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Counting Edge Colorings

Problem: #x-EDGECOLORING
InpPUT: A graph G.
OuTpPUT: Number of edge colorings of G using at most « colors.

#r-EDGECOLORING is #P-hard over planar r-regular graphs
for all k > r > 3.

Trivially tractable when x > r > 3 does not hold.
Parallel edges allowed (and necessary when r > 5).

Proved in the framework of Holant problems in two cases:
Q@ ~=r, and
Q k>r.
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Holant Problems

Definition (Intuitive)

Holant problems are counting problems defined over graphs that can be
specified by local constraint functions on the vertices, edges, or both.

Example (Natural problems)

independent sets, vertex covers, edge covers, vertex colorings,
edge colorings, matchings, perfect matchings, Eulerian orientations, and
cycle covers.

NON-examples: Hamiltonian cycles and spanning trees.

NOT local.



Abundance of Holant Problems

Equivalent to:
@ counting read-twice constraint satisfaction problems,
@ contraction of tensor networks, and

@ partition function of graphical models (in Forney normal form).

Generalizes:
@ simulating quantum circuits,
@ counting graph homomorphisms,

@ all manner of partition functions including

o Ising model,
e Potts model,
o edge-coloring model.
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#r-EdgeColoring as a Holant Problem

Let AD3 denote the local constraint function

1 if x,y,z € [k] are distinct

0 otherwise.

ADs(x,y,z) = {

Place AD3 at each vertex with
incident edges x,y,z in a
3-regular graph G.

Then we evaluate the sum of product

Holant(G;AD3s)= Y [ ADs(clg)-

o:E(G)—[r] veV(G)

Clearly Holant(G; AD3) computes #k-EDGECOLORING.



Some Higher Domain Holant Problems

In general, we consider all local constraint functions

a ifx=y=z (all equal)
f(x,y,z) =< b otherwise
c fx#£y#z#x (all distinct).

The Holant problem is to compute

Holant,(G; ) = Z H U |E(v)

o:E(G)—[x] veV(G)

Denote f by (a, b, c).
Thus AD5 = (0,0, 1).



Dichotomy Theorem for Holant,(—; (a, b, ¢))

Theorem (Main Theorem)

For any k > 3 and any a, b, c € C,

the problem of computing Holant,.(—; (a, b, c)) is in P or #P-hard,
even when the input is restricted to planar graphs.




Dichotomy Theorem for Holant,(—; (a, b, ¢))

Theorem (Main Theorem)

For any k > 3 and any a, b, c € C,
the problem of computing Holant,.(—; (a, b, c)) is in P or #P-hard,
even when the input is restricted to planar graphs.

Recall #+-EDGECOLORING is the special case (a, b, c) = (0,0, 1).

Let's prove the theorem for x = 3 and (a, b, c) = (0,0,1).



Hardness of Holants(—; )

Hardness of Holants(—; AD3) proved by the following reduction chain:

#P <7 Holant3(—; (2,1,0,1,0))
<7 Holant3(—;(0,1,1,0,0))
<7 Holant3(—;AD3)

(a, b, c,d, e) denotes an arity-4 function f

a fw=x=y=z w z
b fw=x#y=z

f(Xy)=qc ifw=y#x=z
d ifw=z#x=y « y
e otherwise.
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Hardness of Holants(—; )

Hardness of Holants(—; AD3) proved by the following reduction chain:
#P <7 Holant3(—; (2,1,0,1,0))
<7 Holants(—; (0,1,1,0,0))
<7 Holant3(—; AD3)
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Polynomial Interpolation Step: Recursive Construction

Holant3(G; (2,1,0,1,0)) <t Holant3(Gs; (0,1,1,0,0))

N1 N2 Ns+1

Vertices are assigned (0,1,1,0,0).
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Polynomial Interpolation Step: Recursive Construction

Holant3(G; (2,1,0,1,0)) <t Holant3(Gs; (0,1,1,0,0))

N1 N2 N.s+1
Vertices are assigned (0,1,1,0,0).

Let f; be the function corresponding to Ns. Then f; = M*fy, where

02000 1
11000 0
M=|(0 0 0 1 0 and fo= |0
00100 1
0 0001 0

Obviously f; = (0,1,1,0,0).
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~1, where

and N=

o

Il
cocorH
O R, OO
—oooo
cococonN
o oo
cor~r oo
—_ o ooo
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~1, where

1 20 0 O 2 0 0 0 0
1 1 0 0 O 0 -1 0 0 O
P=10 0 1 1 0 and A=|0 0 1 0 O
0 0 1 -10 0 0 0 -10
0 0 0 0 1 0 0 0 0 1

Let x = 225. Then
x 0000 S+l
01000 x1
fhs=PNP7fy=P|0 0 1 0 O| P ify= 0
00010 1
00001 0
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~1, where

1 20 0 0 2 0 0 0 0
1 1.0 0 0 0 -1 0 0 0
P=10 0 1 1 0 and A=1{0 0 1 0 0
00 1 -10 0 0 0 —10
00 0 0 1 00 0 0 1

Let x = 22°. Then
x 0000 S+l
01000 x1
f(x)=fas=PN*P =P |0 0 1 0 O| Pify= 0
00010 1
00001 0

Note f(4) = (2,1,0,1,0).
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PAP~1, where

o

Il
cocorH
O R, OO
—oooo

Let x = 225. Then

f(x) = hs = PN*P 1fy=P

O O O O X

Note f(4) = (2,1,0,1,0).

and

O O O+~ O

O O+~ OO

2 0 0 0 0
0 -1 0 0 0
A=10 0 1 0 0
00 0 -10
00 0 0 1
00 =141
00 x1
0 0| P =] O
10 1
01 0

Side note: picking s = 1 so that x = 4 only works when k = 3.
g
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Polynomial Interpolation Step: The Interpolation

Holants(—; (2,1,0,1,0)) <7 Holantsz(—; (0,1,1,0,0))
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Polynomial Interpolation Step: The Interpolation

Holant3(—; (2,1,0,1,0)) = Holants(—; f(4))
<71 Holants(—; f(x))
<r HOIant3(_v< 71717070>)
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Polynomial Interpolation Step: The Interpolation

Holant3(—; (2,1,0,1,0)) = Holant3(—; f(4))
<7 Holants3(—; f(x))
ST Holant3(—; <07 17 17 07 0>)

If G has n vertices, then
p(G, x) = Holant3(G; f(x)) € Z[x]
has degree n.

Let Gps be the graph obtained by replacing every vertex in G with Nos.
Then Holant3(Gos; (0,1,1,0,0)) = p(G,2%).
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Polynomial Interpolation Step: The Interpolation

Holants(—; (2,1,0,1,0)) = Holants(—;
<7 Holant3(—;
<7 Holant3(—;(0,1,1,0,0))

If G has n vertices, then
p(G, x) = Holant3(G; f(x)) € Z[x]

has degree n.

Let Gps be the graph obtained by replacing every vertex in G with Nos.
Then Holant3(Gos; (0,1,1,0,0)) = p(G,2%).

Using oracle for Holants(—; (0,1, 1,0,0)), evaluate p(G,x) at n+ 1
distinct points x = 225 for 0 < s < n.

By polynomial interpolation, efficiently compute the coefficients of p(G, x).
QED.
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Dichotomy of Holant,(—; (a, b, c))




Thank You


www.cs.wisc.edu/~tdw

Thank You

Paper and slides available on my website:
WWw.cs.wisc.edu/~tdw
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