Advances in the Computational Complexity of

Holant Problems

Tyson Williams

Final Oral Defense
Computer Science Department
University of Wisconsin—Madison
May 1, 2015



© Introduction

© Dichotomy Theorems

Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
Dichotomy for #CSP(F) over Planar Graphs

Dichotomy for Holant(F) over General Graphs

Dichotomy for Holant,(f) over Planar 3-Regular Graphs

© Example Proofs of Hardness
@ Common Reduction
@ #EulerianOrientation over Planar 4-Regular Graphs
o #3-EdgeColoring over Planar 3-Regular Graphs

@ Summary



© Introduction



Complexity of Counting Problems

Counting problem
o Input: Graph
@ Output: Number

Framework of problems

Dichotomy Theorem

@ Every problem in the framework is either easy or hard
(i.e. computable in polynomial time or #P-hard).



© Dichotomy Theorems

Dichotomy for Z(f) over Planar 3-Regular Directed Graphs
Dichotomy for #CSP(F) over Planar Graphs

Dichotomy for Holant(F) over General Graphs

Dichotomy for Holant,(f) over Planar 3-Regular Graphs



#VertexCover

Definition

A vertex cover of a graph is a subset of vertices such that each edge is
incident to at least one vertex in the subset.
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Systematic Approach to #VertexCover

o G=(V,E)
e o:V—{01}

R

D
A
@
o

1@

II OR(e(v),o(v))=1-1-0-1-1-1=0
(u,v)EE



Systematic Approach to #VertexCover

o G=(V,E)

e c:V—{01} T
o&
@ o

#VertexCover(G) = Z H OR(a(u),o(v))

o:V—{0,1} (u,v)€EE
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@ OR  corresponds to #VertexCover
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Other Edge Constraints

@ OR  corresponds to #VertexCover
@ NAND corresponds to #IndependentSet

o+ corresponds to #Bipartition
@ — corresponds to #UpperSet
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Generalize

> II Or(e(w).ov))

o:V—{0,1} (u,v)€EE



Generalize

> II Or(e(w).ov))

o:V—{0,1} (u,v)€EE

Input || Output

p| q| OR(p,q)
0] 0 0

0]1 1
1|0 1
1)1 1




Generalize

> Il fe(w).ow)

o:V—{0,1} (u,v)€EE

Input || Output Input || Output
p| q| OR(p,q) plaql 7(p.q)
00 0 0|0 w
0|1 1 0|1 X
110 1 110 y
111 1 1|1 z

where w,x,y,z € C



Generalize

Partition Function:

z(6;r)= >[I flo(w).o(v))

o:V—{0,1} (u,v)€EE

Input || Output Input || Output
p| q| OR(p,q) plaql 7(p.q)
00 0 0|0 w
0|1 1 0|1 X
110 1 110 y
111 1 1|1 z

where w,x,y,z € C



Dichotomy Theorem

Theorem (Cai, Kowalczyk, W 12)

Over planar 3-regular G,
2(G:f)= > II flo(w),o(v)
o:V—{0,1} (u,v)EE

is either computable in polynomial time or #P-hard.




Dichotomy Theorem

Theorem (Cai, Kowalczyk, W 12)

Over planar 3-regular G,

z(6:f)= > II flo(w),o(v)

o:V—{0,1} (u,v)EE

is either computable in polynomial time or #P-hard.

Explicit form for tractable cases.
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Relation to Previous Work

Previous work:
e 7(0,1) =1(1,0) (i.e. undirected graphs)
o 3-regular graphs with weights in
e {0,1} [Cai, Lu, Xia 08]
o {0,1,—1} [Kowalczyk 09]

e R [Cai, Lu, Xia 09]

o C [Kowalczyk, Cai 10]
o k-regular graphs with weights in

o R [Cai, Kowalczyk 10]

o C [Cai, Kowalczyk 11]

Our work:
e 7(0,1) # f(1,0) (i.e. directed graphs)
o 3-regular graphs with weights in
e C



© Dichotomy Theorems

@ Dichotomy for #CSP(F) over Planar Graphs



Counting Constraint Satisfaction Problems (#CSP)

A set F of functions defines the counting problem #CSP(F).

SAT has F={OR,|n>1}U{NOT-EQUAL,}
3SAT has JF = {ORs, NOT-EQUAL,}
1-in-3SAT has F = {EXACT-ONE3, NOT-EQUAL,}
NAE-3SAT has F = {NOT-ALL-EQUAL3,NOT-EQUAL,}
Monotone SAT has F ={OR,|n>1}
Monotone 3SAT has F = {ORs3}
Monotone 1-in-3SAT has F = {EXACT-ONE3}
Monotone NAE-3SAT has F = {NOT-ALL-EQUAL3}




Counting Constraint Satisfaction Problems (#CSP)

A set F of functions defines the counting problem #CSP(F).

SAT

3SAT

1-in-3SAT
NAE-3SAT
Monotone SAT
Monotone 3SAT
Monotone 1-in-3SAT
Monotone NAE-3SAT

has
has
has
has
has
has
has
has

F={OR, | n>1} U {NOT-EQUAL,}

F = {ORs, NOT-EQUAL,}

F = {EXACT-ONE3, NOT-EQUAL,}

F = {NOT-ALL-EQUAL3,NOT-EQUAL,}
F={OR,|n>1}

F ={ORs}

F = {EXACT-ONE3}

F = {NOT-ALL-EQUALs}

v

Problem: #CSP(F) with 7 = {EVEN-PARITY3, MAJORITY3, OR3}
Input: EVEN-PARITY3(x, y,z) A MAJORITY3(x, y,z) A OR3(x, y, z)

Output: 3

N,




Planar Hyper-graph
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EVEN-PARITY3(x, y,z) A MAJORITY3(x,y, z) A ORs(x,y, 2)

X EVEN-PARITY3
y MAJORITY;
z OR;3

NOT Planar



Planar Hyper-graph

EVEN-PARITY3(x, y,z) A MAJORITY3(x, y, z) A ORx(x, y)

X EVEN-PARITY3

y MAJORITY;



Planar Hyper-graph

EVEN-PARITY3(x, y,z) A MAJORITY3(x, y, z) A ORx(x, y)

X EVEN-PARITY3 X EVEN-PARITY3
y MAJORITY | P4
z OR> MAJORITY

Planar



Generalize

Problem: #CSP(F)
Input: Hyper-graph G = (V, E) with f, € F for all v € V.

@ Set V of vertices (i.e. constraints)

@ Set E of hyper-edges (i.e. variables)

Output:
>, A @lew).

o:E—{0,1} veV

where E(v) is the set of hyper-edges containing v.
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Generalize

Problem: #CSP(F)
Input: Hyper-graph G = (V, E) with f, € F for all v € V.

@ Set V of vertices (i.e. constraints)

@ Set E of hyper-edges (i.e. variables)

Output:
>, A @lew).

o:E—{0,1} veV

where E(v) is the set of hyper-edges containing v.

Definition
A symmetric function is invariant under any permutation of its input.

OR AND EVEN-PARITY MAJORITY EQUALITY

10 /57



Dichotomy Theorem

Theorem (Guo, W 13)

Let F be a set of symmetric functions with Boolean inputs and complex
outputs.

Then over planar graphs, #CSP(F) is #P-hard unless
Q@ F C & (Propagation),
@ F C &/ (reduction to computing Gauss sums), or

© F C . (reduction to computing weighted perfect matchings),
which are computable in polynomial time.

11 /57



Relation to Previous Work

Special cases
o real weights [Cai, Lu, Xia 10]
@ single binary function [Cai, Kowalczyk 10]

12/57



© Dichotomy Theorems

@ Dichotomy for Holant(F) over General Graphs



Holant Problems

Let F be a set of functions.

Then F defines the counting problem Holant(F),
which is equivalent to READ-TWICE #CSP(F).

13/57



Read-Twice #CSP

EVEN-PARITY3(x,y,z) A MAJORITY3(x, y, z) A OR3(x,y, z)

X EVEN-PARITY3
y MAJORITY3

z OR3
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Read-Twice #CSP

EVEN-PARITY,( y,z) AMAJORITY,(x, z)AORy(x,y )

X EVEN-PARITY
y MAJORITY,

z OR,
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Read-Twice #CSP

EVEN-PARITY,( y,z) AMAJORITY,(x, z)AORy(x,y )
x EVEN-PARITY,
OR;

y MAJORITY> X y

MAJORITY,  EVEN-PARITY,

14 /57



Generalize

Problem: Holant(F)
Input: Hyper Graph G = (V, E) with f, € F forall v € V.

@ Set V of vertices

@ Set E of hyper edges

Output:
Holant(G; F) = Z H fy (U ‘E(v))v
o:E—{0,1} veV

where E(v) is the set of hyper edges containing v.

15 /57



Generalize

Problem: Holant(F)
Input: Hyper Graph G = (V, E) with f, € F forall v € V.

@ Set V of vertices
@ Set E of hyper edges

Output:
Holant(G; F) = Z H fy (U ‘E(v))v
0:E—{0,1} veV

where E(v) is the set of hyper edges containing v.

Holant(G; F) counts

matchings in G when f, = AT-MOST-ONE;
perfect matchings in G when f, = EXACT-ONE;
cycle covers in G when f, = EXACT-TWO;

edge covers in G when f, = OR.

15 /57



Holographic Transformation

NANDs(x, y, z)

16 /57



Holographic Transformation

(1001), (1001), (1001).

X
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Holographic Transformation

(1001),®(1001),®1001), [0
1
X 1
1
1
1
1
y 1/ or,
1
NANDs(x, y, z) 1
1
1
1
1
1
0

NAND3
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Holographic Transformation

(1001),®(1001),®1001), [0
1
X 1
1
1
1
1
Yy 1/ o,
1
NAND3(x, y, z) 1
1
1
1
1
1
0

NAND3
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Holographic Transformation

(1001),®(1001),&(100 1),

X

o
Py
&

NAND3(x, y, z)

OFRHRRKFHRRKFHRRERXRRRRRRRLRO

NAND3
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Holographic Transformation

(1001),®(1001),®(1001),

X

o
Py
&

NAND3(x, y, z)

SR RPRRRERPERPRPEQRRrRPRRPRRRRE~O

NAND;
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Holographic Transformation

(1001),®(1001),®(1001),T=6(T-1)e5

TT-1

ORs3

NAND;(x, y, 2)
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Holographic Transformation

(1001),®(1001),®(1001),T®e(T~1)e5

TT-1

ORs3

NAND;(x, y, 2)

oOrRrRrRHRRrRRLRRRERRRRRKRRRLC

NANDs 17/57



Holographic Transformation

(1001)y®(1001),®(1001), (7—®2)®3 (T_1)®6

771

OR;

NAND;(x, y, z)

O PR RRREIRRRRRRRO

NAND3 .



Holographic Transformation

(1001)T#®(1001), T**®(1001), T#(T1)%°

TT-1

OR3

NAND3(x, y, z)

I I e R e e R e e =)

NAND;
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Holographic Transformation

(1001)T*?®(1001), T*2®(1001), T¥(T1)%°

TT-1

OR3

NANDs(x, y, z)

O R R RRREIRRRRRRRO

NAND;
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Holographic Transformation

(1001),T®2@(1001), T2 ® (100 1), T2 ((T-1)®3)*?

TT-1

OR3

NANDs(x, y, z)

O R H R R R R  RPRRRRRRRO

NAND3
17/57



Holographic Transformation

1001),7T®2®(1001),T®2®(1001), 7% /0
g 1
1
1
T*l ®3
U
1
1
1 OR3
®
1
NANDs(x, y, z) 1
1
1
—-1\®3
(TH | ]
1
1
0

NAND3 -



Tractable Cases

o Arity 1
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Tractable Cases

o Arity 1
o Arity 2
@ #CSP tractable cases

o P-transformable
o &/-transformable

e Vanishing  (i.e. Holant is always 0)

o 1 ® 1-1+i7-i
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Tractable Cases

o Arity 1
o Arity 2
@ #CSP tractable cases

o P-transformable
o &/-transformable

e Vanishing  (i.e. Holant is always 0)

o ® 1-144i-i=0

18 /57



Dichotomy for Single Function

Theorem (Cai, Guo, W 13)

Let f be a symmetric function with Boolean inputs and complex outputs.

Then Holant(7) is #P-hard unless
© 1 is unary,

© 1 is binary,

@ 1 is P-transformable,

Q 1 is o/ -transformable, or

© 1 is vanishing,

which are computable in polynomial time.

19 /57



Dichotomy for Set of Functions

Theorem (Cai, Guo, W 13)

Let 7 be a set of symmetric functions with Boolean inputs and complex
outputs.

Then Holant(/) is #P-hard unless

Q 7 C {unary} U {binary},

Q F is P-transformable,

© 7 is @/-transformable,

Q 7 C{vanishing} U {special binary}, or

© 7 C { "highly” vanishing} U {special binary} U {unary},
which are computable in polynomial time.

20 /57



Relation to Previous Work

Single signature:
@ Holant(ternary) with complex weights [Cai, Huang, Lu 10]
@ Holant(binary | =) with complex weights [Cai, Kowalczyk 11]

Signature set:
@ Holant®(F) with complex weights [Cai, Huang, Lu 10]
o #CSPY(F) with complex weights [Huang, Lu 12]
e Holant(F) with real weights [Huang, Lu 12]

21/57



© Dichotomy Theorems

@ Dichotomy for Holant,(f) over Planar 3-Regular Graphs



Generalize

Problem: Holant,(F)
Input: Graph G = (V,E) with f, € F for all v € V.

@ Set V of vertices

@ Set E of edges

Output:
Holant.(G; F) = Z H fv (o lew))
TE=AETI veV
o:E—[K]

where E(v) is the set of edges containing v.
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Generalize

Problem: Holant,(F)
Input: Graph G = (V,E) with f, € F for all v € V.

@ Set V of vertices

@ Set E of edges

Output:
Holant.(G; F) = Z H fv (o lew))
TE=AETI veV
o:E—[K]

where E(v) is the set of edges containing v.

Holant,(G; F) counts edge colorings when f, = ALL-DISTINCT.

22/57



Dichotomy Theorem

Theorem (Cai, Guo, W 14)

Over planar 3-regular graphs, Holant,(f) is either computable in
polynomial time or #P-hard, where

a ifx=y=z (all equal)
f(x,y,z) =< b otherwise

c ifx#y#z#x (all distinct)
with a, b, c € C.

Explicit form for tractable cases.

23 /57



Relation to Previous Work

[Cai, Lu, Xia 13]
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Relation to Previous Work

[Cai, Lu, Xia 13] Our work
o arity(f) =3 e arity(f) =3
@ f is symmetric @ f is symmetric
o C weights o C weights
@ all unaries available @ no unaries available
e k=3 e kK>3
@ do not assume domain invariance @ assume domain invariance

24 /57



© Example Proofs of Hardness
@ Common Reduction
@ #EulerianOrientation over Planar 4-Regular Graphs
o #3-EdgeColoring over Planar 3-Regular Graphs



Reduce From Tutte Polynomial

Definition

The Tutte polynomial of an undirected graph G is

1

xT(G\ e;x,y)
yT(G\ex,y)
T(G\ex,y)+ T(G/e;x,y)

T(G;x,y) =

where G \ e is the graph obtained by deleting e
and G/e is the graph obtained by contracting e.

E(G) =0,
e € E(G) is a bridge,
e € E(G) is a loop,

otherwise,

25 /57



Medial Graph

Definition
/’—\\
! 1
\\ ,, —Q—
o ~
b\ // r N \\
AN ’ LS|
’I \\8 ’l
1 i
\\\ //// \\\\ //I
o X
/ 0 N\
1 ey |
\ v X
SN
(a) (b) ()

A plane graph (a), its medial graph (c), and the two graphs superimposed (b).
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Directed Medial Graph

Definition

(a)

A plane graph (a), its directed medial graph (c), and the two graphs superimposed (b).

v

27 /57



Eulerian Graphs and Eulerian Partitions

© Digraph is Eulerian if “in degree” = “out degree”.

28 /57



Eulerian Graphs and Eulerian Partitions

© Digraph is Eulerian if “in degree” = “out degree”.

© Eulerian partition of an Eulerian digraph Gisa partition of the edges
of G such that each part induces an Eulerian digraph.

28 /57



Eulerian Graphs and Eulerian Partitions

© Digraph is Eulerian if “in degree” = “out degree”.
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Eulerian Graphs and Eulerian Partitions

© Digraph is Eulerian if “in degree” = “out degree”.
(2] Eulgrian partition of an Eulerian digraph Gisa partition of the edges
of G such that each part induces an Eulerian digraph.

@ Let 7.(G) be the set of Eulerian partitions of G into at most # parts.

Q Let y(c) be the number of monochromatic vertices in c.

28 /57



Crucial Identity

Theorem (Ellis-Monaghan)

For a plane graph G,

KT(Gik+1,k+1)= Z 21e)
c € m(Gm)

29 /57



Connection to Holant

Then
> 29 = Holant,(Gpm; (2,1,0,1,0)),
c € mu(Gm)
where e, e,
2 fw=x=y==z .:' T ¢ ‘:
1 ifw=x#y=z A ,"'
Eviy={0 ifw=y#x=z
1 fw=z#x=y A'QV .
0 otherwise, '," ‘\\ /x' \\‘
ll A Y
where £ = (2,1,0,1,0). .: VOA ‘:

30/57
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Connection to Holant

Then
> 29 = Holant,(Gpm; (2,1,0,1,0)),
c € m(Gm)
where
2 fw=x=y=z
1 fw=x#y=z
E(¥Xy)=R0 ifw=y#x=z
1 fw=z#x=y
0 otherwise,

\

where £ = (2,1,0,1,0).
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Corollary (Cai, Guo, W 14)

For a plane graph G,
kT(G;k + 1,k + 1) = Holant,(Gp; (2,1,0,1,0)),

31/57



Corollary (Cai, Guo, W 14)
For a plane graph G,

kT(G;k + 1,k + 1) = Holant,(Gp; (2,1,0,1,0)),

and #P-hard over planar graphs for k > 2.

Theorem (Vertigan)

For any x,y € C, the problem of
evaluating the Tutte polynomial at
(x,y) over planar graphs is #P-hard
unless (x — 1)(y — 1) € {1,2} or
(x,y) € {(£1,£1), (w,w?)}, where
w3 = 1, which are computable in

polynomial time.

57



© Example Proofs of Hardness

@ #EulerianOrientation over Planar 4-Regular Graphs



Theorem and Proof Outline

Theorem (Guo, W 13)
Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.
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Theorem and Proof Outline

Theorem (Guo, W 13)
Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Pl-Holant»((2,1,0,1,0)) <7t
<7 #PIl-4Reg-EO

32/57



Holant and Orientations

Pl-Holant (#, | f) #2
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Holant and Orientations

Pl-Holant (#, | f) #2

33/57



Holant and Orientations

Pl-Holant (£, | ) £, |

33/57



Holant and Orientations

Pl-Holant (#, | f) #2

33/57



Holant and Orientations

Pl-Holant (#, | 1)

33/57



Holant and Orientations

Pl-Holant (#, | f) #2

33/57



Holant and Orientations

EXACT-TWO,
Pl-Holant (#, | EXACT-TWO,)  #,

EXACT-TWOq
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Theorem and Proof Outline

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Pl-Holant»((2,1,0,1,0)) <t
<7 Pl-Holant(, | EXACT-TWO,)
= #Pl-4Reg-EO
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Matrix Form

Let f be a function of arity 4 over the Boolean domain with
f(w,x,y,z) = "% Then we express f as the matrix

f‘OOOO f‘OOlO fOOOl fOOll
fOlOO fOllO fOlOl fOlll
flOOO flOlO f1001 f1011
£1100 (1110 1101 1111
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Let f be a function of arity 4 over the Boolean domain with
f(w,x,y,z) = "% Then we express f as the matrix

£0000
£0100
£1000
£1100

£0010
fOllO
£1010
flllO

£0001
f0101
F1001
f1101

fOOll
fOlll
f1011
FI111

v

Over the Boolean domain, the matrix form of f = (2,1,0,1,0) is

fOOOO
£0100
flOOO
£1100

£0010
fOllO
f1010
f1110

£0001
f0101
flOOl
f1101

f0011
f0111
f1011
f1111
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Theorem and Proof Outline
Theorem (Guo, W 13)
Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

})
<r

<7 PIl-Holant(#, | EXACT-TWO,)
=1 #PIl-4Reg-EO

Pl-Holant>((2,1,0,1,0)) — PI—HoIant([

HOON
[ele] He]
o—OO
NOOH
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Another Matrix Form

Let f be a function of arity 4 over the Boolean domain with
f(w,x,y,z) =" Then we express f as the matrix

fOOOO
fOlOO
flOOO
fllOO

£0010
fOllO
flOlO
£1110

£0001
£0101
f1001
F1101

fOOll
fOlll
F1011
F1111

v

The matrix form of g = EXACT-TWOy, is

0000
0100
1000
1100

0q 0q 0y Oy

0010
0110
1010
1110

0g 0y 0y Oy

0001
0101
1001
1101

03 0y 0y Oy

0011
0111
1011
1111

0y 0y 0y Oy
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Another Matrix Form

Let f be a function of arity 4 over the Boolean domain with
f(w,x,y,z) =" Then we express f as the matrix

fOOOO
fOlOO
flOOO
fllOO

£0010
fOllO
flOlO
£1110

£0001
£0101
f1001
F1101

fOOll
fOlll
F1011
F1111

v

The matrix form of g = EXACT-TWOy, is

0000
0100
1000
1100

05 0g 0y 09

0010
0110
-1010

1110

09 05 0y

o

0001
0101
1001
1101

0y 05 09 Oy

-0011
0111
1011
1111

0q

0y 0y 0Oy
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Another Matrix Form

Definition
Let f be a function of arity 4 over the Boolean domain with
f(w,x,y,z) =" Then we express f as the matrix

fOOOO fOOlO f0001 fOOll
fOlOO fOllO f0101 fOlll
flOOO flOlO f1001 f1011
fllOO f1110 f1101 fllll

v

The matrix form of g = EXACT-TWOy, is

gOOOO g0010 g0001 1

g0100 1 1 g0111

g1000 1 1 g1011
1 g1110 g1101 gllll
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Another Matrix Form

Definition
Let f be a function of arity 4 over the Boolean domain with
f(w,x,y,z) =" Then we express f as the matrix

fOOOO fOOlO f0001 fOOll
fOlOO fOllO f0101 fOlll
flOOO flOlO f1001 f1011
fllOO f1110 f1101 fllll

v

The matrix form of g = EXACT-TWOy, is
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1110 1101 1111
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Another Matrix Form

Definition

Let f be a function of arity 4 over the Boolean domain with
f(w,x,y,z) =" Then we express f as the matrix

fOOOO fOOlO f0001 fOOll
fOlOO fOllO f0101 fOlll
flOOO flOlO f1001 f1011
fllOO f1110 f1101 fllll

v

The matrix form of g = EXACT-TWOy, is

= O O O
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Theorem and Proof Outline
Theorem (Guo, W 13)
Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

2001
Pl-Holant>((2,1,0,1,0)) = PI—HoIant([8é?8})
1002

<7

0001
<7 PrHolani(, | |8118])
1000
—  Pl-Holant(#, | EXACT-TWO)

=1 #PIl-4Reg-EO
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Holographic Transformation

1 1
Under a holographic transformation by 7 = -2 [i ]

V2 —i
0001 1 3001
PrHolant(, | [ §118]) = prron(—2 1 [§112])
1000 1003
3001
=7 PI-HoIant([gﬂg]).
1003
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Theorem and Proof Outline

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

0
o)
2

720
Pl-Holant((2,1,0,1,0)) = PI-Holant(| 33
10

<T

<7 PI-Holant(

~—

T 1
HOOW
OO
OO

HOOO WOoOoH
L

Pl-Holant(#, | [ ] )

= Pl-Holant(#, | EXACT-TWO)
T #PI-4Reg-EO

Oo—HO
OoO=HO
Qoo+
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Gadget Construction

3001
Assign the function with matrix [8 11 8] to every vertex of this gadget...
1003

...to get a function with matrix

16

~N O O

O 01N O

[ 2R NINE) e}
o o N
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Theorem and Proof Outline

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Pl-Holant>((2,1,0,1,0)) = Pl-Holant(

| —
—ooN
— OORO

© oroo

—oo00o wWoor PUINO voor

~—

<t PI-Holant(

1

~Noo

_
oo~
| S
N—r

Pl-Holant(

L 1 ONUIO L— 1
~—

| — N[
—Hoow
oo

OO

= PIl-Holant(#;, |

| —|

(=) ]
O=HO
oo

i
<t Pl-Holant(#, | EXACT-TWO)
=71 #Pl-4Reg-EO




Theorem and Proof Outline

Theorem (Guo, W 13)

Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Pl-Holant>((2,1,0,1,0)) = Pl-Holant(

| —
—ooN
— OORO

© oroo

~—

Pl-Holant(

1

~Noo

_
oo~
| S
N—r

<7 PIl-Holant(

L 1 ONUIO L— 1
~—

| — N[
—Hoow
oo

OO

= PIl-Holant(#;, |

—oo00o wWoor PUINO voor

| —|

(=) ]
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oo

i
<t Pl-Holant(#, | EXACT-TWO)
=71 #Pl-4Reg-EO




Interpolation

11

00

00"
-11

OO

0
Let T = {11
0
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Let T

Then
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=
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=]
o
(=}
Q.
-
[}
]
(=

OO
—
—OO |
OO
—
O | o

Let T

Then

Given a 4-regular graph G, let

] T7h.

OO O N
oo O
[« No Y]
XO oo

Holant(G; T [

p(Gix,y,z)
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[}
]
(=

OO

—
—OO |
OO
O | o

Let T

Then

Given a 4-regular graph G, let

OO O N
oo O
[« No Y]
XO oo

Holant(G; T [

p(Gix,y,z)

Then

ocoom
oOo-HO
[=lolele)
—OO0O

Holant(G; T [

p(G;1,1,3)
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Interpolation

1000
Assign the function with matrix T {8 699 ] T~ to every vertex of N...
00013

DL =T DTET

100017°
...to get a function with matrix T {8 699 ] T-1.
00013

Let Gs be obtained from G by replacing every vertex with N;.
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Interpolation

Assign the function with matrix T [ ] T~ to every vertex of N...

DL =T DTET

100017°
...to get a function with matrix T {8 699 ] T-1.
00013

coor
cooo
ocooco
-

Looo

Let Gs be obtained from G by replacing every vertex with N;.
Then

100
p(G;1°,6°13%) = Holant(G; T [% §(8)

—
Hooo [ =l=l=}

w

10
= Holant(Gs; T [88
00

[=fo)lale)
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Interpolation

Let cjis be the coefficient of xlykz"in p(x,y,z).

Then (with n vertices in G)

p(G;1°,6°,13°) = Y (613") s
J+k+t=n

is a full rank Vandermonde system:
@ row index s;

@ column index (J, k, /).

QED
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Theorem and Proof Outline
Theorem (Guo, W 13)
Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Proof.

Pl-Holant»((2,1,0,1,0)) = PIl-Holant(

~—

| — |
—oOoN
_ OORO

© oroo

—ooO wWoor PUINO voor

Pl-Holant(

| —

=
poo~
_ 1
N

~Noo

<7 PIl-Holant(

~—

L 1 ONUIO L— 1

| — N[ =
—Hoow
(e o)

OoO=HO

OoOHHO
(elela]g

= Pl-Holant(%, | [ ])

<t PIl-Holant(#, | EXACT-TWO)
=1 #Pl-4Reg-EO Ol

OO

v

Techniques: holographic transformation, gadget construction, interpolation
46 / 57



© Example Proofs of Hardness

o #3-EdgeColoring over Planar 3-Regular Graphs



Edge Coloring
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Theorem and Proof Outline

Theorem (Cai, Guo, W 14)

Counting edge colorings with r colors is #P-hard over planar k-regular
graphs for k. > 3.

Pl-Holant,((2,1,0,1,0))

T

IAN A IA
\i

7 #Pl-xReg-xEdgeColoring
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Theorem and Proof Outline

Theorem (Cai, Guo, W 14)

Counting edge colorings with r colors is #P-hard over planar k-regular
graphs for k. > 3.

Pl-Holant,((2,1,0,1,0))

<7 :
<7 PIl-Holant, (ALL-DISTINCT )
= #Pl-xReg-xEdgeColoring

48 /57



Gadget Construction

Let AD3 = ALL-DISTINCTS.
Holant3(G; (0,1,1,0,0)) = Holant3(G'; AD3)

y

A
1
[}
1
1
[}
1
1
1
[}
1
1
1
1
1
1

0 fw=x=y==z
1 fw=x#y=z

f(¥7)=1(0,1,1,0,0) =<1 ifw=y#x=z
0 fw=z#x=y
0

otherwise.
49 /57
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Gadget Construction

Let AD3 = ALL-DISTINCTS.
Holant3(G; (0,1,1,0,0)) = Holant3(G'; AD3)
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Theorem and Proof Outline

Theorem (Cai, Guo, W 14)

Counting edge colorings with r colors is #P-hard over planar k-regular
graphs for k. > 3.

Pl-Holant,.((2,1,0,1,0)) <7 PI-Holant,((0,1,1,0,0))
<7 Pl-Holant, (ALL-DISTINCT )
= #PIl-xkReg-xEdgeColoring
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Theorem and Proof Outline

Theorem (Cai, Guo, W 14)
Counting edge colorings with r colors is #P-hard over planar k-regular
graphs for k. > 3.

Pl-Holant,((2,1,0,1,0)) <+ Pl-Holant,((0,1,1,0,0))
<7 PIl-Holant, (ALL-DISTINCT )
= #Pl-xReg-rxEdgeColoring
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Polynomial Interpolation

Assign (0,1,1,0,0) to every vertex of N...

N1 N2 Ns+1

...to get a function f;.

Then s = M*fy, where

0 k-1 0 0 O 1
1 k=2 0 0 0 0
M=1|0 0 010 and fo= |0
0 O 1 00 1
0 0 001 0

Let Gs be obtained from G by replacing every vertex with Nj.

5157



Polynomial Interpolation

Spectral decomposition M = PAP~1, where

1 1-~ 0 0 O k=1 0 0 0 O
1 1 0 0 O 0 -1 0 0 O
P=10 0 1 1 0 and A= 0 0 1 0 O
0 © 1 -1 0 0 0 0 -1 0
0 0 0 0 1 0 0 0 0 1

52 /57
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Spectral decomposition M
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Polynomial Interpolation

Spectral decomposition M = PAP~1, where

1 1-x 0 0 0 k=1 0 0 0 0
1 1 0 0 0 0 -1 0 0 O
P=10 0 1 1 0 and A=| 0 0 1 0 0
0 0 1 -10 0 0 0 -1 0
0 0 0 0 1 0 0 0 0 1
Let
x 00 00 =14
01000 x=1
f(x)=P|0 0 1 0 0| P lfy= 0
00010 1
00001 0

Given a 4-regular graph G, let p(G; x) = Holant,(G; f(x)).
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Polynomial Interpolation

Spectral decomposition M = PAP~1, where

1 1-x0 0 0 k-1 0 0 0 O
1 1 0 00 0 -10 0 0
P=10 0 1 1 0 and A=| 0 0 1 0 O
0 0 1 -10 0 0 0 -10
0 0 0 0 1 0 0 0 0 1
Let
x 0000 =141
01000 x=1
f(x)=P|0 0 1 0 0| P lfy= 0
00010 1
00001 0

Given a 4-regular graph G, let p(G; x) = Holant,(G; f(x)).
Then p(G; x + 1) = Holant,(G; (2,1,0,1,0))
and p (G; (k — 1)®*) = Holant,(G; f25) = Holant,(Gas; (0,1,1,0,0)).
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Polynomial Interpolation

If G has n vertices, then p(G, x) has degree n.
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Polynomial Interpolation

If G has n vertices, then p(G, x) has degree n.

Since (x — 1)% is distinct for 0 < s < n, we can efficiently compute the
coefficients of p(G, x).

QED
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Theorem and Proof Outline

Theorem (Cai, Guo, W 14)
Counting edge colorings with r colors is #P-hard over planar k-regular
graphs for k. > 3.

Pl-Holant,((2,1,0,1,0)) <+ Pl-Holant,((0,1,1,0,0))
<7 PIl-Holant, (ALL-DISTINCT )
= #Pl-xReg-rxEdgeColoring O
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@ Summary



Dichotomy Theorems

Theorem (Cai, Kowalczyk, W 12)
Z(binary) over planar 3-regular directed graphs.

Theorem (Guo, W 13)
#CSP(symmetric set) over planar graphs.

Theorem (Cai, Guo, W 13)

Holant(symmetric set) over general graphs.

Theorem (Cai, Guo, W 14)

Holant, (symmetric domain invariant) over planar 3-regular graphs for
Kk > 3.
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Combinatorial Examples

Theorem (Guo, W 13)
Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Theorem (Cai, Guo, W 14)
Counting edge colorings with  colors is #P-hard over planar k-regular
graphs for k > 3.
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Combinatorial Examples

Theorem (Guo, W 13)
Counting Eulerian Orientations is #P-hard over planar 4-regular graphs.

Theorem (Cai, Guo, W 14)
Counting edge colorings with r colors is #P-hard over planar r-regular
graphs for k. > r > 3.
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Thank You
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