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Edge Coloring

Definition
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Counting Edge Colorings

Problem: #κ-EdgeColoring
Input: A graph G .
Output: Number of edge colorings of G using at most κ colors.

Theorem

#κ-EdgeColoring is #P-hard over planar r -regular graphs
for all κ ≥ r ≥ 3.

Trivially tractable when κ ≥ r ≥ 3 does not hold.
Parallel edges allowed (and necessary when r > 5).

Proved in the framework of Holant problems in two cases:

1 κ = r , and

2 κ > r .
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Holant Problems

Definition (Intuitive)

Holant problems are counting problems defined over graphs that can be
specified by local constraint functions on the vertices, edges, or both.

Example (Natural problems)

independent sets, vertex covers, edge covers, vertex colorings,
edge colorings, matchings, perfect matchings, Eulerian orientations, and
cycle covers.

NON-examples: Hamiltonian cycles and spanning trees.

NOT local.
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Abundance of Holant Problems

Equivalent to:

counting read-twice constraint satisfaction problems,

contraction of tensor networks, and

partition function of graphical models (in Forney normal form).

Generalizes:

simulating quantum circuits,

counting graph homomorphisms,

all manner of partition functions including

Ising model,
Potts model,
edge-coloring model.
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#κ-EdgeColoring as a Holant Problem

Let AD3 denote the local constraint function

AD3(x , y , z) =

{
1 if x , y , z ∈ [κ] are distinct

0 otherwise.

Place AD3 at each vertex with
incident edges x , y , z in a
3-regular graph G . AD3

AD3

AD3 AD3

y

x z

Then we evaluate the sum of product

Holant(G ; AD3) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

AD3

(
σ |E(v)

)
.

Clearly Holant(G ; AD3) computes #κ-EdgeColoring.
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Some Higher Domain Holant Problems

In general, we consider all local constraint functions

f (x , y , z) =


a if x = y = z (all equal)

b otherwise

c if x 6= y 6= z 6= x (all distinct).

The Holant problem is to compute

Holantκ(G ; f ) =
∑

σ:E(G)→[κ]

∏
v∈V (G)

f
(
σ |E(v)

)
.

Denote f by 〈a, b, c〉.
Thus AD3 = 〈0, 0, 1〉.
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Dichotomy Theorem for Holantκ(−; 〈a, b, c〉)

Theorem (Main Theorem)

For any κ ≥ 3 and any a, b, c ∈ C,
the problem of computing Holantκ(−; 〈a, b, c〉) is in P or #P-hard,
even when the input is restricted to planar graphs.

Recall #κ-EdgeColoring is the special case 〈a, b, c〉 = 〈0, 0, 1〉.

Let’s prove the theorem for κ = 3 and 〈a, b, c〉 = 〈0, 0, 1〉.
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Hardness of Holant3(−; AD3)

Hardness of Holant3(−; AD3) proved by the following reduction chain:

#P ≤T Holant3(−; 〈2, 1, 0, 1, 0〉)
≤T Holant3(−; 〈0, 1, 1, 0, 0〉)
≤T Holant3(−; AD3)

〈a, b, c , d , e〉 denotes an arity-4 function f

f ( w z
x y ) =



a if w = x = y = z

b if w = x 6= y = z

c if w = y 6= x = z

d if w = z 6= x = y

e otherwise.

f

w z

x y
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First reduction: From a #P-hard point on the Tutte polynomial.

Second reduction: Via polynomial interpolation.

Third reduction: Via a gadget construction.
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Polynomial Interpolation Step: Recursive Construction

Holant3(G ; 〈2, 1, 0, 1, 0〉) ≤T Holant3(Gs ; 〈0, 1, 1, 0, 0〉)

N1 N2

Ns

Ns+1

Vertices are assigned 〈0, 1, 1, 0, 0〉.

Let fs be the function corresponding to Ns . Then fs = Ms f0, where

M =


0 2 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 and f0 =


1
0
0
1
0

 .
Obviously f1 = 〈0, 1, 1, 0, 0〉.
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Polynomial Interpolation Step: Eigenvectors and Eigenvalues

Spectral decomposition M = PΛP−1, where

P =


1 −2 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

 and Λ =


2 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Let x = 22s . Then

f (x) =

f2s = PΛ2sP−1f0 = P


x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

P−1f0 =


x−1
3 + 1
x−1
3
0
1
0

 .

Note f (4) = 〈2, 1, 0, 1, 0〉.
(Side note: picking s = 1 so that x = 4 only works when κ = 3.)
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Polynomial Interpolation Step: The Interpolation

Holant3(−; 〈2, 1, 0, 1, 0〉) ≤T Holant3(−; 〈0, 1, 1, 0, 0〉)

≤T Holant3(−; f (x))

≤T Holant3(−; 〈0, 1, 1, 0, 0〉)

If G has n vertices, then

p(G , x) = Holant3(G ; f (x)) ∈ Z[x ]

has degree n.

Let G2s be the graph obtained by replacing every vertex in G with N2s .
Then Holant3(G2s ; 〈0, 1, 1, 0, 0〉) = p(G , 22s).

Using oracle for Holant3(−; 〈0, 1, 1, 0, 0〉), evaluate p(G , x) at n + 1
distinct points x = 22s for 0 ≤ s ≤ n.

By polynomial interpolation, efficiently compute the coefficients of p(G , x).
QED.
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Dichotomy of Holantκ(−; 〈a, b, c〉)
edge coloring k=r

edge coloring k>r hard

major interpolate results ternary and quaternary resutls

construct unary

interpolate all binary

planar Tutte dichotomy

planar Eulerian partition hard (tau_color)

reduction to vertex coloring

directed medial graph

Tutte diagonal as state sum

Eulerian partition

state sum as Holant problem

parity condition

tau_color: f(P_0) = 0

edge coloring k=r hard planar Eulerian partition hard (tau_4)

construct <1> in two cases generalized edge coloring hard

chomatic in Tuttebinary interpolation eigenvalues

interpolate all binaries

generic generalized anti-gadget interpolation

generic binary interpolation

special binary interpolation obtain =_4

4th special case arity reduction

edge coloring k>r hard

planar pairing def

find planar pairing

Bobby Fischer gadget

ternary construction summarylocal holographic transformation

check orthogonality condition

<3(k-1),k-3,-3> hard for k>3

lattice condition (LC)

LC characterization for cubic polys LC satisfied by Sn or An Galois Gpsany arity interpolation

reducible p(x,y) satisfies LC for y>3 irreducible p(x,y) satisfies LC for y>3 p(x,3) satisfies LC local holographic transformation

obtain <a',b',b'> assuming a+(k-3)b-(k-2)c!=0

obtain any a+(k-3)b-(k-2)c=0

obtain <3(k-1),k-3,-3>

Triangle gadget

3R & 2C roots in x for p(x,y)

p(x,y) satisfies LC for y=>3

Puiseux series

only 5 solutions in Z for p(x,y) Dedkind's Theoremcondition for Sn Galois gp condition from same norm roots

<6,0,-3> hard

<a,b,c> dichotomy

extra special cases

1st special case2nd special case 3rd special case 5th special case

<(k-1)(k-2),2-k,2> hard

a+(k-3)b-(k-2)c=0 dichotomy

1st distinct norms2nd distinct norms

typical case

binary interpolation summary

eigenvalue shifted triple (EST)

EST distinct norms
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Thank You

Paper and slides available on my website:
www.cs.wisc.edu/~tdw
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