from other sources. We did not run their tool on our benchmarks because our
problem is more general than theirs, supporting a wider range of language semantics: the scope of
our work includes recursive semantics, which can be handled only indirectly in a system such as
theirs (which supports only non-circular AGs)—i.e., by introducing powerful hard-to-synthesize
recursive functions that effectively capture an entire construct’s semantics. The running time is
also not directly comparable, because Kalita et al.’s approach uses user-provided sketches (i.e.,
partial solutions to each semantic action), which simplifies the synthesis problem. In contrast, in
our work we do not assume that a sketch is provided for the semantic constraints and instead
consider general SyGuS grammars.

The remaining 8 benchmarks of Kalita et al. are consolidated as 4 languages (i.e., giving us
four benchmarks). IteExpR is a language of basic integer operations, comparison expressions, and
ternary if-then-else expressions (not statements). Our IteExpR benchmark subsumes benchmarks
B3, B4, and B5 of Kalita et al. because their only differences stem from whether the expression
is written in prefix, postfix, or infix notation. For Synantic, such surface-syntax differences are
unimportant because Synantic uses regular tree grammars to express a language’s abstract syntax,
and the underlying abstract syntax of prefix, postfix, and infix expressions is the same. BinOp is
a language of binary strings (combined from benchmarks B1 and B2 of Kalita et al.), along with
built-in functions for popcount (counting the number of ones) and binary-to-decimal conversion.
CuRRency is a language for currency exchange and calculation. Diff is a language for computing
finite differences. Because the original benchmark from Kalita et al. involves differentiation and
real numbers (which are not supported by existing SyGuS solvers), we modified the benchmark
to perform the related operation of finite differencing over integer-valued functions. Specifically,
for a function 𝑓 , its finite difference is defined as Δ𝑓 = 𝑓 (𝑥 + 1) − 𝑓 (𝑥). Starting from here, finite
differences for sums and products can be obtained compositionally, e.g., Δ (𝑢 · 𝑣) = 𝑢 (𝑥)Δ𝑣 (𝑥) +
𝑣 (𝑥 + 1)Δ𝑢 (𝑥).

SyGuS grammars. For each semantic function, we also provided a grammar for the SyGuS solver,
which contains the operators of the underlying logical theory and any specific functions that must
appear in the target semantics.
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For instance, for all benchmarks using the logic fragment NIA, we allow the use of basic in-
teger operations and integer constants, along with language-specific operations like conditional
operators (if-then-else).

For the languages Diff and CuRRency we did not include conditional operators, because they
do not appear in the semantics.

For BVSatuRated and BVIMPSatuRated we provided operators for detecting overflow and
underflow.

Lastly, for languages known to be free of side effects, wemodified the SyGuS grammars to forbid
data flow between siblings, and only allow parent-to-child and child-to-parent assignments.

6.2 RQ1: Can Synantic Synthesize the Semantics of Non-trivial Languages?
Table 1 presents a highlight of the results of running Synantic on each benchmark (column 1)
for each production rule (column 2). For the parametric languages, we ran each benchmark up
to the largest parameter 𝑘 for which the solver timed out and reported the running time and
other metrics for the largest such 𝑘 (more details below). The third column provides the median
number of CEGIS iterations taken to synthesize each production, and the fourth column provides
the median number of 〈in, term, out〉 counterexamples found for one production rule. We take the
median of total execution time on one production rule and list it in column 7. Columns 5–6 are
breakdowns of the total time into time for SyGuS solving and time for SMT solving. To summarize,
Synantic could synthesize complete semantics for 11/14 ≈ 79% of benchmark languages.

For RegEx(𝑘) (𝑘 = 2, . . . , 8) , Synantic could synthesize a semantics for up to 𝑘 = 2. For Cnf(𝑘)
(𝑘 = 4, . . . , 8), Dnf(𝑘) (𝑘 = 4, . . . , 8), and Cube(𝑘) (𝑘 = 4, . . . , 11), Synantic could synthesize
semantics for all parameters included in the SemGuS benchmarks. For Imp(𝑘) (𝑘 = 1, 2), Synan-
tic could synthesize a semantics up to 𝑘 = 2. For the bit vector benchmarks, Synantic could
synthesize a semantics for BVSimple(𝑘) up to 𝑘 = 3, and a semantics for BVIMPSimple(𝑚,𝑛)
((𝑚,𝑛) ∈ {(1, 2), (3, 3)}) up to𝑚 = 1 and 𝑛 = 2.

For all these parametric cases that timeout, the number of input and output variables in semantic
functions is large: 10 inputs and 10 outputs for RegEx(3).

Additionally, Synantic timed out for the benchmarks Diff, BVSatuRated, and BVIMPSatu-
Rated.2 For Diff, 4 of the 7 runs resulted in a timeout, so Diff is reported as a timeout (even
though at least one run could synthesize the semantics of all the productions). For the 4 runs that
timed out, Synantic can solve the semantics of 5 of the 6 productions in the grammar. Synantic
could synthesize the semantics of 9/18 productions for BVIMPSatuRated, and 10/17 productions
for BVSatuRated in at least one run.

In benchmarks that timed out, the time-out happened during a call to the SyGuS solver—i.e., the
functions to be synthesized were too complex (more details in Section 6.3).

Finding: To answer RQ1, Synantic can synthesize semantics for many non-trivial languages as
long as the semantics does not involve very large functions (more than 20 terms).

6.3 RQ2: Where is Time Spent during Synthesis?
SyGuS vs SMT Time. Table 2 also presents the breakdown of how much time the solver spends

solving SyGuS problems (to find candidate functions) and calling SMT solvers (to compute com-
plete summaries). Among all the benchmarks, a median of 15.09% of the total solving time is spent
on SyGuS problems, and a median of 20.67% of the time is spent solving SMT queries. However,
for the slowest 10% production rules (>31.92 s), the median of SyGuS solving time grows to 65.99%,
which indicates that SyGuS contributes to most of the execution time on slow-running cases.
2Data for some languages are only listed in the supplementary material.
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Table 1. Detailed results for selected benchmarks. See supplementary material for the full list of results.

Lang. Rule # Iter. # Ex SyGuS (s) SMT (s) Total (s)
Im

p(
2)

𝐸 → 0 1 1 0.01 0.01 0.05
𝐸 → 1 1 1 0.01 0.01 0.04
𝑆 → x − − 2 2 0.06 0.02 0.11
𝑆 → y − − 2 2 0.11 0.03 0.17
𝐵 → f 1 1 0.01 0.01 0.06
𝑆 → x + + 2 2 0.04 0.03 0.11
𝑆 → y + + 2 2 0.12 0.02 0.16
𝐵 → t 1 1 0.01 0.02 0.13
𝐸 → x 2 2 0.01 0.01 0.04
𝐸 → y 1 1 0.01 0.01 0.04
𝑆 → x B 𝐸 2 2 0.10 3.23 6.17
𝑆 → y B 𝐸 2 2 0.04 3.22 6.19
𝐵 →¬𝐵 3 3 0.02 2.49 5.26
𝐸 →𝐸 + 𝐸 4 3 0.05 8.52 14.83
𝐸 →𝐸 − 𝐸 5 2 0.13 8.03 13.83
𝐵 →𝐸 < 𝐸 8 5 0.08 7.50 13.66
𝐵 →𝐵 ∧ 𝐵 4 4 0.03 5.33 11.71
𝐵 →𝐵 ∨ 𝐵 4 4 0.05 4.61 8.99
𝑆 →𝑆 ; 𝑆 5 3 4.55 15.00 72.53
𝑆 → do_while 𝑆 𝐵 27 35 858.50 257.33 1374.13
𝑆 → while 𝐵 𝑆 9 7 16.88 122.41 266.80
𝑆 → ite 𝐵 𝑆 𝑆 11 5 525.28 33.88 628.71

Bi
nO

p

𝐵 → 0 1 1 0.01 0.01 0.07
𝐵 → 1 1 1 0.01 0.01 0.22
𝐵 → x 2 2 0.01 0.01 0.08
𝑁 → atom 𝐵 2 2 0.09 0.04 0.30
𝑀 → atom′ 𝐵 3 3 0.07 0.05 0.26
𝑆 → bin2dec 𝑀 2 2 0.02 0.09 0.30
𝑆 → count 𝑁 2 2 0.04 0.05 0.24
𝑁 → concat 𝑁 𝐵 5 5 8.61 0.22 10.31
𝑀 → concat′ 𝑀 𝐵 5 5 288.81 0.23 308.50

Re
gE

x(
2)

𝑆𝑡𝑎𝑟𝑡 → eval 𝑅 3 3 0.02 4.43 13.40
𝑅 → ? 3 3 3.84 0.07 4.07
𝑅 → a 4 4 11.10 0.07 11.53
𝑅 → b 5 5 11.63 0.06 12.01
𝑅 →𝜖 1 1 0.07 0.07 2.38
𝑅 →∅ 1 1 0.19 0.07 0.46
𝑅 → !𝑅 5 5 2.85 15.77 77.36
𝑅 →𝑅∗ 6 6 0.99 13.06 31.91
𝑅 →𝑅 · 𝑅 24 24 333.71 72.58 495.45
𝑅 →𝑅 | 𝑅 10 10 10.96 59.54 140.82

90% of the per-production semantics are solved within 31.92 s. The 10 rules that take longer than
31.92 s to be synthesized are all non-leaf rules and their partial semantic constraint fall into the
following three categories: (i) 3 of them contain large integers or complex SMT primitives (e.g., 32-
bit integer division); (ii) 3 of them involve large logical formulas with sizes ranging between 8 and
24 subterms, e.g., formulas representing 3 × 3 matrix multiplication or other matrix operations;
(iii) 4 of them contain two or more input and output variables, e.g., while and do_while. In
particular, Synantic takes 1374.13 s to synthesize the CHC for do_while because there can be
many possible ways to modify the data flow between its child terms, and this aspect will incur in
many CEGIS iterations. In all of the above cases, as expected from known limitations of CVC5, the
SyGuS solver accounts for most of the execution time—74.51% of the total running time is spent
calling the SyGuS solver and the last call to SyGuS solver takes on average 27.45% of the total
running time.

Relation to CEGIS Iterations and Size of Solutions. Table 2 hints that the cost of synthesizing a
semantics may be proportional to the number of CEGIS iterations, which in general is a good
indicator of the complexity of a formula (and of how expressive the underlying SyGuS grammar
is). Additionally, the cost should also be proportional to the size of synthesized parts in the SyGuS
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Fig. 1. Plots relating the time to synthesize the semantics of one production rule vs final semantic constraint
solution size (a) and partial semantic constraint solution size (b). We only included selected slowest bench-
marks due to graph size limit.
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problems, which directly indicates formula complexity. We plotted Figure 1 to better understand
those relations by using the data from some slowest benchmarks.

Figure 1a shows the relationship between the time for synthesizing a per-production rule seman-
tics and the size of the final semantics. For the same language, the time grows exponentially with
the increase in the size of the final solution. Figure 1b shows that the time also grows exponentially
with the increase in solution size for per-output partial semantic constraint.

Since the performance varies heavily across different benchmarks, to better understand the im-
pact of CEGIS iterations, we focus our attention on one hard benchmark, IMP(𝑘) where 𝑘 = 2.
Specifically, we analyze the time taken to synthesize the semantic rule for do_while, which was
one of the hardest productions in our benchmark set (2,500s). Figure 2 provides a stack plot detail-
ing the running time for all 16 CEGIS iterations needed to synthesize do_while. As expected, as
more examples are accumulated by CEGIS iterations, the SyGuS solver requires more time. The
execution time for different parts is plotted by the areas of different colors. We can conclude that
for the rule of do_while, SyGuS solver takes 64.3% of the execution time.
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Fig. 4. Manually-written and synthesized semantics for Concat in RegEx(2)

Finding: To answer RQ2, Synantic spends most of the time (71.78%) solving SyGuS problems,
and the time is affected by the size of the candidate semantic function.

6.4 RQ3: Is the Multi-output Optimization from Section 5.3 Effective?
Figure 3 compares the running time of Synantic with and without the multi-output optimization
(Section 5.3) on all the runs of our tools for the 7 different random seeds.

With the optimization turned off, Synantic timed out on 10 more runs (specifically all the 7
runs for RegEx and 3more runs for Diff). All the benchmarks for which disabling the optimization
caused a timeout have 3 or more output variables. Comparing Figure 1a and Figure 1b shows how
the semantic functions used in the RegEx benchmarks are very large (up to size 50), but thanks to
the optimization, our algorithm only has to solve SyGuS problems on formulas of size at most 15.

On the runs that terminated both with and without the optimization, the non-optimized algo-
rithm is on average 8% faster—i.e., the two versions of the algorithm have comparable performance.
However, for 15/98 runs the optimization results in a 20% or more slowdown. When inspecting
these instances, we observed that the multi-output optimization spent many iterations synchro-
nizing the many possible data flows for productions where the final term was actually small but
many variables were involved—e.g., sequential composition in Imp(2).

Finding: Themulti-output optimization from Section 5.3 is effective for languageswith 3 ormore
output variables in their semantics.

6.5 RQ4: How do Synthesized Semantics Compare to Manually Written Ones?
The synthesized semantics for almost all of our benchmarks are either identical to the original
manually constructed one, or each CHC in the synthesized semantics is logically equivalent to the
CHC of the original semantics.

The one exception is the semantics synthesized for the language of RegEx(2), for which the indi-
vidual CHCs for OR, Concat, Neg, and StaR are not logically equivalent to the manually-written
ones. For instance, consider the Concat rule for the semantics of concatenation. For this construct,
the manually written CHC is shown in Figure 4a, whereas Synantic synthesizes the CHC shown
in Figure 4b. The two CHCs are not logically equivalent. For example, if the children evaluate to

the matrices 𝑀 =

(
true false false

false false
true

)
and 𝑀 ′ =

(
true false false

false false
true

)
, the outputs computed by the manually
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Fig. 5. New semantics for Concat in RegExSimp.

written CHC and the synthesized CHC are 𝑀man =

(
true false false

false false
true

)
, and 𝑀syn =

(
false false false

true false
false

)
,

respectively, which have different values on the diagonal.
When inspecting the two rules, we realized that the example matrices 𝑀 and 𝑀 ′ shown above

cannot actually be produced by the semantic rules for regular expressions. In particular, the ex-
amples require different Boolean values to appear on the diagonal of one 3 × 3 matrix. However,
all the elements on the diagonal represent the semantics of the regular expression on the empty
string, so they must all have the same value! We note that this inconsistency in the semantics
can also be observed without a reference semantics to compare against because different runs of
the algorithm could return logically inequivalent CHCs—in fact, such inequivalence was how we
initially discovered the inconsistency.

Synantic helped us discover an inefficiency in the semantics that was being used in the standard
regular expressions benchmarks in the SemGuS repository. We thus modified the interpreter so
that for the example above it only produces a 2 × 2 matrix 𝑀 =

(
𝑀0,1 𝑀0,2

𝑀1,2

)
(corresponding to the

non-empty substrings of the input string) and a single variable 𝑀𝜖 to denote whether the regular
expression should accept the empty string (instead of the previous multiple copies of logically
equivalent variables). This semantics reduces the total number of variables in the semantic domain
from 6 to 4 in this example.

We call this new semantics RegExSimp (see Figure 5 for an example). After modifying the inter-
preter to produce this new semantics, Synantic synthesized the corresponding CHCs in a median
of 1968.00 s.

To check whether the semantics RegExSimp is indeed more efficient than the original semantics
RegEx, we modified all the 28 regular-expression synthesis benchmarks appearing in the SemGuS
benchmark set. Each of these benchmarks requires one to find a regular expression that accepts
some examples and rejects others.

We then used the Ks2 enumeration-based synthesizer to try to solve all the benchmarks with
either of the two semantics. Because Ks2 enumerates programs of increasing size and uses the
semantics to execute them and discard invalid program candidates, we conjectured that executing
programs faster allows Ks2 to explore the search space faster.

Ks2 was faster at solving synthesis problems with the RegExSimp semantics than with the
RegEx ones (although both solved the same set of benchmarks). Although the speedup over all
benchmarks is only 1.1x, the new semantics RegExSimp was particularly beneficial for the harder
synthesis problems. When considering the 13 benchmarks for which synthesis using the RegEx
took longer than one second, the speedup increased to 1.18x.

Finding: Synantic synthesized semantics that were identical to the manually written ones for
13/14 benchmarks. When Synantic found a logically inequivalent semantics, it unveiled a perfor-
mance bug.
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7 RELATED WORK
Synthesis of Recursive Programs At a high level, the semantics-synthesis problem we consider is
similar to a number of works on synthesizing recursively defined programs [7, 8, 12, 15]. In effect,
a semantics for a recursively defined grammar is a recursive program assigning meaning to pro-
grams within the language. Both Farzan et al. [7], Farzan and Nicolet [8] use recursion skeletons
to reduce their task from synthesizing a recursive program to synthesizing a non-recursive pro-
gram. Our use of semantic constraints plays a similar role. While both of their techniques assume
programs are only structurally recursive (i.e., no recursion on the program term itself), and our
framework explicitly allows for program terms that are self-recursive (e.g., while loops in Imp).

Similar to the approach used byMiltner et al. [15] to synthesize simple recursive programs, Sem-
Synth employs a bottom-up approach to synthesis (i.e., we first synthesize semantics for nullary
productions before moving on to other productions). However, unlike Miltner et al., SemSynth is
well-defined for any ordering of production rules and targets a more complex setting—i.e., synthe-
sizing program semantics. Finally, Lee and Cho [12] synthesize recursive procedures from exam-
ples by first synthesizing blocks of straight-line code. This approach is similar in fashion to how
we synthesize semantics by synthesizing semantic constraints. Unlike SemSynth, Lee and Cho
do not use CEGIS to perform synthesis. Instead, they use a finite number of input examples to
discriminate between recursive programs within the desired search space.

Datalog Synthesis Albarghouthi et al. [1] synthesize Datalog programs (i.e., Horn clauses) with
SMT solvers, whereas Si et al. [16] use a syntax-guided approach. In our work, we use constrained
Horn clauses, which are strictly more expressive than Datalog programs, to denote semantics.
Aside from the fact that the Datalog synthesis problem considers different inputs (i.e., the data),
CHC also contains a function in a theory T (such as LIA or BV), which we have to synthesize.

Synthesizing attribute grammars Kalita et al. [10] proposed a sketch-based method for synthesiz-
ing attribute grammars. When provided with a context-free grammar, their tool can automatically
create appropriate semantic actions from sketches of attribute grammars. Instead of semantic ac-
tions, in our work we use CHCs to express program semantics. Our approach can model recursive
semantics whereas the technique by Kalita et al. is limited to non-circular attribute grammars. Ad-
ditionally, while their method requires providing a distinct program sketch (i.e., a partial program)
for each production, our approach only requires providing a (fairly general) SyGuS grammar for
each nonterminal in the language.

8 CONCLUSION
Writing logical semantics for a language can be a difficult task and our work supplies a method to
automatically synthesize a language’s semantics from an executable interpreter that is treated as
a closed-box. By generating example terms and input-output pairs from the interpreter, we use a
SyGuS solver to synthesize semantic rules. Our evaluation shows that the approach applies to a
wide range of language features, e.g., recursive semantic functions with multiple outputs.

As discussed in Section 2, one motivation for this work is to be able to generate automatically
the kind of semantics that is needed to create a program synthesizer using the SemGuS framework.
In our algorithm, we harness a SyGuS solver to synthesize the constraint in each CHC—i.e., we har-
ness SyGuS in service to SemGuS—which limits us to synthesizing constraints that are written in
theories that SyGuS supports. Going forward, we would like to make use of “higher-level” theories,
supporting such abstractions as stores or algebraic data types. As SemGuS-based synthesizers and
verifiers improve, we might be able to satisfy this wish by using SemGuS in service to SemGuS!
That is, we could extend Synantic to use SemGuS solvers to synthesize semantic constraints.
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A SEMANTICS FOR LANGUAGES USED IN BENCHMARK
In this section, we present the semantics synthesized by our tool Synantic for any languages ref-
erenced within the main text. Appendix A.1 provides the synthesized semantics of SemGuS bench-
marks and Appendix A.2 presents the synthesized semantics of the attribute grammar benchmarks.

A.1 SemGuS Benchmarks
The SemGuS suite of benchmarks consists of a total of 11 languages. We present the synthesized
semantics of each as follows:

(1) Cnf(𝑘) is depicted in Figure 6.
(2) Dnf(𝑘) is depicted in Figure 7.
(3) Cube(𝑘) is depicted in Figure 8.
(4) IntARith is depicted in Figure 9.
(5) RegEx(2) is depicted in Figure 10.
(6) RegExSimp() is depicted in Figure 11.
(7) Imp is depicted in Figures 12 and 13.
(8) BvSimple(𝑘) is depicted in Figure 14.
(9) BvSatuRated(𝑘) is depicted in Figure 15.

(10) BVImpSimple(𝑚,𝑛) is depicted in Figure 16.
(11) BVImpSatuRated(𝑚,𝑛) is depicted in Figure 17.

A.2 Attribute-Grammar Synthesis
The suite of attribute-grammar benchmarks from [Kalita et al. 2022] consists of four languages
which we present as follows:

(1) BinOp is presented in Figure 18.
(2) CuRRency is presented in Figure 19.
(3) Diff is presented in Figure 20.
(4) IteExpR is presented in Figure 21.

B BENCHMARK DATA
We present the full detailed evaluation results for all languages and productions rules in Table 2.
For each production we present the number of CEGIS iterations, number of generated examples,
and execution time (i) to solve SyGuS problems, (ii) to solve SMT queries, and (iii) overall. For each
column we repor the number for the median run based on the total run time. See Section 6 for full
description of experimental setup.
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1:26 Anon.

𝑖 = 0, 1, . . . , (𝑘 − 1)Jv𝑖K(𝑥0, . . . , 𝑥𝑘−1) = 𝑥𝑖
VaRAtom

J𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟Jvar 𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟
VaR

J𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟Jnvar 𝑣K(𝑥0, . . . , 𝑥𝑘−1) = ¬𝑟 NotVaR
J𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟Jclause 𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟

Clause

J𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑏K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑐 ∧ 𝑏K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 ∧ 𝑟2
And

J𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑣 ∨ 𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 ∨ 𝑟2
OR

Fig. 6. Semantics of Cnf(𝑘)

𝑖 = 0, 1, . . . , (𝑘 − 1)Jv𝑖K(𝑥0, . . . , 𝑥𝑘−1) = 𝑥𝑖
VaRAtom

J𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟Jvar 𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟
VaR

J𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟Jnvar 𝑣K(𝑥0, . . . , 𝑥𝑘−1) = ¬𝑟 NotVaR
J𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟Jconj 𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟

Conjunction

J𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑏K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑐 ∨ 𝑏K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 ∨ 𝑟2
OR

J𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑣 ∧ 𝑐K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 ∧ 𝑟2
And

Fig. 7. Semantics of Dnf(𝑘)

𝑖 = 0, 1, . . . , (𝑘 − 1)Jv𝑖K(𝑥0, . . . , 𝑥𝑘−1) = 𝑥𝑖
VaRAtom

J𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟Jvar 𝑣K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟
VaR

J𝑏K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑏K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑏 ∧ 𝑏K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 ∧ 𝑟2
And

Fig. 8. Semantics of Cube(𝑘)
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𝑖 = 0, 1, . . . , 3J𝑖K(𝑣0) = 𝑖
IntLiteRal JtK(𝑣0) = true

TRue JfK(𝑣0) = false
False

JxK(𝑣0) = 𝑣0
VaRX JyK(𝑣0) = 𝑣0

VaRY JzK(𝑣0) = 𝑣0
VaRZ

J𝑏K(𝑣0) = 𝑟0 J𝑒1K(𝑣0) = 𝑟1 J𝑒2K(𝑣0) = 𝑟2 𝑟0Jite 𝑏 𝑒1 𝑒2K(𝑣0) = 𝑟1
Ite1

J𝑏K(𝑣0) = 𝑟0 J𝑒1K(𝑣0) = 𝑟1 J𝑒2K(𝑣0) = 𝑟2 ¬𝑟0Jite 𝑏 𝑒1 𝑒2K(𝑣0) = 𝑟2
Ite2

J𝑒1K(𝑣0) = 𝑟1 J𝑒2K(𝑣0) = 𝑟2J𝑒1 + 𝑒2K(𝑣0) = 𝑟1 + 𝑟2
Plus

J𝑒1K(𝑣0) = 𝑟1 J𝑒2K(𝑣0) = 𝑟2J𝑒1 × 𝑒2K(𝑣0) = 𝑟1 · 𝑟2
Multiply

J𝑒1K(𝑣0) = 𝑟1 J𝑒2K(𝑣0) = 𝑟2J𝑒1 < 𝑒2K(𝑣0) = (𝑟1 < 𝑟2)
LessThan

J𝑏1K(𝑣0) = 𝑟1 J𝑏2K(𝑣0) = 𝑟2Jand 𝑏1 𝑏2K(𝑣0) = (𝑟1 ∧ 𝑟2) And

J𝑏1K(𝑣0) = 𝑟1 J𝑏2K(𝑣0) = 𝑟2Jor 𝑏1 𝑏2K(𝑣0) = (𝑟1 ∨ 𝑟2) OR
J𝑏K(𝑣0) = 𝑟Jnot 𝑏K(𝑣0) = (¬𝑟 ) Not

Fig. 9. Semantics of IntARith
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1:28 Anon.

𝑀 B
(
𝑀0,0 𝑀0,1 𝑀0,2

𝑀1,1 𝑀1,2
𝑀2,2

)
𝑀 ′ B

(
𝑀 ′0,0 𝑀

′
0,1 𝑀

′
0,2

𝑀 ′1,1 𝑀
′
1,2

𝑀 ′2,2

) J𝑒K(𝑠) = 𝑀Jeval 𝑒K(𝑠) = 𝑀0,2
Eval

J𝜖K(𝑠) = (
true false false

true false
true

) Eps J𝜙K(𝑠) = (
false false false

false false
false

) Phi

JaK(𝑠) = (
false (𝑠0=a) false

false (𝑠1=a)
false

) ChaRA JbK(𝑠) = (
false (𝑠0=b) false

false (𝑠1=b)
false

) ChaRB

J?K(𝑠) = (
false (𝑠0≠𝜖 ) false

false (𝑠1≠𝜖 )
false

) Any
J𝑒1K(𝑠) = 𝑀 J𝑒2K(𝑠) = 𝑀 ′

J𝑒1 + 𝑒2K(𝑠) = (
(𝑀0,0∨𝑀 ′0,0 ) (𝑀0,1∨𝑀 ′0,1 ) (𝑀0,2∨𝑀 ′0,2 )

(𝑀1,1∨𝑀 ′1,1 ) (𝑀1,2∨𝑀 ′1,2 )
(𝑀2,2∨𝑀 ′2,2 )

) OR

J𝑒1K(𝑠) = 𝑀 J𝑒2K(𝑠) = 𝑀 ′

J𝑒1 · 𝑒2K(𝑠) = (
(𝑀0,0∧𝑀 ′0,0 )

∨
𝑖=0...1 (𝑀0,𝑖∧𝑀 ′𝑖,1 )

∨
𝑖=0...2 (𝑀0,𝑖∧𝑀 ′𝑖,2 )

(𝑀1,1∧𝑀 ′1,1 )
∨

𝑖=1...2 (𝑀1,𝑖∧𝑀 ′𝑖,2 )
(𝑀2,2∧𝑀 ′2,2 )

) Concat

J𝑒K(𝑠) = 𝑀

J𝑒∗K(𝑠) = (
true 𝑀0,1 𝑀0,2∨(𝑀0,1∧𝑀1,2 )

true 𝑀1,2
true

) StaR
J𝑒K(𝑠) = 𝑀

J𝑒∗K(𝑠) = ( ¬𝑀0,0 ¬𝑀0,1 ¬𝑀0,2
¬𝑀1,1 ¬𝑀1,2

¬𝑀2,2

) Neg

Fig. 10. Semantics of RegEx
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𝑀 B
(
𝑀0,0 𝑀0,1 𝑀0,2

𝑀1,1 𝑀1,2
𝑀2,2

)
𝑀 ′ B

(
𝑀 ′0,0 𝑀

′
0,1 𝑀

′
0,2

𝑀 ′1,1 𝑀
′
1,2

𝑀 ′2,2

) J𝑒K(𝑠) = (𝑀𝜖 , 𝑀)Jeval 𝑒K(𝑠) = 𝑀0,1
Eval

J𝜖K(𝑠) = (true, ( false false
false

)
)
Eps J𝜙K(𝑠) = (

false,
(
false false

false

)) Phi

JaK(𝑠) = (
false,

(
𝑠0=a false

𝑠0=a

))
)
ChaRA JbK(𝑠) = (

false,
(
𝑠0=b false

𝑠0=b

)) ChaRB

J?K(𝑠) = (
false,

(
𝑠0≠𝜖 false

𝑠0≠𝜖

)) Any
J𝑒1K(𝑠) = (𝑀𝜖 , 𝑀) J𝑒2K(𝑠) = (𝑀 ′𝜖 , 𝑀 ′)J𝑒1 + 𝑒2K(𝑠) = (

𝑀𝜖 ∨𝑀 ′𝜖 ,
(
𝑀0,0∨𝑀 ′0,0 𝑀0,1∨𝑀 ′0,1

𝑀1,1∨𝑀 ′1,1

)) OR

J𝑒1K(𝑠) = (𝑀𝜖 , 𝑀) J𝑒2K(𝑠) = (𝑀 ′𝜖 , 𝑀 ′)J𝑒1 · 𝑒2K(𝑠) = (
𝑀𝜖 ∧𝑀 ′𝜖 ,

[ (𝑀𝜖∧𝑀 ′0,0 )∨(𝑀0,0∧𝑀 ′𝜖 ) (𝑀𝜖∧𝑀 ′0,1 )∨(𝑀0,0∧𝑀 ′1,1 )∨(𝑀0,1∧𝑀 ′𝜖 )
(𝑀𝜖∧𝑀 ′1,1 )∨(𝑀1,1∧𝑀 ′𝜖 )

] ) Concat

J𝑒K(𝑠) = (𝑀𝜖 , 𝑀)J𝑒∗K(𝑠) = (
true,

(
𝑀0,0 𝑀0,1∨(𝑀0,0∧𝑀1,1 )

𝑀1,1

)) StaR
J𝑒K(𝑠) = (𝑀𝜖 , 𝑀)J𝑒∗K(𝑠) = (
¬𝑀𝜖 ,

[
¬𝑀0,0 ¬𝑀0,1

¬𝑀1,1

] ) Meg

Fig. 11. Semantics of RegExSimp
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1:30 Anon.

J0K(𝑣0, 𝑣1) = 0
Const0 J1K(𝑣0, 𝑣1) = 1

Const1 JtK(𝑣0, 𝑣1) = true
ConstT

JfK(𝑣0, 𝑣1) = false
ConstF JxK(𝑣0, 𝑣1) = 𝑣0

VaRX JyK(𝑣0, 𝑣1) = 𝑣1
VaRY

J𝑒1K(𝑣0, 𝑣1) = 𝑣1 J𝑒2K(𝑣0, 𝑣1) = 𝑣2J𝑒1 + 𝑒2K(𝑣0, 𝑣1) = 𝑣1 + 𝑣2
Plus

J𝑒1K(𝑣0, 𝑣1) = 𝑣1 J𝑒2K(𝑣0, 𝑣1) = 𝑣2J𝑒1 − 𝑒2K(𝑣0, 𝑣1) = 𝑣1 − 𝑣2
Minus

J𝑒1K(𝑣0, 𝑣1) = 𝑣1 J𝑒2K(𝑣0, 𝑣1) = 𝑣2 𝑣1 < 𝑣2J𝑒1 < 𝑒2K(𝑣0, 𝑣1) = true
LessThanTRue

J𝑒1K(𝑣0, 𝑣1) = 𝑣1 J𝑒2K(𝑣0, 𝑣1) = 𝑣2 𝑣1 ≥ 𝑣2J𝑒1 < 𝑒2K(𝑣0, 𝑣1) = false
LessThanFalse

J𝑏1K(𝑣0, 𝑣1) = 𝑣1 J𝑏2K(𝑣0, 𝑣1) = 𝑣2J𝑏1 and 𝑏2K(𝑣0, 𝑣1) = 𝑣1 ∧ 𝑣2
BoolAnd

J𝑏1K(𝑣0, 𝑣1) = 𝑣1 J𝑏2K(𝑣0, 𝑣1) = 𝑣2J𝑏1 or 𝑏2K(𝑣0, 𝑣1) = 𝑣1 ∨ 𝑣2
BoolOR

J𝑏K(𝑣0, 𝑣1) = 𝑣Jnot 𝑏K(𝑣0, 𝑣1) = ¬𝑣 BoolNot

J𝑒K(𝑣0, 𝑣1) = 𝑣Jx := 𝑒K(𝑣0, 𝑣1) = 𝑣
AssignX

J𝑒K(𝑣0, 𝑣1) = 𝑣Jy := 𝑒K(𝑣0, 𝑣1) = 𝑣
AssignY

Jx + +K(𝑣0, 𝑣1) = 𝑣0 + 1
IncX Jy + + 𝑒K(𝑣0, 𝑣1) = 𝑣1 + 1

IncY

Jx − −K(𝑣0, 𝑣1) = 𝑣0 − 1
DecX Jy − −K(𝑣0, 𝑣1) = 𝑣1 − 1

DecY

Fig. 12. Semantics of Imp(2), part 1
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1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Synthesizing Formal Semantics from Executable Interpreters 1:31J𝑠1K(𝑣0, 𝑣1) = 𝑣 ′0 J𝑠2K(𝑣 ′0) = 𝑣 ′′0J𝑠1;𝑠2K(𝑣0, 𝑣1) = 𝑣 ′′0
Seq

J𝑏K(𝑣0, 𝑣1) = 𝑣 J𝑠1K(𝑣0, 𝑣1) = 𝑣1 J𝑠2K(𝑣0, 𝑣1) = 𝑣2Jif 𝑏 then 𝑠1 else 𝑠2K(𝑣0, 𝑣1) = 𝑣 ? 𝑣1 : 𝑣2
Ite

J𝑏K(𝑣0, 𝑣1) = true J𝑠K(𝑣0, 𝑣1) = 𝑣1 Jwhile 𝑏 do 𝑠K(𝑣1) = 𝑣2Jwhile 𝑏 do 𝑠K(𝑣0, 𝑣1) = 𝑣2
WhileLoop

J𝑏K(𝑣0, 𝑣1) = falseJwhile 𝑏 do 𝑠K(𝑣0, 𝑣1) = 𝑣0
WhileEnd

J𝑠K(𝑣0, 𝑣1) = 𝑣1 J𝑏K(𝑣1) = true Jdo 𝑠 while 𝑏K(𝑣1) = 𝑣2Jdo 𝑠 while 𝑏K(𝑣0, 𝑣1) = 𝑣2
DoWhileLoop

J𝑠K(𝑣0, 𝑣1) = 𝑣1 J𝑏K(𝑣1) = falseJdo 𝑠 while 𝑏K(𝑣0, 𝑣1) = 𝑣1
DoWhileEnd

Fig. 13. Semantics of Imp(2), part 2
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1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

1:32 Anon.

𝑖 = 0, 1, . . . , (𝑘 − 1)Jv𝑖K(𝑥0, . . . , 𝑥𝑘−1) = 𝑥𝑖
VaRAtom J0K(𝑥0, . . . , 𝑥𝑘−1) = 0x00000000

BvZeRo

J1K(𝑥0, . . . , 𝑥𝑘−1) = 0x00000001
BvOne

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑒1 < 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 <unsigned 𝑟2
BvUlt

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑒1 ≥ 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = ¬(𝑟1 <unsigned 𝑟2)
BvUge

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑒1 ≤ 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = ¬(𝑟2 <unsigned 𝑟1)
BvUle

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2 � ∈ {&, |, ⊕,≫,�}J𝑒1 � 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = (𝑟1 � 𝑟2) BvBitwise

J𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟 𝑟 ≠ 0x00000000Jany_bit 𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 0x00000001
AnyBit1

J𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟 𝑟 = 0x00000000Jany_bit 𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 0x00000000
AnyBit0

J𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟J∼ 𝑒K(𝑥0, . . . , 𝑥𝑘−1) =∼ 𝑒 BvNot

J𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟J¬ 𝑒K(𝑥0, . . . , 𝑥𝑘−1) = ¬𝑒 BvNeg

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2 � ∈ {+,−,×,÷}J𝑒1 � 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = (𝑟1 � 𝑟2) BvARith

Fig. 14. Semantics of BvSimple(𝑘)
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1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Synthesizing Formal Semantics from Executable Interpreters 1:33

𝑖 = 0, 1, . . . , (𝑘 − 1)Jv𝑖K(𝑥0, . . . , 𝑥𝑘−1) = 𝑥𝑖
VaRAtom J0K(𝑥0, . . . , 𝑥𝑘−1) = 0x00000000

BvZeRo

J1K(𝑥0, . . . , 𝑥𝑘−1) = 0x00000001
BvOne

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑒1 < 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 <unsigned 𝑟2
BvUlt

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑒1 ≥ 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = ¬(𝑟1 <unsigned 𝑟2)
BvUge

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2J𝑒1 ≤ 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = ¬(𝑟2 <unsigned 𝑟1)
BvUle

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2 � ∈ {&, |, ⊕,≫,�}J𝑒1 � 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = (𝑟1 � 𝑟2) BvBitwise

J𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟 𝑟 ≠ 0x00000000Jany_bit 𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 0x00000001
AnyBit1

J𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟 𝑟 = 0x00000000Jany_bit 𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 0x00000000
AnyBit0

J𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟J∼ 𝑒K(𝑥0, . . . , 𝑥𝑘−1) =∼ 𝑒 BvNot

J𝑒K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟J¬ 𝑒K(𝑥0, . . . , 𝑥𝑘−1) = ¬𝑒 BvNeg

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2 � ∈ {+,−,×,÷}J𝑒1 � 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = (𝑟1 �sat 𝑟2) BvARith

𝑎 �𝑠𝑎𝑡 𝑏 = 𝑎 � 𝑏 (when no overflow or underflow)
𝑎 �𝑠𝑎𝑡 𝑏 = 0xffffffff (when overflow happens)
𝑎 �𝑠𝑎𝑡 𝑏 = 0x00000000 (when underflow happens)

Fig. 15. Semantics of BvSatuRated(𝑘)
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1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

1:34 Anon.

𝑖 = 0, 1, . . . , (𝑚 − 1)Jv𝑖K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑢𝑖
ConstAtom

𝑖 = 0, 1, . . . , (𝑛 − 1)Jo𝑖K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑥𝑖
VaRAtom

J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟Jo𝑖 := 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = (𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑖−1, 𝑟 , 𝑥𝑖+1, . . . , 𝑥𝑛−1) Assign

J𝑠1K(®𝑢, ®𝑥) = (®𝑢′, ®𝑥 ′) J𝑠1K(®𝑢′, ®𝑥 ′) = (®𝑢′′, ®𝑥 ′′)J𝑠1 ; 𝑠2K(®𝑢, ®𝑥) = (®𝑢′′, ®𝑥 ′′) Seq ®𝑢 = (𝑢0, . . . , 𝑢𝑚−1), ®𝑥 = (𝑥0, . . . , 𝑥𝑛−1)

J0K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 0x00000000
BvZeRo

J1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 0x00000001
BvOne

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2J𝑒1 < 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 <unsigned 𝑟2
BvUlt

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2J𝑒1 ≥ 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = ¬(𝑟1 <unsigned 𝑟2)
BvUge

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2J𝑒1 ≤ 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = ¬(𝑟2 <unsigned 𝑟1)
BvUle

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2 � ∈ {&, |, ⊕,≫,�}J𝑒1 � 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = (𝑟1 � 𝑟2) BvBitwise

J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟 𝑟 ≠ 0x00000000Jany_bit 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 0x00000001
AnyBit1

J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟 𝑟 = 0x00000000Jany_bit 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 0x00000000
AnyBit0

J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟J∼ 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) =∼ 𝑒 BvNot
J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟J¬ 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = ¬𝑒 BvNeg

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2 � ∈ {+,−,×,÷}J𝑒1 � 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = (𝑟1 � 𝑟2) BvARith

Fig. 16. Semantics of BvImpSimple(𝑘)
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𝑖 = 0, 1, . . . , (𝑚 − 1)Jv𝑖K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑢𝑖
ConstAtom

𝑖 = 0, 1, . . . , (𝑛 − 1)Jo𝑖K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑥𝑖
VaRAtom

J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟Jo𝑖 := 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = (𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑖−1, 𝑟 , 𝑥𝑖+1, . . . , 𝑥𝑛−1) Assign

J𝑠1K(®𝑢, ®𝑥) = (®𝑢′, ®𝑥 ′) J𝑠1K(®𝑢′, ®𝑥 ′) = (®𝑢′′, ®𝑥 ′′)J𝑠1 ; 𝑠2K(®𝑢, ®𝑥) = (®𝑢′′, ®𝑥 ′′) Seq ®𝑢 = (𝑢0, . . . , 𝑢𝑚−1), ®𝑥 = (𝑥0, . . . , 𝑥𝑛−1)

J0K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 0x00000000
BvZeRo

J1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 0x00000001
BvOne

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2J𝑒1 < 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 <unsigned 𝑟2
BvUlt

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2J𝑒1 ≥ 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = ¬(𝑟1 <unsigned 𝑟2)
BvUge

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1 J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2J𝑒1 ≤ 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = ¬(𝑟2 <unsigned 𝑟1)
BvUle

J𝑒1K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟1J𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟2 � ∈ {&, |, ⊕,≫,�}J𝑒1 � 𝑒2K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = (𝑟1 � 𝑟2) BvBitwise

J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟 𝑟 ≠ 0x00000000Jany_bit 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 0x00000001
AnyBit1

J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟 𝑟 = 0x00000000Jany_bit 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 0x00000000
AnyBit0

J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟J∼ 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) =∼ 𝑒 BvNot
J𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = 𝑟J¬ 𝑒K(𝑢0, . . . , 𝑢𝑚−1, 𝑥0, . . . , 𝑥𝑛−1) = ¬𝑒 BvNeg

J𝑒1K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟1 J𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = 𝑟2 � ∈ {+,−,×,÷}J𝑒1 � 𝑒2K(𝑥0, . . . , 𝑥𝑘−1) = (𝑟1 �sat 𝑟2) BvARith

Fig. 17. Semantics of BvImpSatuRated(𝑘)
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1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

1:36 Anon.

J1K(𝑣0) = 1
One J0K(𝑣0) = 0

ZeRo JxK(𝑣0) = 𝑣0
VaRX

J𝑛K(𝑣0) = 𝑟Jcount 𝑛K(𝑣0) = 𝑟
CountBit

J𝑚K(𝑣0) = 𝑟Jbin2dec𝑚K(𝑣0) = 𝑟
BinToDec

J𝑛K(𝑣0) = 𝑟1 J𝑏K(𝑣0) = 𝑟2Jconcat 𝑛 𝑏K(𝑣0) = 𝑟1 + int(𝑟2)
CountBitConcat

J𝑚K(𝑣0) = 𝑟1 J𝑏K(𝑣0) = 𝑟2Jconcat′ 𝑚 𝑏K(𝑣0) = 2 · 𝑟1 + int(𝑟2)
BinToDecConcat

J𝑏K(𝑣0) = 𝑟Jatom 𝑏K(𝑣0) = 𝑟
CountBitAtom

J𝑏K(𝑣0) = 𝑟Jatom′ 𝑏K(𝑣0) = 𝑟
BinToDecAtom

Fig. 18. Semantics of BinOp

J0K(𝑣0) = 0
ZeRo J1K(𝑣0) = 1

One J2K(𝑣0) = 2
Two J4K(𝑣0) = 4

FouR

J8K(𝑣0) = 8
Eight JxK(𝑣0) = 𝑣0

VaRX
J𝑘1K(𝑣0) = 𝑟1J𝑘2K(𝑣0) = 𝑟2J𝑘1 +k 𝑘2K(𝑣0) = 𝑟1 + 𝑟2

ScalaRPlus

J𝑠1K(𝑣0) = 𝑟1J𝑠2K(𝑣0) = 𝑟2J𝑠1 + 𝑠2K(𝑣0) = 𝑟1 + 𝑟2
CuRRencyPlus

J𝑠1K(𝑣0) = 𝑟1J𝑠2K(𝑣0) = 𝑟2J𝑠1 − 𝑠2K(𝑣0) = 𝑟1 − 𝑟2
CuRRencySubtRact

J𝑠K(𝑣0) = 𝑟1J𝑘K(𝑣0) = 𝑟2J𝑠 × 𝑘K(𝑣0) = 𝑟1 · 𝑟2
CuRRencyTimesScalaR

J𝑘K(𝑣0) = 𝑟Jjpy 𝑘K(𝑣0) = 𝑟
CuRRencyJpy

J𝑘K(𝑣0) = 𝑟Jcny 𝑘K(𝑣0) = 21 · 𝑟
CuRRencyCny

J𝑘K(𝑣0) = 𝑟Jusd 𝑘K(𝑣0) = 152 · 𝑟
CuRRencyUsd

Fig. 19. Semantics of CuRRency

J0K(𝑣0) = (0, 0, 0)) ZeRo J1K(𝑣0) = (1, 1, 0) One J2K(𝑣0) = (2, 2, 0) Two

JxK(𝑣0) = (𝑣0, 𝑣0 + 1, 0) VaRX J𝑒1K(𝑣0) = (𝑟1, 𝑠1, 𝑡1)J𝑒2K(𝑣0) = (𝑟2, 𝑠2, 𝑡2)J𝑒1 + 𝑒2K(𝑣0) = (𝑟1 + 𝑟2, 𝑠1 + 𝑠2, 𝑡1 + 𝑡2) Plus

J𝑒1K(𝑣0) = (𝑟1, 𝑠1, 𝑡1)J𝑒2K(𝑣0) = (𝑟2, 𝑠2, 𝑡2)J𝑒1 × 𝑒2K(𝑣0) = (𝑟1 · 𝑟2, 𝑠1 · 𝑠2, 𝑟1 · 𝑡2 + 𝑟2 · 𝑠1) Multiply

Fig. 20. Semantics of Diff
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1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

Synthesizing Formal Semantics from Executable Interpreters 1:37

𝑖 = 0, 1, . . . , 8J𝑖K(𝑣0) = 𝑖
IntLiteRal JxK(𝑣0) = 𝑣0

VaRX
J𝑒K(𝑣0) = 𝑟Jexpr 𝑒K(𝑣0) = 𝑟

ExpR

J𝑏K(𝑣0) = 𝑟0 J𝑒1K(𝑣0) = 𝑟1 J𝑒2K(𝑣0) = 𝑟2 𝑟0Jite 𝑏 𝑒1 𝑒2K(𝑣0) = 𝑟1
Ite1

J𝑏K(𝑣0) = 𝑟0 J𝑒1K(𝑣0) = 𝑟1 J𝑒2K(𝑣0) = 𝑟2 ¬𝑟0Jite 𝑏 𝑒1 𝑒2K(𝑣0) = 𝑟2
Ite2

J𝑒K(𝑣0) = 𝑟1 J𝑓 K(𝑣0) = 𝑟2J𝑒 + 𝑓 K(𝑣0) = 𝑟1 + 𝑟2
Plus

J𝑒K(𝑣0) = 𝑟1 J𝑓 K(𝑣0) = 𝑟2J𝑒 − 𝑓 K(𝑣0) = 𝑟1 − 𝑟2
Minus

J𝑓 K(𝑣0) = 𝑟Jatom 𝑓 K(𝑣0) = 𝑟
Atom

J𝑓 K(𝑣0) = 𝑟1 J𝑔K(𝑣0) = 𝑟2J𝑓 ∗ 𝑔K(𝑣0) = 𝑟1 · 𝑟2
Multiply

J𝑓 K(𝑣0) = 𝑟1 J𝑔K(𝑣0) = 𝑟2J𝑓 ÷ 𝑔K(𝑣0) = 𝑟1 ÷ 𝑟2
Divide

J𝑔K(𝑣0) = 𝑟Jnum 𝑔K(𝑣0) = 𝑟
Atom

J𝑒1K(𝑣0) = 𝑟1 J𝑒2K(𝑣0) = 𝑟2 	 ∈ {<, ≤, >, ≥,=,≠}J𝑒1 	 𝑒2K(𝑣0) = (𝑟1 	 𝑟2) Cmp

Fig. 21. Semantics of IteExpR
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1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

1:38 Anon.

Table 2. Evaluation results with optimization turned on.3

Lang. Rule # Iter. # Ex SyGuS (s) SMT (s) Total (s)
BV

Si
mp

le
(3
)

𝐸 → 0 1 1 0.01 0.02 0.29
𝐸 → 1 1 1 0.01 0.01 0.14
𝐸 → v0 1 1 0.01 0.01 0.13
𝐸 → v1 1 1 0.01 0.02 0.11
𝐸 → v2 1 1 0.02 0.01 0.09
𝐸 →−𝐸 2 2 0.09 1.09 1.92
𝐸 →∼𝐸 2 2 0.06 0.88 1.65
𝐸 → any_bit 𝐸 4 4 1.93 0.93 3.64
𝐸 →𝐸 + 𝐸 9 2 1.98 0.89 4.12
𝐸 →𝐸 & 𝐸 6 2 2.67 1.47 7.31
𝐸 →𝐸 ÷ 𝐸 6 2 1.39 37.08 62.33
𝐸 →𝐸 = 𝐸 19 6 69.51 4.16 77.67
𝐸 →𝐸≫ 𝐸 9 3 1.72 2.05 5.54
𝐸 →𝐸 × 𝐸 9 2 2.31 0.69 3.98
𝐸 →𝐸 | 𝐸 10 3 2.55 1.19 4.98
𝐸 →𝐸 � 𝐸 9 3 1.60 3.13 6.71
𝐸 →𝐸 − 𝐸 9 2 1.28 1.61 4.61
𝑆 →𝐸 ≥ 𝐸 14 6 4.73 2.34 10.39
𝑆 →𝐸 ≤ 𝐸 13 5 2.55 1.84 6.75
𝑆 →𝐸 < 𝐸 6 5 0.46 1.54 3.62
𝐸 →𝐸 ⊕ 𝐸 9 3 2.00 1.56 5.10

BV
Sa

tu
Ra

te
d(

2)
(T

7) 𝐸 → 0 1 1 0.01 0.01 0.15
𝐸 → 1 1 1 0.01 0.01 0.06
𝐸 → v0 1 1 0.01 0.01 0.05
𝐸 → v1 1 1 0.01 0.01 0.05
𝐸 →𝐸 & 𝐸 5 3 0.46 0.94 3.41
𝐸 →𝐸≫ 𝐸 6.0 3.0 1.07 2.67 5.65
𝐸 →𝐸 × 𝐸 10.0 6.0 404.76 3.09 414.49
𝐸 →𝐸 | 𝐸 5.5 3.0 1.62 1.30 4.31
𝐸 →𝐸 � 𝐸 6.0 3.0 0.70 2.03 4.41
𝐸 →𝐸 − 𝐸 6.0 5.0 5.46 3.07 12.22
𝐸 →𝐸 ⊕ 𝐸 5.5 2.5 0.64 1.03 2.94

BV
IM

PS
im

pl
e(
1,
2)

𝐸 → 0 1 1 0.01 0.02 0.36
𝐸 → 1 1 1 0.01 0.03 0.17
𝐸 → o0 1 1 0.01 0.02 0.10
𝐸 → o1 1 1 0.01 0.01 0.07
𝐸 → v0 1 1 0.01 0.01 0.14
𝑆 → o0 B 𝐸 1 1 0.35 0.49 1.27
𝑆 → o1 B 𝐸 2 2 0.32 0.38 1.47
𝐸 →−𝐸 2 2 0.07 0.79 1.64
𝐸 →∼𝐸 2 2 0.08 0.61 1.47
𝐸 → any_bit 𝐸 4 4 1.30 0.79 2.72
𝐸 →𝐸 + 𝐸 5 2 1.19 0.92 3.48
𝐸 →𝐸 & 𝐸 7 3 3.65 1.46 8.17
𝐸 →𝐸 ÷ 𝐸 7 3 2.58 35.00 60.76
𝐸 →𝐸 = 𝐸 20 6 83.47 19.99 108.10
𝐸 →𝐸≫ 𝐸 9 3 2.52 2.19 6.40
𝐸 →𝐸 × 𝐸 9 3 2.48 0.86 4.39
𝐸 →𝐸 | 𝐸 9 3 2.00 1.10 4.30
𝐸 →𝐸 � 𝐸 10 3 1.83 2.59 6.72
𝐸 →𝐸 − 𝐸 7 2 1.71 1.52 4.99
𝐵 →𝑆 ≥ 𝑆 26 8 18.24 2.87 25.36
𝐵 →𝑆 ≤ 𝑆 23 6 13.59 1.06 16.75
𝐵 →𝑆 < 𝑆 6 5 0.33 1.02 2.67
𝐸 →𝐸 ⊕ 𝐸 6 2 1.34 1.10 3.50
𝑆 →𝑆 ; 𝑆 13 3 535.19 15.61 590.21

Cu
be
(1
1)

𝑉 → v0 2 2 0.01 0.01 0.12
𝑉 → v1 2 2 0.01 0.01 0.06
𝑉 → v10 3 3 0.02 0.01 0.05
𝑉 → v2 2 2 0.01 0.01 0.05
𝑉 → v3 2 2 0.01 0.01 0.05
𝑉 → v4 3 3 0.01 0.01 0.03
𝑉 → v5 3 3 0.01 0.01 0.04
𝑉 → v6 3 3 0.01 0.01 0.06
𝑉 → v7 3 4 0.02 0.01 0.06
𝑉 → v8 3 3 0.02 0.01 0.05
𝑉 → v9 3 4 0.01 0.01 0.05
𝐵 → var𝑉 4 4 0.06 0.51 1.07
𝐵 →𝐵 ∧ 𝐵 116 8 1810.40 4.43 1831.92

3Note: The label (T𝑖) in the language name means the language timeouts under 𝑖 runs.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

Synthesizing Formal Semantics from Executable Interpreters 1:39

D
if
f(
T4

) 𝐸 → 0 1 1 0.01 0.01 0.11
𝐸 → 1 1 1 0.01 0.01 0.06
𝐸 → 2 1 1 0.02 0.01 0.06
𝐸 → x 2 2 0.35 0.01 0.41
𝐸 →𝐸 × 𝐸 5 5 92.68 1.00 95.15
𝐸 →𝐸 + 𝐸 3 3 9.12 2.09 13.47

BV
IM

PS
at

.(1
,2

)(T
7)

𝐸 → 0 1 1 0.01 0.02 0.37
𝐸 → 1 1 1 0.01 0.01 0.14
𝐸 → o0 1 1 0.01 0.01 0.12
𝐸 → o1 1 1 0.01 0.01 0.09
𝐸 → v0 1 1 0.01 0.02 0.14
𝐸 →𝐸 + 𝐸 16 3 31.60 1.11 34.15
𝐸 →𝐸 & 𝐸 6 3 1.75 1.89 7.24

CN
F(
8)

𝑉 → v0 2 2 0.01 0.01 0.12
𝑉 → v1 2 2 0.01 0.01 0.04
𝑉 → v2 2 2 0.01 0.01 0.05
𝑉 → v3 2 3 0.01 0.01 0.04
𝑉 → v4 2 2 0.01 0.01 0.03
𝑉 → v5 3 3 0.01 0.01 0.04
𝑉 → v6 3 3 0.01 0.01 0.04
𝑉 → v7 3 4 0.01 0.01 0.04
𝐵 → clause𝐶 4 4 0.03 0.27 0.48
𝐶 → nvar𝑉 5 5 0.05 0.32 0.70
𝐶 → var𝑉 4 4 0.05 0.31 0.74
𝐵 →𝐶 ∧ 𝐵 39 6 30.52 0.56 31.83
𝐶 →𝑉 ∨𝐶 41 8 37.03 0.69 38.62

D
N
F(
8)

𝑉 → v0 2 2 0.01 0.01 0.13
𝑉 → v1 2 2 0.01 0.01 0.04
𝑉 → v2 2 2 0.01 0.01 0.04
𝑉 → v3 2 3 0.01 0.01 0.04
𝑉 → v4 2 2 0.01 0.01 0.03
𝑉 → v5 3 3 0.01 0.01 0.04
𝑉 → v6 3 3 0.01 0.01 0.03
𝑉 → v7 3 4 0.01 0.01 0.05
𝐵 → conj𝐶 4 4 0.05 0.30 0.57
𝐶 → nvar𝑉 5 5 0.05 0.33 0.71
𝐶 → var𝑉 4 4 0.05 0.32 0.76
𝐶 →𝑉 ∧𝐶 33 7 28.84 0.36 29.75
𝐵 →𝐶 ∨ 𝐵 72 6 93.47 0.79 95.62

Im
p(
2)

𝐸 → 0 1 1 0.01 0.01 0.05
𝐸 → 1 1 1 0.01 0.01 0.04
𝑆 → x − − 2 2 0.06 0.02 0.11
𝑆 → y − − 2 2 0.11 0.03 0.17
𝐵 → f 1 1 0.01 0.01 0.06
𝑆 → x + + 2 2 0.04 0.03 0.11
𝑆 → y + + 2 2 0.12 0.02 0.16
𝐵 → t 1 1 0.01 0.02 0.13
𝐸 → x 2 2 0.01 0.01 0.04
𝐸 → y 1 1 0.01 0.01 0.04
𝑆 → x B 𝐸 2 2 0.10 3.23 6.17
𝑆 → y B 𝐸 2 2 0.04 3.22 6.19
𝐵 →¬𝐵 3 3 0.02 2.49 5.26
𝐸 →𝐸 + 𝐸 4 3 0.05 8.52 14.83
𝐸 →𝐸 − 𝐸 5 2 0.13 8.03 13.83
𝐵 →𝐸 < 𝐸 8 5 0.08 7.50 13.66
𝐵 →𝐵 ∧ 𝐵 4 4 0.03 5.33 11.71
𝐵 →𝐵 ∨ 𝐵 4 4 0.05 4.61 8.99
𝑆 →𝑆 ; 𝑆 5 3 4.55 15.00 72.53
𝑆 → do_while 𝑆 𝐵 27 35 858.50 257.33 1374.13
𝑆 → while 𝐵 𝑆 9 7 16.88 122.41 266.80
𝑆 → ite 𝐵 𝑆 𝑆 11 5 525.28 33.88 628.71
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1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

1:40 Anon.

In
tA

Ri
th

𝐸 → 0 1 1 0.01 0.01 0.05
𝐸 → 1 1 1 0.01 0.01 0.04
𝐸 → 2 1 1 0.01 0.01 0.05
𝐸 → 3 1 1 0.03 0.04 0.10
𝐵 → f 1 1 0.01 0.02 0.07
𝐵 → t 1 1 0.01 0.03 0.16
𝐸 → x 2 2 0.01 0.03 0.09
𝐸 → y 2 2 0.01 0.02 0.07
𝐸 → z 2 2 0.02 0.03 0.09
𝐵 →¬𝐵 4 4 0.06 5.09 15.22
𝐸 →𝐸 × 𝐸 3 3 1.38 12.51 22.58
𝐸 →𝐸 + 𝐸 3 3 1.60 11.42 21.82
𝐵 →𝐸 < 𝐸 6 6 0.73 11.20 26.87
𝐵 →𝐵 ∧ 𝐵 5 5 0.08 8.08 14.95
𝐵 →𝐵 ∨ 𝐵 4 4 0.05 7.70 14.19
𝐸 → ite 𝐵 𝐸 𝐸 4 4 0.78 13.54 31.00

It
eE

xp
R

𝐺 → 0 1 1 0.01 0.01 0.27
𝐺 → 1 1 1 0.01 0.01 0.11
𝐺 → 2 1 1 0.01 0.01 0.09
𝐺 → 3 1 1 0.05 0.01 0.13
𝐺 → 4 1 1 0.01 0.01 0.10
𝐺 → 5 1 1 0.05 0.01 0.13
𝐺 → 6 1 1 0.09 0.01 0.18
𝐺 → 7 1 1 0.18 0.01 0.23
𝐺 → 8 1 1 0.01 0.01 0.05
𝐺 → x 1 1 0.02 0.01 0.07
𝐸 → atom 𝐹 2 2 0.03 0.25 0.55
𝑆 → expr 𝐸 1 1 0.02 0.10 0.20
𝐹 → num𝐺 1 1 0.03 0.30 0.69
𝐹 → 𝐹 ×𝐺 2 2 1.19 0.77 3.33
𝐸 →𝐸 + 𝐹 2 2 1.25 0.25 1.79
𝐸 →𝐸 − 𝐹 2 2 1.12 0.27 1.68
𝐹 → 𝐹 ÷𝐺 4 3 1.92 0.94 3.88
𝐵 →𝐸 = 𝐸 5 4 0.09 0.24 0.71
𝐵 →𝐸 ≥ 𝐸 5 5 1.79 0.33 2.60
𝐵 →𝐸 > 𝐸 5 5 0.18 0.26 0.79
𝐵 →𝐸 ≤ 𝐸 6 6 0.24 0.56 1.48
𝐵 →𝐸 < 𝐸 5 5 0.12 0.30 0.85
𝐵 →𝐸 ≠ 𝐸 6 6 5.35 0.26 6.11
𝑆 → ite 𝐵 𝐸 𝐸 3 3 0.29 0.29 0.92

Re
gE

x(
2)

𝑅 → ? 3 3 3.84 0.07 4.07
𝑅 → a 4 4 11.10 0.07 11.53
𝑅 → b 5 5 11.63 0.06 12.01
𝑅 →𝜖 1 1 0.07 0.07 2.38
𝑅 →∅ 1 1 0.19 0.07 0.46
𝑆𝑡𝑎𝑟𝑡 → eval 𝑅 3 3 0.02 4.43 13.40
𝑅 → !𝑅 5 5 2.85 15.77 77.36
𝑅 →𝑅∗ 6 6 0.99 13.06 31.91
𝑅 →𝑅 · 𝑅 24 24 333.71 72.58 495.45
𝑅 →𝑅 | 𝑅 10 10 10.96 59.54 140.82

Bi
nO

p

𝐵 → 0 1 1 0.01 0.01 0.07
𝐵 → 1 1 1 0.01 0.01 0.22
𝐵 → x 2 2 0.01 0.01 0.08
𝑁 → atom 𝐵 2 2 0.09 0.04 0.30
𝑀 → atom′ 𝐵 3 3 0.07 0.05 0.26
𝑆 → bin2dec 𝑀 2 2 0.02 0.09 0.30
𝑆 → count 𝑁 2 2 0.04 0.05 0.24
𝑁 → concat 𝑁 𝐵 5 5 8.61 0.22 10.31
𝑀 → concat′ 𝑀 𝐵 5 5 288.81 0.23 308.50

Cu
RR

en
cy

𝐾 → 0 1 1 0.01 0.01 0.03
𝐾 → 1 1 1 0.01 0.01 0.02
𝐾 → 2 1 1 0.01 0.01 0.02
𝐾 → 4 1 1 0.01 0.01 0.02
𝐾 → 8 1 1 0.01 0.01 0.02
𝐾 → x 2 2 0.01 0.01 0.10
𝑆 → cny 𝐾 3 3 21.55 0.28 22.48
𝑆 → jpy 𝐾 1 1 0.01 0.10 0.22
𝑆 → usd 𝐾 2 2 19.65 0.21 20.27
𝑆 →𝑆 × 𝐾 2 2 0.03 0.11 0.24
𝑆 →𝑆 + 𝑆 2 2 0.03 0.14 0.33
𝑆 →𝑆 − 𝑆 2 2 0.04 0.16 0.38
𝐾 →𝐾 +K 𝐾 3 3 0.28 0.35 1.19
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