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Holant, Dichotomy Theorems, and Interpolation

Holant

Framework to express counting problems on graphs.
Input: Graph.
Output: Number.

Dichotomy Theorem

Every problem in some class is either easy or hard
(i.e. computable in polynomial time or #P-hard).

Polynomial Interpolation

Main reduction technique for proving hardness.
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Proving Hardness

Essentially three reduction techniques:

Gadget Constructions

Generic term for some graph fragment.

Polynomial Interpolation
Degree (at most) n polynomial is uniquely defined by

n + 1 coefficients, or
evaluations at n + 1 (different) points.

(point, evaluation)’s −→ coefficients

Holographic Transformation

Change of basis
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#VertexCover

Definition

A vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex in the set.

X X

X X
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Systematic Approach to #VertexCover

G = (V ,E )

0

1

1 10

OR

OR OR

OR OR

OR

∏
(u,v)∈E

OR(σ(u), σ(v)) = 1 · 1 · 1 · 1 · 1 · 1 = 1
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Systematic Approach to #VertexCover
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Other Edge Constraints

Example

OR corresponds to #VertexCover

NAND corresponds to #IndependentSet

6= corresponds to #Bipartition

=⇒

corresponds to #Upset

OR

OR OR

OR OR

OR

NAND

NAND NAND

NAND NAND

NAND

6=

6= 6=

6= 6=

6=

=⇒

=⇒ =⇒

=⇒ =⇒

=⇒

=⇒

=⇒ =⇒

=⇒ =⇒

=⇒
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Generalize

Z (~G ; f ) =

∑
σ:V→{0,1}

∏
(u,v)∈E

OR(σ(u), σ(v))

Input Output
p q OR(p, q)

0 0 0

0 1 1

1 0 1

1 1 1

Input Output
p q f (p, q)

0 0 w

0 1 x

1 0 y

1 1 z

where w , x , y , z ∈ C
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Generalize

Partition Function:

Z (~G ; f ) =
∑
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Dichotomy Theorem

Theorem (Cai, Kowalczyk, W 12)

For 3-regular ~G ,

Z (~G ; f ) =
∑

σ:V→{0,1}

∏
(u,v)∈E

f (σ(u), σ(v))

is either computable in polynomial time or #P-hard.

Explicit form for tractable cases.
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Relation to Previous Work: Dichotomy Theorems

Previous work:

Symmetric f f (0, 1) = f (1, 0) (i.e. undirected graphs)
3-regular graphs with weights in

{0, 1} [Cai, Lu, Xia 08]
{0, 1,−1} [Kowalczyk 09]
R [Cai, Lu, Xia 09]
C [Kowalczyk, Cai 10]

k-regular graphs with weights in

R [Cai, Kowalczyk 10]
C [Cai, Kowalczyk 11]

This work:

Asymmetric f (i.e. directed graphs)
3-regular graphs with weights in

C
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Strategy for Proving #P-hardness

#3-Reg-VertexCover = Z3(~G ; OR) is #P-hard.

Our problem is Z3(~G ; f ).
Goal: simulate OR using f .

First step:
Z3(~G ; OR) ≤T Z3(~G ; {f } ∪ U)

where U is the set of all unary signatures.

Second step:
Z3(~G ; {f } ∪ U) ≤T Z3(~G ; f )

Obtain U via interpolation:

Construct unary signatures gi with evaluation points gi (0)
gi (1)

Distinct evaluation points ⇔ (gi (0), gi (1)) pairwise linearly independent
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Construction of Unary Signatures

Projective Gadget Recursive Gadget

Unary Signature

. . . . . .
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Signature Matrix

Definition

Weighted truth table for a signature g(a, b, c , d) = gabcd written as

SM(g) =


g 0000 g 0010 g 0001 g 0011

g 0100 g 0110 g 0101 g 0111

g 1000 g 1010 g 1001 g 1011

g 1100 g 1110 g 1101 g 1111


is called its signature matrix.

Row index (a, b) ∈ {0, 1}2

Column index (d , c) ∈ {0, 1}2

SM


 = SM


 · SM



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Example Signature Matrices

Example

SM


 = SM

  · SM




=

[
w x
y z

]⊗2


w 0 0 0
0 x 0 0
0 0 y 0
0 0 0 z



SM


 =

[
w x
y z

]⊗2


w 0 0 0
0 y 0 0
0 0 x 0
0 0 0 z
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Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices.

Consider matrix powers of a single matrix.

If this matrix has this property, then we are done.

SM


 =

[
w x
y z

]⊗2


w 0 0 0
0 x 0 0
0 0 y 0
0 0 0 z


Otherwise, some power k is a multiple of the identity matrix.
Using only k − 1 compositions creates an anti-gadget.

SM


 =

13 / 72
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Anti-Gadget Technique
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First Lemma Using Anti-Gadgets

Lemma

For w , x , y , z ∈ C, if

wz 6= xy,

wxyz 6= 0, and

|x | 6= |y |,
then there exists a recursive gadget whose matrix powers form an infinite
set of pairwise linearly independent matrices.

Corollary

For w , x , y , z ∈ C as above, Holant(f | =3) is #P-hard.
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#CSP(F) in Holant Framework

#CSP(F)

On input with (bipartite) constraint graph G = (V ,C ,E ), compute∑
σ:V→{0,1}

∏
c∈C

fc
(
σ |N(c)

)
,

where N(c) are the neighbors of c .

Holant(F)

On input graph G = (V ,E ), compute∑
σ:E→{0,1}

∏
v∈V

fv
(
σ |E(v)

)
,

where E (v) are the incident edges of v .
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#CSP(F) in Holant Framework

x
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#CSP(F) ≡T Holant(EQ | F),

where EQ = {=1,=2,=3, . . . } is the set of equalities of all arities.
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Visualizing a Holographic Transformation
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Symmetric Signatures

Definition

A symmetric signature is invariant under any permutation of its input.

Express by f = [f0, f1, . . . , fn] where fw is output for inputs with Hamming
weight w .

Example

OR2 = [0, 1, 1]

AND3 = [0, 0, 0, 1]

EVEN-PARITY4 = [1, 0, 1, 0, 1]

MAJORITY5 = [0, 0, 0, 1, 1, 1]

(=6) = EQUALITY6 = [1, 0, 0, 0, 0, 0, 1]

(=n) = [1, 0, . . . , 0, 1] =
(
1 0

)⊗n
+
(
0 1

)⊗n
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Example Holographic Transformation

Transformation by the Hadamard matrix H =

[
1 1
1 −1

]
.

(=n)H⊗n =
{(

1 0
)⊗n

+
(
0 1

)⊗n}
H⊗n

=
{(

1 0
)

H
}⊗n

+
{(

0 1
)

H
}⊗n

(mixed-product property)

=
(
1 1

)⊗n
+
(
1 −1

)⊗n
= [2, 0, 2, 0, 2, 0, 2, . . . ] (n + 1 entries)

= 2 · EVEN-PARITYn
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Some Signature Sets

Affine signatures A :

1 [1, 0, . . . , 0,±1]

2 [1, 0, . . . , 0,±i ]

3 [1, 0, 1, 0, . . . , 0 or 1]

4 [1,−i , 1,−i , . . . , (−i) or 1]

5 [0, 1, 0, 1, . . . , 0 or 1]

6 [1, i , 1, i , . . . , i or 1]

7 [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]

8 [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]

9 [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]

10 [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]

Product-type signatures P:

1 [0, x , 0]

2 [y , 0, . . . , 0, z ] (includes all unary signatures)
23 / 72



Some Signature Sets

Matchgate signatures M :

1 [αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn]

2 [αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn, 0]

3 [0, αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn]

4 [0, αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn, 0]

They satisfy

Parity condition

Geometric progression

Example

EQH = {2 · EVEN-PARITYn | n ∈ Z+}
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Dichotomy Theorem

Theorem (Guo, W 13)

Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆P, or F ⊆ HM ,
in which case the problem is efficiently computable.

Why HM instead of M ?

Because
Pl-#CSP(HM ) ≡T Pl-Holant (EQ | HM )

≡T Pl-Holant
(
EQH | H−1HM

)
≡T Pl-Holant (EQH |M )

≤T Pl-Holant(M )

is tractable by reduction to counting perfect matchings in planar graphs.
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Relation to Previous Work: Planar Dichotomy Theorems

[Cai, Lu, Xia 10]

Pl-#CSP(F) with real weights

Pl-Holant([a, b, c , d ]) with complex weights

[Cai, Kowalczyk 10]

Pl-#CSP([a, b, c]) with complex weights
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Proof Outline: Dependency Graph

#Pl-4Reg-EO

Arity 4
Pl-Holant(f )

Unary
Interpolation

Domain Pairing

Mixing Pinning
Dichotomy
Theorem
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Pinning

Graph Homomorphism

[Dyer, Greenhill 00]

[Bulatov, Grohe 05]

[Goldberg, Grohe
Jerrum, Thurley 10]

[Cai, Chen, Lu 10]

#CSP

[Bulatov, Dalmau 07]

[Dyer, Goldberg, Jerrum 09]

[Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]

[Cai, Lu, Xia 10]

[Huang, Lu 12]

Lemma (Dyer, Goldberg, Jerrum 09)

For complex weights, #CSP(F ∪ {[1, 0], [0, 1]}) ≤T #CSP(F).

Pl-#CSP(HM ∪ {[1, 0], [0, 1]}) #P-hard but Pl-#CSP(HM ) tractable

Lemma (Cai, Lu, Xia 10)
For any set of signatures F with weights,

Pl-Holant(EQH | F) is #P-hard (or in P)
m

Pl-Holant(EQH | F ∪ {[1, 0], [0, 1]}) is #P-hard (or in P)
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Pl-#CSP(HM ∪ {[1, 0], [0, 1]}) #P-hard but Pl-#CSP(HM ) tractable

Lemma (Cai, Lu, Xia 10)
For any set of signatures F with real weights,

Pl-Holant(EQH | F) is #P-hard (or in P)
m

Pl-Holant(EQH | F ∪ {[1, 0], [0, 1]}) is #P-hard (or in P)
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Outline

1 Introduction

2 Previous Work
Dichotomy for Z3(~G ; f )
Dichotomy for Pl-#CSP(F)
Dichotomy for Holant(F)

3 Current Work

4 Future Work



Holant Framework

Definition

A signature grid Ω = (G ,F) consists of

a graph G = (V ,E ),

a set of signatures F with {0, 1} inputs and a C output, and

fv is the signature on vertex v .

On input Ω, the goal is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

where E (v) is the edges incident to v .

Example

fv = [0, 1, 0, . . . , 0] = Exactly-One gives #PerfectMatching

fv = [1, 1, 0, . . . , 0] = At-Most-One gives #Matching

fv = [3, 0, 1, 0, 3] gives #4-Reg-EulerianOrientation

29 / 72



Holant Framework

Definition

A signature grid Ω = (G ,F) consists of

a graph G = (V ,E ),

a set of signatures F with {0, 1} inputs and a C output, and

fv is the signature on vertex v .

On input Ω, the goal is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

where E (v) is the edges incident to v .

Example

fv = [0, 1, 0, . . . , 0] = Exactly-One gives #PerfectMatching

fv = [1, 1, 0, . . . , 0] = At-Most-One gives #Matching

fv = [3, 0, 1, 0, 3] gives #4-Reg-EulerianOrientation

29 / 72



Holant Framework

Definition

A signature grid Ω = (G ,F) consists of

a graph G = (V ,E ),

a set of signatures F with {0, 1} inputs and a C output, and

fv is the signature on vertex v .

On input Ω, the goal is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

where E (v) is the edges incident to v .

Example

fv = [0, 1, 0, . . . , 0] = Exactly-One gives #PerfectMatching

fv = [1, 1, 0, . . . , 0] = At-Most-One gives #Matching

fv = [3, 0, 1, 0, 3] gives #4-Reg-EulerianOrientation

29 / 72



Holant Framework

Definition

A signature grid Ω = (G ,F) consists of

a graph G = (V ,E ),

a set of signatures F with {0, 1} inputs and a C output, and

fv is the signature on vertex v .

On input Ω, the goal is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

where E (v) is the edges incident to v .

Example

fv = [0, 1, 0, . . . , 0] = Exactly-One gives #PerfectMatching

fv = [1, 1, 0, . . . , 0] = At-Most-One gives #Matching

fv = [3, 0, 1, 0, 3] gives #4-Reg-EulerianOrientation

29 / 72



Holant Framework

Definition

A signature grid Ω = (G ,F) consists of

a graph G = (V ,E ),

a set of signatures F with {0, 1} inputs and a C output, and

fv is the signature on vertex v .

On input Ω, the goal is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

where E (v) is the edges incident to v .

Example

fv = [0, 1, 0, . . . , 0] = Exactly-One gives #PerfectMatching

fv = [1, 1, 0, . . . , 0] = At-Most-One gives #Matching

fv = [3, 0, 1, 0, 3] gives #4-Reg-EulerianOrientation

29 / 72



Holant Framework

Definition

A signature grid Ω = (G ,F) consists of

a graph G = (V ,E ),

a set of signatures F with {0, 1} inputs and a C output, and

fv is the signature on vertex v .

On input Ω, the goal is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

where E (v) is the edges incident to v .

Example

fv = [0, 1, 0, . . . , 0] = Exactly-One gives #PerfectMatching

fv = [1, 1, 0, . . . , 0] = At-Most-One gives #Matching

fv = [3, 0, 1, 0, 3] gives #4-Reg-EulerianOrientation

29 / 72



Tractable Cases for Holant(f )

Degenerate signatures

Signatures with arity 2

#CSP tractable cases

A

-transformable

P

-transformable

Vanishing signatures (i.e. Holant is always 0)

[1, i ] [1, i ]

1 · 1

+ i · i

= 0
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Single Signature Dichotomy

Theorem (Cai, Guo, W 13)

Holant(f ) is #P-hard unless

1 f is degenerate,

2 f is binary,

3 f is A -transformable,

4 f is P-transformable, or

5 f is vanishing,

which are computable in polynomial time.
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Signature Set Dichotomy

Theorem (Cai, Guo, W 13)

Holant(F) is #P-hard unless

1 F ⊆ {degenerate} ∪ {binary},
2 F is A -transformable,

3 F is P-transformable,

4 F ⊆ {vanishing} ∪ {special binary}, or

5 F ⊆ {“highly” vanishing} ∪ {special binary} ∪ {degenerate},
which are computable in polynomial time.
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Relation to Previous Work: Dichotomy Theorems

Single signature:

Holant([a, b, c, d ]) with complex weights [Cai, Huang, Lu 10]

Holant([a, b, c] |=k) with complex weights [Cai, Kowalczyk 11]

Signature set:

Holant∗(F) with complex weights [Cai, Lu, Xia 09]

Holantc(F) with complex weights [Cai, Huang, Lu 10]

#CSPd(F) with complex weights [Huang, Lu 12]

Holant(F) with real weights [Huang, Lu 12]
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Proof Outline: Dependency Graph

Arity 3 Arity 4

Vanishing

Single
Dichotomy

A -transformable
and

P-transformable

Main
Dichotomy
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Redundant Signature Matrix

Definition

4-by-4 matrix is redundant if it has

identical middle two rows and

identical middle two columns.

Example

SM([f0, f1, f2, f3, f4]) =


f0 f1 f1 f2

f1 f2 f2 f3

f1 f2 f2 f3

f2 f3 f3 f4


Let SM(f ) = Mf .
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Semi-group Isomorphism

Let RM4(C) be the set of 4-by-4 redundant matrices.

There is a semi-group isomorphism

ϕ : RM4(C)→ C3×3


a b b c
d e e f
d e e f
g h h i

 7→
a 2b c

d 2e f
g 2h i



Let ϕ(M) = M̃ and ψ = ϕ−1.
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Identity of RM4(C)

Let g have signature matrix

Mg =


1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1

 .
Then

M̃g =

1 0 0
0 1 0
0 0 1

 .

Lemma (Cai, Guo, W 13)

#EO ≡T Holant([3, 0, 1, 0, 3]) ≤T

Holant(g)

≤T Holant(f )

for any f such that Mf is redundant and M̃f is nonsingular.
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Interpolation

Consider an instance Ω of
Pl-Holant(g) with n vertices.

g

g g

g

g g

g g

Construct instance Ωs of
Pl-Holant(f ) using Ns

Ns

Ns Ns

Ns

Ns Ns

Ns g

f

N1

f f

N2

f
Ns

Ns+1
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Interpolation

By the Jordan normal form of M̃f , there exists T ,Λ ∈ C3×3 such that

M̃f = T ΛT−1 = T

λ1 b1 0
0 λ2 b2

0 0 λ3

T−1,

where b1, b2 ∈ {0, 1}.

Only consider b1 = b2 = 1.
Thus λ1 = λ2 = λ3

= λ 6= 0 by assumption.

We have
(M̃f )s = T ΛsT−1,

where

Λ =

λ 1 0
0 λ 1
0 0 λ

 .
Notice

M̃g = T M̃gT−1.
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Interpolation

To obtain Ωs from Ω,
effectively replace Mg with MNs . = (Mf )s .

1 To obtain Ωs from Ω,
replace Mg with ψ(T )Mgψ(T−1) to obtain Ω′.
(Holant unchanged)

2 Then replace Mg with ψ(Λs).
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Stratify

We stratify all assignments to Mg in Ω′ according to:

(0, 0) or (2, 2) i many times;

(1, 1) j many times;

(0, 1) k many times;

(1, 2) ` many times;

(0, 2) m many times.

All other assignments contribute a factor 0.

ψ(Λs) = ψ



λs sλs−1

(s
2

)
λs−2

0 λs sλs−1

0 0 λs


 =


λs sλs−1

2
sλs−1

2

(s
2

)
λs−2

0 λs

2
λs

2 sλs−1

0 λs

2
λs

2 sλs−1

0 0 0 λs


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Linear System

Let cijk`m be the sum over all such assignments of the products of
evaluations from ψ(T ) and ψ(T−1) but excluding Mg on Ω′.

HolantΩ =
∑
i+j=n

cij000

2j
.

The value of the Holant on Ωs , for s ≥ 1, is

HolantΩs =
∑

i+j+k+`+m=n

λ(i+j)s
(
sλs−1

)k+` (
s(s − 1)λs−2

)m ( cijk`m
2j+k+m

)
= λns

∑
i+j+k+`+m=n

sk+`+m(s − 1)m
( cijk`m
λk+`+2m2j+k+m

)
.

In the linear system,

rows are indexed by s and

columns are indexed by (i , j , k, `,m).
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Rank Deficient

The linear system is rank deficient. Define new unknowns for any

0 ≤ q,m and q + m ≤ n,

xq,m =
∑

k+`=q
i+j=n−q−m

( cijk`m
λk+`+2m2j+k+m

)
.

Holant of Ω is now x0,0.

New linear system is

HolantΩs = λns
∑

p+q+m=n

sq+m(s − 1)mxq,m.

Let αq,m = sq+m(s − 1)m.
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Rank Deficient Again

New system still rank deficient since

sq+m(s − 1)m = sq−1+m(s − 1)m + sq−2+m+1(s − 1)m+1.

Thus,
αq,m

xq,m

= αq−1,m

xq,m

+ αq−2,m+1

xq,m

.

We recursively define new variables

xq−1,m← xq,m + xq−1,m

xq−2,m+1← xq,m + xq−2,m+1

from q = n down to 2.
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x0,0 x0,1 x0,2 · · · x0,n−2 x0,n−1 x0,n

x1,0 x1,1 x1,2 · · · x1,n−2 x1,n−1

x2,0 x2,1 x2,2 · · · x2,n−2

...
...

...

xn−2,0 xn−2,1 xn−2,2

xn−1,0 xn−1,1

xn,0
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x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 x0,6

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5

x2,0 x2,1 x2,2 x2,3 x2,4

x3,0 x3,1 x3,2 x3,3

x4,0 x4,1 x4,2
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Finally Full Rank

The 2n + 1 unknowns that remain are

x0,0, x1,0, x0,1, x1,1, x0,2, x1,2, . . . , x0,n−1, x1,n−1, x0,n

and their coefficients in row s are

1, s, s(s−1), s2(s−1), s2(s−1)2, . . . , sn−1(s−1)n−1, sn(s−1)n−1, sn(s−1)n.

The κth entry is a monic polynomial in s of degree κ (for 0 ≤ κ ≤ 2n).
Then sκ is a linear combination of the first κ entries.

Thus, our system is a full rank Vandermonde times an upper triangular
matrix with 1’s on the diagonal.

Therefore, we can solve for x0,0 = HolantΩ.
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Higher Domain Holant

Definition

A signature grid Ω = (G ,F) consists of

a graph G = (V ,E ),

a set of signatures F with {0, 1} inputs and a C output, and

fv is the signature on vertex v .

On input Ω, the goal is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)).

Example

fv = ALL-DISTINCT gives #κ-EdgeColoring
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Current Result

Theorem (Cai, Guo, W, Xia)

Counting κ-edge colorings over planar r -regular graphs is #P-hard
for κ ≥ r ≥ 3.
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Relation to Previous Work: Dichotomy Theorems

[Cai, Lu, Xia 13]

Holant∗(f ) with domain size κ = 3 such that

f has arity 3,
f is symmetric, and
f has complex weights.
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Proof Overview

Theorem (Vertigan 05)

For any x , y ∈ C, the problem of computing the Tutte polynomial at (x , y)
over planar graphs is #P-hard unless (x − 1)(y − 1) ∈ {1, 2} or
(x , y) ∈ {(1, 1), (−1,−1), (j , j2), (j2, j)}, where j = e2πi/3. In each of
these exceptional cases, the computation can be done in polynomial time.

For κ = r , reduction from
Tutte(κ+ 1, κ+ 1) for planar graphs

For κ > r , reduction from
Tutte(1− κ, 0) for planar graphs
(i.e. counting κ-VertexColoring)
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Asymmetric Signatures

Holant over General Graphs:
[Cai, Lu, Xia 11]

Dichotomy for Holant∗(F) with complex weights

Ideas:

My Z3(~G ; f ) dichotomy with Cai and Kowalczyk should be useful.

Plan to extend this dichotomy to Z4(~G ; f ).

#CSP over Planar Graphs:

Dichotomy for #CSP(F) with asymmetric signatures and complex
weights but only over general graphs. [Cai, Lu, Xia 09]

No dichotomy theorems for asymmetric signatures over planar graphs.

True test for the universality of matchgates.
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Pl-Holant(F) with Symmetric Signatures

My Pl-#CSP(F) dichotomy with Guo is crucial.

Need to extend #CSPd(F) dichotomy by Huang and Lu to Pl-#CSPd(F).

Expect the rest of the proof to be similar to previous work
(i.e. dichotomy for Holant(F) over general graphs with Cai and Guo)
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Graph Polynomials

Example

Chromatic polynomial χ(λ)

Tutte polynomial T(x , y)

Holant is a graph polynomial with an infinite number of indeterminates.

Give back to the Tutte polynomial via consideration of regular graphs.
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Summary

Previous Work:
Dichotomy theorems for

1 Z3(~G ; f ),

2 Pl-#CSP(F), and

3 Holant(F).

Current Work:
#P-hardness of #κ-EdgeColoring problems.

Future Work:

Extend all my results.

Consider other graph polynomials.
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Thank You



Eulerian Orientation

Definition

At each vertex in an Eulerian orientation of a graph,

in-degree equals out-degree.

Example
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Theorem and Proof Overview

Theorem (Guo, W 13)

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

Proof.

Reduction from the evaluation of the Tutte polynomial at the point (3, 3)
for planar graphs:

Pl-Tutte(3, 3) ≤T
...

≤T #Pl-4Reg-EO
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Tutte Polynomial

Theorem (Vertigan 05)

For any x , y ∈ C, the problem of computing the Tutte polynomial at (x , y)
over planar graphs is #P-hard unless (x − 1)(y − 1) ∈ {1, 2} or
(x , y) ∈ {(1, 1), (−1,−1), (j , j2), (j2, j)}, where j = e2πi/3. In each of
these exceptional cases, the computation can be done in polynomial time.

H3,3L

- 2 - 1 1 2 3 4
x

- 2

- 1

1

2

3

4

y
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Medial Graph

Definition

For a connected plane graph G , its medial graph H has a vertex for each
edge of G and two vertices in H are joined by an edge for each face of G
in which their corresponding edges occur consecutively.

Example
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The Connection

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let O(H) be the set of all Eulerian
orientations in the medial graph H of G . Then

2 · Pl-TutteG (3, 3) =
∑

O∈O(H)

2β(O),

where β(O) is the number of saddle vertices in the orientation O, i.e.
vertices in which the edges are oriented “in, out, in, out” in cyclic order.

Signature matrix:

Let f (w , x , y , z) = f wxyz

be an arity 4 signature

Row index is (w , x),
BUT the column index is (z , y)
(order reversed)

Mf =


f 0000 f 0010 f 0001 f 0011

f 0100 f 0110 f 0101 f 0111

f 1000 f 1010 f 1001 f 1011

f 1100 f 1110 f 1101 f 1111


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Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

Pl-Tutte(3, 3) ≡T Pl-Holant

(
[0, 1, 0] |

[
0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

])
≤T

...

≤T Pl-Holant([0, 1, 0] | [0, 0, 1, 0, 0])

≤T #Pl-4Reg-EO
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Holographic Transformations

Let Z =

[
1 1
i −i

]
.

Then

Pl-Holant ([0, 1, 0] | f ) ≡T Pl-Holant
(
[0, 1, 0](Z−1)⊗2 | Z⊗4f

)
≡T Pl-Holant

(
[1, 0, 1]/2 | 4f̂

)
≡T Pl-Holant(f̂ ),

where

Mf̂ =


2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

 .
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Holographic Transformations

Similarly,

Pl-Holant ([0, 1, 0] | [0, 0, 1, 0, 0])

≡T Pl-Holant
(
[0, 1, 0](Z−1)⊗2 | Z⊗4[0, 0, 1, 0, 0]

)
≡T Pl-Holant ([1, 0, 1]/2 | 2[3, 0, 1, 0, 3])

≡T Pl-Holant([3, 0, 1, 0, 3]).
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Proof Overview
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Planar Tetrahedron Gadget

Assign [3, 0, 1, 0, 3] to every vertex of this gadget...

...to get a signature 32ĝ with

Mĝ =
1

2


19 0 0 7
0 7 5 0
0 5 7 0
7 0 0 19

 .
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Rotationally Symmetric

Mf̂ =


2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

 Mĝ =
1

2


19 0 0 7
0 7 5 0
0 5 7 0
7 0 0 19



(a) A counterclockwise rotation. (b) Movement of signature matrix entries
under a counterclockwise rotation.
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Interpolation

Suppose that f̂ appears n times in Ω of Pl-Holant(f̂ ).
Construct instances Ωs of Holant(ĝ) indexed by s ≥ 1.
Obtain Ωs from Ω by replacing each f̂ with Ns (ĝ assigned to all vertices).

N1 N2

Ns

Ns+1

To obtain Ωs from Ω,
we effectively replace Mf̂ with MNs = (Mĝ )s .
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Interpolation

Let T =


0 0 1 1
1 1 0 0
−1 1 0 0
0 0 −1 1

.

Then

Mf̂ = T Λf̂ T−1 = T


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

T−1

and

Mĝ = T ΛĝT−1 = T


1 0 0 0
0 6 0 0
0 0 6 0
0 0 0 13

T−1.

Follows from being both rotationally symmetric and complement invariant.
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Stratify

Λf̂ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 Λĝ =


1 0 0 0
0 6 0 0
0 0 6 0
0 0 0 13


To obtain Ωs from Ω,
effectively replace Mf̂ with MNs = (Mĝ )s .

1 To obtain Ωs from Ω,
replace Mf̂ with T Λf̂ T−1 to obtain Ω′. (Holant unchanged)

2 Then replace Λf̂ with (Λĝ )s .

We only need to consider the assignments to Λf̂ that assign

0000 j many times,

0110 or 1001 k many times, and

1111 ` many times.

Let cjk` be the sum over all such assignments of the products of
evaluations from T and T−1 but excluding Λf̂ on Ω′.
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Linear System

Λf̂ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 Λĝ =


1 0 0 0
0 6 0 0
0 0 6 0
0 0 0 13


Then

Pl-HolantΩ =
∑

j+k+`=n

3`cjk`

and
Pl-HolantΩs =

∑
j+k+`=n

(6k13`)scjk`

is a full rank Vandermonde system (row index s, column index (j , k , `)).
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Proof Overview

Theorem

Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Proof.

Pl-Tutte(3, 3) ≡T Pl-Holant

(
[0, 1, 0] |

[
0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

])
≡T Pl-Holant

([
2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

])
≤T Pl-Holant

(
1
2

[
19 0 0 7
0 7 5 0
0 5 7 0
7 0 0 19

])
≤T Pl-Holant([3, 0, 1, 0, 3])

≡T Pl-Holant ([0, 1, 0] | [0, 0, 1, 0, 0])

≡T#Pl-4Reg-EO

Major proof
techniques:

1 Holographic
transformation

2 Gadget
construction

3 Interpolation
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