
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Proving Weak Simulation via Strategy Synthesis

ANONYMOUS AUTHOR(S)

Simulation has been widely used to relate the behavior of two programs. A (strong) simulation relates a

program state to another when any action executable from the first is available to be executed by the second and

the resulting post states remain related. Weak simulation is defined similarly; however, it introduces a notion

of observability (e.g., sending or receiving messages). While strong simulations preserve exact sequences

of actions, weak simulation only requires preserving observationally equivalent sequences of actions. For

many applications, strong simulation is not permissive enough. For example, consider two programs that both

receive a key as input then look up in a hash table the value to output. If the two hash tables use different

hash functions, then strong simulation would say the two programs are not equivalent. While under weak

simulation the two programs would be equivalent (as internal computations are considered unobservable).

This paper introduces a method to automatically prove weak simulation between two integer message

passing programs. Our technique is the first to automatically prove simulation (weak or otherwise) between

two non-deterministic infinite-state programs. Our technique is a semi-algorithm that employs the game

semantics of weak simulation to synthesize a (finite representation of a) strategy that witnesses the existence

of a simulation.

ACM Reference Format:
Anonymous Author(s). 2024. Proving Weak Simulation via Strategy Synthesis. 1, 1 (February 2024), 36 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
There are many ways to define program equivalence including variants of Benton [2004]’s relational

Hoare logic (RHL), trace equivalence, and variants of simulation [Milner 1971]. An important but

challenging setting is message-passing programs, where we have to contend with (1) nondeter-

minism and (2) observability. Examples of this setting include distibuted, reactive, and real-tme

systems and crypotographic protocols.

While variants of RHL and trace equivalence have seen extensive use in applications like trans-

lation validation, they are ill-suited to the context of message-passing programs. Consider the

RHL specification {𝑥 = 𝑥 ′}𝑃 ∼ 𝑃 ′{𝑥 = 𝑥 ′}, where 𝑃 ′ is a copy of program 𝑃 with each variable

𝑥 replaced by a copy 𝑥 ′. The specification states that under any possible execution of 𝑃 and 𝑃 ′

if the programs start in identical states, then the programs end in idential states. Intuitively, one

would expect this specification to always hold; however, if 𝑃 is non-deterministic, then it may not.

Additionally, it is possible for two programs 𝑃 and 𝑄 to be trace equivalent even though 𝑄 may

deadlock and 𝑃 does not.

Milner [1989]’s work on simulation lays the foundation for defining program equivalence in the

context of message-passing systems. In this paper, we consider a relational specification based on

divergence preserving weak simulation. A classical (strong) simulation from program 𝑋 to program

𝑌 requires that every behavior of 𝑋 is matched step-by-step to a behavior of 𝑌 . In the context

of message-passing programs (among others), simulation is not permissive enough. It is possible

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

XXXX-XXXX/2024/2-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Anon.

for programs 𝑋 and 𝑌 to receive equal messages and respond with equal messages and yet 𝑋 is

not simulated by 𝑌 , as 𝑋 and 𝑌 differ on the exact computations used to compute said responses.

Weak simulation addresses this concern by relaxing the conditions for simulation to only consider

observable behaviors—sending and receiving messages. However, weak simulation is too permisive,

when 𝑋 infinite loops, 𝑌 is free to do anything (e.g., terminate, infinite loop, or even send or receive

messages). However, if the weak simulation relating 𝑋 and 𝑌 is divergence preserving (𝑋 and 𝑌

have similar live-lock behaviors), 𝑌 must be able to infinite loop whenever 𝑋 does.

We introduce a relational Hoare-style specification we call contextual simulation that takes the

form {P} 𝑋 ≲ 𝑌 {Q}. Contextual simulation specifies that 𝑋 must be related to 𝑌 by a divergence

preserving weak simulation within the context of a pre-specification P and post-specification Q.
In addition to defining contextual simulation, the main technical contribution of this paper is a

semi-algorithm for proving or refuting the validity of a contextual simulation. While there are many

techniques that can automatically compute simulation relations (of various kinds), our technique

is the first to automatically prove the existence of a simulation (weak or otherwise) between two

non-deterministic infinite state programs.

Verifying the validity of a contextual simulation {P} 𝑋 ≲ 𝑌 {Q} comes with several challenges.

It combines aspects of program safety verification (i.e all executions of 𝑋 must be simulated

by 𝑌), termination verification (𝑋 and 𝑌 should be co-terminating), and program synthesis (non-

determinism of𝑌 should be treated angelically). In fact, the traditional Hoare logic partial correctness

specification {𝑃} 𝑆 {𝑄} can be encoded as the contextual simulation {𝑃} 𝑆 ≲ while(∗) skip {𝑄},
while the total correctness specification [𝑃] 𝑆 [𝑄] can be encoded as {𝑃} 𝑆 ≲ skip {𝑄}.

Our semi-algorithm, like several other methods for computing simulation [Bulychev et al. 2007;

Etessami et al. 2005], is based on the game semantics of simulation. To prove or refute a contextual

simulation {P} 𝑋 ≲ 𝑌 {Q}, we exhibit a (finite-representation of) a strategy for the induced

simulation game. To compute such a strategy, we iteratively solve finite duration games (for

the next 𝑛 moves of the game). To solve finite duration games, the first step removes data non-

determinism from 𝑌 by instantiating any non-deterministic term with a deterministic term. This

process is similar to solving a sketch-based synthesis problem. Specifically, one could think of each

non-deterministic term of 𝑌 as a hole and the task is to synthesize a (deterministic) term for each

hole such that 𝑌 continues to simulate 𝑋 . Afterwards, invaraint generation techniques are used to

label the finite game’s strategy with labels that prove 𝑌 continues to simulate 𝑋 . Then, the labeled

strategy is used to extend the overall strategy for a greater duration; however, only expanding is

insufficient to handle programs with loops. At certain points, we check to see if the current state of

the game to be expanded has already been expanded before. If so, the semi-algorithm tries to re-use

the strategy previously expanded. If this would form a cycle in the strategy, we ensure that any

fragments of 𝑋 and 𝑌 contained within the cycle are co-terminating (cf. Secton 4 for full details).

The remainder of this paper is structured as follows. Section 2 provides background and defines

contextual simulations. Section 3 gives the game semantics for contextual simulations. Section 4

describes our algorithm for synthesizing strategies for simulation games, which can be used to

verify and refute contextual simulations. Section 5 describes SimVer, an implementation of our

algorithm, and evaluates its performance. Section 6 compares our technique to related literature.

2 PRELIMINARIES
2.1 Programs
We consider simple message passing programs represented as control flow graphs.

Definition 2.1. A Control Flow Graph (CFG) is a finite labeled graph 𝐺 =
〈
Loc, 999K , in, out

〉
,

where:

, Vol. 1, No. 1, Article . Publication date: February 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Proving Weak Simulation via Strategy Synthesis 3

• Loc is a finite set of control locations.
• 999K ⊆ Loc × com × Loc is a finite set of directed edges, each labeled by a command.
• in ∈ Loc is a distinguished entry location

• out ∈ Loc is a distinguished exit location with no outgoing edges.

The language of commands is as follows:

⟨com⟩ ::= [⟨bexp⟩] | ⟨var⟩ := ⟨exp⟩
| havoc ⟨var⟩. ⟨bexp⟩
| send ⟨exp⟩ chan(⟨exp⟩)
| receive ⟨var⟩ chan(⟨exp⟩)

⟨exp⟩ ::= ⟨var⟩ | 𝑐 ∈ Z | 𝑐 · ⟨exp⟩ | ⟨exp⟩ + ⟨exp⟩

⟨bexp⟩ ::= true | false | ¬ ⟨bexp⟩ | ⟨bexp⟩ ∨ ⟨bexp⟩
| ⟨bexp⟩ ∧ ⟨bexp⟩ | ⟨bexp⟩ ≤ ⟨bexp⟩

The languages of expressions and Boolean expressions coincides with the languages of ground

terms and formulas in linear integer arithmetic (LIA). In the remainder of the paper, we use

“programs” and “control flow graphs” interchangeably. A program may include commands for

guards (denoted as [𝑏] to mean assume 𝑏)), deterministic and non-deterministic assignments,

and communication (using send and receive) along shared channels, which are identified by

integers. Programs contain three forms of non-determinism: scheduler non-determinism arising

from locations with multiple outgoing edges, message non-determinism (arising from receive),
as well as the instruction havoc x. b, which non-deterministically assigns x a value such that x
satisfies the Boolean expression b. For any instruction receive x chan(c), we assume x does not

appear in the expression c. CFGs may represent both sequential and concurrent programs. The

standard construction of the CFG of two processes running concurrently is the Cartesian product

of the CFG of the two concurrent processes.

Semantics. A valuation _ : 𝑋 → Z is a map from a finite set of variables 𝑋 to the integers. We

use _[𝑥 ↦→ 𝑣] to denote the valuation that maps 𝑥 to 𝑣 and every other variable 𝑦 to _(𝑦). For
valuations _1 and _2 over disjoint domains, we use _1 ⊎ _2 to denote their common extension. We

use ⟦𝑒⟧_ to denote the evaluation of a (Boolean) expression 𝑒 under the valuation _, assuming that

the domain of _ contains the variables in 𝑒 (with its usual interpretation).

Given a program, 𝑃 =
〈
Loc, 999K , in, out

〉
and a set of variables 𝑋 , the semantics of 𝑃 are

defined by a labeled transition system Trans(𝑃) = ⟨𝑆,−→, Init, Final⟩. The labels are drawn from

an observable alphabet Σ and a single distinguished unobservable action which we denote by 𝜏 . Σ
contains two types of actions: send actions of the form s(𝑣, 𝑐) (“send 𝑣 on channel 𝑐”) and receive
actions of the form r(𝑣, 𝑐) (“receive 𝑣 on channel 𝑐”), where 𝑣 and 𝑐 range over integers. A program
state _ ⊲ ℓ is a valuation _ : 𝑋 → Z paired with a control location ℓ ∈ Loc. 𝑆 is the set of all such
program states, Init is the set of all initial states (where ℓ = in), and Final is the set of all final
states (where ℓ = out). Figure 1 gives the rules defining the transition relation −→. Note that we

use an open world assumption for communication: we suppose that the program is executed in

an environment where external processes outside of the program can send and receive along any

channel. Thus, communication instructions are never blocked, and a process may receive any value

(including values that are not sent along that channel within the program); as a result, our semantics

does not require an explicit representation of channel state. For brevity, for a program 𝑃 , we will

use Loc𝑃 , 999K𝑃 , in𝑃 , and out𝑃 to refer to the components of 𝑃 (i.e. 𝑃 =
〈
Loc𝑃 , 999K𝑃 , in𝑃 , out𝑃

〉
).

Similarly, we use 𝑆𝑃 , −→𝑃 , Init𝑃 , and Final𝑃 to refer to the components of its transition system (i.e.

Trans(𝑃) = ⟨𝑆𝑃 ,−→𝑃 , Init𝑃 , Final𝑃 ⟩).

2.2 Simulation
We relate the behavior of two programs using divergence preserving [Van Glabbeek 2001] weak
simulations [Milner 1989]. In a classical (strong) simulation, every transition of the system must be

, Vol. 1, No. 1, Article . Publication date: February 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Anon.

ℓ
[𝑏]
999K ℓ ′ ⟦𝑏⟧_
_ ⊲ ℓ

𝜏−→ _ ⊲ ℓ ′

ℓ
𝑥 :=𝑒
999K ℓ ′ ⟦𝑒⟧_ = 𝑣

_ ⊲ ℓ
𝜏−→ _[𝑥 ↦→ 𝑣] ⊲ ℓ ′

ℓ
havoc 𝑥. 𝑏

999K ℓ ′ ⟦𝑏 [𝑥 ↦→ 𝑣]⟧_
_ ⊲ ℓ

𝜏−→ _[𝑥 ↦→ 𝑣] ⊲ ℓ ′

ℓ
send 𝑒 chan(𝑐𝑒)

999K ℓ ′ ⟦𝑒⟧_ = 𝑣 ⟦𝑐𝑒⟧_ = 𝑐

_ ⊲ ℓ
s(𝑣,𝑐)
−→ _ ⊲ ℓ ′

ℓ
receive 𝑥 chan(𝑐𝑒)

999K ℓ ′ ⟦𝑐𝑒⟧_ = 𝑐 𝑣 ∈ Z

_ ⊲ ℓ
r(𝑣,𝑐)
−→ _[𝑥 ↦→ 𝑣] ⊲ ℓ ′

Fig. 1. Transition rules for programs.

matched step by step with a transition of the protocol. Weak simulations relax this condition by

matching every transition of the system with an observationally equivalent sequence of transitions.
A simulation is divergence preserving if every divergent path (infinite sequence of unobservable

transitions) of the system is matched by a divergent path of the protocol. To motivate our choice

of simulation, consider the below schematic example implementation (left) and protocol (right),

which differ in that the implementation includes some (communication-free) computation between

receiving and sending a message.

Example 2.1.

while true do
receive message;
do_work();
send response

done

while true do
receive message;
send response

done

Under strong simulation there is no possible simulation—the implementation takes more steps

than the protocol. Under a weak simulation, there is a simulation even if “do_work” fails to

terminate, which is undesirable because an important correctness property of the protocol—that

every request is eventually serviced—is invalidated by the implementation. A divergence preserving
weak simulation between the implementation and specification is only possible if “do_work” is

terminating. In Theorem 2.4, we show that divergence preserving weak simulations preserve the

universal fragment of action CTL
∗
without next-time operators [Nicola and Vaandrager 1990].

First we give some auxiliary definitions. Given a program, 𝑃 , a program state 𝜎 silently reaches
program state 𝜎 ′ (𝜎

𝜏
=⇒𝑃 𝜎 ′), when there is a (possibly empty) sequence of silent transitions

from 𝜎 to 𝜎 ′; that is,
𝜏

=⇒𝑃≜
𝜏−→
∗
𝑃 . For an observable action 𝛼 ∈ Σ, 𝜎 𝛼-observably reaches 𝜎 ′

(𝜎
𝛼
=⇒𝑃 𝜎

′
), when there is a sequence of transitions from 𝜎 to 𝜎 ′, where one transition is an 𝛼

transition and the rest are silent transitions; that is,

𝛼
=⇒𝑃≜

𝜏
=⇒𝑃 ◦

𝛼−→𝑃 ◦
𝜏

=⇒𝑃 .

Definition 2.2 (Weak Simulation). A binary relation 𝑅 ⊆ 𝑆𝑃 × 𝑆𝑄 from program states of 𝑃 to

program states of 𝑄 is a weak simulation (from 𝑃 to𝑄), if for any pair of states 𝜎𝑃 and 𝜎𝑄 related

by 𝑅 (written 𝜎𝑃𝑅𝜎𝑄), and all 𝜎 ′
𝑃
∈ 𝑆𝑃 and 𝛼 ∈ Σ ∪ {𝜏} such that 𝜎𝑃

𝛼−→𝑃 𝜎
′
𝑃
, there exists some

𝜎 ′
𝑄
∈ 𝑆𝑄 such that 𝜎𝑄

𝛼
=⇒𝑃 𝜎

′
𝑄
and 𝜎 ′

𝑃
𝑅𝜎 ′

𝑄
.

Definition 2.3 (Divergence Preserving). A weak simulation, 𝑅 ⊆ 𝑆𝑃 × 𝑆𝑄 , from program 𝑃 to

program 𝑄 is divergence preserving if for any pair of states 𝜎𝑃 and 𝜎𝑄 related by 𝑅 (𝜎𝑃𝑅𝜎𝑄), and

all infinite silent paths, 𝜎𝑃 0

𝜏−→𝑃 𝜎𝑃 1

𝜏−→𝑃 . . . , starting from 𝜎𝑃 (𝜎𝑃 = 𝜎𝑃 0
), there exists an infinite

silent path 𝜎𝑄
0

𝜏−→ 𝜎𝑄
1

𝜏−→𝑄 . . . starting from 𝜎𝑄 (𝜎𝑄 = 𝜎𝑄
0
) and an infinite sequence 𝑘1, 𝑘2, . . .

of naturals such that 𝜎𝑃 𝑖 is 𝑅-related to 𝜎𝑄𝑘𝑖
for all 𝑖 , and which is ascending (𝑘𝑖 ≤ 𝑘𝑖+1 for all 𝑖)

and unbounded (for all 𝑛 ∈ N, there is some 𝑖 such that 𝑘𝑖 > 𝑛).

, Vol. 1, No. 1, Article . Publication date: February 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Proving Weak Simulation via Strategy Synthesis 5

It is well known that simulation relations preserve temporal logic formulas [Bensalem et al.

1992; Bulychev et al. 2007; Parrow et al. 2017]. We show that every divergence preserving weak

simulation preserves the universal fragment of action CTL
∗
without next time operators. Action

𝐶𝑇𝐿∗ is a branching-time logic for reasoning about labeled transition systems with observable

actions [Nicola and Vaandrager 1990]. For example, action 𝐶𝑇𝐿∗ is able to formalize specifications

such as “every request eventually receives a response” and “eventually every node will respond

with the same value.” We provide full details of our formalization in the proof of Theorem 2.4 in

Appendix C.

Theorem 2.4. Let 𝜑 be any formula of the universal fragment of action 𝐶𝑇𝐿∗ without next-time
operators (∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 }). If program 𝑃 is related to program 𝑄 by a divergence preserving weak
simulation and 𝑄 satisfies 𝜑 then 𝑃 satisfies 𝜑 .

See proof on page 30.

Contextual simulations are modular specifications of correctness of message passing programs

based on divergence preserving weak simulation. A contextual simulation is a quadruple {P} src ≲
tgt {Q} where src and tgt are both programs (presumed to be operating over disjoint sets of

variables, say 𝑋 and 𝑌), and P and Q are Boolean expressions ranging over variables of both src
and tgt. We call src the source or implementation program and tgt the target or specification program.

Since src and tgt operate over disjoint variables, we may use ordinary first-order formulas over both

sets of variables as predicates for these joint states. Intuitively, {P} src ≲ tgt {Q} asserts that any
pair consisting of a src-state and tgt-state that jointly satisfy P are observationally equivalent and

(after executing src and tgt) end in states that are related by Q. For example, contextual simulations

can express that a distributed system only implements the protocol when started in equivalent

states, or that when both the implementation and protocol terminate they do so in related states.

Definition 2.5 (Contextual Simulation). We say a contextual simulation holds, |= {P} src ≲
tgt {Q}, if there exists a divergence preserving weak simulation 𝑅 ⊆ 𝑆src × 𝑆tgt such that

• 𝑅 respects the pre-condition P: every initial state of src and tgt that jointly satisfies P is related

by 𝑅. That is, for all _src : 𝑋 → Z, _tgt : 𝑌 → Z such that ⟦P⟧_src⊎_tgt is true, we have (_src ⊲
insrc)𝑅(_tgt ⊲ intgt).
• 𝑅 respects the post-condition Q: whenever a final state 𝜎src is related to a state 𝜎tgt by 𝑅, then

𝜎tgt must silently reach a final state 𝜎 ′tgt such that 𝜎src and 𝜎
′
tgt jointly satisfy the post-condition

Q. That is, for all (_src ⊲ outsrc) and 𝜎tgt such that (_src ⊲ outsrc)𝑅𝜎tgt , there is some _tgt such that

𝜎tgt
𝜏

=⇒tgt (_tgt ⊲ outtgt) and ⟦Q⟧_src⊎_tgt is true.

3 GAME SEMANTICS OF SIMULATION
This section describes (1) a game semantics for contextual simulations and (2) labeled simulation
game unwindings, a finite representation of a (partial) strategy for Verifier in a simulation game.

This forms the basis of the algorithm in Section 4 for verifying contextual simulations. Figure 2

displays a contextual simulation along with a complete well-labeled game unwinding, which we

will use as a running example.

3.1 Semantic Simulation Game
Every contextual simulation defines an infinite game G({P} src ≲ tgt {Q}) played by two players,

Falsifier and Verifier. Verifier’s goal is to prove the validity of the contextual simulation, Falsifier’s

is to disprove it. If we look at Definition 2.2, we see that each step of the implementation must be

matched by an observably equivalent sequence of transitions from the specification. In our game,

Falsifier controls the implementation and Verifier the Specification. Intuitively, in a play of the game,

, Vol. 1, No. 1, Article . Publication date: February 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Anon.

Falsifier tries to construct a trace of the implementation that has no observationally equivalent

trace in the Specification, whereas Verifier tries to construct an observationally equivalent trace of

the specification for the trace Falsifier constructs.

A play of the game proceeds with Falsifier and Verifier taking turns choosing moves forever
(not necessarily strictly alternating between the two players). A move consists of the active player

choosing the next place. A place is either a Falsifier place or Verifier place. A Falsifier place dictates

that the next move belongs to Falsifier, while Verifier places dictate that the next move belongs

to Verifier. A Falsifier place takes the form 𝐹
〈
ℓsrc, ℓtgt, _

〉
where ℓsrc ∈ Locsrc , ℓtgt ∈ Loctgt , and

_ : (𝑋 ∪ 𝑌) → Z (recall we assume src and tgt operate over disjoint sets of variables, 𝑋 and 𝑌). A

Verifier place takes the form 𝑉
〈
𝛼, ℓsrc, ℓtgt, _

〉
where 𝛼 ∈ Σ ∪ {𝜏} indicates the most recent label a

transition executed by src, and ℓsrc , ℓtgt , and _ are as before.
The set of all moves𝑀 is the set of all Verifier and Falsifier places. A position 𝑠 ∈ 𝑀∗ is a finite

sequence of moves, and a play 𝑝 ∈ 𝑀𝜔
is an infinite sequence of moves. Falsifier makes the first

move. Afterwards, the next player to make a move is dictated by the final place of the position (e.g.

Falsifier makes the next move if and only if the final place of the position is a Falsifier place). We

define the winning conditions in terms of the legal positions of the game. The legal positions are

defined inductively as follows:

• (Initialization) The game begins in an arbitrary joint state _ satisfying the pre-condition P, with
the source and target in their initial positions and with Falsifier to play. Formally:

If ⟦P⟧_ is true, then 𝐹
〈
insrc, intgt, _

〉
is legal.

• (Falsifier) For a legal prefix ending in a Falsifier place, the game continues where Falsifier must

choose an outgoing transition of src and let Verifier attempt to match the chosen transition.

Formally:

If 𝑠 · 𝐹
〈
ℓsrc, ℓtgt, _

〉
is legal and _ ⊲ ℓsrc

𝛼−→src _
′ ⊲ ℓ ′src , then 𝑠 · 𝐹

〈
ℓsrc, ℓtgt, _

〉
· 𝑉

〈
𝛼, ℓ ′src, ℓtgt, _

′〉
is

legal

• (Match) For a legal prefix ending in a Verifier place, Verifier may continue the game by choosing

an outgoing transition of tgt that is labeled with the same action of the transition previously

chosen by Falsifier. Verifier then continues its turn released of its obligation of executing a

transition matching Falsifer’s action. Formally:

If 𝑠 ·𝑉
〈
𝛼, ℓsrc, ℓtgt, _

〉
is legal and _ ⊲ ℓtgt

𝛼−→tgt _
′ ⊲ ℓ ′tgt , then 𝑠 ·𝑉

〈
𝛼, ℓsrc, ℓtgt, _

〉
·𝑉

〈
𝜏, ℓsrc, ℓ

′
tgt, _

′
〉

is legal

• (Continue) For a legal prefix ending in a Verifier place, Verifier may continue the game by

choosing a silent transition of tgt. Verifier then continues its turn. Formally:

If 𝑠 ·𝑉
〈
𝛼, ℓsrc, ℓtgt, _

〉
is legal and _ ⊲ ℓtgt

𝜏−→tgt _
′ ⊲ ℓ ′tgt , then 𝑠 ·𝑉

〈
𝛼, ℓsrc, ℓtgt, _

〉
·𝑉

〈
𝛼, ℓsrc, ℓ

′
tgt, _

′
〉

is legal

• (Pass) For a legal prefix ending in a Verifier place, if Verifier has satisfied its matching obligation

then Verifier may choose to pass their turn. Formally:

If 𝑠 ·𝑉
〈
𝜏, ℓsrc, ℓtgt, _

〉
is legal, then 𝑠 ·𝑉

〈
𝜏, ℓsrc, ℓtgt, _

〉
· 𝐹

〈
ℓsrc, ℓtgt, _

〉
is legal

We say that Falsifier wins a play if

• There is an illegal prefix of the form 𝑠 ·𝑉
〈
𝛼, ℓsrc, ℓtgt, _

〉
·𝑚 such that 𝑠 ·𝑉

〈
𝛼, ℓsrc, ℓtgt, _

〉
is legal

(i.e., Verifier makes the first illegal move), or

• There is a legal prefix of the form 𝑠 ·𝑉
〈
𝜏, outsrc, ℓtgt, _

〉
· 𝐹

〈
𝜏, outsrc, ℓtgt, _

〉
where ⟦Q⟧_ is false

or ℓtgt ≠ outtgt , or
• Every prefix is legal and Verifier either always passes or always continues.

A strategy for Verifier is a function 𝑔 : {𝑉
〈
𝛼, ℓsrc, ℓtgt, _

〉
∈ 𝑀} → 𝑀 that maps each Verifier

place to a move. We say a play 𝑝 = 𝑝0𝑝1𝑝2 . . . conforms to Verifier’s strategy, 𝑔, when every move

, Vol. 1, No. 1, Article . Publication date: February 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Proving Weak Simulation via Strategy Synthesis 7

0

1

2

3

4 5

6 7

8

9

𝑎

𝑏

𝑐

𝑑𝑒

𝑓

𝑔

{2𝑖 = 𝑗}

≲

{𝑥 = 𝑦}

(A) Contextual Simulation {2𝑖 = 𝑗} src ≲ tgt {𝑥 = 𝑦}

havoc n. 0 ≤ 𝑛

receive x chan(2𝑛)

[𝑖 < 𝑛]

[𝑥
<

0
] [𝑥 ≥

0
]

[𝑖 ≥ 𝑛]

send -x chan(2𝑖) send x chan(2𝑖)

send -x chan(2𝑖 + 1) send x chan(2𝑖 + 1)

i
:=
i
+
1

havoc m. 0 ≤𝑚

receive y chan(m)

havoc z. 0 ≤ 𝑧

[𝑗 <𝑚] [𝑗 ≥𝑚]

send z chan(j)

j
:=
j
+
1

𝜑1 ≜ 2𝑖 = 𝑗 ∧ 0 ≤ 𝑛 𝜑2 ≜ 2𝑖 = 𝑗 ∧ 2𝑛 =𝑚

𝜑3 ≜ 𝜑2 ∧ 𝑥 = 𝑦 𝜑4 ≜ 𝜑3 ∧ 𝑥 < 0 ∧ 𝑧 = −𝑥
𝜑5 ≜ 𝜑3 ∧ 𝑥 ≥ 0 ∧ 𝑧 = 𝑥 𝜑6 ≜ 𝜑3 ∧ 𝑖 ≥ 𝑛
𝜑7 ≜ 𝜑4 ∧ 𝑖 < 𝑛 𝜑8 ≜ 𝜑6 ∧ 𝑖 < 𝑛

𝜑9 ≜ 2𝑖 + 1 = 𝑗 ∧ 2𝑛 =𝑚 ∧ 𝑥 = 𝑦 ∧ 𝑥 < 0 ∧ 𝑧 = −𝑥 ∧ 𝑖 < 𝑛
𝜑10 ≜ 2𝑖 + 1 = 𝑗 ∧ 2𝑛 =𝑚 ∧ 𝑥 = 𝑦 ∧ 𝑥 ≥ 0 ∧ 𝑧 = 𝑥 ∧ 𝑖 < 𝑛
𝜑11 ≜ 2𝑖 = 𝑗 + 1 ∧ 2𝑛 =𝑚 ∧ 𝑥 = 𝑦 ∧ 𝑥 < 0 ∧ 𝑧 = −𝑥
𝜑12 ≜ 2𝑖 = 𝑗 + 1 ∧ 2𝑛 =𝑚 ∧ 𝑥 = 𝑦 ∧ 𝑥 ≥ 0 ∧ 𝑧 = 𝑥

(B) Formula annotations for labeled unwinding

00𝑎

11𝑎

22𝑎

23𝑏

24𝑐

25𝑑 26𝑑97𝑑 98𝑑

99𝑔310𝑑411𝑑612𝑑613𝑒

614𝑓

815𝑓

816𝑑

817𝑒 818𝑓 219𝑓 220𝑑

321𝑑 522𝑑 723𝑑 724𝑒

725𝑓

826𝑓

827𝑑

828𝑒829𝑓230𝑓231𝑑

2𝑖 = 𝑗

𝜑1

𝜑1

𝜑2

𝜑3

𝜑4 𝜑5

𝜑6 𝜑6

𝑥 = 𝑦𝜑7𝜑7
𝜑7

𝜑7

𝜑7

𝜑7

𝜑9

𝜑9
𝜑9

𝜑11 𝜑4

𝜑8 𝜑8
𝜑8

𝜑8

𝜑8

𝜑8

𝜑10

𝜑10
𝜑10

𝜑12𝜑5

havoc n. 0 ≤ 𝑛

receive x chan(2n)

{true};
havoc m. 0 ≤𝑚

𝑚 ← 2𝑛

{true};
receive y chan(m)

{𝑥 <
0
};

h
av
o
c
z.

0
≤ 𝑧

𝑧 ←
−𝑥

{𝑥 ≥
0};

h
avo

c
z. 0 ≤ 𝑧

𝑧 ←
𝑥

[𝑖 ≥ 𝑛]

{true};
[𝑗 ≥𝑚]

[𝑖 ≥ 𝑛]

[𝑖 < 𝑛]

[𝑥 < 0]send -x chan(2i){true};
[𝑗 <𝑚]

{true};
send z chan(j)

send -x chan(2i+1)

{true};
j := j + 1

{true};
[𝑗 <𝑚]

{true};
send z chan(j) i := i + 1

{true};
j := j + 1

[𝑖 < 𝑛]

[𝑥 ≥ 0] send x chan(2i) {true};
[𝑗 <𝑚]

{true};
send z chan(j)

send x chan(2i+1)

{true};
j := j + 1

{true};
[𝑗 <𝑚]

{true};
send z chan(j)i := i + 1

{true};
j := j + 1

Fig. 2. A complete, well-labeled Simulation Game Unwinding

made by Verifier is decided by 𝑔; that is, for all 𝑖 such that 𝑝𝑖 is a Verifier place, we have 𝑝𝑖+1 = 𝑔(𝑝𝑖).
We say 𝑔 is winning if every play that conforms to 𝑔 is won by Verifier. Strategies for Falsifier are

defined analogously.

Theorem 3.1. The contextual simulation {P} src ≲ tgt {Q} is valid if and only if Verifier has a
winning strategy for G({P} src ≲ tgt {Q}).

See proof on page 33.

3.2 Simulation Game Unwindings
We propose simulation game unwindings as a finite representation of strategies for Verifier. Simu-

lation game unwindings are proof objects that certify a given contextual simulation (analogous

to program unwindings in program verification [McMillan 2006]). Figure 2 displays an example

contextual simulation and a complete well-labeled simulation game unwinding proving its validity.

We first give intuition into how the example game unwinding corresponds to a strategy for Verifier,

then give the definition of (un)labeled simulation game unwindings, and finish by defining when a

simulation game unwinding is well-labeled and complete.

Figure 2 can be understood as a representation of an infinite set of legal plays of the simulation

game that conform to a strategy. Each node represents (a set of) places which belong to either

Falsifier (square) or Verifier (circle). Any legal play starts at the root node 00𝑎 (indicating a Falsifier

place). In the next move, Falsifier executes its havoc action and Verifier responds by passing its

, Vol. 1, No. 1, Article . Publication date: February 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Anon.

turn (indicated by the fact that the edge 00𝑎 → 11𝑎 connects two Falsifier nodes). Falsifier receives

a message, to which Verifier responds by first playing its havoc m command, choosing the value

2𝑛 for𝑚 (indicated by the edge label𝑚 ← 2𝑛), receiving a message, and then playing its havoc
z command, and passing the turn back to Falsifier. If the value received by the source program

is negative, then 𝑧 is set to −𝑥 (indicated by the left edge outgoing from 24𝑐), and if the value is

non-negative, then 𝑧 is set to 𝑥 (the right edge). In either case, Falsifier begins at the loop header of

the source program and either enters the loop body or exits the program. The process continues

analogously.

Definition 3.2 (Simulation Game Unwinding). A Simulation Game Unwinding from program

src to program tgt is a finite bipartite tree𝑈 = ⟨𝐹,𝑉 , 𝐸, 𝑟, 𝐿, 𝑆,𝑇 ⟩, where:
• 𝐹 and 𝑉 are finite disjoint sets of nodes. Define 𝑁 ≜ 𝐹 ∪𝑉 to be the set of all nodes

• ⟨𝑁, 𝐸⟩ is a finite tree rooted at 𝑟 ∈ 𝐹
• 𝑆 : 𝑁 → 𝐿𝑜𝑐src and 𝑇 : 𝑁 → 𝐿𝑜𝑐tgt map each node to a src and tgt control location, respectively
• 𝐿 : 𝐸 → 𝑐𝑜𝑚 maps each edge to a command

such that 𝑆 (𝑟) = insrc and 𝑇 (𝑟) = intgt , and for each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸:
• If 𝑢 ∈ 𝐹 , then 𝑆 (𝑢)

𝐿 (𝑢,𝑣)
999Ksrc 𝑆 (𝑣) and 𝑇 (𝑢) = 𝑇 (𝑣), and

• If 𝑢 ∈ 𝑉 , then 𝑇 (𝑢)
𝐿 (𝑢,𝑣)
999Ktgt 𝑇 (𝑣) and 𝑆 (𝑢) = 𝑆 (𝑣).

In Figure 2, each node is given the label 𝑆 (𝑛)𝑛𝑇 (𝑛) . We represent 𝐹 -nodes with squares (e.g.

00𝑎) and 𝑉 -nodes with circles (e.g. 22𝑎). Every edge ⟨𝑢, 𝑣⟩ is labeled with the command 𝐿(𝑢, 𝑣). A
simulation game unwinding from src to tgt represents a joint-unwinding of the two programs

starting from the initial location of both programs. Each 𝐹 -node unwinds one step of src, while
each 𝑉 -node unwinds one step of tgt. For instance, we see that from node 0 there is a single edge

to node 1 labeled with the first command executed by src. Similarly, node 2 has a single edge to

node 3 labeled with the first command executed by tgt.

Definition 3.3 (Labeled Simulation Game Unwinding). A Labeled Simulation Game Unwinding
(from src to tgt) is a tuple L = ⟨𝑈 ,Φ, 𝐾,𝐺,𝑋, ⊲,𝑚⟩, where
• 𝑈 = ⟨𝐹,𝑉 , 𝐸, 𝑟, 𝐿, 𝑆,𝑇 ⟩ is a simulation game unwinding from src to tgt.
• Φ : 𝑁 → 𝑏𝑒𝑥𝑝 is a vertex label mapping each node to a formula over the variables of both src
and tgt.
• 𝐾 : 𝐸 ↦→ 𝑒𝑥𝑝 is a partial map, which maps each edge ⟨𝑢, 𝑣⟩, where 𝑢 ∈ 𝑉 and 𝐿(𝑢, 𝑣) is a havoc,
to an expression that determinizes the havoc command.

• 𝐺 : 𝐸 ↦→ 𝑏𝑒𝑥𝑝 is a partial map, which maps each edge ⟨𝑢, 𝑣⟩ where 𝑢 ∈ 𝑉 to a guard, a formula

encoding the condition when the edge is taken.

• 𝑋 ⊆ 𝑁 is a set of expanded nodes; nodes in 𝑁 \ 𝑋 are leaves of the tree.

• ⊲ ⊆ (𝑁 \𝑋) ×𝑋 is a covering relation, with 𝑢 ⊲ 𝑣 indicating that the state of the simulation game

represented by 𝑢 is subsumed by the state of the game at 𝑣 . 𝐹 nodes may only be covered by

𝐹 -nodes, and 𝑉 nodes may only be covered by 𝑉 -nodes (i.e. if 𝑢 ⊲ 𝑣 then 𝑢 ∈ 𝐹 ⇒ 𝑣 ∈ 𝐹 and

𝑢 ∈ 𝑉 ⇒ 𝑣 ∈ 𝑉).
• 𝑚𝐹 and𝑚𝑉 aremeasures (ranking functions), which serve aswitnesses to certainwell-foundedness

conditions to be described in the following. The well-foundedness conditions ensure that Verifier

may neither pass forever nor continue forever.

In Figure 2, next to each node, 𝑛, we display the formula Φ(𝑛) (e.g. Φ(0) is 2𝑖 = 𝑗). Each 𝑉 -edge,

⟨𝑢, 𝑣⟩, (𝑢 ∈ 𝑉) is labeled with a guard (displayed as {𝐺 (𝑢, 𝑣)}). Additionally, each 𝑉 -edge from 𝑢

to 𝑣 labeled with a havoc command (𝐿(𝑢, 𝑣) is some havoc x. b) is labeled with a term 𝐾 (𝑢, 𝑣)
(displayed as 𝑥 ← 𝐾 (𝑢, 𝑣)). We display each 𝑢 ⊲ 𝑣 as a dotted edge from node 𝑢 to node 𝑣 . 𝑋 is

, Vol. 1, No. 1, Article . Publication date: February 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Proving Weak Simulation via Strategy Synthesis 9

primarily a book-keeping variable and does not have a graphical representation. We also omit

the measures𝑚𝐹 and𝑚𝑉 from Figure 2, since the well-foundedness conditions are trivial for this

example.

Each labeled unwinding, L, represents a Verifier strategy, 𝑔L . To define 𝑔L , we first associate
each node 𝑛 with a set of places Places(𝑛), represented by the node’s labels. If 𝑛 is an 𝐹 -node, then

𝑛 is associated with all Falsifier places of the form 𝐹 ⟨𝑆 (𝑛),𝑇 (𝑛), _⟩, where ⟦Φ(𝑛)⟧_ is true. If 𝑛 is

a 𝑉 -node, then 𝑛 is associated with Verifier places of the form 𝑉 ⟨𝛼, 𝑆 (𝑛),𝑇 (𝑛), _⟩ where 𝛼 is the

action to be matched, and ⟦Φ(𝑛)⟧_ is true. (Note: we can compute 𝛼 by looking at the path from

the root of the unwinding to 𝑛.)

For example in Figure 2, Places(3) contains all places 𝑉 ⟨r(msg, 𝑐), 2, 𝑏, _⟩, where ⟦𝜑2⟧_ is true,
msg = ⟦𝑥⟧_ and 𝑐 = ⟦2𝑛⟧_ , since the preceding 𝐹 -edge from node 1 to node 2 is labeled with

receive x chan(2n). Places(4) contains all places 𝑉 ⟨𝜏, 2, 𝑐, _⟩, where ⟦𝜑3⟧_ is true, because the
receive command from node 1 to node 2 was already matched by the𝑉 -edge from node 3 to node

4.

Given Places we can define 𝑔L : given any Verifier place, 𝑉 ⟨𝛼, ℓ𝑠 , ℓ𝑡 , _⟩, if 𝑉 ⟨𝛼, ℓ𝑠 , ℓ𝑡 , _⟩ belongs
to Places(𝑛) for some expanded node 𝑛, then Verifier chooses a successor 𝑛′ of 𝑛, whose guard is

satisfied by _ and plays according to that edge. If𝑉 ⟨𝛼, ℓ𝑠 , ℓ𝑡 , _⟩ does not belong to Places(𝑛) for any
𝑛, Verifier passes the turn.

Consider the place 𝑉 ⟨𝜏, 2, 𝑐, _⟩, where ⟦𝜑3⟧_ is true. This place is associated with node 4. Neces-

sarily, _ either satisfies 𝑥 < 0 (the guard from node 4 to node 5) or 𝑥 ≥ 0 (the guard from node 4

to node 6). In the first case, we see the edge from node 4 to 5 is labeled with havoc z. 0 ≤ 𝑧 and
a term −𝑥 that represents Verifier’s chosen strategy (𝑧 is assigned the value of −𝑥). In this case,

the next move is 𝑉 ⟨𝜏, 2, 𝑑, _[𝑧 ↦→ 𝑐]⟩ where 𝑐 = ⟦−𝑥⟧_ . The process proceeds analogously for all

Verifier places. We show in Theorem 3.6, that if the unwinding is well-labeled and complete, then
𝑔L is a winning strategy for Verifier.

Definition 3.4 (Complete). A labeled simulation game unwinding, L = ⟨𝑈 ,Φ, 𝐾,𝐺,𝑋, ⊲,𝑚⟩, is
complete when every node (𝑢 ∈ 𝑁) is either expanded (𝑢 ∈ 𝑋) or covered (∃𝑣 .𝑢 ⊲ 𝑣).

The simulation game unwinding in Figure 2 is complete. The only un-expanded nodes are 8, 20,

and 31, which are covered by nodes 7, 5, and 6 respectively. The unwinding is also well-labeled, as

we will now define.

Given a labeled unwinding L, for any node 𝑣 ∈ 𝑁 , there is unique tree path 𝑣0𝑣1...𝑣𝑛 from the

root to 𝑣 (i.e., 𝑟 = 𝑣0, 𝑣𝑛 = 𝑣 , and ⟨𝑣𝑖 , 𝑣𝑖+1⟩ ∈ 𝐸 for all 𝑖). Define 𝐹 -pred (𝑣) to be 𝑣𝑖 , where 𝑖 is the

greatest index such that 𝑣𝑖 ∈ 𝐹 , and define 𝐹 -pred𝑒 (𝑣) ≜ 𝐿(𝑣𝑖 , 𝑣𝑖+1) to be the command labeling the

edge leaving 𝐹 -pred (𝑣). 𝐹 -pred (𝑣) is well-defined for all nodes (in particular, 𝐹 -pred (𝑣) = 𝑣 for all
𝑣 ∈ 𝐹). 𝐹 -pred𝑒 (𝑣) is defined only if 𝑣 ∈ 𝑉 .

Figure 3 defines two auxiliary functions on edges: legal, which represents when the given 𝑉 -

edge is allowed to be played; and act, which represents how the post-state (primed variables) is

related to the pre-state (un-primed variables) when taking the given edge. Note that legal and act
(1) determinize 𝑉 -edge havoc commands (using the 𝐾 map) and (2) encode when 𝑉 -edge send
(resp. receive) commands are legal (if the preceding 𝐹 -edge is labeled with a send (resp. receive)
command, then equal messages are sent (resp. received) along equal channels).

Definition 3.5 (Well-Labeled). A labeled simulation game unwinding, L = ⟨𝑈 ,Φ, 𝐾,𝐺,𝑋, ⊲,𝑚⟩, is
well-labeled for a contextual simulation, {P} src ≲ tgt {Q}, when the Initial, Final, Consecution,

Observational Matching, Covering, Well-foundedness, and Adequacy conditions are met.

Initial: The root node annotation is entailed by the precondition: P |= Φ(𝑟).

, Vol. 1, No. 1, Article . Publication date: February 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

legal(𝑢, 𝑣) ≜

𝑏 if 𝐿(𝑢, 𝑣) = [𝑏]
𝑏 [𝑥 ↦→ 𝐾 (𝑢, 𝑣)] if 𝐿(𝑢, 𝑣) = havoc 𝑥 . 𝑏

𝑒𝑠 = 𝑒𝑡 ∧ 𝑐𝑠 = 𝑐𝑡 if

𝐿(𝑢, 𝑣) = send 𝑒𝑡 chan(𝑐𝑡) and
𝐹 -pred𝑒 (𝑢) = send 𝑒𝑠 chan(𝑐𝑠)

𝑐𝑠 = 𝑐𝑡 if

𝐿(𝑢, 𝑣) = receive 𝑥 chan(𝑐𝑡) and
𝐹 -pred𝑒 (𝑢) = receive 𝑦 chan(𝑐𝑠)

false if 𝐿(𝑢, 𝑣) is observable
true otherwise

act (𝑢, 𝑣) ≜

𝑥 ′ = 𝑒 ∧∧𝑦≠𝑥 𝑦 = 𝑦 ′ if 𝐿(𝑢, 𝑣) = 𝑥 := 𝑒

𝑥 ′ = 𝐾 (𝑢, 𝑣) ∧∧𝑦≠𝑥 𝑦 = 𝑦 ′ if 𝐿(𝑢, 𝑣) = havoc 𝑥 . 𝑏 and 𝑢 ∈ 𝑉
𝑏 [𝑥 ↦→ 𝑥 ′] ∧∧𝑦≠𝑥 𝑦 = 𝑦 ′ if 𝐿(𝑢, 𝑣) = havoc 𝑥 . 𝑏 and 𝑢 ∈ 𝐹

𝑥 ′ = 𝑦 ′ ∧∧𝑧≠𝑥 𝑧 = 𝑧
′

if

𝐿(𝑢, 𝑣) = receive 𝑥 chan(𝑐𝑡)
and 𝑢 ∈ 𝑉 and

𝐹 -pred𝑒 (𝑢) = receive 𝑦 chan(𝑐𝑠)∧
𝑦≠𝑥 𝑦 = 𝑦 ′ if

𝐿(𝑢, 𝑣) = receive 𝑥 chan(𝑐)
and 𝑢 ∈ 𝐹

𝑏 ∧∧𝑥 ∈𝑋 𝑥 = 𝑥 ′ if 𝐿(𝑢, 𝑣) = [𝑏] and 𝑢 ∈ 𝐹∧
𝑥 ∈𝑋 𝑥 = 𝑥 ′ otherwise

Fig. 3. Determines the legality and action of an edge of the game unwinding.

The initial condition ensures that every initial state of the source program and target program

related by the pre-condition P are related by the annotations of the root node. We can verify that

this condition holds for the labeled unwinding in Figure 2: the root node’s annotation is 2𝑖 = 𝑗 ,

which is exactly the given pre-condition.

Final: Every final node must have a label strong enough to prove the required post-condition Q:

∀𝑢 ∈ 𝑋 . 𝑆 (𝑢) = outsrc ∧𝑇 (𝑢) = outtgt ⇒ Φ(𝑢) |= Q

The final condition ensures that when both the source and target program reach a final state,

they jointly satisfy the post-condition Q. We see that the labeled unwinding in Figure 2 has only

one final node (node 9) and its annotation 𝑥 = 𝑦 is exactly the required post-condition.

Consecution: Each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸 must satisfy both of the following conditions.

(1) If 𝑢 ∈ 𝐹 , then Φ(𝑢) (𝑋) ∧ act (𝑢, 𝑣) (𝑋,𝑋 ′) |= Φ(𝑣) (𝑋 ′)
(2) If 𝑢 ∈ 𝑉 , then Φ(𝑢) (𝑋) ∧𝐺 (𝑢, 𝑣) (𝑋) ∧ act (𝑢, 𝑣) (𝑋,𝑋 ′) |= legal(𝑢, 𝑣) (𝑋) ∧ Φ(𝑣) (𝑋 ′)

The first rule ensures that if Falsifier has a legal response𝑚′ following the edge from 𝑢 to 𝑣 to

some place in Places(𝑢), then𝑚′ belongs to Places(𝑣). The second rule ensures that for any place𝑚

in Places(𝑢) such that the valuation of𝑚 satisfies the guard 𝐺 (𝑢, 𝑣), Verifier has a legal move𝑚′

(executing the command 𝐿(𝑢, 𝑣), treating havoc x. b as an assignment of 𝐾 (𝑢, 𝑣) to 𝑥) such that

𝑚′ ∈ Places(𝑣).
For example, for any place associated to node 4, the valuation either satisfies the guard from

node 4 to node 5 (𝑥 < 0) or the guard from node 4 to node 6 (𝑥 ≥ 0). If it satisfies the guard from 4

to 5, the second consecution rule ensures that there is a legal move associated with node 5 that is

decided by 𝐾 . It holds analogously, if the valuation satisfies the guard from 4 to 6.

Observational Matching: Every send (resp. receive) command labeling an edge outgoing from an

𝐹 -node must eventually be matched by a send (resp. receive) command labeling an edge outgoing

from a 𝑉 -node along every path starting from the 𝐹 -node’s send (resp. receive) command. More

formally, for any 𝐹 -edge, ⟨𝑢, 𝑣⟩ ∈ 𝐸 and 𝑢 ∈ 𝐹 such that 𝐿(𝑢, 𝑣) is a send (resp. receive) command,

then for each path 𝑝 = 𝑣0, . . . , 𝑣𝑛 from 𝑣 = 𝑣0 to a leaf node 𝑣𝑛 there is a unique 𝑣𝑖 such that 𝑢 is

its most recent 𝐹 -ancestor (𝐹 -pred (𝑣𝑖) = 𝑢), and either 𝑣𝑖 is 𝑣𝑛 and is un-expanded (𝑣𝑖 = 𝑣𝑛 ∉ 𝑋) or

𝐿(𝑣𝑖 , 𝑣𝑖+1) is a send (resp. receive) command.

This rule ensures the syntactic requirements that every 𝐹 -edge labeled with a send (resp. receive)

command is always eventually matched by a single send (resp. receive) command labeling a𝑉 -edge

before the next 𝐹 -node is encountered. That is, when Verifier ends their turn, it is legal for Verifier

to do so. For example, in Figure 2, we see that the receive command along the edge from 1 to 2 is

followed by a receive command along the edge from 3 to 4 and the only edges between the two

, Vol. 1, No. 1, Article . Publication date: February 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Proving Weak Simulation via Strategy Synthesis 11

and between nodes 4 and 5 and 4 and 6—Verifier ends their turn at nodes 5 and 6—are labeled with

havocs (unobservable) commands.

Covering: If 𝑢 ⊲ 𝑣 then Φ(𝑢) |= Φ(𝑣), 𝑆 (𝑢) = 𝑆 (𝑣), 𝑇 (𝑢) = 𝑇 (𝑣). Moreover, if 𝑢 ∈ 𝑉 , then either

both 𝐹 -pred𝑒 (𝑢) and 𝐹 -pred𝑒 (𝑣) are unobservable or 𝐹 -pred𝑒 (𝑢) = 𝐹 -pred𝑒 (𝑣).
In order to cover a node (closing the path it ends), we must ensure there is an expanded node

covering it such that any move associated with the covered node is also associated with the covering

node. In Figure 2, nodes 8, 20, and 31 are covered by 7, 5, and 6 respectively.

Well-foundedness: We require that every path consisting of both tree edges and covering edges

is either finite or visits both 𝐹 -nodes and 𝑉 -nodes infinitely often. To ensure this property, we

require that the measure 𝑚𝐹 (mapping state pairs to some well-founded order) is positive and

strictly decreasing on every edge outgoing from an 𝐹 -node. Similarly,𝑚𝑉 must be positive and

strictly decreasing on every edge outgoing from a 𝑉 -node.

The condition on𝑚𝑉 ensures that the Verifier strategy associated with a well-labeled unwinding

always passes the turn to Falsifier after a finite number of steps. The condition on𝑚𝐹 ensures

that the produced strategy is also divergent preserving. These conditions rule out cases where the

target (resp. source) program has an infinite cycle containing only unobservable actions (and is

not matched by an equi-terminating unobservable cycle within the source (reps. target) program).

While𝑚𝑉 tends to rule out a pathological case—the protocol contains a silent loop—,𝑚𝐹 is often

important in distributed systems, since application logic may introduce loopy (but terminating)

computations on messages received or messages to be sent. Recall Example 2.1,𝑚𝐹 ensures that we

only allow proving simulation if “do_work” is terminating. All of the loops in Figure 2 contain both

𝑉 -nodes and 𝐹 -nodes, and so explicit measures are not necessary.

Adequacy: For each expanded node 𝑢 ∈ 𝑋 ,
(1) If 𝑢 ∈ 𝐹 , then for each 𝑆 (𝑢) 𝑎

999K 𝑙𝑠 such that 𝑎 is consistent with Φ(𝑢), there must be some

node 𝑣 such that ⟨𝑢, 𝑣⟩ ∈ 𝐸, 𝐿(𝑢, 𝑣) = 𝑎, and 𝑆 (𝑣) = 𝑙𝑠 .
(2) If 𝑢 ∈ 𝑉 , then Φ(𝑢) |= ∨

⟨𝑢,𝑣⟩∈𝐸 𝐺 (𝑢, 𝑣).
The first adequacy condition ensures that if Falsifier has a legal response 𝑚′ to a place 𝑚 ∈

Places(𝑢) then there is some successor 𝑣 of 𝑢 with𝑚′ ∈ Places(𝑣). The second ensures that starting

from any place𝑚 ∈ Places(𝑢), Verifier has some response to make (i.e.𝑚’s valuation satisfies at

least one guard labeling the outgoing edges of 𝑢). In Figure 2, we can verify both of these conditions

for every node. While nodes 10 and 21 of the labeled unwinding are at location 4 of the source

program, which is a branching point of the CFG we see only one outgoing edge for either node.

This is because the annotations of 10 and 21 are sufficient to rule out the other branch of the CFG.

Similarly, most𝑉 -nodes trivially satisfy the second condition as they only have one successor node

and the strategy guard of the outgoing edge is true. The interesting case is node 4. We see one

outgoing edge guarded by 𝑥 < 0 and the other guarded by 0 ≤ 𝑥 , which together cover 𝜑3 (the

label of node 4).

Theorem 3.6. If there is a well-labeled complete simulation game tree for {P} src ≲ tgt {Q}, then
Verifier has a winning strategy for G({P} src ≲ tgt {Q}).

See proof on page 34.

4 SIMULATION VERIFICATION
This section presents an algorithm, Algorithm 1, for verification and refutation of contextual

simulations. The algorithm is based on the game semantics for contextual simulation (Section 3).

Given a contextual simulation, {P} src ≲ tgt {Q}, the algorithm either (1) constructs a complete

well-labeled game unwinding (a strategy for Verifier, which serves as a proof of the validity of the

, Vol. 1, No. 1, Article . Publication date: February 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Anon.

contextual simulation), (2) constructs a winning strategy for Falsifier for a finite unrolling of the

game (a refutation of the contextual simulation), or (3) runs forever.

Algorithm 1 is inspired by Farzan and Kincaid [2017]’s method for synthesizing strategies for

safety games. It maintains a well-labeled simulation game unwinding L, which is initialized to

contain just the root node 𝑟 . If at any step L is complete, then Verifier has a winning strategy

and the contextual simulation is valid. Otherwise, there is a witness to failure of the completeness

condition: a node 𝑣 of L that is neither expanded nor covered. The algorithm proceeds by finding a

node to cover 𝑣 , or (failing that) expanding the node 𝑣 by computing a winning strategy for either

Verifier or Falsifier for a finite-horizon of the game. If Verifier wins the finite-horizon game, the

algorithm uses Verifier’s winning strategy to expand 𝑣 ; if Falsifier wins, it backtracks and expands

𝑣 ’s parent with a greater horizon. If Falsifier wins a finite-horizon game starting from the root, then

the contextual simulation is refuted.

Algorithm 1: Strategy synthesis for contextual simulation.

1 Procedure Strategy-synthesis({P} src ≲ tgt {Q})
2 𝑟 ← fresh vertex, 𝐹 ← {𝑟 }, 𝑉 ← ∅, Φ(𝑟) ← P;
3 𝑆 (𝑟) ← insrc , 𝑇 (𝑟) ← intgt , 𝐸 ← ∅, 𝐿 ← ∅;
4 𝑋 ← ∅, 𝐾 ← ∅, 𝐺 ← ∅, ⊲← ∅;
5 while L is not complete do
6 Pick any 𝑣 ∈ 𝑁 \ 𝑋 that is not covered;

7 if force-cover(𝑣) then
8 continue
9 switch expand(𝑣 ,1) do
10 case Fail: 𝑓 do
11 return Counter strategy 𝑓
12 case Success do
13 continue

14 return simulation strategy L

Theorem 4.1. Algorithm 1 is sound. For any contextual simulation, if Strategy-synthesis({P} src ≲
tgt {Q}) terminates with a simulation strategy, then |= {P} src ≲ tgt {Q}. If Strategy-synthesis

instead terminates with a simulation counter-strategy then ̸ |= {P} src ≲ tgt {Q}.

See proof on page 36.

4.1 Expansion
To expand a node 𝑛 commands, Algorithm 2 constructs the finite horizon game, G(L, 𝑣,Q, 𝑛),
which is played as G({P} src ≲ tgt {Q}) except that:
• legal plays begin with any place𝑚 ∈ Places(𝑣)
• rather than having infinite duration, plays are sequences of moves containing 𝑛 Verifier places

(and at most 𝑛 Falsifier place), excluding the first move of the play

The first condition ensures that play starts from a place associated with 𝑣 . The second ensures

that any legal play consists of moves corresponding to a sequence of 𝑛 commands. Every source

program command adds a single Verifier place to the play, a target command either adds a single

Verifier place or a Verifier place and Falsifier place when the next command is a source command.

We exclude the first place in the count as it doesn’t correspond to executing some command.

, Vol. 1, No. 1, Article . Publication date: February 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Proving Weak Simulation via Strategy Synthesis 13

Falsifier wins the play if either of the first two winning conditions from simulation games

apply—Verifier makes the first illegal move or Verifier has violated the final conditions of the game.

Otherwise Verifier wins the play.

Algorithm 2 computes a winning strategy of the finite-horizon game for the winning player. If

Falsifier wins the finite-horizon game, then the algorithm backtracks to 𝑣 ’s parent and expands

the game with a horizon of 𝑛 + 1 (or if 𝑣 is the root, it returns Falsifier’s strategy). If Verifier wins

the finite-horizon game, then we may compute a well-labeled unwinding L𝑛 for it. We may then

“paste” L𝑛 onto 𝑣 by deleting the sub-tree rooted at 𝑣 (including any possible covering edges) and

then copying L𝑛 below it.

Algorithm 2: Expand a vertex 𝑛 commands

1 Procedure expand(𝑣, 𝑛)
2 switch SimSat(VW(𝑣, 𝑛)) do
3 case Sat: strat do
4 update-tree(𝑣 , 𝑛, strat);

5 return Success
6 case Unsat: strat do
7 if 𝑣 = 𝑟 then
8 return Fail: strat

9 Let 𝑢 be 𝑣 ’s parent;

10 return expand(𝑢, 𝑛 + 1)

11 Procedure relabel(𝑣 , 𝑅)
12 Φ(𝑣) ← ¬𝑅(𝑄𝑣);
13 if Φ(𝑣) |= false then
14 delete(v)

15 foreach ⟨𝑣,𝑢⟩ ∈ 𝐸 do
16 if 𝑣 ∈ 𝑉 then
17 𝐺 (𝑣,𝑢) ← ¬𝑅(𝑄𝑣,𝑢)
18 relabel(𝑢, 𝑅)

19 foreach 𝑢 ⊲ 𝑣 s.t. Φ(𝑢) ̸|= Φ(𝑣)
do

20 ⊲← ⊲ \ {⟨𝑢, 𝑣⟩}

21 Procedure VW(𝑣, 𝑛)
22 if 𝑣 ∈ 𝐹 then
23 𝜓 ← VW𝐹 (𝑆 (𝑣),𝑇 (𝑣), 𝑛)
24 else
25 𝑏 ← 𝐹 -pred∗𝑒 (𝑣);
26 𝜓 ← VW𝑉 (𝑆 (𝑣),𝑇 (𝑣), 𝑏, 𝑛)
27 return

univ-closure(Φ(𝑣) ⇒ 𝜓)
28 Function VW𝐹 (𝑙𝑠 , 𝑙𝑡 , 𝑛)
29 if 𝑙𝑠 = outsrc or 𝑛 = 0 then
30 return true
31 Ψ← true;

32 foreach 𝑙𝑠
𝑎

999K 𝑙 ′𝑠 do
33 if 𝑎 observable then
34 𝜓 ← VW𝑉 (𝑙 ′𝑠 , 𝑙𝑡 , 𝑎, 𝑛 − 1);
35 else
36 𝜓 ←

VW𝑉 (𝑙 ′𝑠 , 𝑙𝑡 , 𝑁𝑜𝑛𝑒, 𝑛− 1);

37 𝜓 ← wp(𝑎,𝜓)
38 Ψ← Ψ ∧𝜓
39 return Ψ

40 Procedure
update-tree(𝑣, 𝑛, strat)

41 delete(𝑣);

42 copy-strat(𝑣, 𝑛, strat);
43 Let 𝑅 be a solution to

Rules-of(𝑣);
44 relabel(𝑣 , 𝑅)

45 Function VW𝑉 (𝑙𝑠 , 𝑙𝑡 , 𝑏, 𝑛)
46 if 𝑙𝑡 = outtgt and 𝑏 ≠ None

then
47 return false
48 if 𝑙𝑠 = outsrc and 𝑙𝑡 = outtgt

then
49 return Q
50 if 𝑛 = 0 then return true ;
51 Ψ← 𝑓 𝑎𝑙𝑠𝑒;

52 if 𝑏 = None and 𝑙𝑠 ≠ outsrc
then

53 Ψ← VW𝐹 (𝑙𝑠 , 𝑙𝑡 , 𝑛)

54 foreach 𝑙𝑡
𝑎

999K 𝑙 ′𝑡 do
55 if 𝑎 observable then
56 𝜓 ←

VW𝑉 (𝑙𝑠 , 𝑙 ′𝑡 ,None, 𝑛 − 1);
57 𝜓 ← match(𝑎, 𝑏,𝜓);
58 else
59 𝜓 ← VW𝑉 (𝑙𝑠 , 𝑙 ′𝑡 , 𝑏, 𝑛− 1);
60 𝜓 ← pre(𝑎,𝜓);
61 Ψ← Ψ ∨ pre(𝑎,𝜓)
62 return Ψ

Finite-Horizon Games. This section describes how to compute well-labeled unwindings for finite-

horizon games. We use Figure 4 as a running example, which depicts the processes of expanding

node 0 of Figure 2 four commands.

The first step is to encode the game into a quantified LIA formula. In the encoding, Falsifier

is the demonic/UNSAT player—controlling conjunctions and universal quantifiers—and Verifier

, Vol. 1, No. 1, Article . Publication date: February 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Anon.

is the angelic/SAT player—controlling disjunctions and existential quantifiers. The finite game

is constructed by unrolling the CFG of src and tgt for 𝑛 commands starting from 𝑆 (𝑣) and 𝑇 (𝑣)
and encoding the resulting tree into a LIA formula. Figure 4 (A) shows this unrolling starting

from node 0 of Figure 2. Square nodes are where the outgoing commands are from src, circles
for commands from tgt, and half each for nodes where the unrolling has commands from both

programs. Figure 4 (B) shows the LIA formula corresponding to this unrolling. We jointly construct

the unrolling and the corresponding LIA formula using VW, which is split into two mutually

recursive functions VW𝐹 and VW𝑉 . The 𝐹 variant computes a formula encoding the existence of

a non-losing strategy for Verifier for the next 𝑛 commands, where the next command is from src
(played by Falsifier), while the 𝑉 variant encodes when the next command is from tgt (played by

Verifier). In both variants, 𝑙𝑠 represents the control location of src and 𝑙𝑡 the control location of tgt.
These control locations dictate which transitions can be played by their respective players (i.e. only

transitions corresponding to the commands available at the given control location). The 𝑉 variant

has an additional parameter 𝑏, which indicates the communication command that must be matched

by Verifier (or None if Falsifier last played a silent command).

The VW procedures make use of some auxiliary functions, which we define here. 𝐹 -pred∗𝑒 (𝑣)
is equal to 𝐹 -pred𝑒 (𝑣) if 𝐹 -pred𝑒 (𝑣) is observable and unmatched (no 𝑉 -edge along the path from

𝐹 -pred (𝑣) to 𝑣 is labeled with an observable command); otherwise it is None. The functions wp
and pre denote weakest precondition and preimage predicate transformers, respectively:

wp(𝑥 := 𝑒,𝜓) ≜𝜓 [𝑥 ↦→ 𝑒]
wp(havoc 𝑥 . 𝑏,𝜓) ≜∀𝑘. 𝑏 [𝑥 ↦→ 𝑘] ⇒ 𝜓 [𝑥 ↦→ 𝑘]

wp([𝑏],𝜓) ≜𝑏 ⇒ 𝜓

pre(𝑥 := 𝑒,𝜓) ≜𝜓 [𝑥 ↦→ 𝑒]
pre(havoc 𝑥 . 𝑏, ,𝜓) ≜∃𝑘. 𝑏 [𝑥 ↦→ 𝑘] ∧𝜓 [𝑥 ↦→ 𝑘]

pre([𝑏],𝜓) ≜𝑏 ∧𝜓

For any silent command 𝑐 and formula 𝜓 , wp(𝑐,𝜓) is a formula satisfied by exactly those

valuations that all 𝑐-successors satisfy𝜓 , while pre(𝑐,𝜓) is satisfied by exactly those valuations

such that some 𝑐-successor satisfies 𝜓 . VW𝑉 and VW𝐹 use pre and wp to encode the angelic

interpretation of the target program and demonic interpretation of the source program. Finally,

match encodes matching logic for observable commands. If Verifier wants to play send 𝑥 chan(0)
to match send 𝑦 + 1 chan(z), then Verifier must prove that 𝑥 is equal to 𝑦 + 1 and 𝑧 is equal to 0.

This is the logic that match captures. Specifically, match takes three parameters (𝑎, 𝑏,𝜓), where 𝑎
is an observable command (send/receive) of the target program, 𝑏 is either an observable command

of the source program or None, and 𝜓 is a formula. It computes a formula that captures those

valuations under which 𝑎 and 𝑏 match, and upon execution result in a valuation that satisfies𝜓 :

match(𝑎, 𝑏,𝜓) =

(𝑚 =𝑚′ ∧ 𝑐 = 𝑐 ′ ∧𝜓) if

𝑎 = send𝑚 chan(𝑐),
𝑏 = send𝑚′ chan(𝑐 ′))

(𝑐 = 𝑐 ′ ∧ ∀𝑘. 𝜓 [𝑥 ↦→ 𝑘,𝑦 ↦→ 𝑘]) if

𝑎 = receive 𝑥 chan(𝑐),
𝑏 = receive 𝑦 chan(𝑐 ′))

false otherwise

After constructing the winning formula VW(𝑣, 𝑛), it is passed to the SimSat algorithm from

[Farzan and Kincaid 2016, 2017], which synthesizes a winning strategy for either the SAT player

(Verifier) or the UNSAT player (Falsifier). Assuming that VW(𝑣, 𝑛) is satisfiable (if VW(𝑣, 𝑛) is
unsatisfiable, the expansion algorithm backtracks), then SimSat produces a SAT strategy. For our

purposes, we may think of the SAT strategy as a strategy game unwinding that is equipped with a

partial map 𝐾 that provides terms for the havoc commands in the target program (i.e., witnesses for

the existential quantifiers in the winning formula). Figure 4 (C) shows the returned SAT strategy

, Vol. 1, No. 1, Article . Publication date: February 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Proving Weak Simulation via Strategy Synthesis 15

0, 𝑎

1, 𝑎

2, 𝑎
1, 𝑏

2, 𝑏 2, 𝑏 1, 𝑐

2, 𝑐 2, 𝑐

𝐻𝑛 ≜ havoc 𝑛. 0 ≤ 𝑛

𝑅𝑥 ≜ receive 𝑥 chan(2𝑛)
𝐻𝑚 ≜ havoc𝑚. 0 ≤𝑚
𝑅𝑦 ≜ receive 𝑦 chan(𝑚)

𝐻𝑛

𝑅𝑥
𝐻
𝑚

𝐻𝑚 𝑅 𝑥 𝑅𝑦

𝑅𝑦 𝑅𝑦

∀𝑖, 𝑗 . 2𝑖 = 𝑗 ⇒ ∀𝑛0 .0 ≤ 𝑛0 ⇒
(
∨ (∃𝑚0 . 0 ≤ 𝑚0 ∧ 2𝑛0 =𝑚0 ∧ ∀𝑟0 . true)
(∃𝑚1 . 0 ≤ 𝑚1 ∧ ((2𝑛0 =𝑚1 ∧ ∀𝑟1 . true) ∨ false))

)

•

R

•

L R

0 ≤ 𝑛0 D 1

2𝑛0

C 1 C 2 C 3

0 ≤𝑚0 2𝑛0 =𝑚0
•

true

∀𝑖, 𝑗

⇒

∀𝑛0

⇒

∨

∃𝑚0

∧

∀𝑟0

00𝑎

11𝑎

22𝑎

23𝑏

24𝑐

2𝑖 = 𝑗

¬𝑅1

¬𝑅2

¬𝑅3

¬𝑅4

𝐻𝑛

𝑅𝑥

{¬𝑅2,3 };𝐻𝑚 ;𝑚 ← 2𝑛

{¬𝑅3,4 };𝑅𝑦

¬(𝑄0 ∧ 2𝑖 = 𝑗)
𝑄0 ←𝑄1 (𝑛′) ∧ true ∧ 0 ≤ 𝑛′

𝑄1 (𝑛) ←𝑄2 (𝑛′) ∧ true ∧ 𝑛 = 𝑛′

𝑄2 (𝑛) ←𝑄2,3 (𝑛)
𝑄2,3 (𝑛,𝑚) ←(𝑄3 (𝑛′,𝑚′) ∨ 0 > 2𝑛) ∧𝑚′ = 2𝑛 ∧ 𝑛′ = 𝑛
𝑄3 (𝑛,𝑚) ←𝑄3,4 (𝑛,𝑚)
𝑄3,4 (𝑛,𝑚) ←(𝑄4 ∨𝑚 ≠ 2𝑛) ∧ true

𝑅0 ≜ false

𝑅1 = 𝑅2 = 𝑅2,3 ≜ 0 > 𝑛

𝑅3 = 𝑅3,4 ≜ 𝑚 ≠ 2𝑛

𝑅4 ≜ false

(A) src and tgt unrolled 4 commands

(B) Finite-horizon game (LIA formula) for four command expansion.

(C) SAT Strategy. (D) Expansion. (E) Labeling rules and their solution.

Fig. 4. 4-command expansion of node 0 of Figure 2

for the finite-horizon game in Figure 4 (B). To find suitable labels for Φ and𝐺 , we construct and

solve a system of constrained horn clauses, Rules-of(𝑣). Any solution to these rules provides a valid

labeling for Φ and 𝐺 to ensure that the unwinding is well-labeled. Figure 4 (E) shows the set of

rules and their solution needed to construct Φ and 𝐺 for the expansion in Figure 4 (D).

For a vertex 𝑣 , define 𝑅(𝑣) to be the set of vertices of L reachable from 𝑣 using the edges in

𝐸. We construct Rules-of(𝑣) as follows. For every vertex 𝑢 ∈ 𝑅(𝑣), we allocate a relation symbol

𝑄𝑢 and for every edge ⟨𝑢,𝑤⟩ starting at a 𝑉 -node 𝑢 ∈ 𝑅(𝑣) ∩ 𝑉 , we allocate a relation symbol

𝑄𝑢,𝑤 . 𝑄𝑢 represents a set of valuations from which Verifier’s strategy loses (starting at 𝑢), and

similarly 𝑄𝑢,𝑤 represents a set of valuations from which Verifier’s strategy loses (after taking the

edge ⟨𝑢,𝑤⟩). To retrieve a labeling from a solution to Rules-of(𝑣), we set Φ(𝑢) to be the negation of

the model of𝑄𝑢 , and𝐺 (𝑢,𝑤) to be the negation of the model of𝑄𝑢,𝑤 . Rules-of(𝑣) are obtained from
the contrapositive of the well-labeledness conditions for simulation unwindings (Definition 3.5).

For each vertex 𝑢 ∈ 𝑅(𝑣),
If 𝑢 ∈ 𝐹 then for each ⟨𝑢, 𝑣𝑖 ⟩ ∈ 𝐸 add the rule (Consecution)

𝑄𝑢 (𝑋) ← 𝑄𝑣𝑖 (𝑋 ′) ∧ guard (𝑢, 𝑣𝑖) (𝑋) ∧ act (𝑋,𝑋 ′)

If 𝑢 ∈ 𝑉 add the rule (Adequacy)

𝑄𝑢 (𝑋) ←
∧
⟨𝑢,𝑣𝑖 ⟩∈𝐸

𝑄𝑢,𝑣𝑖 (𝑋)

and for each ⟨𝑢, 𝑣𝑖 ⟩ ∈ 𝐸 add the rule (Consecution)

𝑄𝑢,𝑣𝑖 (𝑋) ←
(
𝑄𝑣𝑖 (𝑋 ′) ∨ ¬legal(𝑢, 𝑣𝑖) (𝑋)

)
∧ act (𝑢, 𝑣𝑖) (𝑋,𝑋 ′)

If 𝑢 is final add the rule (Final)

𝑄𝑛 (𝑋) ← ¬Q(𝑋)
For any𝑤 ∈ 𝑅(𝑣) covered by 𝑢 (𝑤 ⊲ 𝑢)

add the rule (Covering)
1

𝑄𝑤 (𝑋) ← 𝑄𝑢 (𝑋)
If 𝑣 is the root of the sub-tree then add

the rule (Initial)

¬(𝑄𝑣 (𝑋) ∧ Φ(𝑣) (𝑋))

Intuitively, the local rule for an 𝐹 -node says Verifier loses the strategy rooted at that node, if

for any outgoing edge Falsifier plays according to the command labeling the edge and Verifier

loses from the child’s sub-tree. For a 𝑉 -node, the rule says that Verifier loses from that node, if

Verifier loses for every outgoing edge. The rules for 𝑉 -edges say that Verifier loses that edge if the

command is infeasible or if Verifier loses the child’s subtree.

Given a freshly expanded sub-tree rooted at vertex 𝑣 , we can be sure that the system CHCs

Rules-of(𝑣) is non-recursive, and since it is constructed from a winning strategy for Verifier for the

finite-horizon game, it must be satisfiable. We may use the model to label the sub-tree (see relabel
in Algorithm 2) and return success to Algorithm 1.

1
Expansion does not require handling covering edges, but we consider them here so that we may re-use Rules-of in forced
covering, which does.

, Vol. 1, No. 1, Article . Publication date: February 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

Algorithm 3: Attempt to cover a vertex with an already expanded vertex

1 Procedure force-cover(𝑣)
2 𝑈 ← if 𝑣 ∈ 𝐹 then 𝐹 else 𝑉 ;
3 foreach 𝑢 ∈ 𝑈 ∩ 𝑋 s.t. 𝑆 (𝑢) = 𝑆 (𝑣) and 𝑇 (𝑢) = 𝑇 (𝑣) do
4 if 𝑢 ∈ 𝑉 and 𝐹 -pred∗𝑒 (𝑢) ≠ 𝐹 -pred∗𝑒 (𝑣) then
5 continue

6 rules← Rules-of (𝑟) ∪ {𝑄 (𝑣) (𝑋) ← 𝑄 (𝑢) (𝑋)};
7 if rules has some solution 𝑅 then
8 relabel(𝑟, 𝑅);

9 if 𝑣 ∈ 𝑁 then
10 if there exists measures𝑚′

𝐹
for L𝐹 and𝑚′

𝑉
for L𝑉 then

11 𝑚𝐹 ←𝑚′
𝐹
;

12 𝑚𝑉 ←𝑚′
𝑉
;

13 ⊲← ⊲ ∪ {⟨𝑣,𝑢⟩};
14 return true

15 else
16 return true

17 return false

4.2 Covering
Forced covering, Algorithm 3, is inspired by McMillan [2006]’s strategy for synthesizing loop

invariants in lazy abstraction with interpolants. It searches for any nodes controlled by the same

player at the same location as the current node, 𝑣 . If 𝑣 is a 𝑉 -node, we need to ensure that any

candidate node 𝑢 is trying to match the same command as 𝑣 . If any candidate node 𝑢 is found,

the algorithm constructs a set of (possibly) recursive CHC rules—the same set of rules described

for labeling fresh expansions—that will try to relabel the entire tree to ensure that the label of 𝑣

implies the label of 𝑢 (without uncovering any previously covered nodes). If a solution is found to

this set of rules, the tree is relabeled. Either 𝑣 was removed from the unwinding (it was annotated

with false) or its label implies the label of 𝑢 (now meeting the covering condition). We finish by

trying to compute new measures𝑚𝐹 and𝑚𝑉 such that if the new covering edge is added then both

measures will decrease on all corresponding edges—𝑚𝐹 must decrease on every (non-covering)

edge out-going from an 𝐹 node and similarly for𝑚𝑉 and edges out-going from 𝑉 nodes. If we are

successful, we update our measures and add the covering edge and are done. If 𝑣 was removed we

are also successful, and return true. Otherwise, we try the next candidate node or return false if no

such candidate exists and Algorithm 1 will attempt to expand 𝑣 instead.

5 CASE STUDIES
To illustrate the effectiveness of our simulation strategy synthesis approach, we implement our

technique in a tool, SimVer. We apply SimVer to a variety of programs and distributed protocols. All

experiments were conducted on a desktop running Ubuntu 18.04 LTS equipped with a 4 core Intel(R)

Xeon(R) processor at 3.2GHz and 12GB of memory. Each experiment was allotted a maximum of

half an hour.

We developed a suite of benchmarks using a simple programming language with deterministic

and non-deterministic assignment (havoc), send and receive statements, if statements, while

loops, sequential and parallel composition, and parametric parallel composition (parfor). We

assume that processes may only communicate through sending and receiving messages along

, Vol. 1, No. 1, Article . Publication date: February 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Proving Weak Simulation via Strategy Synthesis 17

Benchmark Winner Size

Base, Abs Both, Abs Base, Z3 Both, Z3

time size time size time size time size

Choiceloop1 Verifier 11, 8 4.24s 50 0.60s 23 MO – TO –

Choiceloop2 Verifier 8, 11 2.43s 40 0.90s 30 MO – TO –

Fibloop1 Verifier 13, 13 2.27s 39 0.85s 29 TO – TO –

Fibloop2 Verifier 13, 13 2.24s 38 2.04s 45 MO – TO –

Fibloop3 Verifier 14, 14 7.52s 61 2.23s 43 TO – TO –

Fibloop4 Verifier 14, 14 7.42s 61 1.82s 35 TO – TO –

EvenOdd1 Falsifier 67, 156 MO – 36.98s – MO – 5.04s –

EvenOdd2 Falsifier 156, 67 TO – 1.82s – MO – 2.48s –

Table 1. Parfor-free benchmarks. We show the winner of the game, the size of the src program and tgt
program, and the runtime of SimVer and produced simulation strategy size.

shared channels (i.e., there is no shared memory). Except for parfor (discussed below), programs

in this language can be simply translated to a control flow graph.

SimVer uses two partial order reduction (POR) techniques to improve upon Algorithm 1. The first

POR technique is essentially standard: it reduces the size of the CFG produced for each program

when taking the parallel composition of two processes. Processes may only communicate via send
and receive, thus we only consider paths of the product CFG that are unique with respect to

observability (i.e. we may re-order sequences of unobservable commands).

The second POR technique reduces the set of unwindings we need by only considering a class of

Lazy strategies, in which Verifier passes its turn whenever Falsifier plays a silent action (except

when Falsifier’s vertex belongs to a designated cutset). The cutset is a set of locations such that

removing them from the CFG results in an acyclic graph. Although Verifier may always legally

pass its turn in response to a silent action (even one emanating from the cutset), by allowing the

possibility of a non-trivial Verifier response to a silent action in the cutset we may synthesize

strategies that take advantage of equi-terminating unobservable loops between programs. We

provide details for both POR techniques in Appendix B.2.

We handle programs with a parametric number of processes (includes parfor statements), by

treating parfor statements as an “observable” command (analogously to send and receive). A
parfor command is only matched by another parfor command. When a source parfor is matched

with a target parfor, two verification conditions are induced: (1) both parfors must launch an equal

number of processes and (2) the source parfor’s body must be simulated by the target parfor’s body.

The second condition is solved by computing a complete and well-labeled unwinding for the new

simulation problem. We further formalize parfor statments and the resulting modifications to

strategy synthesis in order to handle parfors in Appendix B.1.

Our experimental evaluation aims to answer the following:

(1) Can SimVer prove simulation of real distributed systems?

(2) How do the POR techniques affect performance?

(3) How does the underlying CHC solver affect performance?

We developed a suite of benchmarks that is broken into three categories: simple parfor-free

programs, token passing systems a model of distributed processes, and distributed protocols. SimVer

is parameterized on three settings: (1) whether or not to use the CFG POR, (2) whether or not to

use Lazy strategies, and (3) which underlying CHC solver to use. The two available CHC solvers

are Z3’s solver [Komuravelli et al. 2016] and a CHC solver based on the polyhedral abstract domain

(ABS) using Apron [Jeannet and Miné 2009].

, Vol. 1, No. 1, Article . Publication date: February 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

Benchmark Winner

Base,Abs CFG,Abs Turn,Abs Both,Abs Base,Z3 CFG,Z3 Turn,Z3 Both,Z3

time size time size time size time size time size time size time size time size

General, Ring Verifier MO – 289.7s 280 300.48s 503 13.62s 113 MO – MO – TO – MO –

General*, Ring Falsifier MO – MO – MO – 3.0s – MO – MO – MO – 33.94s –

General, Lock Verifier MO – 27.11s 131 8.49s 100 5.53s 93 694.15s 157 267.58s 91 288.77s 118 84.2s 73

General*, Lock Falsifier MO – MO – 106.03s – 3.42s – MO – MO – 112.98s – 9.14s –

General, Ring Lock Verifier MO – 27.85s 134 8.47s 100 7.28s 107 1025.93s 171 429.64s 105 354.32s 128 145.14s 83

General*, Ring Lock Falsifier MO – MO – 293.89s – 7.2s – MO – MO – 361.09s – 17.84s –

Ring, Ring Lock Verifier MO – 28.23s 135 8.45s 100 7.0s 107 1033.02s 187 540.28s 121 354.76s 131 118.36s 86

Lock, Ring Lock Verifier 23.72s 130 15.86s 101 11.32s 124 4.1s 89 608.86s 134 245.91s 91 267.6s 116 77.31s 74

Table 2. Token Passing benchmarks. We show the winner of the game, runtime of SimVer, and produced
simulation strategy size. * Denotes the faulty version.

We run SimVer in each of the eight configurations on each benchmark. Each benchmark is run

10 times. Tables 1, 2, and 3 report the mean runtime or failure status of each experiment (either

timed out or ran out of memory).

5.1 Token Passing Systems
Token passing systems are a formalism for modeling distributed protocols [Chandy and Lamport

1985]. Here we represent four similar token passing systems: General, Ring, Lock, and Ring Lock.

All four programs have 𝑁 nodes run in parallel that acquire and release some number of tokens.

Each is represented by a non-deterministic choice for the number of processes (and tokens for

General and Ring). The parent process spawns two children processes, one will create some number

of tokens and close, while the other sub-process will execute a parfor running the 𝑁 nodes of the

token passing system.

General: The General token system has𝑀 tokens, may be acquired and released by any node

(any node may acquire up to all of the tokens). When a node releases a token, it does so by sending

it to another node. When sending, a node may send to any of its neighbors (including itself). In

the buggy version of General, when releasing a token, a node must send it to a neighbor that is

not itself. This violates simulation when there is only 1 node in the system. Both the faulty and

non-faulty variant contain 126 CFG nodes.

Ring: The Ring token systems also has𝑀 tokens, but the nodes form a ring topology. When a

node releases a token, it must send the token to the next node in the ring. This system is simulated

by General but not any of the other systems. The Ring token passing system contains 150 CFG

nodes.

Lock: The Lock token system has a single token, it is designed to operate as a lock. Similar to

General, the Lock system is allowed to send its token to any of the other nodes within the system.

Like Ring, this system is simulated by General but none of the other systems. The Lock token

passing system contains 58 CFG nodes.

Ring Lock: The Ring Lock token system has a single token, and the nodes form a ring topology.

This protocol is simulated by all others (not including the faulty General system). The Ring Lock

token passing system contains 70 CFG nodes.

5.2 Distributed Protocols
The final set of benchmarks contains several varieties of replicated state machine algorithms and

a leader election protocol. For each, we implement two variants: abstract models all degrees of

freedom in the protocol (i.e. when a choice of implementation is allowed, we use havoc expressions

to abstract away the choice), and concrete selects a particular choice for each implementation

decision. For each protocol, the desired goal is to show that abstract weakly simulates concrete.
Replicated State Machines: Two Phase Commit ([Lampson and Sturgis 1979] and [Gray 1978]),

Two Phase Commit with Apportioned Queries (2PAQ [Mohan andMurphy 2017]), Chain Replication

([Van Renesse and Schneider 2004]), Chain Replication with Apportioned Queries (CRAQ [Terrace

, Vol. 1, No. 1, Article . Publication date: February 2024.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Proving Weak Simulation via Strategy Synthesis 19

Benchmark Winner

Base, ABS CFG, ABS Turn, ABS Both, ABS Base, Z3 CFG, Z3

time size time size time size time size time size time size

Two Phase Commit (kv) Verifier 448.11s 403 74.54s 113 259.81s 400 26.6s 89 MO – TO –

Two Phase Commit (fib) Verifier MO – MO – 294.58s 334 30.65s 169 MO – MO –

2PAQ (kv) Verifier TO 657 592.7s 371 MO – 132.24s 258 MO – MO –

2PAQ (fib) Verifier TO – MO – 185.27s 339 791.65s 743 MO – MO –

Chain Replication (kv) Verifier 25.8s 128 26.11s 128 6.77s 94 6.71s 94 427.18s 125 426.07s 125

Chain Replication (fib) Verifier 32.24s 142 33.81s 142 12.06s 110 11.13 110 MO – MO –

CRAQ (kv) Verifier 29.59s 120 29.7s 120 6.35s 91 6.44s 91 MO – 535.88s 117

CRAQ (fib) Verifier 35.75s 132 36.83s 132 53.89s 185 49.96s 185 MO – MO –

Parallel Backup Verifier TO – TO – TO – 1255.46s 481 TO – MO –

Sequential Backup – TO – TO – TO – TO – TO – MO –

Toy Leader Election – TO – TO – MO – MO – MO – TO –

Leader Election (delay) – MO – TO – TO – TO – TO – TO –

Table 3. Distributed protocol benchmarks. We show the winner, runtime of SimVer, and simulation strategy
size.

and Freedman 2009]), and Parallel and Sequential Primary Backup ([Budhiraja et al. 1993]) are all

forms of replicated state machine protocols. Each of these protocols have a designated leader, and

𝑁 followers. The goal of these protocols is to have the state of the Leader be replicated on each

of the followers. The primary differences between these protocols is either in the failure model

or topology of the system. Two Phase Commit, 2PAQ, Sequential Backup, and Primary backup

have a flat topology—there is one leader that has 𝑁 children. Two Phase Commit and 2PAQ first

have the leader node stage (prepare) any state update, ask each child if they could successfully

stage the write, then commit the write if each child could perform the write, otherwise the write is

aborted. In two phase commit, only the leader is able to handle read requests. In 2PAQ, any node

may handle read requests. Both Sequential and Parallel backup relax the failure model of Two

phase commit and 2PAQ, and are able to replicate with fewer messages between the leader and its

followers. Parallel backup propagates writes to all children then receives acknowledgments from

all of its children, while sequential backup handles each child in turn. Chain replication and CRAQ

are formed in a linked list (or chain) topology. One end of the Linked list is the Head and handles

every write request. The other end is the tail and handles write requests. When a write occurs, the

head will propagate the write request down the chain until it reaches the tail. The tail will then

either accept or reject the write and the result is propagated back up the chain to the head. CRAQ

is the same protocol, except that any node in the system may respond to read requests.

For Two Phase Commit, 2PAQ, Chain Replication, and CRAQwe implement two concrete variants.

The first variant implements a single-key key-value store on top of the protocol as our concrete
system. The second variant is similar, but rather than simply reading and writing to the key, the

second variant will compute the 𝑛th Fibonacci number and add that to the current value of the key.

For parallel and sequential backup, the concrete system is a backup system with only one backup.

Leader Election: The Leader Election protocol chooses the leader by finding the node with

the largest id within the system [Chang and Roberts 1979]. The protocol consists of 𝑁 nodes in a

ring topology, where each node is given an unique id. The protocol begins by having each node

pass their id to their right neighbor. If a node receives an id larger than their own, then the node

continues passing the id to the next node. Once a node receives its own id then it becomes the leader

and may make some number of decisions to send to all of their neighbors. In the base protocol the

number of decisions and the choice of value to send are both non-deterministic. We implement

two other variants. Both perform the election process but only make a single decision. The second

variant adds a random delay before every send command.

, Vol. 1, No. 1, Article . Publication date: February 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Anon.

5.3 Performance
In Tables 1, 2, and 3, we summarize the performance of SimVer. In Table 1 we drop configurations

using only one of the PORs. The CFG POR only applies to programs with multiple processes—

Choiceloop and Fibloop are sequential. The EvenOdd benchmarks fail when using only one of the

two POR. In Table 3 we drop the Z3 columns that uses Lazy strategies as these SimVer configurations

failed to solve any of the benchmarks.

In all experiments that do not fail (except “Craq (fib)”), we find that the Lazy strategy POR

significantly improves runtime performance and reduces the size of the produced unwinding. In

the “Craq (fib)” benchmark, forcing the use of a Lazy strategy resulted in poor alignment of the

abstract and concrete variants that resulted in requiring a slightly larger strategy. We find the use

of Lazy strategies especially important for benchmarks that Falsifier wins—Lazy strategies can

result in exponentially smaller formulas during back-tracking.

In Table 2, we see that with neither reduction, only one benchmark was able to be solved within

half an hour. With only one of the two reductions, most were solvable in under five minutes.

However with both, SimVer was able to solve all of the token passing benchmarks in under 15

seconds.

In Table 3, we see that our implementation had a harder time finding simulation between the

protocols and their implementations. Using both reductions and the “Abs” CHC solver, SimVer was

able to solve all but three of the protocol benchmarks. As expected, we see SimVer performs better

on the “kv” benchmarks as compared to the “fib”—there is a larger gap between the protocol and

“fib” variant due to the loops used to compute Fibonacci numbers. Perhaps the hardest benchmarks

are the parallel and sequential backup—as the benchmarks effectively require proving the two

protocols are equivalent when there is only one backup. Examining SimVer’s performance on the

leader election benchmarks revealed that SimVer made a poor initial choice of strategy that resulted

in a lot of back-tracking later on.

In all the benchmarks, we find that the “ABS” SimVer configurations had better run-time perfor-

mance than the “Z3” configurations, while the “Z3” configurations resulted in smaller strategies.

The Z3 CHC solver tended to find more generalizable loop invariants, which often came at the

cost of run-time performance or even with Z3 diverging due to the complex forced-covering rules.

The “Abs” solver, was quick but produced less generalizable invariants or failed to find loop in-

variants during forced-covering causing the algorithm to continue expanding the node. Striking

a balance between finding generalizable loop invariants and reasonable run-time performance is

important. As SimVer is sensitive to the underlying CHC solver, improvements in CHC solving will

correspondingly help SimVer during forced covering.

Our experiments show that simulation strategy synthesis can be used to prove and refute

simulation between non-deterministic infinite state programs. There are only three benchmarks

that were unsolved by all SimVer configurations. The use of both reductions is crucial in helping

SimVer scale to more benchmarks. We note that SimVer performs best when the reason for a

strategy’s correctness is relatively “local.”

6 RELATEDWORK
Computing Simulations. There is a long line of literature on computing simulations for finite

systems [Abdulla et al. 2008; Baier et al. 2004; Bulychev et al. 2007; Dovier et al. 2001; Etessami

et al. 2005; Groote and Vaandrager 1990; Li 2009; Paige and Tarjan 1987], motivated primarily by

the use of simulation (and bisimulation) relations as a state-space reduction technique in model

checking [Escobar and Meseguer 2007; Fisler and Vardi 1999]. Techniques have also been developed

for proving that an infinite-state system simulates a finite-state system [Chaki et al. 2004; Chutinan

, Vol. 1, No. 1, Article . Publication date: February 2024.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Proving Weak Simulation via Strategy Synthesis 21

and Krogh 2001; Henzinger et al. 1995; Jančar et al. 2001; Jonsson and Parrow 1993]. The major

point of contrast between our algorithm and this body of work is that SimVer is designed to prove

(or refute) simulation between systems that are both infinite-state. Perhaps most similar to our work

is Chaki et al. [2004], which gives an algorithm for proving that a finite-state protocol simulates

an infinite-state system following the counter-example guided abstraction refinement (CEGAR)

paradigm. For the particular case that the target program is finite-state, the difference between

Chaki et al. [2004]’s method and ours is analogous to the difference between CEGAR [Clarke

et al. 2000] and lazy abstraction with interpolants [McMillan 2006]: instead of finding a finite

global abstraction that admits a winning strategy, we iteratively expand a partial strategy until it is

complete.

Relational Logics. Relational logics (such as Relational Hoare Logic [Benton 2004]) are program

logics that, like contextual simulations, relate the behaviors of two or more programs together

[Barthe et al. 2009; Gäher et al. 2022; Godlin and Strichman 2008; Hur et al. 2014; Lucanu and Rusu

2015; Song et al. 2023; Yang 2007]. There has been a great deal of work on automated verification

of relational properties. A prominent class of techniques use product programs to reduce relational

verification to classical verification by combining two (or more) programs into one [Barthe et al.

2016; Churchill et al. 2019; Sharma et al. 2013].

The closest relational logics to contextual simulation are those in Benton [2004], Lucanu and

Rusu [2015], Hur et al. [2014], [Song et al. 2023], and [Gäher et al. 2022]. For unobservable, straight-

line, deterministic programs, contextual simulation can be seen as equivalent to proving both

Benton [2004]’s relational Hoare logic judgment and relative termination of the two programs.

While Lucanu and Rusu [2015] can automatically prove observational equivalence of two programs,

the technique requires the user to define when two CFG locations are observably equivalent.

This is analogous to checking whether a given relation is a simulation rather than synthesizing a

simulation. Hur et al. [2014] and [Gäher et al. 2022] both prove observational equivalence (stuttering

bisimulation) of ML-like programs in Coq. The program models consider an alphabet with a single

observable action (a reduction step) rather than considering programs that communicate with

some outside environment. [Song et al. 2023] is similar to [Hur et al. 2014] and [Gäher et al. 2022]

but uses trace refinement rather than simulation. In light of methods for automating verification

based on product programs, one may view SimVer as an on-the-fly construction of a product

program, interpreting one program with demonic non-determinism and the other with angelic

non-determinism (rather than both demonic).

Infinite-state games. Our method for proving contextual simulations is based on reducing the

problem to solving a class of infinite-state games of infinite duration. Methods for solving such

games include [Ball and Kupferman 2006; Beyene et al. 2014; De Alfaro et al. 2001; Farzan and

Kincaid 2017]. Our method is closely related to Farzan and Kincaid [2017]’s technique for solving

reachability games. The largest difference between SimVer and [Farzan and Kincaid 2017] is that

Farzan and Kincaid [2017]’s reachability games require the two players to strictly alternate turns,

while in weak simulation games, Verifier may take arbitrarily many steps to match the move of

Falsifier. Moreover, SimVer exploits some additional structure that is present in weak simulation

games, including the graph structure of programs (e.g., in the covering algorithm) and the POR

techniques described in Section 5.

REFERENCES
Parosh A Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati, and Tomáš Vojnar. 2008. Computing simulations over tree

automata. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
93–108.

Christel Baier, Holger Hermanns, and Joost-Pieter Katoen. 2004. Probabilistic weak simulation is decidable in polynomial

time. Information processing letters 89, 3 (2004), 123–130.

, Vol. 1, No. 1, Article . Publication date: February 2024.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Anon.

Thomas Ball and Orna Kupferman. 2006. An abstraction-refinement framework for multi-agent systems. In 21st Annual
IEEE Symposium on Logic in Computer Science (LICS’06). IEEE, 379–388.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2016. Product programs and relational program logics. Journal of
Logical and Algebraic Methods in Programming 85, 5, Part 2 (2016), 847–859.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic

proofs. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
90–101.

Saddek Bensalem, Ahmed Bouajjani, Claire Loiseaux, and Joseph Sifakis. 1992. Property preserving simulations. In

International Conference on Computer Aided Verification. Springer, 260–273.
Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations. In ACM SIGPLAN

Notices, Vol. 39. ACM, 14–25.

Tewodros Beyene, Swarat Chaudhuri, Corneliu Popeea, and Andrey Rybalchenko. 2014. A constraint-based approach

to solving games on infinite graphs. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 221–233.

Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg. 1993. The primary-backup approach. Distributed
systems 2 (1993), 199–216.

PE Bulychev, IV Konnov, and VA Zakharov. 2007. Computing (bi) simulation relations preserving CTL* X. for ordinary and

fair Kripke structures. Mathematical Methods and Algorithms 12 (2007).
Sagar Chaki, Edmund M Clarke, Alex Groce, Somesh Jha, and Helmut Veith. 2004. Modular verification of software

components in C. IEEE Transactions on Software Engineering 30, 6 (2004), 388–402.

K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: Determining global states of distributed systems. ACM
Transactions on Computer Systems (TOCS) 3, 1 (1985), 63–75.

Ernest Chang and Rosemary Roberts. 1979. An improved algorithm for decentralized extrema-finding in circular configura-

tions of processes. Commun. ACM 22, 5 (1979), 281–283.

Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic Program Alignment for Equivalence

Checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 1027–1040. https:

//doi.org/10.1145/3314221.3314596

Alongkrit Chutinan and Bruce H Krogh. 2001. Verification of infinite-state dynamic systems using approximate quotient

transition systems. IEEE Transactions on automatic control 46, 9 (2001), 1401–1410.
Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-Guided Abstraction

Refinement. InComputer Aided Verification, E. Allen Emerson andAravinda Prasad Sistla (Eds.). Springer BerlinHeidelberg,

Berlin, Heidelberg, 154–169.

Luca De Alfaro, Thomas A Henzinger, and Rupak Majumdar. 2001. Symbolic algorithms for infinite-state games. In

International Conference on Concurrency Theory. Springer, 536–550.
Agostino Dovier, Carla Piazza, and Alberto Policriti. 2001. A fast bisimulation algorithm. In International Conference on

Computer Aided Verification. Springer, 79–90.
Santiago Escobar and José Meseguer. 2007. Symbolic model checking of infinite-state systems using narrowing. In Interna-

tional Conference on Rewriting Techniques and Applications. Springer, 153–168.
Kousha Etessami, Thomas Wilke, and Rebecca A Schuller. 2005. Fair simulation relations, parity games, and state space

reduction for Büchi automata. SIAM J. Comput. 34, 5 (2005), 1159–1175.
Azadeh Farzan and Zachary Kincaid. 2016. Linear Arithmetic Satisfiability via Strategy Improvement.. In IJCAI. 735–743.
Azadeh Farzan and Zachary Kincaid. 2017. Strategy synthesis for linear arithmetic games. Proceedings of the ACM on

Programming Languages 2, POPL (2017), 1–30.

Kathi Fisler and Moshe Y Vardi. 1999. Bisimulation and model checking. In Advanced Research Working Conference on
Correct Hardware Design and Verification Methods. Springer, 338–342.

Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek

Dreyer. 2022. Simuliris: a separation logic framework for verifying concurrent program optimizations. Proceedings of the
ACM on Programming Languages 6, POPL (2022), 1–31.

Benny Godlin and Ofer Strichman. 2008. Inference rules for proving the equivalence of recursive procedures. Acta
Informatica 45, 6 (2008), 403–439.

James N Gray. 1978. Notes on data base operating systems. In Operating Systems. Springer, 393–481.
Jan Friso Groote and Frits Vaandrager. 1990. An efficient algorithm for branching bisimulation and stuttering equivalence.

In International Colloquium on Automata, Languages, and Programming. Springer, 626–638.
Monika Rauch Henzinger, Thomas A Henzinger, and Peter W Kopke. 1995. Computing simulations on finite and infinite

graphs. In Proceedings of IEEE 36th Annual Foundations of Computer Science. IEEE, 453–462.

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Proving Weak Simulation via Strategy Synthesis 23

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2014. A logical step forward in parametric bisimulations.
Technical Report. Citeseer.

Petr Jančar, Antonín Kučera, and Richard Mayr. 2001. Deciding bisimulation-like equivalences with finite-state processes.

Theoretical Computer Science 258, 1-2 (2001), 409–433.
Bertrand Jeannet and Antoine Miné. 2009. Apron: A library of numerical abstract domains for static analysis. In International

Conference on Computer Aided Verification. Springer, 661–667.
Bengt Jonsson and Joachim Parrow. 1993. Deciding bisimulation equivalences for a class of non-finite-state programs.

Information and computation 107, 2 (1993), 272–302.

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-based model checking for recursive programs. Formal
Methods in System Design 48, 3 (2016), 175–205.

Butler Lampson and Howard E Sturgis. 1979. Crash recovery in a distributed data storage system. (1979).

Weisong Li. 2009. Algorithms for computing weak bisimulation equivalence. In 2009 Third IEEE International Symposium on
Theoretical Aspects of Software Engineering. IEEE, 241–248.

Dorel Lucanu and Vlad Rusu. 2015. Program equivalence by circular reasoning. Formal Aspects of Computing 27, 4 (2015),

701–726.

Kenneth L McMillan. 2006. Lazy abstraction with interpolants. In International Conference on Computer Aided Verification.
Springer, 123–136.

Robin Milner. 1971. An algebraic definition of simulation between programs. Citeseer.
Robin Milner. 1989. Communication and concurrency. Vol. 84. Prentice hall New York etc.

Divyarthi Mohan and Charlie Murphy. 2017. Two Phase Commit With Apportioned Queries (2PAQ). https://medium.com/

princeton-systems-course/two-phase-commit-with-apportioned-queries-2paq-376701c2a5b4

Rocco de Nicola and Frits Vaandrager. 1990. Action versus state based logics for transition systems. In LITP Spring School on
Theoretical Computer Science. Springer, 407–419.

Robert Paige and Robert E Tarjan. 1987. Three partition refinement algorithms. SIAM J. Comput. 16, 6 (1987), 973–989.
Joachim Parrow, Tjark Weber, Johannes Borgström, and Lars-Henrik Eriksson. 2017. Weak nominal modal logic. In

International Conference on Formal Techniques for Distributed Objects, Components, and Systems. Springer, 179–193.
Doron Peled. 1998. Ten years of partial order reduction. In International Conference on Computer Aided Verification. Springer,

17–28.

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2013. Data-driven equivalence checking. In OOPSLA.
391–406.

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual

Refinement. Proceedings of the ACM on Programming Languages 7, POPL (2023), 1121–1151.

Jeff Terrace and Michael J Freedman. 2009. Object Storage on CRAQ: High-Throughput Chain Replication for Read-Mostly

Workloads.. In USENIX Annual Technical Conference. San Diego, CA, 1–16.

Rob J Van Glabbeek. 2001. The linear time-branching time spectrum I. The semantics of concrete, sequential processes. In

Handbook of process algebra. Elsevier, 3–99.
Robbert Van Renesse and Fred B Schneider. 2004. Chain Replication for Supporting High Throughput and Availability.. In

OSDI, Vol. 4.
Hongseok Yang. 2007. Relational separation logic. Theoretical Computer Science 375, 1-3 (2007), 308–334.

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://medium.com/princeton-systems-course/two-phase-commit-with-apportioned-queries-2paq-376701c2a5b4
https://medium.com/princeton-systems-course/two-phase-commit-with-apportioned-queries-2paq-376701c2a5b4

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Anon.

skip
[𝑡𝑟𝑢𝑒]
999K ■

𝑆 is x := e

𝑆
𝑆

999K ■

𝑆 is havoc x. b

𝑆
𝑆

999K ■

𝑆 is send e chan(c)

𝑆
𝑆

999K ■

𝑆 is receive x chan(c)

𝑆
𝑆

999K ■ if 𝑏 then 𝑆 else 𝑇
[𝑏]
999K 𝑆 if 𝑏 then 𝑆 else 𝑇

[¬𝑏]
999K 𝑇

while 𝑏 do 𝑆 done

[¬𝑏]
999K ■ while 𝑏 do 𝑆 done

[𝑏]
999K 𝑆 ;while 𝑏 do 𝑆 done

𝑆
𝑎

999K 𝑆 ′

𝑆 ;𝑇
𝑎

999K 𝑆 ′;𝑇

𝑆
𝑎

999K 𝑆 ′

𝑆 ∥𝑇 𝑎
999K 𝑆 ′∥𝑇

𝑇
𝑎

999K 𝑇 ′

𝑆 ∥𝑇 𝑎
999K 𝑆 ∥𝑇 ′

Fig. 5. Inference rules for program CFG relation

A SYNTACTIC PROGRAMS AND THEIR CFG
In this section we give the syntactic programs we use in Section 5 to express our benchmarks.

A.1 Message Passing Programs
We consider a simple language of multi-threaded message-passing integer programs. The syntax of

statements is given below:

⟨stmt⟩ ::= ■ | skip | ⟨var⟩ := ⟨exp⟩ | havoc ⟨var⟩. ⟨bexp⟩
| send ⟨exp⟩ chan(⟨exp⟩) | receive ⟨var⟩ chan(⟨exp⟩)
| ⟨stmt⟩ ; ⟨stmt⟩ | ⟨stmt⟩ ∥ ⟨stmt⟩
| if ⟨bexp⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨bexp⟩ do ⟨stmt⟩ done
We reuse the same language of expressions and Boolean expressions from Section 2. The language

of syntactic programs includes any statement that does not include ■, where ■ denotes the halting

program. Processes are created with the parallel composition operator ∥ (in Section B.1, we further

extend the language with parfor, a parametric 𝑛-ary parallel repetition statement). Processes may

communicate by passing messages (using send and receive) along shared channels, which are

identified by integers; processes do not share memory. We treat ■; 𝑆 as equal to 𝑆 and ■∥■ as equal

to ■.

A.2 Control Flow Graphs
To give meaning to syntactic programs, we map each syntactic program 𝑝 to a control flow graph,

𝐶𝐹𝐺 (𝑝). To simplify this compilation process, we assume that when two statements are parallelly

composed, they write to a disjoint set of variables and that each child process does not write to any

variable that a parent process reads or writes. The compilation process from a syntactic program to

a CFG loses the notion of processes, these assumptions ensure that the compilation process doesn’t

inadvertently introduce memory sharing between processes by having clashing local variable

names.

We represent the CFG of syntactic programs using a labeled binary relation 999K stmt over

statements. Figure 5 displays the rules defining 999K stmt. For any syntactic program 𝑝 , its control

flow graph is 𝐶𝐹𝐺 (𝑝) =
〈
stmt, 999K stmt, 𝑝,■

〉
. The semantics of a syntactic program is given by

the semantics assigned to its CFG as defined in Section 2.

, Vol. 1, No. 1, Article . Publication date: February 2024.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Proving Weak Simulation via Strategy Synthesis 25

⟦𝑒𝑙 ≤ 𝑒𝑢⟧_
_ ⊲

(
parfor id . 𝑒𝑙 ≤ id ≤ 𝑒𝑢

do 𝑆 done

)
𝜏−→ _ ⊲

(
id := 𝑒𝑙 ; 𝑆 ∥parfor id . 𝑒𝑙+1 ≤ id ≤ 𝑒𝑢

do 𝑆 done

)
⟦𝑒𝑙 ≤ 𝑒𝑢⟧_ = false

_ ⊲

(
parfor id . 𝑒𝑙 ≤ id ≤ 𝑒𝑢

do 𝑆 done

)
𝜏−→ _ ⊲ ■

𝑎 = parfor id . 𝑒𝑙 ≤ id ≤ 𝑒𝑢 . do 𝑆 done

𝑎
𝑎

999K ■

Fig. 6. Additional transition and CFG rules for parfor.

B EXTENSIONS AND ALGORITHMIC IMPROVEMENTS
In this section we describe extensions that enable our method to handle larger and more realistic

programs: we enrich the language with a parallel repetition construct parfor, and formalize the

two partial order reduction strategies (as discussed in Section 5) that reduce the search space for

simulation proofs using the algorithm described in Section 4.

B.1 Parfor: n-ary Parallel Repetition
Many interesting programs and distributed systems use a parametric number of processes. To

handle this paradigm, we introduce a parametric parallel composition operator, parfor. We detail

the changes to the programming language, its semantics, and control flow graph. We additionally

update our definition of simulation game unwindings and algorithms to handle the extended

language.

The (parfor 𝑖𝑑. 𝑒𝑙 ≤ 𝑖𝑑 ≤ 𝑒𝑢 do S done) construct runs 𝑛 copies of its body in parallel, one

copy for each thread id in the range [𝑒𝑙 , 𝑒𝑢]. We extend the grammar of programs to include parfor
as follows:

⟨stmt⟩ ::= . . . | parfor ⟨var⟩. ⟨exp⟩ ≤ ⟨var⟩ ≤ ⟨exp⟩ do ⟨stmt⟩ done

Unlike the syntactic programs in Section A, parfor is difficult to represent as a finite CFG.

Specifically, unless the range [𝑒𝑙 , 𝑒𝑢] is statically known, the approach used to represent the other

syntactic programs will yield an infinite size CFG. We can provide an operation semantics of parfor

based on unrolling the parfor using the binary parallel composition operator analogous to the

unrolling semantics of while using sequential composition. The first rule for parfor handles the

case where the range is non-empty: it peels off the lowest valued identifier in the range and runs

it in parallel with the remainder of the parfor. The second rule transitions to the empty program

(final state) when the parfor’s range is empty.

If we treated the CFG construction of parfor similar to its operational semantics (by repeated

unrolling), the set of reachable statements from a parfor statement would be infinite. As described

in Section 5, we instead choose to treat parfor as an “observable” command similar to how we treat

send and receive. We modify the set of commands to include every parfor program. Figure 6 gives

the CFG for parfor programs.

We now update the definition of well-labeled unwindings to support parfor. We treat parfors as

an observable command. While in Figure 6, we see that when a parfor statement unrolls it executes

a 𝜏 action, if the body of the parfor may execute a send or receive, then the parfor as a whole is

observable. The way we handle this is by matching a parfor of the source program with a parfor of

the target program, in the same manner as we did for sends and receives. This induces additional

verification conditions and requirements on when a source parfor is matched by a target parfor.

Note that this rule is incomplete—it is possible semantically for a parfor program to be simulated

, Vol. 1, No. 1, Article . Publication date: February 2024.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Anon.

𝑢 ∈ 𝑉 𝑛0 ∈ 𝑉

𝑛1 ∈ 𝐹

𝑛2 ∈ 𝐹

𝑔1 ∈ 𝐹

𝑣

𝑔2 ∈ 𝐹

{·} 𝑠 ≲ 𝑡 {𝑡𝑟𝑢𝑒}

{·} 𝑆 ≲ 𝑇 {Q}

{·} 𝑠 ≲ 𝑡 {𝑓 𝑎𝑙𝑠𝑒}

𝑎

[tr
ue
]

[𝑒𝑠𝑙 ≤
𝑒𝑠𝑟]

[𝑒𝑠𝑙 ≤ 𝑖𝑑𝑆 = 𝑖𝑑𝑇 ≤ 𝑒𝑠𝑟]

[true]

[𝑒𝑠𝑙 ≤ 𝑖𝑑𝑆 = 𝑖𝑑𝑇 ≤ 𝑒𝑠𝑟]

Fig. 7. A parfor gadget to inline the terminating and non-terminating subgames.

by (or to simulate) a parfor free program. However, this strategy is suitable for our goal of proving

per-node simulation.

We update legal with a new clause legal(𝑢, 𝑣) = (𝑒𝑠𝑙 > 𝑒𝑠𝑟∧𝑒𝑡𝑙 > 𝑒𝑡𝑟)∨(𝑒𝑠𝑙 = 𝑒𝑡𝑙∧𝑒𝑠𝑟 = 𝑒𝑡𝑟) when
𝐿(𝑢, 𝑣) is parfor id𝑇 .et𝑙 ≤ id𝑇 ≤ et𝑟 do 𝑡 done and 𝐹 -pred𝑒 (𝑢) is parfor id𝑆 .es𝑙 ≤ id𝑆 ≤ es𝑟 do 𝑠 done.
act remains unchanged. This change to legal ensures that either both parfors do not execute or they

both execute with an equal range of thread ids. The existing well-labeledness constraints remain

unchanged; however, we add one more constraint subgame to the set of well-labeled constraints.

Subgame: Every𝑉 -edge ⟨𝑢, 𝑣⟩ labeled with parfor id𝑇 .et𝑙 ≤ id𝑇 ≤ et𝑟 do 𝑡 done where 𝐹pred𝑒 (𝑢) is
parfor id𝑆 .es𝑙 ≤ id𝑆 ≤ es𝑟 do 𝑠 done. There is a well-labeled unwinding for the game G({Φ(𝑢)} 𝑡 ≲
𝑠 {𝑡𝑟𝑢𝑒}).

A labeled unwinding is complete only if it and every associated subgame’s labeled unwinding

game is complete. Thus a well-labeled and complete game unwinding must have a well-labeled

and complete unwinding associated with every 𝑉 -edge labeled with a parfor proving simulation

between the source and target parfor’s bodies.

To satisfy the modified definitions of well-labeledness and complete we must now compute a

complete well-labeled unwinding for each induced sub-game. Rather than eagerly (at match time)

or lazily (after finding a well-labeled and complete unwinding for the parent game) computing these

induced unwindings—by recursively calling Algorithm 1 for each matched parfor—, we inline each

subgame using a parfor gadget. This allows us to simultaneously compute the strategy for the root

game and any induced subgames. Specifically, this enables us to jointly refine the parent and child

strategies—if Verifier loses a subgame, the algorithm can (attempt to) improve the parent strategy so

that the induced subgame is more favorable. We additionally allow reuse of work between similar

induced sub-games—we allow covering a node by another if they share the same sub-game label

even if the sub-games are induced by different Verifier edges. Inlining is accomplished as follows.

We augment simulation game trees with an additional field game that maps each node of L with

its subgame, taking the form {·} 𝑠 ≲ 𝑡 {𝜓 } (note the precondition is omitted, since it is the same

as the label of the subgame’s root). A node has the same game as its immediate ancestor, with

the exception of the nodes introduced by the parfor gadget, which is introduced for each pair of

matching parfors.

Figure 7 depicts the gadget used to inline induced subgames. We actually play two subgames

for each parfor. One where we try to prove the post-condition false (meaning the matched parfors

do not terminate) and the other with the post-condition true (meaning the subgames are allowed

to terminate in any state). If we are able to find a strategy for the false post-condition, then we

do not need to continue finding a strategy for the remainder of the parent game (as play never

, Vol. 1, No. 1, Article . Publication date: February 2024.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Proving Weak Simulation via Strategy Synthesis 27

𝑢 ∈ 𝑉

𝑣 𝑣 ′ ∈ 𝐹

𝑔1 𝑔2

{· · · } 𝑠 ≲ 𝑡 {true}

{·} 𝑆 ≲ 𝑇 {Q}
...

Φ(𝑣 ′) = ⟨false,Φ(𝑣)𝑆 ,Φ(𝑣)𝑇 ⟩

{· · · } 𝑠 ≲ 𝑡 {false}

...
. . .

...
. . .

𝑎

𝐺 (𝑣, 𝑛0)∧
𝐺 (𝑛0, 𝑛1)

𝑎

𝐺 (𝑣, 𝑛0)∧
𝐺 (𝑛0, 𝑛2)T ′

1

T ′
2

Fig. 8. The well labeled game trees produced by removing a parfor gadget.

returns back to the parent game). The edge from 𝑢 to 𝑛0 is the edge labeled with 𝑎, Verifier’s parfor

action. Because 𝑛0 ∈ 𝑉 , Verifier controls which sub-game to play: the terminating game or the

non-terminating game (𝑔1 and 𝑔2 respectively). If Verifier chooses to play the non-terminating game,

Verifier must prove that the parfors actually execute. In both the terminating and non-terminating

games, we allow Verifier to assume that the ids are equal and are bounded by the given range. If

Verifier plays the terminating game, then Verifier must also have a strategy for 𝑣 , which represents

the remainder of the parent game after the parfor is played. Algorithm 1 remains unchanged other

than initializing the game variable. In Algorithm 2, the only change is the addition of the parfor

gadget inVWwhen Verifier plays a matching parfor. In Algorithm 3, we require that nodes are only

covered by nodes labeled with the same subgame. Otherwise, the algorithms remain unchanged.

In Section 4, we maintained the invariant that the unwinding L is always well-labeled. In the

updated algorithm to handle parfor, we maintain the invariant that the unwinding L is well-labeled

modulo parfor gadgets. That is, if we remove each parfor gadget, we produce a set of well labeled

unwindings—one for the parent game and each introduced sub-game. In Figure 8, we show how

the parfor gadget in Figure 7 is transformed into three well-labeled unwindings (the parent game

and both sub-game trees). We remove interior nodes 𝑛0, 𝑛1, and 𝑛2. We add an edge from 𝑢 to 𝑣

(and a fresh node 𝑣 ′) labeled with the parfor action Verifier played. The edge to 𝑣 represents when

Verifier chose to play the terminating game, and 𝑣 ′ the non-terminating game. Both are guarded

by the parfor edge’s original guard (𝐺 (𝑢, 𝑛0)). Each is additionally guarded with Verifier’s choice

to play that game (i.e. 𝐺 (𝑛0, 𝑛1) and 𝐺 (𝑛0, 𝑛2) respectively). The nodes 𝑔1 and 𝑔2 now become the

root of their own simulation unwinding for the corresponding game. Thus, we have removed the

parfor gadget and shown the existence of the unwindings satisfying the sub-game constraint. When

Algorithm 1 terminates with L, then every node of every subgame is either expanded or covered

(by a node of the same game). Unlike the original version of the algorithm, if the modified algorithm

terminates without finding a simulation strategy, the produced counter-example does not disprove

simulation: it only disproves per-node simulation.

Theorem B.1. If the modified version of Algorithm 1 terminates with some unwinding L then
{P} src ≲ tgt {Q} the input contextual simulation is valid.

Proof Sketch. The produced unwinding is well-labeled and complete. As described above,

we maintained the invariant that L is well-labeled modulo parfor gadgets. Above we gave the

transformation from an unwinding containing parfor gadgets to a set of well-labeled unwindings

for each sub-game. After terminating each node of every game was either expanded or covered.

Thus each unwinding is well-labeled and complete. The proof proceeds by inducting on the depth

of sub-games within L. If there are no sub-games then Theorem 4.1 proves the conclusion. By

, Vol. 1, No. 1, Article . Publication date: February 2024.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Anon.

the inductive hypothesis, every contextual simulation labeling matched parfor edges are valid. Let

𝑔′L be the strategy for Verifier as described in Section 3. We construct a new strategy 𝑔L . Let 𝑠 be
a position ending in a Verifier place of the game 𝐺 ({P} src ≲ tgt {Q}. If Falsifier’s most recent

action was not within a parfor, then 𝑔L follows the strategy of 𝑔′L . If Falsifier’s move was to unroll

a parfor one more time then 𝑔L will do the same. If Falsifier plays an action from the body of thread

𝑖 from a parfor. Then Verifier will play a matching action for it’s thread 𝑖 using the strategy for the

induced subgame (note this strategy exists and is winning because the IH allows us to assume the

subgame is winning). Thus we have exhibited 𝑔L a winning strategy for 𝐺 ({P} src ≲ tgt {Q}. We

conclude by using Theorem 3.1. □

B.2 Partial Order Reduction of Unobservable Actions
Partial order reductions allow reducing the state space that needs to be searched in model checking

or state exploration algorithms [Peled 1998]. A partial order reduction is based around the idea of

commutative actions. If two actions commute, then either order of execution is equivalent. We use

two partial order reductions that reduce the state space that Algorithm 1 must explore. They can be

used separately or in tandem. One modifies the CFG construction, POR-CFG. The other POR-TURN
reduces the set of strategies we must consider for Verifier.

In weak simulations, it is impossible to observe silent actions. Since threads do not share memory,

silent actions from two processes executing in parallel may be reordered. We apply this intuition

to reduce the CFG constructed for two processes run in parallel. For two processes 𝑇1 and 𝑇2, the

normal construction for 𝑇1∥𝑇2 is to take the Cartesian product of each process’s CFG. From the

reduced CFGs of each process, we compute the reduced CFG of 𝑇1∥𝑇2 by first executing every

unobservable action of 𝑇1, then executing every unobservable action of 𝑇2. When 𝑇1 and 𝑇2 both

only have observable actions to execute, the construction expands each observable action and

repeats the process. For loopy programs, we first compute a cutset for both processes’ CFG: a

set of vertices such that removing them from the graph results in an acyclic graph. We say that

an action is pseudo-observable if it emanates from the cutset or it is observable. By considering

cut-points as pseudo-observable, we ensure that the reduced system is observationally equivalent

(weak simulation equivalence) with the original system. Without considering cut-points, if one

process executes a non-terminating unobservable loop, then the observable behaviors of the other

process would no longer be a behavior of the reduced system.

The second partial order reduction, POR-Turn, reduces the set of strategies Algorithm 1 considers.

In weak simulations, Verifier may delay its choice until forced to match an observable move. We call

the set of strategies that delay Verifiers choice Lazy strategies. When Falsifier plays an unobservable

action, Verifier immediately pass. This is always valid for Verifier, if 𝜎𝑡
𝜏

=⇒ 𝜎 ′𝑡 and 𝜎
′
𝑡

𝑎
=⇒ 𝜎 ′′𝑡 then

clearly 𝜎𝑡
𝑎

=⇒ 𝜎 ′′𝑡 . Similar to the POR-CFG, we begin by computing a cutset for each program’s

CFG. A move of Falsifier is pseudo-observable if the move is observable or leads to a cutpoint.

Whenever Falsifier plays a non pseudo-observable action, then Verifier will always chose to pass.

When Falsifier plays a pseudo-observable action then Verifier plays their turn. Verifier’s turn lasts

until it plays a pseudo-observable action of it’s own that matches Falsifier’s action (e.g. sends

match sends, receives match receives, etc.). Verifier may still choose to pass if Falsifier’s move was

unobservable.

Theorem B.2. For any contextual simulation, {P} 𝑆 ≲ 𝑇 {Q}, if we apply either (or both) POR-CFG
or POR-TURN to Algorithm 1 and Algorithm 1 terminates with a game tree T then {P} 𝑆 ≲ 𝑇 {Q} is
valid. If it returned a counter strategy, then {P} 𝑆 ≲ 𝑇 {Q} is not valid.

, Vol. 1, No. 1, Article . Publication date: February 2024.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Proving Weak Simulation via Strategy Synthesis 29

Proof Sketch. The transition system induced by POR-CFG, is weakly simulation equivalent to

the original transition system—there is a weak simulation in both directions. By Theorem 4.1 we

know the algorithm is sound for the reduced game. We can combine the witnessing simulation

relation for the contextual simulation and compose it with the weak simulation from the reduced

transition system to the full transition system to get a simulation relation witnessing the conclusion.

If Falsifier wins the reduced game, then necessarily Falsifier wins the full game.

When the algorithm uses POR-Turn and terminates with a strategy tree T , the produced strategy
is still a strategy for the full game. Thus by Theorem4.1 the conclusion holds. If Falsifier has a

winning strategy, then Falsifier beats Verifier when Verifier plays any lazy strategy. We show that

every strategy of Verifier may be reduced to an equivalent lazy strategy (one strategy is winning

iff the other wins). Given a verifier strategy 𝑔, we commute the corresponding lazy strategy 𝑙 by

delaying 𝑔’s actions until Falsifier makes an observable turn at which point, 𝑙 will play each of

the delayed actions. Since Falsifier beat every lazy strategy of Verifier, Falsifier can beat every

strategy of Verifier. Thus Falsifier must win any play conforming to its strategy. Thus the conclusion

holds. □

, Vol. 1, No. 1, Article . Publication date: February 2024.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Anon.

C PROOFS
Theorem 2.4. Let 𝜑 be any formula of the universal fragment of action 𝐶𝑇𝐿∗ without next-time

operators (∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 }). If program 𝑃 is related to program 𝑄 by a divergence preserving weak
simulation and 𝑄 satisfies 𝜑 then 𝑃 satisfies 𝜑 .

Proof of Theorem 2.4. We begin by first defining the formal definition of ∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 }
and its satisfiability relation that we consider in our proof. Our definition closely follows from

[Nicola and Vaandrager 1990].

Action Formulas. Let 𝐴 be the set of Atomic action predicates. The set of action predicates is

defined as the following grammar:

𝐹,𝐺 ::= 𝑎 ∈ 𝐴 | ⊤ | ¬𝐹 | 𝐹 ∧𝐺
For an action, 𝛼 ∈ Σ (see Section 2 for definition of Σ), and action formula, 𝐹 , we use 𝛼 |= 𝐹 to

denote that 𝛼 satisfies 𝐹 and 𝛼 ̸ |= 𝐹 that 𝛼 does not satisfy 𝐹 . The below rules inductively define

when an action formula is satisfiable.

𝛼 |= ⊤ always

𝛼 |= ¬𝐹 iff 𝛼 ̸ |= 𝐹
𝛼 |= 𝐹 ∧𝐺 iff 𝛼 |= 𝐹 and 𝛼 |= 𝐺

∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 } Syntax. We define the universal fragment of action 𝐶𝑇𝐿∗ without next-time

operators (∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 }) using the following grammar:

𝜑,𝜓 ::= true | false | 𝜑 ∧𝜓 | 𝜑 ∨𝜓
| ∀𝜑 | 𝜑 𝐹U𝐺 𝜓 | 𝜑 𝐹U𝜓 | G𝜑

Note: We may define the non-modal until operator 𝑈 and the eventually operator 𝐹 in terms of

the other operators:

𝜑 U𝜓 ≜ 𝜑 ⊤U𝜓

F𝜑 ≜ true U 𝜑

Program Runs. Given a program 𝑃 and a program state 𝑠 ∈ 𝑆𝑃 of 𝑃 , a path from 𝑠 is a (possibly

infinite) sequence of transitions, 𝜋 =
〈
𝑠0, 𝛼0, 𝑠

′
0

〉 〈
𝑠1, 𝛼1, 𝑠

′
1

〉
∈−→≤𝜔𝑃 , beginning from 𝑠 (i.e. 𝑠0 = 𝑠

and ∀𝑖 . 𝑠 ′𝑖 = 𝑠𝑖+1). A path is maximal if it is either infinite or ends in a state with no out-going

transitions.

A run from 𝑠 ∈ 𝑆𝑃 is a pair 𝜌 = ⟨𝑠, 𝜋⟩ where 𝜋 is a path from 𝑆 . We use first (𝜌) to denote 𝑠 ,

path(𝜌) to denote 𝜋 . If 𝜋 is finite, we use last (𝜌) to denote the last state of 𝜋 . We say 𝜌 is maximal
iff 𝜋 is maximal.

Given two runs, 𝜌 and \ , such that last (𝜌) = first (\), we use 𝜌\ to represent concatenation (i.e.

𝜌\ = ⟨first (𝜌), path(𝜌)path(\)⟩).
Given two runs, 𝜌 and \ , we use 𝜌 < \ and 𝜌 ≤ \ to denote that \ is a proper suffix, respectively

a suffix, of 𝜌 . Formally, 𝜌 < \ iff first (\) = last (𝜌) and 𝜌 ≤ \ iff there is some 𝜌 ′, [, and \ ′ such
that 𝜌 = 𝜌 ′[and \ = [\ ′.

Given a program state 𝑠 , we use `runs(𝑠) to denote the set of maximal runs starting from 𝑠 .

∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 } Satisfiability. Given a program a run, 𝜌 , of program 𝑃 and a ∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 }
formula 𝜑 , we use ⟨𝜌, 𝑃⟩ |= 𝜑 (or simply 𝜌 |= 𝜑) to denote that the program state 𝑠 satisfies the

formula 𝜑 . A program state 𝑠 ∈ 𝑆𝑃 of 𝑃 satisfies 𝜑 when ⟨𝑠, 𝜖⟩ |= 𝜑 . We say 𝑃 satisfies 𝜑 when every

initial state of 𝑃 satisfies (e.g. ∀𝑠 ∈ 𝐼𝑃 . ⟨𝑠, 𝜖⟩ |= 𝜑). We define the satisfiability of a ∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 }
inductively as follows:

, Vol. 1, No. 1, Article . Publication date: February 2024.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Proving Weak Simulation via Strategy Synthesis 31

𝜌 |= true always

𝜌 |= false never

𝜌 |= 𝜑 ∧𝜓 iff 𝜌 |= 𝜑 and 𝜌 |= 𝜓
𝜌 |= 𝜑 ∨𝜓 iff 𝜌 |= 𝜑 or 𝜌 |= 𝜓
𝜌 |= ∀𝜑 iff ∀𝜌 ′ ∈ `runs(first (𝜌)) . 𝜌 ′ |= 𝜑

𝜌 |= 𝜑 𝐹U𝐺 𝜓 iff ∃𝜌 ′, \ s.t.

𝜌 = 𝜌 ′\

\ |= 𝜓

∃𝜋, 𝑠, 𝛼, 𝑠 ′ s.t.
{
path(𝜌 ′) = 𝜋 ⟨𝑠, 𝛼, 𝑠 ′⟩ and 𝛼 |= 𝐺 and

∀𝑖, 𝑠𝑖 , 𝛼𝑖 , 𝑠 ′𝑖 . if 𝜋𝑖 = 𝑠𝑖 , 𝛼𝑖 , 𝑠 ′𝑖 then 𝛼𝑖 = 𝜏 or 𝛼𝑖 |= 𝐹
∀[. 𝜌 ′ ≤ [< \ ⇒ [|= 𝜑

𝜌 |= 𝜑 𝐹U𝜓 iff ∃𝜌 ′, \ s.t.

𝜌 = 𝜌 ′\

\ |= 𝜓
∀𝑖, 𝑠, 𝛼, 𝑠 ′. if path(𝜌 ′)𝑖 = ⟨𝑠, 𝛼, 𝑠 ′⟩ then 𝛼 = 𝜏 or 𝛼 |= 𝐹
∀[. 𝜌 ′ ≤ [< \ ⇒ [|= 𝜑

𝜌 |= G𝜑 iff ∀𝜌 ′, \ . if 𝜌 = 𝜌 ′\ then \ |= 𝜑
Now that we have formally defined the syntax and satisfiability of ∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 }, we may

now proceed with the proof that divergence preserving weak simulations preserve satisfiability of

∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 }.

Proof. We begin by proving two lemmas.

Lemma C.1. Fix a program 𝑃 . Let 𝜑 be any ∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 } formula, 𝜌 be any finite run of 𝑃 ,
and \ be any finite and silent run such that 𝜌 < \ . If 𝜌 |= 𝜑 then 𝜌\ |= 𝜑 .

Proof. We proceed by induction on 𝜌 |= 𝜑 .
Case true: necessarily 𝜌\ |= true.

Case false: the hypothesis 𝜌 |= false is impossible.

Case 𝜑 ∧𝜓 :
By assumption 𝜌 |= 𝜑 and 𝜌 |= 𝜓 . By the IH, 𝜌\ |= 𝜑 and 𝜌\ |= 𝜓 . Thus we can conclude

𝜌\ |= 𝜑 ∧𝜓 .
Case 𝜑 ∨𝜓 :

By assumption either 𝜌 |= 𝜑 or 𝜌 |= 𝜓 . By the IH, we either have 𝜌\ |= 𝜑 or 𝜌\ |= 𝜓 . Thus we
can conclude 𝜌\ |= 𝜑 ∨𝜓 .

Case ∀𝜑 :
By assumption, for ever maximal run 𝜌 ′ from first (𝜌) satisfies𝜑 . Necessarily first (𝜌) = first (𝜌\),
thus we may conclude 𝜌\ |= ∀𝜑 .

Case 𝜑 𝐹U𝐺 𝜓 :

By assumption, we know there is some 𝜌 ′ and \ ′ such that (1) 𝜌 = 𝜌 ′\ ′, (2) \ ′ |= 𝜓 , (3) There
is some 𝜋, 𝑠, 𝛼, 𝑠 ′ such that path(𝜌 ′) = 𝜋 ⟨𝑠, 𝛼, 𝑠 ′⟩ and 𝛼 |= 𝐺 , and every observable action in 𝜋

satisfies 𝐹 , and (4) ∀[.𝜌 ′ ≤ [< \ ′⇒ [|= 𝜑 .
Let \ ′′ = \ ′\ . Clearly 𝜌\ = 𝜌 ′\ ′′. By (2) and the IH \ ′′ |= 𝜓 . Using these facts and (3) and (4), we
may conclude 𝜌\ |= 𝜑 𝐹U𝐺 𝜓 .

Case 𝜑 𝐹U𝜓 : This case proceeds similarly as the previous case.

Case G𝜑 :
By assumption, for every 𝜌 ′ and \ ′ such that 𝜌 = 𝜌 ′\ ′ we have \ ′ |= 𝜑 . By the IH we may then

assume that \ ′\ |= 𝜑 . We may then conclude that 𝜌\ |= G𝜑 .

□

, Vol. 1, No. 1, Article . Publication date: February 2024.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Anon.

Lemma C.2. Fix a program 𝑃 . ∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 } formula, 𝜌 be any finite run of 𝑃 , and \ be any
finite and silent run such that \ < 𝜌 . If \𝜌 |= 𝜑 then 𝜌 |= 𝜑 .

Proof. We proceed by induction on \𝜌 |= 𝜑 .
Case true: necessarily 𝜌 |= true.

Case false: the hypothesis \𝜌 |= false is impossible.

Case 𝜑 ∧𝜓 :
By assumption \𝜌 |= 𝜑 and \𝜌 |= 𝜓 . By the IH, 𝜌 |= 𝜑 and 𝜌 |= 𝜓 . Thus we can conclude

𝜌 |= 𝜑 ∧𝜓 .
Case 𝜑 ∨𝜓 :

By assumption either \𝜌 |= 𝜑 or \𝜌 |= 𝜓 . By the IH, we either have 𝜌 |= 𝜑 or 𝜌 |= 𝜓 . Thus we
can conclude 𝜌 |= 𝜑 ∨𝜓 .

Case ∀𝜑 :
Let 𝜌 ′ be any maximal run from first (𝜌). \𝜌 ′ must be a maximal run from first (\𝜌). By as-

sumption we have \𝜌 ′ |= 𝜑 . Using the IH, we may then show 𝜌 ′ |= 𝜑 . Thus we may conclude

𝜌 |= ∀𝜑 .
Case 𝜑 𝐹U𝐺 𝜓 :

By assumption we know there is some transition in \𝜌 that satisfies 𝐺 . Necessarily, it must

appear in 𝜌 , otherwise, \ must not be silent. Let 𝜌 ′′\ ′ be this partition. Since \ is silent, 𝜌 ′′ must

be some \𝜌 ′. We may equivalently partition 𝜌 into 𝜌 ′\ ′. Using the IH we may then prove each

of the remaining conditions to show 𝜌 |= 𝜑 𝐹U𝐺 𝜓 .

Case 𝜑 𝐹U 𝜓 : Either the split of \𝜌 into 𝜌 ′ and \ ′ occurs in \ or in 𝜌 . In the first case, we can

split 𝜌 into 𝜖 and 𝜌 and then need only prove 𝜌 |= 𝜓 . This may be accomplished using the IH and

knowledge that \ ′ of which 𝜌 is a suffix satisfied𝜓 . The second case proceeds similarly as the 𝐹U𝐺

case.

Case G𝜑 :
By assumption, every suffix of \𝜌 satisfies 𝜑 . Clearly, every suffix of 𝜌 must then satisfy 𝜑 . Thus

we many conclude 𝜌 |= G𝜑 .

□

Before proceeding with our main proof. Let 𝑃 be a program that is divergence preserving weakly

simulated by program𝑄 . We define when a run of 𝑃 is similar to a run of𝑄 (according to simulation

relation 𝑅). We say the run 𝜌𝑃 is similar to the run 𝜌𝑄 , when 𝜌𝑄 is the sequence of transitions

witnessing the simulation for each transition in 𝜌𝑃 . If 𝜌𝑃 is a maximal run, then so is 𝜌𝑄 , and if 𝜌𝑃
ends in an infinite silent suffix, then 𝜌𝑄 ’s corresponding suffix must be the sequence of transitions

witnessing the divergence preserving property.

We now proceed with our main proof of Theorem 2.4. For which we prove the more general case:

Let 𝑃 and 𝑄 be programs that are related by the divergence preserving weak simulation 𝑅. Let 𝜑

be any ∀𝐴𝐶𝑇𝐿∗ -{𝑋𝑝 , 𝑋𝜏 } formula, and 𝜌𝑃 and 𝜌𝑄 are runs of 𝑃 and 𝑄 respectively. If 𝜌𝑃𝑅𝜌𝑄 and

𝜌𝑄 |= 𝜑 then 𝜌𝑃 |= 𝜑 .
We proceed by induction on 𝜌𝑄 |= 𝜑 .

Case true: necessarily 𝜌𝑃 |= true.

Case false: the hypothesis 𝜌𝑄 |= false is impossible.

Case 𝜑 ∧𝜓 :
By assumption 𝜌𝑄 |= 𝜑 and 𝜌𝑄 |= 𝜓 . By the IH, 𝜌𝑃 |= 𝜑 and 𝜌𝑃 |= 𝜓 . Thus 𝜌𝑃 |= 𝜑 ∧𝜓 .

Case 𝜑 ∨𝜓 :
By assumption, either 𝜌𝑄 |= 𝜑 or 𝜌𝑄 |= 𝜓 . By the IH, either 𝜌𝑃 |= 𝜑 or 𝜌𝑃 |= 𝜓 . Thus 𝜌𝑃 |= 𝜑 ∨𝜓 .

Case ∀𝜑 :

, Vol. 1, No. 1, Article . Publication date: February 2024.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Proving Weak Simulation via Strategy Synthesis 33

Let 𝜌 ′
𝑃
be any maximal run from first (𝜌𝑃). We construct a new run 𝜌 ′

𝑄
that is 𝑅-related to 𝜌 ′

𝑃
.

For each transition of 𝜌 ′
𝑃
we concatenate the transitions that witness the simulation property’s

observational equivalence condition. If 𝜌 ′
𝑃
has an infinite silent suffix, then we match each

transition of the suffix using the transitions witnessing the divergence preserving property for

the suffix. By construction 𝜌 ′
𝑃
𝑅𝜌 ′

𝑄
. Necessarily, 𝜌 ′

𝑄
is also maximal. By assumption, 𝜌 ′

𝑄
|= 𝜑 . By

the IH, 𝜌 ′
𝑃
|= 𝜑 and thus 𝜌𝑃 |= ∀𝜑 .

Case 𝜑 𝐹U𝐺 𝜓 :

Clearly, 𝜌𝑃 and 𝜌𝑄 must be observationally equivalent. Since we know there is some transition

in 𝜌𝑄 that satisfies𝐺 , there must be a transition of 𝜌𝑃 that similarly satisfies𝐺 . We partition 𝜌𝑃
into 𝜌 ′

𝑃
\𝑃 at this transition. We now partition 𝜌𝑄 into 𝜌 ′

𝑄
𝜌\𝑄 such that 𝜌 ′

𝑄
is 𝑅-related to 𝜌 ′

𝑃
,

similarly for \𝑄 and \𝑃 . And 𝜌 is the sequence of transitions witnessing the observationally

equivalent sequence of transitions to the transition in 𝜌𝑃 that satisfies𝐺 . Since every transition

of 𝜌 ′
𝑄
must either be silent or satisfy 𝐹 , we may conclude that every transition of 𝜌 ′

𝑃
holds

similarly. Let 𝜌 ′ and \ be the partition of 𝜌 that splits on the transition that satisfies 𝐺 . For

each 𝜌 ′
𝑃
≤ [𝑃 < \𝑃 , we can use the fact that there is some 𝜌 ′

𝑄
≤ [𝑄 ≤ \𝑄 such that [𝑃𝑅[𝑄 and

[𝑄 |= 𝜑 . By the IH, it must be that [𝑃 |= 𝜑 . We additionally know that 𝜌 ′ |= 𝜑 . We use Lemma C.1

to show that 𝜌 |= 𝜑 . Using the IH, we may conclude that the transition of 𝜌𝑃 satisfying 𝐺 must

also satisfy 𝜑 . We then use Lemma C.2, the IH, and the assumption that \ ′\𝑄 |= 𝜓 to conclude

that \𝑃 |= 𝜓 . Thus we may conclude that 𝜌𝑃 |= 𝜑 𝐹U𝐺 𝜓 .

Case 𝜑 𝐹U𝜓 : This case proceeds similarly as the preceding case.

Case G𝜑 :
Let 𝜌 ′

𝑃
be any suffix of 𝜌𝑃 . We denote with 𝜌 ′

𝑄
the suffix of 𝜌𝑄 such that 𝜌 ′

𝑃
𝑅𝜌 ′

𝑄
. Since 𝜌 ′

𝑄
is

a suffix of 𝜌𝑄 we know that 𝜌 ′
𝑄
|= 𝜑 . We use the IH to prove 𝜌 ′

𝑃
|= 𝜑 . Thus we may conclude

𝜌𝑃 |= G𝜑 .

□

Theorem 3.1. The contextual simulation {P} src ≲ tgt {Q} is valid if and only if Verifier has a
winning strategy for G({P} src ≲ tgt {Q}).

Proof of Theorem 3.1.

By assumption, src and tgt are over disjoint variables say𝑋 and 𝑌 . Given a valuation _ : 𝑋 ∪𝑌 → Z,
we use _ |𝑋 to denote the valuation equivalent to _ restricted to the variables in 𝑋 and analogously

for _ |𝑌 .
Case⇒:

Let 𝑅 be the weak simulation relation witnessing |= {P} src ≲ tgt {Q}.
We now construct Verifier’s strategy 𝑔𝑅 . Let 𝑠 = 𝑠0𝑠1 ...𝑠𝑛 be any position conforming to 𝑔𝑅 .

We begin by induction on 𝑛 to show that if 𝑠 conforms to 𝑔𝑅 and Falsifier has not made an

illegal move then if 𝑠𝑛 is a Verifier move then Verifier has a legal response 𝑔𝑅 (𝑠); otherwise, if
𝑠𝑛 = 𝐹

〈
𝑙src, 𝑙tgt, _

〉
then (𝑙src ⊲ _ |𝑋)𝑅(𝑙tgt ⊲ _ |𝑌) or (𝑙src = outsrc and 𝑙tgt = outtgt and ⟦Q⟧_ is true.

Case 𝑛 = 0:

By the initialization rule, Falsifier must choose a Falsifier place 𝐹
〈
insrc, intgt, _

〉
such that

⟦P⟧_ is true. By definition of weak simulation, necessarily (_ |𝑋 ⊲ insrc)𝑅(_ |𝑌 ⊲ intgt).
Case 𝑛 = 𝑛′ + 1:

Let 𝑖 ≤ 𝑛′ be the greatest index such that 𝑠𝑖 = 𝐹
〈
𝑙src, 𝑙tgt, _

〉
is a Falsifier place. By the

inductive hypothesis, _ |𝑋 ⊲ 𝑙src is 𝑅-related to _ |𝑌 ⊲ 𝑙tgt . By assumption 𝑠𝑖+1 is a legal move and

for every 𝑖 +1 < 𝑘 ≤ 𝑛, 𝑠𝑘 conforms to 𝑔𝑅 . Since 𝑠𝑖+1 is legal, it must be some𝑉
〈
𝛼, 𝑙 ′src, 𝑙tgt, _

′〉
such that (_ ⊲ 𝑙src)

𝛼−→src (_′ ⊲ 𝑙 ′src) (or 𝑙src = 𝑙 ′src = outsrc , 𝛼 = 𝜏 and _′ = _).

, Vol. 1, No. 1, Article . Publication date: February 2024.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Anon.

Because 𝑆 and𝑇 are over disjoint variables, clearly (_ |𝑋 ⊲ 𝑙src)
𝛼−→src (_′ ⊲ 𝑙 ′src) and _ |𝑌 = _′ |𝑌 .

By the definition of weak simulation there must be some sequence of transitions that witness

(_ |𝑦 ⊲ 𝑙tgt)
𝛼
=⇒ tgt (_tgt ⊲ 𝑙 ′tgt) where _′ |𝑋 ⊲ 𝑙src is 𝑅-related to _tgt ⊲ 𝑙

′
tgt (or 𝑙

′
src = outsrc and

𝑙tgt = outtgt and _′ |𝑋 ⊎ _tgt satisfies Q).
W.l.o.g. assume we always pick the same sequence of transitions if multiple such transitions

exist.

Let (_0 ⊲ 𝑙0)
𝛽1−→tgt ...

𝛽𝑚−→tgt (_𝑚 ⊲ 𝑙𝑚) be this sequence, where _0 = _ |𝑦 , 𝑙0 = 𝑙tgt , _𝑚 = _tgt ,

and ł𝑚 = 𝑙 ′tgt .
Let 𝛼 𝑗 be 𝜏 if for any 𝑗

′ ≤ 𝑗 𝛽 𝑗 is 𝛼 , otherwise let 𝛼 𝑗 be 𝛼 .

Note, by the definition of weak simulation 𝛽 𝑗 is either 𝜏 or 𝛼 (if 𝛼 ≠ 𝜏 then exactly one 𝛽 𝑗 is

𝛼). Thus, 𝛼𝑚 must be 𝜏 .

For each 1 ≤ 𝑗 ≤ 𝑚, our strategy chooses 𝑠𝑖+𝑗 to be 𝑉
〈
𝛼 𝑗 , 𝑙

′
𝑠 , 𝑙 𝑗 , _

′ |𝑋 ⊎ _ 𝑗
〉
(𝑔𝑟 (𝑠0...𝑠𝑖+𝑗) =

𝑉
〈
𝛼 𝑗 , 𝑙

′
𝑠 , 𝑙 𝑗 , _

′ |𝑥 ⊎ _ 𝑗
〉
).

For 𝑠𝑖+𝑚+1 our strategy chooses 𝐹
〈
𝑙 ′src, 𝑙

′
tgt, _

′ |𝑋 ⊎ _tgt
〉
(𝑔𝑟 (𝑠0 ...𝑠𝑖+𝑚+1) = 𝐹

〈
𝑙 ′src, 𝑙

′
tgt, _

′ |𝑋 ⊎ _′tgt
〉
).

By our assumption, Falsifier has not made an illegal move and every move chosen by Verifier

conforms to 𝑔𝑟 .

Thus every move 𝑠0, ..., 𝑠𝑖 must be legal (by assumption and the inductive hypothesis).

For each 𝑖 + 1 < 𝑘 ≤ 𝑖 +𝑚 + 1, 𝑠0...𝑠𝑘 is a legal position. Each Verifier choice from 𝑖 + 2 to

𝑖 +𝑚 + 1 is legal.

Necessarily 𝑛 ≤ 𝑖 +𝑚 + 1, otherwise 𝑖 was not the greatest index of a Falsifier node in

𝑠0...𝑠𝑛 . Clearly if 𝑛 < 𝑖 +𝑚 + 1, we may conclude that Verifier has a legal move (i.e. 𝑠𝑛+1). If
𝑛 = 𝑖 +𝑚 + 1, then necessarily _′ |′

𝑋
⊲ 𝑙 ′src is 𝑅-related to _tgt ⊲ 𝑙tgt or 𝑙𝑠 = outsrc and 𝑙tgt = outtgt

and ⟦Q⟧_′ |𝑋⊎_tgt is true.
We have proven the Lemma. Let 𝑝 be any play that conforms to 𝑔𝑅 . By the above lemma, none

of the three winning conditions for Falsifier are possible. Thus 𝑝 is won by Verifier and 𝑔𝑅 is a

winning strategy.

Case⇐:

Let 𝑔 be Verifier’s winning strategy for the game G({P} src ≲ tgt {Q}). For any play 𝑝 that

conforms to 𝑔, let 𝑅𝑝 = {(_ |𝑋 ⊲ 𝑙src, _ |𝑌 ⊲ 𝑙tgt) : 𝑝 ′ · 𝐹
〈
𝑙src, 𝑙tgt, _

〉
is a legal prefix of 𝑝}, relate

source and target program states associated to any Falsifier place in the play whose prefix is

legal.

Let 𝑅𝑔 =
⋃

𝑝 𝑅𝑝 be the union of every 𝑅𝑝 for every play 𝑝 that conforms to 𝑔.

𝑅𝑔 is a divergent preserving weak simulation relation witnessing |= {P} src ≲ tgt {Q}.
□

Theorem 3.6. If there is a well-labeled complete simulation game tree for {P} src ≲ tgt {Q}, then
Verifier has a winning strategy for G({P} src ≲ tgt {Q}).

Proof of Theorem 3.6.

Let L = ⟨⟨𝐹,𝑉 , 𝐸, 𝑟, 𝐿, 𝑆,𝑇 ⟩ ,Φ, 𝐾,𝐺,𝑋, ⊲,𝑚⟩ be any complete well-labeled simulation game tree for

{P} src ≲ tgt {Q}.
We formalize Places in Section 3 using 𝐹 -pred∗𝑒 as defined in Section 4 and letter which takes the

output of 𝐹 -pred∗𝑒 (a send or receive command or None) and a valuation and computes a letter

associated to the command (or 𝜏 for None).

, Vol. 1, No. 1, Article . Publication date: February 2024.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Proving Weak Simulation via Strategy Synthesis 35

letter(send 𝑚 chan(𝑐), _) = s(⟦𝑚⟧_, ⟦𝑐⟧_)
letter(receive 𝑥 chan(𝑐), _) = r(⟦𝑥⟧_, ⟦𝑐⟧_)

letter(None, _) = 𝜏

Places(𝑛) =
{
{𝐹 ⟨𝑆 (𝑛),𝑇 (𝑛), _⟩ : ⟦Φ(𝑛)⟧_ is true} if 𝑛 ∈ 𝐹{
𝑉
〈
letter(𝐹 -pred∗𝑒 (𝑛), _), 𝑆 (𝑛),𝑇 (𝑛), _

〉
: ⟦Φ(𝑛)⟧_ is true

}
if 𝑛 ∈ 𝑉

We now Formalize 𝑔 the strategy defined by Places (as described in Section 3).

Let 𝑝 ·𝑚 be any position ending in a Verifier place (𝑚 = 𝑉
〈
𝛼, ℓsrc, ℓtgt, _

〉
).

If𝑚 is not associated to any node (𝑚 ∉ Places(𝑛) for any node 𝑛). Then let 𝑔(𝑝 ·𝑚) be 𝐹
〈
ℓsrc, ℓtgt, _

〉
.

Otherwise, let 𝑛 be any node𝑚 is associated with (i.e.𝑚 ∈ Places(𝑛)). By definition of Places, 𝑛
must be a V-node.

Let 𝑛′ be any successor of 𝑛 such that the valuation of𝑚 satisfies the guard of the edge from 𝑛 to

𝑛′ (i.e. ⟦𝐺 (𝑛, 𝑛′)⟧_ is true).
If 𝐿(𝑛, 𝑛′) is observable, then let 𝑔(𝑝 ·𝑚) be𝑉 ⟨𝜏, ℓsrc,𝑇 (𝑛′), _′⟩, where (_ ⊲ ℓtgt)

𝛼−→tgt (_′ ⊲𝑇 (𝑛′)).
Note: by the consecution constraint, exactly one such transition of this form must exist.

If 𝐿(𝑛, 𝑛′) is unobservable and not a havoc command, then let 𝑔(𝑝 ·𝑚) be𝑉 ⟨𝛼, ℓsrc,𝑇 (𝑛′), _′⟩, where
(_ ⊲ ℓtgt)

𝜏−→tgt (_′ ⊲𝑇 (𝑛′)).
Note: by the consecution constraint, exactly one such transition of this form must exist.

If 𝐿(𝑛, 𝑛′) is havoc x. b, then let 𝑔(𝑝 ·𝑚) be 𝑉 ⟨𝛼, ℓsrc,𝑇 (𝑛′), _[𝑥 ↦→ 𝑐]⟩, where 𝑐 is ⟦𝐾 (𝑛, 𝑛′)⟧_ .
Note: by the consecution constraint, (_ ⊲ ℓtgt)

𝜏−→tgt (_[𝑥 ↦→ 𝑐] ⊲𝑇 (𝑛′)).

We have finished defining 𝑔. We now proceed to prove that 𝑔 is a winning strategy for G({P} src ≲
tgt {Q}).
Let 𝑝 =𝑚0𝑚1 ... be any play conforming to 𝑔.

We prove by induction (over prefixes of 𝑝), that Verifier does not make the first illegal move.

We additionally prove that if the prefix𝑚0...𝑚𝑛 is legal then𝑚𝑛 is associated to a node (or𝑚𝑛 =

𝑉 ⟨𝜏, ℓ𝑠 , ℓ𝑡 , _⟩ and 𝐹 ⟨ℓ𝑠 , ℓ𝑡 , _⟩ is associated to a node). and the node associatedwith𝑚𝑛 is the successor

of the node associated with𝑚𝑛−1.

Case𝑚0:

The first move is made by Falsifier, thus Verifier has not yet made an illegal move. For𝑚0 to

be legal it must take the form 𝐹
〈
insrc, intgt, _

〉
where _ satisfies P. By the initial constraint,𝑚0

must be associated to 𝑟 .

Case𝑚0...𝑚𝑛𝑚𝑛+1:
By the inductive hypothesis, Verifier did not make the first illegal move of the prefix𝑚0 ...𝑚𝑛 . If

𝑚0...𝑚𝑛 is not legal, then Falsifier must have made the first illegal move. And we have proved

the lemma.

Otherwise𝑚0...𝑚𝑛 is legal.

Case𝑚𝑛 = 𝐹
〈
ℓsrc, ℓtgt, _

〉
:

𝑚𝑛+1 was chosen by Falsifier, thus Verifier has not yet made an illegal move. If𝑚𝑛+1 is legal

then it must take the form 𝑉
〈
𝛼, ℓ ′src, ℓtgt, _

′〉
where (_ ⊲ ℓsrc)

𝛼−→src (_′ ⊲ ℓ ′src). Since𝑚𝑛 is

associated with some 𝐹 -node 𝑢, by the adequacy and consecution constraints, there must

be some successor of 𝑣 such that if 𝑣 ∈ 𝑉 then 𝑚𝑛+1 ∈ Places(𝑣); otherwise, 𝛼 = 𝜏 and

𝐹
〈
ℓ ′src, ℓtgt, _

′〉 ∈ Places(𝑣)
Case𝑚𝑛 = 𝑉

〈
𝛼, ℓsrc, ℓtgt, _

〉
:

𝑚𝑛+1 must be 𝑔(𝑚0...𝑚𝑛). Either𝑚𝑛 is associated to some node 𝑢 or it is not. If it is not,

then by the inductive hypothesis 𝛼 is 𝜏 and𝑚𝑛+1 = 𝐹
〈
ℓsrc, ℓtgt, _

〉
. By the consecution rules,

, Vol. 1, No. 1, Article . Publication date: February 2024.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Anon.

𝐹
〈
ℓsrc, ℓtgt, _

〉
must be associated to a node 𝑣 . (𝑚𝑛−1 must be associated to some node, and

𝑚𝑛+1 is associated with the chosen successor based on𝑚𝑛).

If𝑚𝑛 is associated to some node 𝑢, then𝑚𝑛+1 must be 𝑔(𝑚0...𝑚𝑛). As described above, by

the consecution rules𝑚𝑛+1 must be a legal move.𝑚𝑛+1 was computed by selecting some

successor node 𝑣 of 𝑢 such that 𝐺 (𝑢, 𝑣) is satisfied by _. Either𝑚𝑛+1 is associated with 𝑣

(if 𝑣 ∈ 𝑉) or it is not and the corresponding Verifier move is associated with 𝑣 . By this

point we can be assured𝑚𝑛+1’s letter to match must be 𝜏 , due to the observational matching

constraint.

We have now proven that for any conforming play 𝑝 Verifier has not made an illegal move. Thus

Falsifier cannot win the play by forcing Verifier to make an illegal move. The second win condition

of Falsifier is ruled out by the well-labeledness’s final constraint. The third win condition of Falsifier

is also ruled out by the well-foundedness constraints: for there to be an infinite sequence where

Verifier always passes or always continues, there must be a non well-founded cycle of 𝐹 -nodes or

𝑉 -nodes respectively.

Thus 𝑔 is a winning strategy for Verifier of G({P} src ≲ tgt {Q}). □

Theorem 4.1. Algorithm 1 is sound. For any contextual simulation, if Strategy-synthesis({P} src ≲
tgt {Q}) terminates with a simulation strategy, then |= {P} src ≲ tgt {Q}. If Strategy-synthesis

instead terminates with a simulation counter-strategy then ̸ |= {P} src ≲ tgt {Q}.

Proof of Theorem 4.1. The algorithm maintains the invariant that L is well-labeled. If the

algorithm terminates with a strategy L then we know the unwinding is complete and well-labeled.

Thus, we may then use Theorems 3.6 and 3.1 to conclude that |= {P} src ≲ tgt {Q}. Algorithm 1

terminates with a counter strategy, then Falsifier has a winning strategy, and so by Theorem 3.1

we may conclude that ̸ |= {P} src ≲ tgt {Q}. □

, Vol. 1, No. 1, Article . Publication date: February 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Programs
	2.2 Simulation

	3 Game Semantics of Simulation
	3.1 Semantic Simulation Game
	3.2 Simulation Game Unwindings

	4 Simulation Verification
	4.1 Expansion
	4.2 Covering

	5 Case Studies
	5.1 Token Passing Systems
	5.2 Distributed Protocols
	5.3 Performance

	6 Related work
	References
	A Syntactic Programs and Their CFG
	A.1 Message Passing Programs
	A.2 Control Flow Graphs

	B Extensions and Algorithmic Improvements
	B.1 Parfor: n-ary Parallel Repetition
	B.2 Partial Order Reduction of Unobservable Actions

	C Proofs

