
PARROT: AN APPLICATION ENVIRONMENT
FOR DATA-INTENSIVE COMPUTING

((PREPRINT VERSION))

DOUGLAS THAIN AND MIRON LIVNY

COMPUTER SCIENCES DEPARTMENT, UNIVERSITY OF WISCONSIN

Abstract. Distributed computing continues to be an alphabet-soup of services and protocols for
managing computation and storage. To live in this environment, applications require middleware that
can transparently adapt standard interfaces to new distributed systems; such middleware is known
as an interposition agent. In this paper, we present several lessons learned about interposition agents
via a progressive study of design possibilities. Although performance is an important concern, we
pay special attention to less tangible issues such as portability, reliability, and compatibility. We
begin with a comparison of seven methods of interposition and select one method, the debugger
trap, that is the slowest but also the most reliable. Using this method, we implement a complete
interposition agent, Parrot, that splices existing remote I/O systems into the namespace of standard
applications. The primary design problem of Parrot is the mapping of fixed application semantics
into the semantics of the available I/O systems. We offer a detailed discussion of how errors and other
unexpected conditions must be carefully managed in order to keep this mapping intact. We conclude
with a evaluation of the performance of the I/O protocols employed by Parrot, and use an Andrew-
like benchmark to demonstrate that semantic differences have consequences in performance. 1

Key words. Adaptive middleware, error diagnosis, interposition agents, virtual machines.

1. Introduction. The field of distributed computing has produced countless
systems for harnessing remote processors and accessing remote data. Despite the
intentions of their designers, no single system has achieved universal acceptance or
deployment. Each carries its own strengths and weakness in performance, manageabil-
ity, and reliability. Renewed interest in world-wide computational systems is increas-
ing the number of protocols and interfaces in play. A complex ecology of distributed
systems is here to stay.

The result is an hourglass model of distributed computing, shown in Figure 1.1.
At the center lie ordinary applications built to standard interfaces such as POSIX.
Above lie a number of batch systems that manage processors, interact with users,
and deal with failures of execution. A batch system interacts with an application
through simple interfaces such as main and exit. Below lie a number of I/O services
that organize and communicate with remote memory, disks, and tapes. An ordinary
operating system (OS) transforms an application’s explicit reads and writes into the
low-level block and network operations that compose a local or distributed file system.

However, attaching a new I/O service to a traditional OS is not a trivial task. Al-
though the principle of an extensible OS has received much attention in the research
community [19], production operating systems have limited facilities for extension,
usually requiring kernel modifications or administrator privileges. Although this may
be acceptable for a personal computer, this requirement makes it difficult or impos-
sible to provide custom I/O and naming services for applications visiting a borrowed
computing environment such as a timeshared mainframe, a commodity computing
cluster, or an opportunistic workgroup.

To remedy this situation, we advocate the use of interposition agents [13]. These
devices transform standard interfaces into remote I/O protocols not normally found in

1This research was supported by a Lawrence Landweber NCR fellowship in distributed systems.

1



2 D. THAIN AND M. LIVNY

an operating system. In effect, an agent allows an application to bring its filesystem
and namespace along with it wherever it goes. This releases the dependence on
the details of the execution site while preserving the use of standard interfaces. In
addition, the agent can tap into naming services that transform private names into
fully-qualified names relevant in the larger system.

C
PU

/IO

Interaction

Common I/O Interface

Distributed I/O Services

FTP

Process

Distributed Computing Services

Condor PBS NQE LSF
Load

Leveler

Application

Local Operating System

Common Process Interface

(open, close, read, write, lseek)

(main, exit, abort, kill, sleep)

NeSTChirp RFIO

Parrot

DCAP

Fig. 1.1. The Hourglass Model

In this paper, we present practical lessons
learned from several years of building and de-
ploying interposition agents within the Condor
project. [20, 28, 21, ?, 22] Although the notion of
such agents is not unique to Condor [13, 2, 12],
they have seen relatively little use in other pro-
duction systems. This is due to a variety of tech-
nical and semantic difficulties that arise in con-
necting real systems together.

We present this paper as a progressive design
study that explores these problems and explains
our solutions. We begin with a detailed study of
seven methods of interposition, five of which we
have experience building and deploying. The re-
maining two are effective but impractical because
of the privilege required. We will compare the
performance and functionality of these methods,
giving particular attention to intangibles such as
portability and reliability. In particular, we will
concentrate on one method that has not been ex-
plored in detail: the debugger trap. Although
this method has been employed in idealized op-

erating systems, it requires additional techniques in order to provide acceptable per-
formance on popular operating systems with limited debugging capabilities, such as
Linux.

Using the debugger trap, we focus on the design of Parrot, an interposition agent
that splices remote I/O systems into the filesystem space of ordinary applications. A
central problem in the design of an I/O agent is the semantic problem of mapping
not-quite-identical interfaces to each other. The outgoing mapping is usually quite
simple: read becomes a get, write becomes a put, and so forth. The real difficulty lies
in interpreting the large space of return values from remote services. Many new kinds
of failure are introduced: servers crash, credentials expire, and disks fill. Trivial trans-
formations into the application’s standard interface lead to a brittle and frustrating
experience for the user.

A corollary to this observation is that access to computation and storage cannot
be fully divorced. Abstract notions of design often encourage the partition of dis-
tributed systems into two activities: either computation or storage. An interposition
agent serves as a connection between these two concerns; like an operating system ker-
nel, it manages both types of devices and must mediate their interaction, sometimes
bypassing the application itself.

This paper is a condensed version of a workshop paper. Due to space limitations,
we have omitted a number of sections and details, indicated by footnotes. The in-
terested reader may find further details in the original paper [23] or in a technical



PARROT: AN APPLICATION ENVIRONMENT... 3

internal techniques external techniques
poly. static dyn. binary debug remote kernel
exten. link link rewrite trap filesys. callout

scope library static dynamic dynamic no setuid any any
burden rewrite relink identify identify run command superuser modify os

layer fixed any any any syscall fs ops only syscall
init/fini hard hard hard hard easy impossible easy

aff. linker no no no no yes yes yes
debug yes yes yes yes limited yes yes
secure no no no no yes yes yes

find holes easy hard hard hard easy easy easy
porting easy hard hard hard medium easy medium

Fig. 1.2. Properties of Interposition Techniques

report. [24] 2

2. Interposition Techniques Compared. There are many techniques for in-
terpositioning services between an application and the underlying system. Each has
particular strengths and weaknesses. Figure 1.2 summarizes seven interposition tech-
niques. They may be broken into two broad categories: internal and external. Inter-
nal techniques modify the memory space of an application process in some fashion.
These techniques are flexible and efficient, but cannot be applied to arbitrary pro-
cesses. External techniques capture and modify operations that are visible outside an
application’s address space. These techniques are less flexible and have higher over-
head, but can be applied to nearly any process. The Condor project has experience
building and deploying all of the internal techniques as well one external technique:
the debugger trap. The remaining two external techniques we describe from relevant
publications.

The simplest technique is the polymorphic extension. If the application structure
is amenable to extension, we may simply add a new implementation of an existing
interface. The user then must make small code changes to invoke the appropriate
constructor or factory in order to produce the new object. This technique is used in
Condor’s Java Universe [22] to connect an ordinary InputStream or OutputStream to
a secure remote proxy. It is also found in general purpose libraries such as SFIO. [25]

The static library technique involves creating a replacement for an existing library.
The user is obliged to re-link the application with the new library. For example, Con-
dor’s Standard Universe [20] provides a drop-in replacement for the standard C library
that provides transparent checkpointing as well as proxying of I/O back to the submis-
sion site, fully emulating the user’s home environment. The dynamic library technique
also involves creating a replacement for an existing library. However, through the use
of linker controls, the user may direct the new library to be used in place of the old
for any given dynamically linked library. This technique is used by DCache [8], some
implementations of SOCKS [15], as well as our own Bypass [21] toolkit. The binary
rewriting technique involves modifying the machine code of a process at runtime to
redirect the flow of control. This requires very detailed knowledge of the CPU archi-
tecture in use, but this can be hidden behind an abstraction such as the Paradyn [17]
toolkit. This technique has been used to “hijack” an unwitting process at runtime. [28]

Traditional debuggers make use of a specialized operating system interface for
stopping, examining, and resuming a process. The debugger trap technique uses this

2Omitted: Example applications of interposition agents.



4 D. THAIN AND M. LIVNY

interface, but instead of merely examining the process, the debugging agent traps
each system call, provides an implementation, and then places the result back in the
target process while nullifying the intended system call. An example of this technique
is UFO [2], which allows access to HTTP and ftp resources via whole-file fetching.
A difficulty with the debugger trap is that many tools compete for access to a single
process’ debug interface. The Tool Daemon Protocol (TDP) [18] provides an interface
for managing such tools in a distributed system.

A remote filesystem may be used as an interposition agent by simply modifying the
file server. NFS is a popular choice for this technique, and is used by the Legion [27]
object-space translator, as well the Slice [4] microproxy. Finally, short of modifying
the kernel itself, we may install a one-time kernel callout which permits a filesystem
to be serviced by a user-level process. This facility can be present from the ground
up in a microkernel [1], but can also be added as an afterthought, which is the case
for most implementations of AFS [11].

The four internal techniques may only be applied to certain kinds of programs.
Polymorphic extension and static linking only apply to those programs that can be
rebuilt. The dynamic library technique requires that the replaced library be dynamic,
while binary rewriting (with the Paradyn toolkit) requires the presence of the dynamic
loader, although no particular library must be dynamic. The three external techniques
apply to any process, with the exception that the debugging trap prevents the traced
process from elevating its privilege level through the setuid feature.

The burden upon the user for each of these techniques also varies widely. For
example, polymorphic extension requires small code changes while static linking re-
quires rebuilding. These techniques may not be possible with packaged commercial
software. Dynamic linking and binary rewriting require that the user understand
which programs are dynamically linked and which are not. Most standard system
utilities are dynamic, but many commercial packages are static. Our experience is
that users are surprised and quite frustrated when an (unexpectedly) static applica-
tion blithely ignores an interposition agent. The remote filesystem and kernel callout
techniques impose the smallest user burden, but require a cooperative system admin-
istrator to make the necessary changes. The debugger trap imposes a small burden
on the user to simply invoke the agent executable.

Perhaps the most significant difference between the techniques is the ability to
trap different layers of software. Each of the internal techniques may be applied at any
layer of code. For example, Bypass has been used to instrument an application’s calls
to the standard memory allocator, the X Window System library, and the OpenGL
library. In contrast, the external techniques are fixed to particular interfaces. The
debugger trap only operates on physical system calls, while the remote filesystem and
kernel callout are limited to certain filesystem operations.

Differences in these techniques affect the design of code that they attach to.
Consider the matter of implementing a directory listing on a remote device. The
internal techniques are capable of intercepting library calls such as open and opendir.
These are easily mapped to remote file access protocols, which generally have separate
procedures for accessing files and directories. However, the Unix interface unifies files
and directories; both are accessed through the system call open. External techniques
must accept an open on either a file or directory and defer the binding to a remote
operation until either read or getdents is invoked. The choice of interposition layer
affects the design of the agent.

The external techniques also differ in the range of operations that they are able



PARROT: AN APPLICATION ENVIRONMENT... 5

to trap. While the debugger trap can modify any system call, the remote filesystem
and kernel callout techniques are limited to filesystem operations. A particular remote
filesystem may have even further restrictions. For example, the stateless NFS protocol
has no representation of the system calls open and close. Without access to this
information, the interposed service cannot provide semantics significantly different
than those provided by NFS. Further, such file system interfaces do not express any
binding between individual operations and the processes that initiate them. That is,
a remote filesystem agent sees a read or write but not the process id that issued it.
Without this information, it is difficult or impossible to performing accounting for the
purposes of security or performance.

A number of important activities take place during the initialization and finaliza-
tion of a process: dynamic libraries are loaded; constructors, destructors, and other
automatic routines are run; I/O streams are created or flushed. During these tran-
sitions, the libraries and other resources in use by a process are in a state of flux.
This complicates the implementation of internal agents that wish to intercept such
activity. For example, the application may perform I/O in a global constructor or
destructor. Thus, an internal agent itself cannot rely on global constructors or de-
structors: there is no ordering enforced between those of the application and those of
the agent. Likewise, a dynamically loaded agent cannot interpose on the actions of
the dynamic linker. The programmer of such agents must not only exercise care in
constructing the agent, but also in selecting the libraries invoked by the agent. Such
code is time consuming to create and debug. These activities are much more easily
manipulated through external techniques. For example, external techniques can easily
trap and modify the activities of the dynamic linker.

No code is ever complete nor fully debugged. Production deployment of interpo-
sition agents requires that users be permitted to debug both applications and agents.
All techniques admit debugging of user programs, with the only complication arising
in the debugger trap. For obvious reasons, a single process cannot be debugged by
two processes at once, so a debugger cannot be attached to an instrumented process.
However, a debugger trap agent can be used to manage an entire process tree, so
instead the user may use the agent to invoke the debugger, which may then invoke
the application. The debugger’s operations may be trapped just like any other system
call and passed along to the application, all under the supervision of the agent.

Interposition agents may be used for security as well as convenience. An agent
may provide a sandbox which prevents an untrusted application from modifying any
external data that it is not permitted to access. The internal techniques are not
suitable for this security purpose, because they may easily be subverted by a program
that invokes system calls directly without passing through libraries. The external
techniques, however, cannot be fooled in this way and are thus suitable for security.

Related to security is the matter of hole detection. An interposition agent may
fail to trap an operation attempted by an application. This may simply be a bug in
the agent, or it may be that the interface has evolved over time, and the application
is using a deprecated or newly added interface that the agent is not aware of. Internal
agents are especially sensitive to this bug. As standard libraries develop, interfaces
are added and deleted, and modified library routines may invoke system calls directly
without passing through the corresponding public interface function. For example,
fopen may invoke the open system call without passing through the open function.
Such an event causes general chaos in both the application and agent, often resulting
in crashes or (worse) silent output errors. No such problem occurs in external agents.



6 D. THAIN AND M. LIVNY

getpid stat open/close read 8KB bandwidth

unmod .18±.03 µs 1.85±.09 3.18± .08 3.27± .19 282±13 MB/s
rewrite .21±.25 µs 1.82±.02 3.21± .05 3.26± .03 280± 7 MB/s

static .21±.02 µs 1.80±.17 3.59± .05 3.34± .02 280±17 MB/s
dynamic 1.22±.01 µs 3.60±.10 5.53± .06 4.31± .09 278± 4 MB/s

(α unmod) (6.8x) (1.9x) (1.7x) (1.3x) (0.99x)
debug 10.06±.21 µs 55.41±.50 42.09± .06 30.99± .26 122± 4 MB/s

(α unmod) (56x) (30x) (13x) (9x) (0.43x)

Fig. 2.1. Overhead of Interposition Techniques

Although interfaces still change, any unexpected event is detected as an unknown
system call. The agent may then terminate the application and indicate the exact
problem.

The problem of hole detection must not be underestimated. Our experi-
ence is that any significant operating system upgrade includes changes to the standard
libraries, which in turn require modifications to internal trapping techniques. Thus,
internal agents are rarely forward compatible. Further, identifying and fixing such
holes is time consuming. Because the missed operation itself is unknown, one must
spend long hours with a debugger to see where the expected course of the application
differs from the actual behavior. Once discovered, a new entry point must be added
to the agent. The treatment is simple but the diagnosis is difficult. We have learned
this lesson the hard way by porting both the Condor remote system call library and
the Bypass toolkit to a wide variety of Unix-like platforms.

For these reasons, we have described porting in Figure 1.2 as follows. The poly-
morphic extension and the remote filesystem are quite easy to build on a new system.
The debugger trap and the kernel callout have significant system dependent compo-
nents to be ported to each operating system, but the nature and stability of these
interfaces make this a tractable task. The remaining three techniques – static linking,
dynamic linking, and binary rewriting – should be viewed as a significant porting
challenge that must be revisited at every minor operating system upgrade.

Figure 2.1 compares the performance of four transparent interposition techniques.
We constructed a benchmark C program which timed 100,000 iterations of various
system calls on a 1545 MHz Athlon XP1800 running Linux 2.4.18. Available band-
width was measured by reading a 100 MB file sequentially in 1 MB blocks. The mean
and standard deviation of 1000 cycles of each benchmark are shown. File operations
were performed on an existing file in a temporary file system. The unmod case gives
the performance of this benchmark without any agent attached, while the remaining
five show the same benchmark modified by each interposition technique. In each case,
we constructed a very minimal agent to trap system calls and invoke them without
modification.

As can be seen, the binary rewriting and static linking methods add no significant
cost to the application. The dynamic method has overhead on the order of microsec-
onds, as it must manage the structure of (potentially) multiple agents and invoke
a function pointer. However, these overheads are quickly dominated by the cost of
moving data in and out of the process. The debugger trap has the greatest overhead
of all the techniques, ranging from a 56x slowdown for getpid to a 6x slowdown for
writing 8 KB. Most importantly, the bandwidth measurement demonstrates that the
debugger trap achieves less than half of the unmodified I/O bandwidth. It should
be fairly noted that this latency and bandwidth will be dominated by the latency



PARROT: AN APPLICATION ENVIRONMENT... 7

Fig. 3.1. Interactive Browsing with Parrot

and bandwidth of accessing remote services on commodity networks. Security and
reliability come at a measurable cost. 3

3. Parrot. The Parrot interposition agent attaches standard applications to a
variety of distributed I/O systems by way of the debugger trap, described above. Each
I/O protocol is presented as a normal filesystem entry under a new top-level directory
bearing the name of the protocol. In addition, an optional mountlist may be given,
which redirects parts of the filesystem namespace to external paths. Figure 3.1 shows
Parrot being used with standard tools to manipulate files stored at the Mass Storage
Server (MSS) at the National Center for Supercomputing Applications (NCSA) via
the Grid Security Infrastructure (GSI) [9] variant of the File Transfer Protocol (FTP).

Parrot is equipped with a variety of drivers for communicating with external stor-
age systems; each has particular features and limitations. The simplest is the Local
driver, which simply passes operations on to the underlying operating system. The
Chirp protocol was designed by the authors in an earlier work [22] to provide remote
I/O with semantics very similar to POSIX. A standalone chirp server is distributed
with Parrot. The venerable File Transfer Protocol (FTP) has been in heavy use
since the early days of the Internet. Its simplicity allows for a wide variety of of
implementations, which, for our purposes, results in an unfortunate degree of impre-
cision which we will expand upon below. Parrot supports the secure GSI [3] variant
of ftp. The NeST protocol is the native language of the NeST storage appliance [6],
which provides an array of authentication, allocation, and accounting mechanisms for
storage that may be shared among multiple transient users. The RFIO and DCAP
protocols were designed in the high-energy physics community to provide access to
hierarchical mass storage devices such as Castor [5] and DCache [8].

Because Parrot must preserve POSIX semantics for the sake of the application,
our foremost concern is the ability of each of these protocols to provide the necessary
semantics. Performance is a secondary concern, although it is affected significantly
by semantic issues. A summary of the semantics of each of these protocols is given in
Figure 4.1. 4

4. Errors and Boundary Conditions. Error handling has not been a perva-
sive problem in the design of traditional operating systems. As new models of file
interaction have developed, attending error modes have been added to existing sys-
tems by expanding the software interface at every level. For example, the addition of
distributed file systems to the Unix kernel created the new possibility of a stale file

3Omitted: a detailed description of the debugger trap.
4Omitted: Details of the various protocols supported by Parrot.



8 D. THAIN AND M. LIVNY

name binding discipline dirs metadata symlinks connections

posix open/close random yes direct yes -
chirp open/close random yes direct yes per client

ftp get/put sequential varies indirect no per file
nest get/put random yes indirect yes per client
rfio open/close random yes direct no per file/op

dcap open/close random no direct no per client

Fig. 4.1. Protocol Compatibility with POSIX

handle, represented by the ESTALE error. As this error mode was discovered at the
very lowest layers of the kernel, the value was added to the device driver interface,
the file system interface, the standard library, and expected to be handled directly by
applications.

We have no such luxury in an interposition agent. Applications use the existing
interface, and we have neither the desire nor the ability to change it. Sometimes, if we
are lucky, we may re-use an error such as ESTALE for an analogous, if not identical
purpose. Yet, the underlying device drivers generate errors ranging from the vague
“file system error” to the microscopically precise “server’s certification authority is not
trusted.” How should the unlimited space of errors in the lower layers be transformed
into the fixed space of errors available to the application? 5

For example, several device drivers have the necessary machinery to carry out all
of a user’s possible requests, but provide vague errors when a supported operation
fails. The FTP driver allows an application to read a file via the GET command.
However, if the GET command fails, the only available information is the error code
550, which encompasses almost any sort of file system error including “no such file,”
“access denied,” and “is a directory.” The POSIX interface does not permit a catch-
all error value; it requires a specific reason. Which error code should be returned to
the application?

One technique for dealing with this problem is to interview the service in order to
narrow down the cause of the error, in a manner similar to that of an expert system.
Suppose that we attempt to retrieve a file using an FTP GET operation. If the
GET should fail, we may hypothesize that the named file is actually a directory. The
hypothesis may be tested with a change directory (CWD) command. If that succeeds,
the hypothesis is true, and we may return the precise error “not a file.” If that fails,
we must propose another hypothesis and test it. Parrot performs a number of two-
and three-step interviews in response to a variety of FTP errors.

The connection structure of a remote I/O protocol also has implications for se-
mantics as well as performance. Chirp, NeST, and DCAP require one TCP connection
between each client and server. FTP and RFIO require a new connection made for
each file opened. In addition, RFIO requires a new connection for each operation
performed on a non-open file. Because most file system operations are metadata
queries, this can result in an extraordinary number of connections in a short amount
of time. Ignoring the latency penalties of this activity, a large number of TCP connec-
tions can consume resources at clients, servers, and network devices such as address
translators. 6

5Omitted: Several more examples of error transformation.
6Omitted: A discussion of the interface between Parrot and batch systems.



PARROT: AN APPLICATION ENVIRONMENT... 9

5. Performance. We have deferred a discussion of performance until this point
so that we may see the performance effects of semantic constraints. Although it
is possible to write applications explicitly to use remote I/O protocols in the most
efficient manner, Parrot must provide conservative and complete implementations of
POSIX operations. For example, an application may only need to know the size of a
file, but if it requests this information via stat, Parrot is obliged to fill the structure
with everything it can, possibly at great cost.

 0

 1

 2

 3

 4

 5

 6

 7

 8

64M16M4M1M256K64K16K4K

B
an

dw
id

th
 (

M
B

/s
)

Block Size

ftp
rfio

dcap
nest
chirp

Fig. 5.1. Throughput of 128 MB File Copy

The I/O services discussed here,
with the exception of Chirp, are designed
primarily for efficient high-volume data
movement. This is demonstrated by Fig-
ure 5.1, which compares the throughput
of the protocols at various block sizes.
The throughput was measured by copy-
ing a 128 MB file into the remote storage
device with the standard cp command
equipped with Parrot and a varying de-
fault block size, as controlled through
the stat emulation described above.

Of course, the absolute values are an
artifact of our system, however, it can
be seen that all of the protocols must be

tuned for optimal performance. The exception is Chirp, which only reaches about one
half of the available bandwidth. This is because of the strict RPC nature required for
POSIX semantics; the Chirp server does not extract from the underlying filesystem
any more data than necessary to supply the immediate read. Although it is technically
feasible for the server to read ahead in anticipation of the next operation, such data
pulled into the server’s address space might be invalidated by other actors on the file
in the meantime and is thus semantically incorrect.

The hiccup in throughput of DCAP at a block size of 64KB is an unintended
interaction with the default TCP buffer size of 64 KB. The developers of DCAP are
aware of the artifact and recommend changing either the block size or the buffer size
to avoid it. This is reasonable advice, given that all of the protocols require tuning of
some kind.

Figure 5.2 benchmarks the latency of POSIX-equivalent operations in each I/O
protocol. These measurements were obtained in a manner identical to that of Fig-
ure 2.1, with the indicated servers residing on the same system as in Figure 5.1. Notice
that the latencies are measured in milliseconds, whereas Figure 2.1 gave microseconds.

We hasten to note that this comparison, in a certain sense, is not “fair.” These
data servers provide vastly different services, so the performance differences demon-
strate the cost of the service, not the cleverness of the implementation. For example,
Chirp and FTP achieve low latencies because they are lightweight translation layers
over an ordinary file system. NeST has somewhat higher latency because it provides
the abstraction of a virtual file system, user namespace, access control lists, and a
storage allocation system, all built on an existing filesystem. The cost is due to the
necessary metadata log that records all such activity that cannot be stored directly
in the underlying file system. Both RFIO and DCAP are designed to interact with
mass storage systems; single operations may result in gigabytes of activity within a
disk cache, possibly moving files to or from tape. In that context, low latency is not



10 D. THAIN AND M. LIVNY

proto stat open/close read 8KB write 8KB bandwidth

chirp .50± .14 ms .84± .09 2.80± .06 2.23± .04 4.1 MB/s
ftp .87± .09 ms 2.82± .26 (no random access) 7.9 MB/s

nest 2.51± .05 ms 2.53± .17 4.48± .14 7.41± .32 7.9 MB/s
rfio 13.41± .28 ms 23.11± 1.29 3.32± .14 2.85± .18 7.3 MB/s

dcap 152.53±16.68 ms 159.09±16.68 3.01± 0.62 3.14± .62 7.5 MB/s

Fig. 5.2. Performance of I/O Protocols On a Local-Area Network

a concern.
That said, several things may be observed from this table. Although FTP has

benefitted from years of optimizations, the cost of a stat is greater than that of Chirp
because of the need for multiple round trips to fill in the necessary details. The addi-
tional latency of open/close is due to the multiple round trips to name and establish
a new TCP connection. Both RFIO and DCAP have higher latencies for single byte
reads and writes than for 8KB reads and writes. This is due to buffering which delays
small operations in anticipation of further data. Most importantly, all of these remote
operations exceed the latency of the debugger trap itself by several orders of magni-
tude. Thus, we are comfortable with the previous decision to sacrifice performance in
favor of reliability in the interposition technique.

We conclude with a macrobenchmark similar to the Andrew benchmark. [11] This
Andrew-like benchmark consists of a series of operations on the Parrot source tree,
which consists of 13 directories and 296 files totaling 955 KB. To prepare, the source
tree is moved to the remote device. In the copy stage, the tree is duplicated on the
remote device. In the list stage, a detailed list (ls -lR) of the tree is made. In the
scan stage, all files in the tree are searched (grep) for a text string. In the make
stage, the software is built. From an I/O perspective, this involves a sequential read
of every source file, a sequential write of every object file, and a series of random reads
and writes to create the executables. In the delete stage, the tree is deleted.

Figure 5.3 compares the performance of the Andrew-like benchmark in a variety
of configurations. In the three cases above the horizontal rule, we measure the cost of
each layer of software added: first with Parrot only, then with a Chirp server on the
same host, then with a Chirp server across the local area network. Not surprisingly,
the I/O cost of separating computation from storage is high. Copying data is much
slower over the network, although the slowdown in the make stage is quite acceptable
if we intend to increase throughput via remote parallelization.

In the two cases adjacent to the rule, the only change is the enabling of caching. As
might be expected, the cost of unnecessary duplication causes an increase in copying
the source tree, although the difference is easily made up in the make stage, where
the cache eliminates the multiple random I/O necessary to link executables. The list
and delete stages only involve directory structure and metadata access and are thus
not affected by the cache.

In the five cases below the horizontal rule, we explore the use of various protocols
to run the benchmark. In all of these cases, caching is enabled in order to eliminate
the cost of random access as discussed. The DCAP protocol is semantically unable
to run the benchmark, as it does not provide the necessary access to directories. The
RFIO protocol is semantically able to run the benchmark, but the high frequency of
filesystem operations results in a large number of TCP connections, which quickly
exhausts networking resources at both the client and the server, thus preventing
the benchmark from running. Chirp, FTP, and NeST are all able to complete the



PARROT: AN APPLICATION ENVIRONMENT... 11

dist. proto copy list scan make delete

local local .15± .02 sec .09± .20 .08± .02 65.38±3.47 .86± .18 sec
local chirp 1.22± .03 sec .34± .02 .40± .01 81.02±1.46 .79± .01 sec

lan chirp 6.16± .22 sec .57± .30 1.32± .03 144.00±1.35 1.26± .02 sec

lan chirp 10.67± .90 sec .53± .07 4.72± .32 95.05±2.33 1.24± .03 sec
lan ftp 34.88±1.72 sec 1.47± .02 17.78±1.14 122.54±3.14 2.95± .15 sec
lan nest 52.35±4.18 sec12.92±4.87 28.14±4.52 307.19±3.26 31.73±4.37 sec
lan rfio (overwhelmed by repeated connections)
lan dcap (does not support directories without nfs)

Fig. 5.3. Performance of the Andrew-Like Benchmark

benchmark. The NeST results have a high variance, due to delays incurred while
the metadata log is periodically compressed. The difference in performance between
Chirp, FTP, and NeST is primarily attributable to the cost of metadata lookups. All
the stages make heavy use of stat; the multiple round trips necessary to implement
this completely for FTP and NeST have a striking cumulative effect.

6. Conclusions. Interposition agents provide a stable platform for bringing old
applications into new environments. We have outlined the difficulties that we have
encountered as well as the solutions we have constructed in the course of building
and deploying several types of agents within the Condor project. As we have shown,
the Linux debugger trap has several limitations, but can still be put to good use. As
interest grows in the use of virtual machines in distributed systems [26] the need for
powerful but low overhead methods of interposition grows. The appropriate interface
for this task is still an open research topic.

The notion of virtualizing or multiplexing an existing interface is a common tech-
nique [14, 7], but the plague of errors and other boundary conditions seems to be
suffered silently by practitioners. Such problems are rarely publicized, however, we
are aware of two excellent exceptions. C. Metz [16] describes how the Berkeley sock-
ets interface is surprisingly hard to multiplex. T. Garfinkel [10] describes the subtle
semantic problems of sandboxing untrusted applications.

For more information: http://www.cs.wisc.edu/~thain/research/parrot

7. Acknowledgments. We thank John Bent and Sander Klous for their help de-
ploying and debugging Parrot. Victor Zandy wrote the mechanism for binary rewrit-
ing. Alain Roy gave thoughtful comments on early drafts of this paper.

REFERENCES

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young,
Mach: A new kernel foundation for Unix development, in Proceedings of the USENIX
Summer Technical Conference, Atlanta, GA, 1986.

[2] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman, UFO: A personal global file system
based on user-level extensions to the operating system, ACM Transactions on Computer
Systems, (1998), pp. 207–233.

[3] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke, Protocols and
services for distributed data-intensive science, in Proceedings of Advanced Computing and
Analysis Techniques in Physics Research, 2000, pp. 161–163.

[4] D. Anderson, J. Chase, and A. Vahdat, Interposed request routing for scalable network
storage, in Proceedings of the Fourth Symposium on Operating Systems Design and Im-
plementation, 2000.

[5] O. Barring, J. Baud, and J. Durand, CASTOR project status, in Proceedings of Computing
in High Energy Physics, Padua, Italy, 2000.



12 D. THAIN AND M. LIVNY

[6] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci-Dusseau,

R. Arpaci-Dusseau, and M. Livny, Flexibility, manageability, and performance in a grid
storage appliance, in Proceedings of the Eleventh IEEE Symposium on High Performance
Distributed Computing, Edinburgh, Scotland, July 2002.

[7] D. Cheriton, UIO: A uniform I/O system interface for distributed systems, ACM Transactions
on Computer Systems, 5 (1987), pp. 12–46.

[8] M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, and C. Waldman, dCache, a
distributed storage data caching system, in Proceedings of Computing in High Energy
Physics, Beijing, China, 2001.

[9] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, A security architecture for computa-
tional grids, in Proceedings of the 5th ACM Conference on Computer and Communications
Security Conference, 1998, pp. 83–92.

[10] T. Garfinkel, Traps and pitfalls: Practical problems in in system call interposition based
security tools, in Proceedings of the Network and Distributed Systems Security Symposium,
February 2003.

[11] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham,

and M. West, Scale and performance in a distributed file system, ACM Transactions on
Computer Systems, 6 (1988), pp. 51–81.

[12] G. Hunt and D. Brubacher, Detours: Binary interception of Win32 functions, Tech. Report
MSR-TR-98-33, Microsoft Research, February 1999.

[13] M. Jones, Interposition agents: Transparently interposing user code at the system interface,
in Proceedings of the 14th ACM Symposium on Operating Systems Principles, 1993.

[14] S. Kleiman, Vnodes: An architecture for multiple file system types in Sun Unix, in Proceedings
of the USENIX Technical Conference, 1986, pp. 151–163.

[15] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, SOCKS protocol version
5. Internet Engineering Task Force, Request for Comments 1928, March 1996.

[16] C. Metz, Protocol independence using the sockets API, in Procedings of the USENIX Technical
Conference, June 2002.

[17] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. B. Irvin, K. Karavanic,

K. Kunchithapadam, and T. Newhall, The Paradyn parallel performance measurement
tools, IEEE Computer, 28 (1995), pp. 37–46.

[18] B. Miller, A. Cortes, M. A. Senar, and M. Livny, The tool daemon protocol (TDP), in
Proceedings of Supercomputing, Phoenix, AZ, November 2003.

[19] C. Small and M. Seltzer, A comparison of OS extension technologies, in Proceedings of the
USENIX Technical Conference, 1996, pp. 41–54.

[20] M. Solomon and M. Litzkow, Supporting checkpointing and process migration outside the
Unix kernel, in Proceedings of the USENIX Winter Technical Conference, 1992.

[21] D. Thain and M. Livny, Multiple bypass: Interposition agents for distributed computing,
Journal of Cluster Computing, 4 (2001), pp. 39–47.

[22] , Error scope on a computational grid, in Proceedings of the Eleventh IEEE Symposium
on High Performance Distributed Computing, July 2002.

[23] , Parrot: Transparent user-level middleware for data-intensive computing, in Proceedings
of the Workshop on Adaptive Grid Middleware, September 2003.

[24] , Parrot: Transparent user-level middleware for data-intensive computing, Tech. Report
1493, Computer Sciences Department, University of Wisconsin, December 2003.

[25] K.-P. Vo, The discipline and method architecture for reusable libraries, Software: Practice and
Experience, 30 (2000), pp. 107–128.

[26] A. Whitaker, M. Shaw, and S. D. Gribble, Scale and performance in the Denali isolation
kernel, in Proceedings of the Fifth Symposium on Operating System Design and Imple-
mentation, Boston, MA, December 2002.

[27] B. White, A. Grimshaw, and A. Nguyen-Tuong, Grid-Based File Access: The Legion I/O
Model, in Proceedings of the Ninth IEEE Symposium on High Performance Distributed
Computing, August 2000.

[28] V. Zandy, B. Miller, and M. Livny, Process hijacking, in Proceedings of the Eighth IEEE
International Symposium on High Performance Distributed Computing, 1999.


