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Edge Coloring

Definition
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Counting Edge Colorings

Problem: #κ-EdgeColoring
Input: A graph G .
Output: Number of edge colorings of G using at most κ colors.

Theorem

#κ-EdgeColoring is #P-hard over planar r -regular graphs
for all κ ≥ r ≥ 3.

Trivially tractable when κ ≥ r ≥ 3 does not hold.

Proved in two cases:

1 κ = r , and

2 κ > r .
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#κ-EdgeColoring as a Holant Problem

Let AD3 denote the local constraint function

AD3(x , y , z) =

{
1 if x , y , z ∈ [κ] are distinct

0 otherwise.

Place AD3 at each vertex with
incident edges x , y , z in a
3-regular graph G . AD3

AD3

AD3 AD3

y

x z

Then we define the sum of product

Holantκ(G ; AD3) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

AD3

(
σ |E(v)

)
.

Clearly computes #κ-EdgeColoring.
Same as the partition function of the edge-coloring model.
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Holant Problems

In general, we consider all local constraint functions

f (x , y , z) =


a if x = y = z (all equal)

b otherwise

c if x 6= y 6= z 6= x (all distinct).

The Holant problem is to compute

Holantκ(G ; f ) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

f
(
σ |E(v)

)
.

Denote f by 〈a, b, c〉.
Thus AD3 = 〈0, 0, 1〉.
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Dichotomy Theorem for Holantκ(−; 〈a, b, c〉)

Theorem (Main Theorem)

For any κ ≥ 3 and any a, b, c ∈ C,
the problem of computing Holantκ(−; 〈a, b, c〉) is in P or #P-hard,
even when the input is restricted to planar graphs.

Recall #κ-EdgeColoring is the special case 〈a, b, c〉 = 〈0, 0, 1〉.

Let’s prove the theorem for κ = 3 and 〈a, b, c〉 = 〈0, 0, 1〉.
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Graph Polynomial Identities

For a plane graph G ,

T (G ; x , x) = m(~Gm; x) (Martin polynomial, [Martin ’77])

xm(~Gm; x + 1) = j(~Gm; x) (circuit partition polynomial)

j(~G ; x) =
∑

c ∈ πx (~Gm)

2µ(c) (state sum, [Ellis-Monaghan ’04])

Digraph Eulerian if “in degree” = “out degree”.

Eulerian partition of an Eulerian digraph ~G is a
partition of the edges of ~G such that each part
induces an Eulerian digraph.

πx(~G ) is the set of Eulerian partitions of ~G into
at most x parts.
µ(c) is number of monochromatic vertices in c .

x ≥ 2

µ(c) = 1
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One More Identity

Lemma ∑
c ∈ πκ(~Gm)

2µ(c) = Holantκ(Gm; E)

Proof.

E( w z
x y ) =



2 if w = x = y = z

1 if w = x 6= y = z

0 if w = y 6= x = z

1 if w = z 6= x = y

0 otherwise.

E

Denote E by 〈2, 1, 0, 1, 0〉.
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Upshot

Corollary

For a plane graph G,

κT (G ;κ+ 1, κ+ 1) = Holantκ(Gm; E)

Theorem (Vertigan)

For any x , y ∈ C, the problem of
evaluating the Tutte polynomial at
(x , y) over planar graphs is #P-hard
unless (x − 1)(y − 1) ∈ {1, 2} or
(x , y) ∈ {(±1,±1), (ω, ω2), (ω2, ω)},
where ω = e2πi/3. In each of these
exceptional cases, the computation
can be done in polynomial time.

- 2 - 1 1 2 3 4
x

- 2

- 1

1

2

3

4

y
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#P-hardness of #κ-EdgeColoring

Theorem

#κ-EdgeColoring is #P-hard over planar κ-regular graphs for κ ≥ 3.

Proof for κ = 3.

Reduce from Holant3(−; E) to Holant3(−; AD3) in two steps:

Holant3(−; E) ≤T Holant3(−; 〈0, 1, 1, 0, 0〉) (polynomial interpolation)

≤T Holant3(−; AD3) (gadget construction)
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Gadget Construction Step

Holant3(G ; 〈0, 1, 1, 0, 0〉) = Holant3(G ′; AD3)

w

x

AD3

AD3

z

y

f ( w z
x y ) = 〈0, 1, 1, 0, 0〉 =



0 if w = x = y = z

1 if w = x 6= y = z

1 if w = y 6= x = z

0 if w = z 6= x = y

0 otherwise.
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Polynomial Interpolation Step: Recursive Construction

Holant3(G ; E) ≤T Holant3(Gs ; 〈0, 1, 1, 0, 0〉)

N1 N2

Ns

Ns+1

Vertices are assigned 〈0, 1, 1, 0, 0〉.

Let fs be the function corresponding to Ns . Then fs = Ms f0, where

M =


0 2 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 and f0 =


1
0
0
1
0

 .
Obviously f1 = 〈0, 1, 1, 0, 0〉.
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PΛP−1, where

P =


1 −2 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

 and Λ =


2 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Let x = 22s . Then

f (x) =

f2s = PΛ2sP−1f0 = P


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

P−1f0 =


x−1
3 + 1
x−1
3
0
1
0

 .

Note f (4) = E = 〈2, 1, 0, 1, 0〉.
(Side note: picking s = 1 so that x = 4 only works when κ = 3.)

13 / 16



Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PΛP−1, where

P =


1 −2 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

 and Λ =


2 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Let x = 22s . Then

f (x) =

f2s = PΛ2sP−1f0 = P


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

P−1f0 =


x−1
3 + 1
x−1
3
0
1
0

 .

Note f (4) = E = 〈2, 1, 0, 1, 0〉.
(Side note: picking s = 1 so that x = 4 only works when κ = 3.)
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Polynomial Interpolation Step: The Interpolation

Holant3(−; E) ≤T Holant3(−; 〈0, 1, 1, 0, 0〉)

≤T Holant3(−; f (x))

≤T Holant3(−; 〈0, 1, 1, 0, 0〉)

If G has n vertices, then

p(G , x) = Holant3(G ; f (x)) ∈ Z[x ]

has degree n.

Let Gs be the graph obtained by replacing every vertex in G with Ns .
Then Holant3(G2s ; 〈0, 1, 1, 0, 0〉) = p(G , 22s).

Using oracle for Holant3(−; 〈0, 1, 1, 0, 0〉), evaluate p(G , x) at n + 1
distinct points x = 22s for 0 ≤ s ≤ n.

By polynomial interpolation, efficiently compute the coefficients of p(G , x).
QED.
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Dichotomy of Holantκ(−; 〈a, b, c〉)

edge coloring k=r

edge coloring k>r hard

major interpolate results ternary and quaternary resutls

construct unary

interpolate all binary

planar Tutte dichotomy

planar Eulerian partition hard (tau_color)

reduction to vertex coloring

directed medial graph

Tutte diagonal as state sum

Eulerian partition

state sum as Holant problem

parity condition

tal_color: f(P_0) = 0

edge coloring k=r hard planar Eulerian partition hard (tau_4)

construct <1> in two cases generalized edge coloring hard

chomatic in Tuttebinary interpolation eigenvalues

interpolate all binaries

generic generalized anti-gadget interpolation

generic binary interpolation

special binary interpolation obtain =_4

4th special case arity reduction

edge coloring k>r hard

planar pairing def

find planar pairing

Bobby Fischer gadget

ternary construction summarylocal holographic transformation

check orthogonality condition

<3(k-1),k-3,-3> hard for k>3

lattice condition (LC)

LC characterization for cubic polys LC satisfied by Sn or An Galois Gpsany arity interpolation

reducible p(x,y) satisfies LC for y>3 irreducible p(x,y) satisfies LC for y>3 p(x,3) satisfies LC local holographic transformation

obtain <a',b',b'> assuming a+(k-3)b-(k-2)c!=0

obtain any a+(k-3)b-(k-2)c=0

obtain <3(k-1),k-3,-3>

Triangle gadget

3R & 2C roots in x for p(x,y)

p(x,y) satisfies LC for y=>3

Puiseux series

only 5 solutions in Z for p(x,y) Dedkind's Theoremcondition for Sn Galois gp condition from same norm roots

<6,0,-3> hard

<a,b,c> dichotomy

extra special cases

1st special case2nd special case 3rd special case 5th special case

<(k-1)(k-2),2-k,2> hard

a+(k-3)b-(k-2)c=0 dichotomy

1st distinct norms2nd distinct norms

typical case

binary interpolation summary

eigenvalue shifted triple (EST)

EST distinct norms
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Thank You

Paper and slides available on my website:
www.cs.wisc.edu/~tdw
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