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@ Holant

o Framework to express counting problems on graphs.
o Input: Graph.
o Output: Number.

@ Dichotomy Theorem

o Every problem in some class is either easy or hard
(i.e. computable in polynomial time or #P-hard).

@ Polynomial Interpolation
e Main reduction technique for proving hardness.
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Proving Hardness

Essentially three reduction techniques:

@ Gadget Constructions
o Generic term for some graph fragment.

@ Polynomial Interpolation
o Degree (at most) n polynomial is uniquely defined by

@ n -+ 1 coefficients, or
@ evaluations at n+ 1 (different) points.

e (point, evaluation)'s — coefficients

@ Holographic Transformation
o Change of basis
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o G=(V,E)
e o:V—{01}

Il OR(e(v),o(v))=1-1-0-1-1-1=0
(u,v)EE



Systematic Approach to #VertexCover

o G=(V,E)

e T
/s
0/ \0

#VERTEXCOVER(G) = Y [ OR(e(u),o(v))

0:V—{0,1} (u,v)€E
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Other Edge Constraints

@ OR corresponds to #VERTEXCOVER

o NAND corresponds to #INDEPENDENTSET
@ 4 corresponds to #BIPARTITION
@ —— corresponds to #UPSET
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Input || Output
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Generalize

> Il fe(w).ow)

o:V—{0,1} (u,v)€EE

Input || Output Input || Output
p| q| OR(p,q) plaql 7(p.q)
00 0 0|0 w
0|1 1 0|1 X
110 1 110 y
111 1 1|1 z

where w,x,y,z € C



Generalize

Partition Function:

z(6;r)= >[I flo(w).o(v))

o:V—{0,1} (u,v)€EE

Input || Output Input || Output
p| q| OR(p,q) plaql 7(p.q)
00 0 0|0 w
0|1 1 0|1 X
110 1 110 y
111 1 1|1 z

where w,x,y,z € C



Dichotomy Theorem

Theorem (Cai, Kowalczyk, W 12)
For 3-regular G,
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Dichotomy Theorem

Theorem (Cai, Kowalczyk, W 12)

For 3-regular G,
2(G:f)= > II flo(w),o(v)
o:V—{0,1} (u,v)EE

is either computable in polynomial time or #P-hard.
Explicit form for tractable cases.
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Relation to Previous Work: Dichotomy Theorems

Previous work:
e Symmetric f f(0,1) = f(1,0) (i.e. undirected graphs)
o 3-regular graphs with weights in
e {0,1} [Cai, Lu, Xia 08]
o {0,1,—1} [Kowalczyk 09]

e R [Cai, Lu, Xia 09]
o C [Kowalczyk, Cai 10]
o k-regular graphs with weights in
o R [Cai, Kowalczyk 10]
o C [Cai, Kowalczyk 11]
This work:
@ Asymmetric f (i.e. directed graphs)
o 3-regular graphs with weights in
e C
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Strategy for Proving #P-hardness

#3-REG-VERTEXCOVER = Z3(G; OR) is #P-hard.

Our problem is Z3(G; f).
Goal: simulate OR using f.

First step:
Z3(G; OR) <T Z3(G; {f} UZ/[)

where U is the set of all unary signatures.

Second step: . B
Z3(G; {f}Ul) <t Z3(G; )

Obtain U via interpolation:

@ Construct unary signatures g; with evaluation points ?8

e Distinct evaluation points < (gi(0), gi(1)) pairwise linearly independent
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Projective Gadget Recursive Gadget
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W
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Signature Matrix

Weighted truth table for a signature g(a, b, ¢, d) = g2>°@ written as

0000 0010 0001 0011

go1oo gono go1o1 go111

g g g Z
SM(g) = g1000 g1010 g1°°1 g1o11

g1100 g1110 g1101 g1111

is called its signature matrix.
@ Row index (a, b) € {0,1}2
@ Column index (d, c) € {0,1}2
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is called its signature matrix.
@ Row index (a, b) € {0,1}2
@ Column index (d, c) € {0,1}2
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Example Signature Matrices

SM

1 ®2

—9—
-SM
-
0 0 O]
x 0 0
0 y O
0 0 z]

o oo s
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Example Signature Matrices

SM

SM

182
. |:W X

-SM

o oo s

o oo s

o O X O

O o< o

o< O o

O X O O
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Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices.
Consider matrix powers of a single matrix.

If this matrix has this property, then we are done.

M I _ [W x] 10 x 00
y z 0 0 y O
— 0 0 0 z

Otherwise, some power k is a multiple of the identity matrix.
Using only kK — 1 compositions creates an anti-gadget.

-1

i - w 0 0 O

SM ! _ w o X 0 x 0 O
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Anti-Gadget Construction

Need infinite set of pairwise linearly independent matrices.
Consider matrix powers of a single matrix.

If this matrix has this property, then we are done.

SM _|w X 10 x 0 0
Cly z 0 0 y O
— 0 0 0 z

Otherwise, some power k is a multiple of the identity matrix.
Using only kK — 1 compositions creates an anti-gadget.

1)

-1

O O X O
o o o
N O O O

*
v
oo o s
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Anti-Gadget Technique
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Anti-Gadget Technique

-1

) 0 0 O
____‘___, w —1
oy | []o x 00 w x]??
___‘___) o 0 0 y O y z
— 0 0 0 =z
e w000
o lwox 0 v 0O
M I [y z] 0 0 x O
— 0 0 0 ¢z

Composition of these two gadgets yields...
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Anti-Gadget Technique

(e w 0 00 o\ 1
SM ! _ 0 x 0O WX
___‘___) 0 0 y O y z
— 0 0 0 2z
o lwox 0 v 0O
M I - [y z] 0 0 x O
— 0 0 0 2z
Composition of these two gadgets yields...
— 1 0 00
; 0 £ 00
SM . = o
D 0 0 v 0
0 0 01

14 /72



First Lemma Using Anti-Gadgets

Lemma

Forw,x,y,z € C, if
® wz # xy,
o wxyz # 0, and
o [x| # |y

then there exists a recursive gadget whose matrix powers form an infinite
set of pairwise linearly independent matrices.

1
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First Lemma Using Anti-Gadgets

Lemma

Forw,x,y,z € C, if
® wz # xy,
o wxyz # 0, and
o [x| # |y

then there exists a recursive gadget whose matrix powers form an infinite
set of pairwise linearly independent matrices.

1

For w,x,y,z € C as above, Holant(f | =3) is #P-hard.

15/72
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F = {EVEN-PARITY3, MAJORITY3, OR,}

EVEN-PARITY3(x, y,z) A MAJORITY3(x,y, z) A ORx(x, y)
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Constraint Graph for #CSP(F) Instance
F = {EVEN-PARITY3, MAJORITY3, OR,}

EVEN-PARITY3(x, y,z) A MAJORITY3(x,y, z) A ORx(x, y)

X EVEN-PARITY3 X EVEN-PARITY3
y MAJORITY Q:
z OR» MAJORITY

VALID instance of PI-#CSP({EVEN-PARITY3, MAJORITY3,0R>})

16 /72



#CSP(F) in Holant Framework

#CSP(F)
@ On input with (bipartite) constraint graph G = (V, C, E), compute

> I %@l

o:V—{0,1} ceC

where N(c) are the neighbors of c.
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#CSP(F) in Holant Framework

#CSP(F)
@ On input with (bipartite) constraint graph G = (V, C, E), compute

> I %@l

o:V—{0,1} ceC

where N(c) are the neighbors of c.

Holant(F)
@ On input graph G = (V, E), compute

> IIA@lew).

7:E—{0,1} veV

where E(v) are the incident edges of v.
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#CSP(F) in Holant Framework
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#CSP(F) in Holant Framework
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#CSP(F) in Holant Framework

EVEN-PARITY3

MAJORITY;

#CSP(F) =1 Holant(£Q | F),

where £Q = {=1,=2,=3, ...} is the set of equalities of all arities.

18 /72
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Visualizing a Holographic Transformation
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(1001),®(1001),®(1001), -

X

OR3

NAND3(x, y, z)
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Visualizing a Holographic Transformation

1001),7T®2®(1001),T®2® (100 1), T®(T-1)®6
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TT-1
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Visualizing a Holographic Transformation

(1001),T*2®(1001), T®?® (100 1),T%? ((T—1)®3)®2

TT-1

OR3

NANDs(x, y, z)
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Visualizing a Holographic Transformation
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Definition

A symmetric signature is invariant under any permutation of its input.
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Symmetric Signatures

Definition

A symmetric signature is invariant under any permutation of its input.
Express by f = [fy, f1,. .., ;] where £, is output for inputs with Hamming
weight w.

Example
OR, =[0,1,1]
AND3 = [0,0,0, 1]
EVEN-PARITY,4 = [1,0,1,0,1]
MAJORITYs =[0,0,0,1,1, 1]
(=6) = EQUALITYs =[1,0,0,0,0,0,1]

(=n)=[1,0,...,0,1]:(1 0)®n+(0 1)®n

21/72



Example Holographic Transformation

Transformation by the Hadamard matrix H = E _11]
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Example Holographic Transformation

Transformation by the Hadamard matrix H = E _11]

DH = {(1 0)*"+ (0 1)} HE"
={(1 0) H}®n +{(0 1) H} (mixed-product property)
=(1 )"+ -
=[2,0,2,0,2,0,2,...] (n+ 1 entries)
=2 EVEN-PARITY,

22/72



Some Signature Sets

Affine signatures o7:

[1,0,...,0,%1]

[1,0,...,0, %]

[1,0,1,0,...,0 or 1]
[1,—i,1,—i,...,(—=i) or 1]
[0,1,0,1,...,0 or 1]

[1,i,1,0,....ior1]
[1,0,-1,0,1,0,—1,0,...,0 or 1 or (—1)]
[1,1,-1,-1,1,1,-1,-1,...,1 or (~1)]
[0,1,0,-1,0,1,0,—1,...,0 or 1 or (—1)]
[1,-1,-1,1,1,-1,—1,1,...,1 or (—1)]

6000000000

Product-type signatures &:
Q [0, x,0]
@ [y,0,...,0,z] (includes all unary signatures)
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Some Signature Sets

Matchgate signatures .Z:
Q@ [",0,a"713,0,...,0,a8" 10,5
Q [a",0,a"13,0,...,0,a3"1,0,3",0]
© [0,a",0,a"715,0,...,0,a8"1,0, 3"
Q [0,a",0,a"713,0,...,0,ap"1,0,5",0]

They satisfy
@ Parity condition

@ Geometric progression
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Q [a",0,a"13,0,...,0,a3"1,0,3",0]
© [0,a",0,a"715,0,...,0,a8"1,0, 3"
Q [0,a",0,a"713,0,...,0,ap"1,0,5",0]

They satisfy
@ Parity condition

@ Geometric progression

£QH = {2-EVEN-PARITY, | n € Z"}

24 /72
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Dichotomy Theorem
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PI-#CSP(F) is #P-hard unless F C </, F C #, or F C H#,
in which case the problem is efficiently computable.

Why H.7 instead of .Z7?

Because
PI-#CSP(H.#') =1 Pl-Holant (£Q | H.#)
=1 Pl-Holant (EQH | H™'H.%)
=7 Pl-Holant (EQH | /)
<71 PI-Holant(.#)

is tractable by reduction to counting perfect matchings in planar graphs.
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Relation to Previous Work: Planar Dichotomy Theorems

[Cai, Lu, Xia 10]
o PI-#CSP(F) with real weights
e Pl-Holant([a, b, ¢, d]) with complex weights

[Cai, Kowalczyk 10]
e PI-#CSP([a, b, c]) with complex weights
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Proof Outline: Dependency Graph

#Pl-4Reg-EO

[ Mixing '—)l Pinning D_Ii_chzcizmy

Arity 4
Pl-Holant(f)

Unary
Interpolation
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Graph Homomorphism  #CSP
o [Dyer, Greenhill 00] e [Bulatov, Dalmau 07]
@ [Bulatov, Grohe 05] @ [Dyer, Goldberg, Jerrum 09]
o [Goldberg, Grohe e [Bulatov, Dyer, Goldberg, Jalsenius, Richerby 09]
Jerrum, Thurley 10] e [Cai, Lu, Xia 10]
e [Cai, Chen, Lu 10] o [Huang, Lu 12]
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© Previous Work

@ Dichotomy for Holant(F)



Holant Framework
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Holant Framework

Definition
A signature grid Q = (G, F) consists of
@ agraph G = (V,E),
@ a set of signatures F with {0, 1} inputs and a C output, and

@ f, is the signature on vertex v.
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Holant Framework

Definition
A signature grid Q = (G, F) consists of
@ agraph G = (V,E),
@ a set of signatures F with {0, 1} inputs and a C output, and

@ f, is the signature on vertex v.

On input €, the goal is to compute
Holantq = Z H (o le())s
o:E—{0,1} veV

where E(v) is the edges incident to v.

e f,=10,1,0,...,0] = Exactly-One gives #PERFECTMATCHING
e f,=1[1,1,0,...,0] = At-Most-One gives #MATCHING
e f,=1[3,0,1,0, 3] gives #4-REG-EULERIANORIENTATION
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Tractable Cases for Holant(f)

o Degenerate signatures

@ Signatures with arity 2
@ #CSP tractable cases

o «/-transformable
o P-transformable

@ Vanishing signatures  (i.e. Holant is always 0)

® @ l1+ii=0
[1,1] [1,1]
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Single Signature Dichotomy

Theorem (Cai, Guo, W 13)
Holant(/) is #P-hard unless
© 1 is degenerate,

© 1 is binary,
© 1 is o/ -transformable,
Q 1 is P-transformable, or

© 1 is vanishing,

which are computable in polynomial time.
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Signature Set Dichotomy

Theorem (Cai, Guo, W 13)
Holant(./) is #P-hard unless

Q@ / C {degenerate} U {binary},

@ F is @/-transformable,

© 7 is P-transformable,

Q 7 C {vanishing} U {special binary}, or

© 7 C { “highly” vanishing} U {special binary} U { degenerate},
which are computable in polynomial time.
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Relation to Previous Work: Dichotomy Theorems

Single signature:
e Holant([a, b, c, d]) with complex weights [Cai, Huang, Lu 10]
e Holant([a, b, c] |=k) with complex weights [Cai, Kowalczyk 11]

Signature set:
@ Holant™(F) with complex weights [Cai, Lu, Xia 09]
@ Holant“(F) with complex weights [Cai, Huang, Lu 10]
o #CSPY(F) with complex weights [Huang, Lu 12]
e Holant(F) with real weights [Huang, Lu 12]
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Proof Outline: Dependency Graph

Arity 4
Single

Dichotomy

Main
Dichotomy

o/ -transformable
and
P-transformable
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Redundant Signature Matrix

Definition

4-by-4 matrix is redundant if it has
@ identical middle two rows and

@ identical middle two columns.
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Redundant Signature Matrix

Definition

4-by-4 matrix is redundant if it has
@ identical middle two rows and

@ identical middle two columns.

fh i f £
h h h f
SM(Ifo, . o B, Bl = | o (o
Lo fy

Let SM(f) = M.
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Semi-group Isomorphism

Let RM4(C) be the set of 4-by-4 redundant matrices.
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2
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Semi-group Isomorphism

Let RM4(C) be the set of 4-by-4 redundant matrices.

There is a semi-group isomorphism

: RMy(C) — C3*3

2
Z : : ; a 2b c
d e e f — |d 2e f
g h h i g 2h i

Let (M) =M and ¢y = L.
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Identity of RM,(C)

Let g have signature matrix

O NIRNIF O
O NIRNI+ O
= O O O

o O O =

Then

=~

I
O O
o = O
= O O
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Identity of RM,(C)

Let g have signature matrix

10 00
o1 lo
Ye=1o 110
2 2
00 01
Then
N 100
Mg=10 1 0
001

Lemma (Cai, Guo, W 13)

Holant(g)
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Interpolation

Consider an instance Q of
Pl-Holant(g) with n vertices.
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Interpolation

Consider an instance Q of Construct instance Q. of
Pl-Holant(g) with n vertices. Pl-Holant(f) using N
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Interpolation

By the Jordan normal form of /\Aﬂ; there exists T, A € C3*3 such that

N A b1 0
Mi=TAT '=T1[0 X b| T,
0 0 A

where by, by € {0,1}.

39/72



Interpolation

By the Jordan normal form of /\Aﬂ; there exists T, A € C3*3 such that

N M b 0
Mi=TAT 1 =T1|0 X b T7H
0 0 X3

where by, by € {0,1}.
Only consider by = by = 1.

39/72



Interpolation

By the Jordan normal form of /\Aﬂ; there exists T, A € C3*3 such that

N M b 0
Mi=TAT 1 =T1|0 X b T7H
0 0 X3

where by, by € {0,1}.

Only consider by = by = 1.
Thus )\1 = )\2 = )\3

39/72



Interpolation

By the Jordan normal form of /\Aﬂ; there exists T, A € C3*3 such that

N M b 0
Mi=TAT 1 =T1|0 X b T7H
0 0 X3

where by, by € {0,1}.

Only consider by = by = 1.
Thus)\lz)\zz)\3:)\

39/72



Interpolation

By the Jordan normal form of /\Aﬂ; there exists T, A € C3*3 such that

N M b 0
Mi=TAT 1 =T1|0 X b T7H
0 0 X3

where by, by € {0,1}.

Only consider by = by = 1.
Thus A\; = A» = A3 = A # 0 by assumption.

39/72



Interpolation

By the Jordan normal form of /\Aﬂ; there exists T, A € C3*3 such that

N M b 0
Mi=TAT 1 =T1|0 X b T7H
0 0 X3

where by, by € {0,1}.

Only consider by = by = 1.
Thus A\; = A» = A3 = A # 0 by assumption.

We have L
(Mf)s = TASTL,
where
A1 0
A=1(0 X 1
0 0 A

39/72



Interpolation

By the Jordan normal form of /\Aﬂ; there exists T, A € C3*3 such that

N M b 0
Mi=TAT 1 =T1|0 X b T7H
0 0 X3

where by, by € {0,1}.

Only consider by = by = 1.
Thus A\; = A» = A3 = A # 0 by assumption.

We have L
(Mf)s = TASTL,
where
A1 0
A=1(0 X 1
0 0 A
Notice

Mg = TM,T 1.
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Interpolation

To obtain Qs from €,
effectively replace M, with My, = (Mg)°.
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Interpolation

To obtain Qs from €,
effectively replace M, with My, = (Mg)°.

@ To obtain Q, from Q,
replace M, with ¥(T)Mg9p(T 1) to obtain Q.
(Holant unchanged)

@ Then replace Mg with (A®).
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We stratify all assignments to M, in Q" according to:
e (0,0) or (2,2) i many times;
e (1,1) j many times;
e (0,1) k many times;
e (1,2) ¢ many times;
e (0,2) m many times.
All other assignments contribute a factor 0.
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e (1,1) j many times;
e (0,1) k many times;
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e (0.2) m many times.

All other assignments contribute a factor 0.
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Linear System

Let cjikem be the sum over all such assignments of the products of
evaluations from 1(T) and ¥ (T~!) but excluding M, on '.

o €ij00o
Holantg = Z Tt
i+j=n
The value of the Holant on g, for s > 1, is

o, = S o) (s (5
i+j+k+0+m=n

_\ns k+l+m(o _ q\ym Cijkém
=A Z s (s—1) ()\k+e+2m2j+k+m )
i+j+k+l+m=n
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Linear System

Let cjikem be the sum over all such assignments of the products of
evaluations from 1(T) and ¥ (T~!) but excluding M, on '.

Holantg = Z szggo'
i+j=n

The value of the Holant on g, for s > 1, is

" ke B .
Holanta, = 30 A0 () (s(s - )y )" ()
i+j+k+l+m=n
=\" k+£4+m m Cijktm
=2 Z ° (s—1) ()\k+€+2m2j+k+m)'
i+j+k+l+m=n

In the linear system,
@ rows are indexed by s and
e columns are indexed by (/. /. k. [, m).
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Rank Deficient

The linear system is rank deficient. Define new unknowns for any

0<qg,m and g+ m<n,

= Z Cijkem

q,m — \k++2moj+k+m |
k+0=q
i+j=n—q—m

Holant of € is now xq g.
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i+j=n—q—m

Holant of € is now xq g.

New linear system is

Holantg, = A" Z sTTM(s — 1)"xg m-
p+q+m=n

Let agpm = s97M(s — 1)™.
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Rank Deficient Again

New system still rank deficient since

sItM(s — 1) = s97 1M (s _ )M 4 g9 24mHL (g _ 1)ymFL
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Rank Deficient Again

New system still rank deficient since
sItM(s — 1) = s97 1M (s _ )M 4 g9 24mHL (g _ 1)ymFL

Thus,
Qg,m = Qg—1,m + ag-2,m+1
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Rank Deficient Again

New system still rank deficient since
sItM(s — 1) = s97 1M (s _ )M 4 g9 24mHL (g _ 1)ymFL

Thus,
Qgq,mXgm = Qlg—1,mXqm + Qg—2,m+1Xq,m-
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Rank Deficient Again

New system still rank deficient since
sItM(s — 1) = s97 1M (s _ )M 4 g9 24mHL (g _ 1)ymFL

Thus,
Qgq,mXgm = Qlg—1,mXqm + Qg—2,m+1Xq,m-

We recursively define new variables

Xg—1,m$ Xg,m T Xg—1,m

Xq—2,m+1%— Xg,m + Xg—2,m+1

from g = n down to 2.
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Xn—1,1

X0,2

X1,2

X22

Xp—2,2
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X0,n
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X1,0 X1,1 X1,2 X1,3 X1,4 X1,5

X2,0 X2.1 X2.2 X2.3 X2.4

X3.0 X31 X3.2 X33

X4.,0 Xa,1 X4,2
X5,0 X5,1
X6,0
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X0,0

X6,0

X

0,1

X02  X03  Xo4  X05

X1,2 X1,3 X1,4 X1,5

X2.2 X2.3 X2.4

X3.2 X33

Xa,2

X0,6
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X0,

X1

X2

X3

X4

X5

X6

o
&

o
S

o
X

4

&

[=]

o

1 X0,2

X

1,2

&
IS

X

4.2

X0,3 X0,4 X0,5
X1,3 X1,4 X1,5
1/ /1
X2,3 X2,4
T
X33

X0,6
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Finally Full Rank

The 2n 4+ 1 unknowns that remain are

X0,0, X1,0, X0,1, X1,1, X0,2, X125, ---, X0,n—1, X1,n—1, X0,n

and their coefficients in row s are

1,5,5(s—1),5%(s—1),5%(s—1)%,...,s" }(s—1)""1 s"(s—1)""1, s"(s—1)".
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Finally Full Rank

The 2n 4+ 1 unknowns that remain are

X0,0, X1,0, X0,1, X1,1, X0,2, X125, ---, X0,n—1, X1,n—1, X0,n
and their coefficients in row s are
1,5,5(s—1),5%(s—1),5%(s—1)%,...,s" }(s—1)""1 s"(s—1)""1, s"(s—1)".
The kth entry is a monic polynomial in s of degree x (for 0 < x < 2n).
Then s” is a linear combination of the first s entries.

Thus, our system is a full rank Vandermonde times an upper triangular
matrix with 1's on the diagonal.

Therefore, we can solve for x; o = Holantq.
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© Current Work



Higher Domain Holant

47/72



Higher Domain Holant

Definition
A signature grid Q = (G, F) consists of
@ agraph G =(V,E),
@ a set of signatures F with {0, 1} inputs and a C output, and

o f, is the signature on vertex v.

On input €, the goal is to compute

Holantp = Z H (o |E(v))‘

o:E—{0,1} veV
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Definition
A signature grid Q = (G, F) consists of
@ agraph G =(V,E),

@ a set of signatures F with [x] inputs and a C output, and

o f, is the signature on vertex v.

On input €, the goal is to compute
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Higher Domain Holant

Definition
A signature grid Q = (G, F) consists of
@ agraph G =(V,E),

@ a set of signatures F with [x] inputs and a C output, and

o f, is the signature on vertex v.

On input €, the goal is to compute

Holantg = Z H fu(o ‘E(v))'

o:E—[k]lveV

f, = ALL-DISTINCT gives #r-EDGECOLORING \
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Current Result

Theorem (Cai, Guo, W, Xia)

Counting r-edge colorings over planar r-regular graphs is #P-hard
for ks > r > 3.
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Relation to Previous Work: Dichotomy Theorems

[Cai, Lu, Xia 13]
@ Holant®(f) with domain size x = 3 such that

o f has arity 3,
o f is symmetric, and
o f has complex weights.
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Proof Overview

Theorem (Vertigan 05)

For any x,y € C, the problem of computing the Tutte polynomial at (x,y)
over planar graphs is #P-hard unless (x — 1)(y — 1) € {1,2} or

(x,y) € {(1,1),(~1,-1),(j,/?), (G%,))}, where j = e*™/3. In each of
these exceptional cases, the computation can be done in polynomial time.
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Proof Overview

Theorem (Vertigan 05)

For any x,y € C, the problem of computing the Tutte polynomial at (x,y)
over planar graphs is #P-hard unless (x — 1)(y — 1) € {1,2} or

(x,y) € {(1,1),(~1,-1),(j,/?), (G%,))}, where j = e*™/3. In each of
these exceptional cases, the computation can be done in polynomial time.

@ For Kk = r, reduction from

Tutte(x + 1, k + 1) for planar graphs
@ For x > r, reduction from

Tutte(1 — x,0) for planar graphs

(i.e. counting x-VERTEXCOLORING)
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Q Future Work



Asymmetric Signatures
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Asymmetric Signatures

Holant over General Graphs:
[Cai, Lu, Xia 11]
@ Dichotomy for Holant®(F) with complex weights

Ideas:
o My Z3(G; f) dichotomy with Cai and Kowalczyk should be useful.

e Plan to extend this dichotomy to Z4(G; f).

#CSP over Planar Graphs:

@ Dichotomy for #CSP(F) with asymmetric signatures and complex
weights but only over general graphs. [Cai, Lu, Xia 09]
@ No dichotomy theorems for asymmetric signatures over planar graphs.

@ True test for the universality of matchgates.
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Pl-Holant(F) with Symmetric Signatures
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Pl-Holant(F) with Symmetric Signatures

My PI-#CSP(F) dichotomy with Guo is crucial.
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Pl-Holant(F) with Symmetric Signatures

My PI-#CSP(F) dichotomy with Guo is crucial.

Need to extend #CSPY(F) dichotomy by Huang and Lu to PI-#CSPY(F).
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Pl-Holant(F) with Symmetric Signatures

My PI-#CSP(F) dichotomy with Guo is crucial.
Need to extend #CSPY(F) dichotomy by Huang and Lu to PI-#CSPY(F).

Expect the rest of the proof to be similar to previous work
(i.e. dichotomy for Holant(F) over general graphs with Cai and Guo)

52 /72



Graph Polynomials

@ Chromatic polynomial x(\)

o Tutte polynomial T(x,y)
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@ Chromatic polynomial x(\)

o Tutte polynomial T(x,y)

Holant is a graph polynomial with an infinite number of indeterminates.
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Graph Polynomials

@ Chromatic polynomial x(\)

o Tutte polynomial T(x,y)

Holant is a graph polynomial with an infinite number of indeterminates.

Give back to the Tutte polynomial via consideration of regular graphs.

53 /72



Previous Work:
Dichotomy theorems for
0 Z(G;f),

@ PI-#CSP(F), and
© Holant(F).
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Previous Work:
Dichotomy theorems for
0 Z(G;f),

@ PI-#CSP(F), and
© Holant(F).

Current Work:
#P-hardness of #k-EDGECOLORING problems.
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Previous Work:
Dichotomy theorems for
0 Z(G;f),

@ PI-#CSP(F), and
© Holant(F).

Current Work:
#P-hardness of #k-EDGECOLORING problems.

Future Work:

o Extend all my results.

o Consider other graph polynomials.
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Thank You



Eulerian Orientation

Definition

At each vertex in an Eulerian orientation of a graph,

in-degree equals out-degree.
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Theorem and Proof Overview

Theorem (Guo, W 13)
Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.
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Theorem and Proof Overview

Theorem (Guo, W 13)
Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

Strengthens a theorem from [Huang, Lu 12] to the planar setting.

Proof.

Reduction from the evaluation of the Tutte polynomial at the point (3,3)
for planar graphs:

Pl-Tutte(3,3) <t
<7 #PIl-4Reg-EO
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Tutte Polynomial

Theorem (Vertigan 05)

For any x,y € C, the problem of computing the Tutte polynomial at (x,y)
over planar graphs is #P-hard unless (x — 1)(y — 1) € {1,2} or

(x,y) € {(1,1),(~1,-1),(,j?), (%,))}, where j = e*™/3_ In each of
these exceptional cases, the computation can be done in polynomial time.
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Medial Graph

Definition

For a connected plane graph G, its medial graph H has a vertex for each
edge of G and two vertices in H are joined by an edge for each face of G
in which their corresponding edges occur consecutively.




The Connection

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let O(H) be the set of all Eulerian
orientations in the medial graph H of G. Then

2-Pl-Tutteg(3,3) = » 279,
0€O(H)

where 3(O) is the number of saddle vertices in the orientation O, i.e.
vertices in which the edges are oriented ‘“in, out, in, out” in cyclic order.

v
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The Connection

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let O(H) be the set of all Eulerian
orientations in the medial graph H of G. Then

2-Pl-Tutteg(3,3) = » 279,
0€O(H)

where 3(O) is the number of saddle vertices in the orientation O, i.e.
vertices in which the edges are oriented ‘“in, out, in, out” in cyclic order.

v

Signature matrix:

o Let f(w,x,y,z) = f"= £0000 (0010  £0001  £0011
be an arity 4 signature £0100  £0110  £0101  £0111
@ Row index is (w, x), Mr = £1000  £1010  £1001  £1011
BUT the column index is (z,y) F1100 (1110  £1101  f1111

(order reversed)
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The Connection

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let O(H) be the set of all Eulerian
orientations in the medial graph H of G. Then
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Signature matrix:
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0 0 0 foou
be an arity 4 signature 0 10 o 0
@ Row index is (w, x), Mr = 0 o flool
BUT the column index is (z, y) F1100 0 0
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The Connection

Theorem (Las Vergnas 88)

Let G be a connected plane graph and let O(H) be the set of all Eulerian
orientations in the medial graph H of G. Then

2-Pl-Tutteg(3,3) = » 279,
0€O(H)

where 3(O) is the number of saddle vertices in the orientation O, i.e.
vertices in which the edges are oriented ‘“in, out, in, out” in cyclic order.

v

Signature matrix:
o Let f(w,x,y,z)= "~

. . 0 001

be an arity 4 signature 01 2 0

@ Row index is (w, x), My = 02 10
BUT the column index is (z, y) 100 0

(order reversed)
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Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

)

Pl-Tutte(3, 3) =7 Pl-Holant ([0, 1,0] | [

HOOO
OoONHO
OoO=NO
oo+

<7

<7 #PI-4Reg-EO
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Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

0001
Pl-Tutte(3,3) =1 Pl-Holant ([07 1,0] | [8 31 8})
1000
<7
0001
<7 Pl-Holant([0,1,0] | [8%%8] )
1000

=71#PIl-4Reg-EO
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Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

)

<+ Pl-Holant([0,1,0] | [0,0,1,0,0])

Pl-Tutte(3, 3) =7 Pl-Holant ([0, 1,0] | [

HOOO
OoONHO
OoO=NO
oo+

<7

=71#PIl-4Reg-EO
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Holographic Transformations
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Holographic Transformations

Let Z7 = [} 1/.] Then

Pl-Holant ([0,1,0] | f) =7 Pl-Holant ([0,1,0](Z~)®? | Z®*f)
— 1 Pl-Holant ([1,0, 1]/2 | 4?)
=71 Pl-Holant(f),

where

M. =

= O OoON
o O+~ O
o= OO
N O O+
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Holographic Transformations

Similarly,

Pl-Holant ([0, 1,0] | [0,0,1,0,0])
=71 Pl-Holant ([0,1,0](Z~1)®? | Z#*(0,0,1,0,0])
=1 Pl-Holant ([1,0,1]/2 | 2[3,0, 1,0, 3])
=1 Pl-Holant([3,0, 1,0, 3]).
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Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

0001
Pl-Tutte(3,3) =7 Pl-Holant <[0, 1,0] | [8 51 8])
1000

2001
—; Pl-Holant ({gggg])
1002
<T :
<7 Pl-Holant([3,0, 1,0, 3])
=7 Pl-Holant ([0, 1,0] | [0,0, 1,0,0])

=71 #Pl-4Reg-EO
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Planar Tetrahedron Gadget

Assign [3,0,1,0, 3] to every vertex of this gadget...

...to get a signature 328 with

19

S
Il
N -
~N O O
O 01N O
O N 01 O
O O~
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Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

0001
Pl-Tutte(3, 3) =7 PI-Holant <[07 1,0] | [8 31 8])
1000
2001
ETPI—HoIant( 8328})
1002
1900 7
< Pl-Holant <; [8 i 8])
7001

9
< Pl-Holant([3,0, 1,0, 3])
=7 Pl-Holant ([0, 1,0] | [0,0,1,0,0])
=7#PI-4Reg-EO
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1000
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Rotationally Symmetric

200 1 19 0 0 7
0100 1o 7 5 0
Mi=1o 0 1 0 Me=310 5 7 0
100 2 7 00 19

’
) ’
4 7’
’ 7’
.
.
/, 7’
- P

(a) A counterclockwise rotation. (b) Movement of signature matrix entries
under a counterclockwise rotation.

67/72



Rotationally Symmetric

200 1 19 0 0 7
0100 1o 7 5 0
Mi=1o 0 1 0 Me=310 5 7 0
100 2 7 00 19

’
) ’
4 7’
’ 7’
.
.
/, 7’
- P

(a) A counterclockwise rotation. (b) Movement of signature matrix entries
under a counterclockwise rotation.
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Rotationally Symmetric

200 1 19 00 7
0100 10 75 0
Mi=1o 0 1 0 Me=310 5 7 0
100 2 7 00 19
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(a) A counterclockwise rotation. (b) Movement of signature matrix entries
under a counterclockwise rotation.
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Rotationally Symmetric
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(a) A counterclockwise rotation. (b) Movement of signature matrix entries
under a counterclockwise rotation.

67/72



Interpolation

Suppose that f appears n times in Q of PI—HoIant(?).
Construct instances Qs of Holant(g) indexed by s > 1.

Obtain Qs from Q by replacing each f with N (g assigned to all vertices).
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Interpolation

Suppose that f appears n times in Q of PI—HoIant(?).
Construct instances Qs of Holant(g) indexed by s > 1.

Obtain Qs from Q by replacing each f with N (g assigned to all vertices).

To obtain Qs from €,
we effectively replace M; with My, = (M;)®.
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Interpolation
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Let T =
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Interpolation

0 0 1 1
1 0 O
Let T = 11 0 0.Then
0 0 -1 1
1 0 0O
0100
o i -1
M = TN T T 00 1 0 T
0 00 3
and
1 00 O
- o1 06 0 O _1
Mg =TNT =T 00 6 0 T
0 0 0 13

Follows from being both rotationally symmetric and complement invariant.
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To obtain Qs from €,
effectively replace M; with My, = (M;)°.
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To obtain Qs from €,
effectively replace M; with My, = (M;)°.

@ To obtain € from £,
replace M; with TA;T~! to obtain Q.
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(Holant unchanged)
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To obtain Qs from €,
effectively replace M; with My, = (M;)°.
@ To obtain € from £,
replace M; with TA;T~! to obtain Q.
@ Then replace Ay with (Az)°.
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(Holant unchanged)
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To obtain Qs from €,
effectively replace M; with My, = (M;)°.
@ To obtain € from £,
replace M; with TA;T~! to obtain Q. (Holant unchanged)
@ Then replace Ay with (Az)°.
We only need to consider the assignments to A; that assign
@ 0000 j many times,
@ 0110 or 1001 k many times, and
@ 1111 ¢ many times.
Let cjx¢ be the sum over all such assignments of the products of
evaluations from T and 7! but excluding A; on €.
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100 0 100 0
0100 06 0 0
N=1o 01 0 Ne=10 06 o0
000 3 0 0 0 13

To obtain Qs from €,
effectively replace M; with My, = (M;)°.
@ To obtain € from £,
replace M; with TA;T~! to obtain Q. (Holant unchanged)
@ Then replace Ay with (Az)°.
We only need to consider the assignments to A; that assign
@ 0000 j many times,
@ 0110 or 1001 k many times, and
@ 1111 ¢ many times.
Let cjx¢ be the sum over all such assignments of the products of
evaluations from T and 7! but excluding A; on €.
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Ne=1o 0 1 0 Ne=10 0 6 o0
000 3 0 0 0 13

To obtain Qs from €,
effectively replace M; with My, = (M;)°.
@ To obtain € from £,
replace M; with TA;T~! to obtain Q. (Holant unchanged)
@ Then replace Ay with (Az)°.
We only need to consider the assignments to A; that assign
@ 0000 j many times,
@ 0110 or 1001 k many times, and
@ 1111 ¢ many times.
Let cjx¢ be the sum over all such assignments of the products of
evaluations from T and 7! but excluding A; on €.
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To obtain Qs from €,
effectively replace M; with My, = (M;)°.
@ To obtain € from £,
replace M; with TA;T~! to obtain Q. (Holant unchanged)
@ Then replace Ay with (Az)°.
We only need to consider the assignments to A; that assign
@ 0000 j many times,
@ 0110 or 1001 k many times, and
@ 1111 ¢ many times.
Let cjx¢ be the sum over all such assignments of the products of
evaluations from T and 7! but excluding A; on €.
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Linear System
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Then
Pl-Holantp = Z 3£cjk4
Jj+k+l=n
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Linear System

1000 100 0
0100 06 0 O
N=1o0 1 0 Ne=10 06 o0
000 3 00 0 13
Then
Pl-Holanto = Y 3'cue
Jj+k+l=n
and

Pl-Holanto, = Y (6¥13")*cue
j+k+t=n

is a full rank Vandermonde system (row index s, column index (j, k, £)).
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Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

)

PI-Tutte(3,3) =7 Pl-Holant ( [0,1,0] |

—HOOO
oN—HO
OoO=NO
OO~

HOON

00
10
01
00
19

|
)

)
<7 Pl-Holant([3,0, 1,0, 3])
=71 Pl-Holant ([0, 1,0] | [0,0,1,0,0])
=1#PI-4Reg-EO Ol
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Counting Eulerian Orientations for planar 4-regular graphs is #P-hard.

29935 Major proof
Pl-Tutte(3,3) =7 Pl-Holant ( [0,1,0] | {32 Jor p
1000 techniques:
5200 @ Holographic
=7 Pl-Holant { (33979 graphic
1002 transformation
1900 7
<7 Pl-Holant (% [ grsh ]) @ Gadget .
7001 construction

9
<7t PI-Holant([3, 0, 1,0, 3]) © Interpolation
=71 Pl-Holant ([0, 1,0] | [0,0,1,0,0])
=1#PI-4Reg-EO O

v
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