
This paper has appeared in a number of forms. It was originally peer-reviewed and published in limited quantity as:

• Douglas Thain and Miron Livny, “Parrot: Transparent User-Level Middleware for Data-Intensive Computing,” Workshop
on Adaptive Grid Middleware New Orleans, LA, September 2003.

It was later released as an identical technical report:

• Douglas Thain and Miron Livny, “Parrot: Transparent User-Level Middleware for Data-Intensive Computing,” Technical
Report 1493(a), Computer Sciences Department, University of Wisconsin, December 2003.

A condensed version will appear as:

• Douglas Thain and Miron Livny, “Parrot: An Application Environment for Data-Intensive Computing,” Journal of Parallel
and Distributed Computing Practices, to appear in 2004.

And, an extended version including application experience will appear as:

• Douglas Thain, Sander Klous, and Miron Livny, “Deploying Complex Applications in Unfriendly Distributed Systems
with Parrot,”Kluwer Journal of Supercomputing, to appear in 2004.

Parrot: Transparent User-Level Middleware
for Data-Intensive Computing

Douglas Thain and Miron Livny

Computer Sciences Department, University of Wisconsin

Abstract

Distributed computing continues to be an alphabet-soup
of services and protocols for managing computation and
storage. To live in this environment, applications require
middleware that can transparently adapt standard interfaces
to new distributed systems; such software is known as an in-
terposition agent. In this paper, we present several lessons
learned about interposition agents via a progressive study of
design possibilities. Although performance is an important
concern, we pay special attention to less tangible issues such
as portability, reliability, and compatibility. We begin with
a comparison of seven methods of interposition, focusing on
one method, the debugger trap, that requires special tech-
niques to achieve acceptable performance on popular oper-
ating systems. Using this method, we implement a complete
interposition agent, Parrot, that splices existing remote I/O
systems into the namespace of standard applications. The
primary design problem of Parrot is the mapping of fixed ap-
plication semantics into the semantics of the available I/O
systems. We offer a detailed discussion of how errors and
other unexpected conditions must be carefully managed in
order to keep this mapping intact. We conclude with a eval-
uation of the performance of the I/O protocols employed by
Parrot, and use an Andrew-like benchmark to demonstrate
that semantic differences have consequences in performance.
1

1. Introduction

The field of distributed computing has produced count-
less systems for harnessing remote processors and accessing
remote data. Despite the intentions of their designers, no
single system has achieved universal acceptance or deploy-
ment. Each carries its own strengths and weakness in perfor-
mance, manageability, and reliability. Renewed interest in
world-wide computational systems is increasing the number
of protocols and interfaces in play. A complex ecology of

1This research was supported in part by a Lawrence Landweber NCR
fellowship in distributed systems.

C
PU

/IO

Interaction

Common I/O Interface

Distributed I/O Services

FTP

Process

Distributed Computing Services

Condor PBS NQE LSF
Load

Leveler

Application

Local Operating System

Common Process Interface

(open, close, read, write, lseek)

(main, exit, abort, kill, sleep)

NeSTChirp RFIO

Parrot

DCAP

Figure 1. The Hourglass Model

distributed systems is here to stay.
The result is an hourglass model of distributed computing,

shown in Figure 1. At the center lie ordinary applications
built to standard interfaces such as POSIX. Above lie a num-
ber of batch systems that manage processors, interact with
users, and deal with failures of execution. A batch system
interacts with an application through simple interfaces such
as main and exit. Below lie a number of I/O services that
organize and communicate with remote memory, disks, and
tapes. An ordinary operating system (OS) transforms an ap-
plication’s explicit reads and writes into the low-level block
and network operations that compose a local or distributed
file system.

However, attaching a new I/O service to a traditional OS is
not a trivial task. Although the principle of an extensible OS
has received much attention in the research community [26],
production operating systems have limited facilities for ex-
tension, usually requiring kernel modifications or adminis-
trator privileges. Although this may be acceptable for a per-
sonal computer, this requirement makes it difficult or impos-

sible to provide custom I/O and naming services for appli-
cations visiting a borrowed computing environment such as
a timeshared mainframe, a commodity computing cluster, or
an opportunistic workgroup.

To remedy this situation, we advocate the use of interposi-
tion agents [17]. These devices transform standard interfaces
into remote I/O protocols not normally found in an operating
system. In effect, an agent allows an application to bring
its filesystem and namespace along with it wherever it goes.
This releases the dependence on the details of the execution
site while preserving the use of standard interfaces. In ad-
dition, the agent can tap into naming services that transform
private names into fully-qualified names relevant in the larger
system.

In this paper, we present practical lessons learned from
several years of building and deploying interposition agents
within the Condor project. [27, 38, 31, 29, 32] Although the
notion of such agents is not unique to Condor [17, 2, 16], they
have seen relatively little use in other production systems.
This is due to a variety of technical and semantic difficulties
that arise in connecting real systems together.

We present this paper as a progressive design study that
explores these problems and explains our solutions. We be-
gin with a detailed study of seven methods of interposition,
five of which we have experience building and deploying.
The remaining two are effective but impractical because of
the privilege required. We will compare the performance
and functionality of these methods, giving particular atten-
tion to intangibles such as portability and reliability. In par-
ticular, we will concentrate on one method that has not been
explored in detail: the debugger trap. Although this method
has been employed in idealized operating systems, it requires
additional techniques in order to provide acceptable perfor-
mance on popular operating systems with limited debugging
capabilities, such as Linux.

Using the debugger trap, we focus on the design of Par-
rot, an interposition agent that splices remote I/O systems
into the filesystem space of ordinary applications. A central
problem in the design of an I/O agent is the semantic problem
of mapping not-quite-identical interfaces to each other. The
outgoing mapping is usually quite simple: read becomes a
get, write becomes a put, and so forth. The real difficulty lies
in interpreting the large space of return values from remote
services. Many new kinds of failure are introduced: servers
crash, credentials expire, and disks fill. Trivial transforma-
tions into the application’s standard interface lead to a brittle
and frustrating experience for the user.

A corollary to this observation is that access to computa-
tion and storage cannot be fully divorced. Abstract notions
of design often encourage the partition of distributed systems
into two activities: either computation or storage. An inter-
position agent serves as a connection between these two con-
cerns; like an operating system kernel, it manages both types
of devices and must mediate their interaction, sometimes by-

passing the application itself.
We deliberately postpone evaluating performance until af-

ter considering errors and other boundary conditions. This is
because the correct handling of such cases can have signifi-
cant performance implications. We will see how the detailed
error interface of POSIX can result in a significant latency
as a remote system is probed multiple times to extract the
necessary information. We demonstrate the performance of
Parrot with an Andrew-like benchmark and illustrate the im-
portance of low latency operations for real applications.

2. Applications of Interposition Agents

Before diving into the many details of building interposi-
tion agents, we wish to give some examples of how they may
be used in a distributed system.

Interactive browsing. The construction of a new type of
storage protocol or device is frequently accompanied by the
construction of tools to visualize, organize, and manipulate
the contents. This is both time consuming and wasteful, as
many tools already exist for these tasks on standard filesys-
tems. As shown in Figure 2, Parrot enables ordinary tools to
browse a remote archive, in this case the hierarchical mass
storage server (MSS) at the National Center for Supercom-
puting Applications (NCSA).

Figure 2. Interactive Browsing with Parrot

Improved reliability. Naturally, the networked services
that are accessed by an interposition agent are far less re-
liable than a local filesystem. Remote services are prone
to failed networks, power outages, expired credentials, and
many other problems. An agent can attach an application to
a service with improved reliability. For example, Rocks [37]
emulates a reliable TCP connection across network outages
and address changes. Parrot can also be used to add reliabil-
ity at the file system layer by detecting and repairing failed
I/O connections.

Private namespaces. Batch applications are frequently
hardwired to use certain file names for configuration files,
data libraries, and even ordinary inputs and outputs. By
specifying a private namespace for each application instance,
many may be run simultaneously while keeping their I/O ac-
tivities separate. For example, ten instances of an application
hardwired to write to output.txt may be redirected to write

to output.n.txt, where n is the instance number. A private
namespace may also be constructed for performance con-
cerns. A centralized data server can only serve so many si-
multaneous remote applications before it becomes saturated.
If copies of necessary data are available elsewhere in a sys-
tem, a private namespace may be constructed to force an
application to use a nearby copy. Whether for logical or
performance purposes, a private namespace can be built at
many points in the lifetime of an application. It may be fixed
throughout the program’s lifetime or it may be resolved on
demand as the program runs by an external service.

Remote dynamic linking. Dynamic linking presents sev-
eral problems in naming and execution. A large majority
of standard applications are linked against dynamic libraries
that are named and loaded at runtime. Dynamic linking re-
duces the use of storage and memory by allowing applica-
tions to share routines. However, this advantage can be-
come a liability of complexity, perfectly captured by the
phrase “DLL hell.” Some interposition techniques permit
a remotely-executing application to fetch all of its libraries
from a trusted source as they are needed. Such libraries may
then be shared normally at the execution site without burden-
ing the end user.

Profiling and debugging. The vast majority of applica-
tions are designed and tested on standalone machines. A
number of surprises occur when such applications are moved
into a distributed system. Both the absolute and relative cost
of I/O operations change, and techniques that were once ac-
ceptably inefficient (such as linear search) may become dis-
astrously so. By attaching an interposition layer to the ap-
plication, the user may easily generate a trace or summary
of the I/O behavior and observe precisely what the applica-
tion does. We did exactly this in a recent study of distributed
applications [30].

3. Interposition Techniques Compared

There are many interposition techniques for the applica-
tions that we have described. Each has particular strengths
and weaknesses. Figure 3 summarizes seven interposition
techniques. They may be broken into two broad categories:
internal and external. Internal techniques modify the mem-
ory space of an application process in some fashion. These
techniques are flexible and efficient, but cannot be applied to
arbitrary processes. External techniques capture and modify
operations that are visible outside an application’s address
space. These techniques are less flexible and have higher
overhead, but can be applied to nearly any process. The Con-
dor project has experience building and deploying all of the
internal techniques as well one external technique: the de-
bugger trap. The remaining two external techniques we de-
scribe from relevant publications.

The simplest technique is the polymorphic extension. If
the application structure is amenable to extension, we may

simply add a new implementation of an existing interface.
The user then must make small code changes to invoke the
appropriate constructor or factory in order to produce the
new object. This technique is used in Condor’s Java Uni-
verse [32] to connect an ordinary InputStream or Output-
Stream to a secure remote proxy. It is also found in general
purpose libraries such as SFIO. [34]

The static library technique involves creating a replace-
ment for an existing library. The user is obliged to re-link
the application with the new library. For example, Condor’s
Standard Universe [27] provides a drop-in replacement for
the standard C library that provides transparent checkpoint-
ing as well as proxying of I/O back to the submission site,
fully emulating the user’s home environment. The dynamic
library technique also involves creating a replacement for
an existing library. However, through the use of linker con-
trols, the user may direct the new library to be used in place
of the old for any given dynamically linked library. This
technique is used by DCache [12], some implementations of
SOCKS [19], as well as our own Bypass [31] toolkit. The
binary rewriting technique involves modifying the machine
code of a process at runtime to redirect the flow of control.
This requires very detailed knowledge of the CPU architec-
ture in use, but this can be hidden behind an abstraction such
as the Paradyn [21] toolkit. This technique has been used to
“hijack” an unwitting process at runtime. [38]

Traditional debuggers make use of a specialized operat-
ing system interface for stopping, examining, and resuming
a process. The debugger trap technique uses this interface,
but instead of merely examining the process, the debugging
agent traps each system call, provides an implementation,
and then places the result back in the target process while
nullifying the intended system call. An example of this tech-
nique is UFO [2], which allows access to HTTP and ftp re-
sources via whole-file fetching. A difficulty with the debug-
ger trap is that many tools compete for access to a single pro-
cess’ debug interface. The Tool Daemon Protocol (TDP) [22]
provides an interface for managing such tools in a distributed
system.

A remote filesystem may be used as an interposition agent
by simply modifying the file server. NFS is a popular choice
for this technique, and is used by the Legion [36] object-
space translator, as well the Slice [4] microproxy. Finally,
short of modifying the kernel itself, we may install a one-
time kernel callout which permits a filesystem to be serviced
by a user-level process. This facility can be present from the
ground up in a microkernel [1], but can also be added as an
afterthought, which is the case for most implementations of
AFS [15].

The four internal techniques may only be applied to cer-
tain kinds of programs. Polymorphic extension and static
linking only apply to those programs that can be rebuilt. The
dynamic library technique requires that the replaced library
be dynamic, while binary rewriting (with the Paradyn toolkit)

internal techniques external techniques
polymorphic static dynamic binary debugger remote kernel

extension linking linking rewriting trapping filesystem callout
applies to one library one program dynamic libs dynamic link any exc. setuid any any

user burden change code relink code identify identify run command superuser modify os
semantic layer fixed any any any syscall fs ops only syscall

init/fini difficult difficult difficult difficult easy impossible easy
affect linker no no no no yes yes yes

debug application easy easy easy easy if db is child easy easy
secure no no no no yes yes yes

hole detection easy difficult difficult difficult easy easy easy
porting little to each os to each os to each os revision to each os little to each os

required or none revision revision and to each cpu or none

Figure 3. Properties of Interposition Techniques

requires the presence of the dynamic loader, although no par-
ticular library must be dynamic. The three external tech-
niques apply to any process, with the exception that the de-
bugging trap prevents the traced process from elevating its
privilege level through the setuid feature.

The burden upon the user for each of these techniques also
varies widely. For example, polymorphic extension requires
small code changes while static linking requires rebuilding.
These techniques may not be possible with packaged com-
mercial software. Dynamic linking and binary rewriting re-
quire that the user understand which programs are dynami-
cally linked and which are not. Most standard system utili-
ties are dynamic, but many commercial packages are static.
Our experience is that users are surprised and quite frustrated
when an (unexpectedly) static application blithely ignores an
interposition agent. The remote filesystem and kernel call-
out techniques impose the smallest user burden, but require
a cooperative system administrator to make the necessary
changes. The debugger trap imposes a small burden on the
user to simply invoke the agent executable.

Perhaps the most significant difference between the tech-
niques is the ability to trap different layers of software. Each
of the internal techniques may be applied at any layer of
code. For example, Bypass has been used to instrument an
application’s calls to the standard memory allocator, the X
Window System library, and the OpenGL library. In contrast,
the external techniques are fixed to particular interfaces. The
debugger trap only operates on physical system calls, while
the remote filesystem and kernel callout are limited to certain
filesystem operations.

Differences in these techniques affect the design of code
that they attach to. Consider the matter of implementing a
directory listing on a remote device. The internal techniques
are capable of intercepting library calls such as open and
opendir. These are easily mapped to remote file access pro-
tocols, which generally have separate procedures for access-
ing files and directories. However, the Unix interface unifies
files and directories; both are accessed through the system

call open. External techniques must accept an open on either
a file or directory and defer the binding to a remote opera-
tion until either read or getdents is invoked. The choice of
interposition layer affects the design of the agent.

The external techniques also differ in the range of oper-
ations that they are able to trap. While the debugger trap
can modify any system call, the remote filesystem and ker-
nel callout techniques are limited to filesystem operations. A
particular remote filesystem may have even further restric-
tions. For example, the stateless NFS protocol has no repre-
sentation of the system calls open and close. Without access
to this information, the interposed service cannot provide se-
mantics significantly different than those provided by NFS.
Further, such file system interfaces do not express any bind-
ing between individual operations and the processes that ini-
tiate them. That is, a remote filesystem agent sees a read or
write but not the process id that issued it. Without this infor-
mation, it is difficult or impossible to performing accounting
for the purposes of security or performance.

A number of important activities take place during the ini-
tialization and finalization of a process: dynamic libraries are
loaded; constructors, destructors, and other automatic rou-
tines are run; I/O streams are created or flushed. During
these transitions, the libraries and other resources in use by
a process are in a state of flux. This complicates the im-
plementation of internal agents that wish to intercept such
activity. For example, the application may perform I/O in a
global constructor or destructor. Thus, an internal agent itself
cannot rely on global constructors or destructors: there is no
ordering enforced between those of the application and those
of the agent. Likewise, a dynamically loaded agent cannot
interpose on the actions of the dynamic linker. The program-
mer of such agents must not only exercise care in construct-
ing the agent, but also in selecting the libraries invoked by
the agent. Such code is time consuming to create and debug.
These activities are much more easily manipulated through
external techniques. For example, external techniques can
easily trap and modify the activities of the dynamic linker.

getpid stat open/close read 1B read 8KB write 1B write 8KB bandwidth
unmod .18±.03 µs 1.85±.09 3.18± .08 .93± .23 3.27±.19 2.77± .05 6.92± .17 282±13 MB/s
rewrite .21±.25 µs 1.82±.02 3.21± .05 .95± .02 3.26±.03 2.58± .17 6.70± .05 280± 7 MB/s

static .21±.02 µs 1.80±.17 3.59± .05 .96± .03 3.34±.02 2.64± .03 6.71± .21 280±17 MB/s
dynamic 1.22±.01 µs 3.60±.10 5.53± .06 2.00± .08 4.31±.09 3.92±1.07 7.95± .21 278± 4 MB/s

(α unmod) (6.8x) (1.9x) (1.7x) (2.2x) (1.3x) (1.4x) (1.1x) (0.99x)
debug 10.06±.21 µs 55.41±.50 42.09± .06 19.38±1.03 30.99±.26 27.69± .20 44.02± .29 122± 4 MB/s

(α unmod) (56x) (30x) (13x) (21x) (9x) (10x) (6x) (0.43x)

Figure 4. Overhead of Interposition Techniques

No code is ever complete nor fully debugged. Production
deployment of interposition agents requires that users be per-
mitted to debug both applications and agents. All techniques
admit debugging of user programs, with the only complica-
tion arising in the debugger trap. For obvious reasons, a sin-
gle process cannot be debugged by two processes at once, so
a debugger cannot be attached to an instrumented process.
However, a debugger trap agent can be used to manage an
entire process tree, so instead the user may use the agent to
invoke the debugger, which may then invoke the application.
The debugger’s operations may be trapped just like any other
system call and passed along to the application, all under the
supervision of the agent.

Interposition agents may be used for security as well as
convenience. An agent may provide a sandbox which pre-
vents an untrusted application from modifying any external
data that it is not permitted to access. The internal techniques
are not suitable for this security purpose, because they may
easily be subverted by a program that invokes system calls
directly without passing through libraries. The external tech-
niques, however, cannot be fooled in this way and are thus
suitable for security.

Related to security is the matter of hole detection. An in-
terposition agent may fail to trap an operation attempted by
an application. This may simply be a bug in the agent, or it
may be that the interface has evolved over time, and the ap-
plication is using a deprecated or newly added interface that
the agent is not aware of. Internal agents are especially sensi-
tive to this bug. As standard libraries develop, interfaces are
added and deleted, and modified library routines may invoke
system calls directly without passing through the correspond-
ing public interface function. For example, fopen may invoke
the open system call without passing through the open func-
tion. Such an event causes general chaos in both the appli-
cation and agent, often resulting in crashes or (worse) silent
output errors. No such problem occurs in external agents.
Although interfaces still change, any unexpected event is de-
tected as an unknown system call. The agent may then ter-
minate the application and indicate the exact problem.

The problem of hole detection must not be underes-
timated. Our experience is that any significant operating
system upgrade includes changes to the standard libraries,
which in turn require modifications to internal trapping tech-

niques. Thus, internal agents are rarely forward compatible.
Further, identifying and fixing such holes is time consum-
ing. Because the missed operation itself is unknown, one
must spend long hours with a debugger to see where the ex-
pected course of the application differs from the actual be-
havior. Once discovered, a new entry point must be added to
the agent. The treatment is simple but the diagnosis is dif-
ficult. We have learned this lesson the hard way by porting
both the Condor remote system call library and the Bypass
toolkit to a wide variety of Unix-like platforms.

For these reasons, we have described porting in Figure
3 as follows. The polymorphic extension and the remote
filesystem require little or no effort to build on a new system.
The debugger trap and the kernel callout have significant sys-
tem dependent components to be ported to each operating
system, but the nature and stability of these interfaces make
this a tractable task. The remaining three techniques – static
linking, dynamic linking, and binary rewriting – should be
viewed as a significant porting challenge that must be revis-
ited at every minor operating system upgrade.

Figure 4 compares the performance of four transparent in-
terposition techniques. We constructed a benchmark C pro-
gram which timed 100,000 iterations of various system calls
on a 1545 MHz Athlon XP1800 running Linux 2.4.18. Avail-
able bandwidth was measured by reading a 100 MB file se-
quentially in 1 MB blocks. The mean and standard devia-
tion of 1000 cycles of each benchmark are shown. File op-
erations were performed on an existing file in a temporary
file system. The unmod case gives the performance of this
benchmark without any agent attached, while the remaining
five show the same benchmark modified by each interposi-
tion technique. In each case, we constructed a very minimal
agent to trap system calls and invoke them without modifica-
tion.

As can be seen, the binary rewriting and static linking
methods add no significant cost to the application. The dy-
namic method has overhead on the order of microseconds, as
it must manage the structure of (potentially) multiple agents
and invoke a function pointer. However, these overheads are
quickly dominated by the cost of moving data in and out of
the process. The debugger trap has the greatest overhead of
all the techniques, ranging from a 56x slowdown for getpid
to a 6x slowdown for writing 8 KB. Most importantly, the

4. resume enter

2. trap enter
syscall
5. exec

6. trap return

8. resume return

result
7. modify9. return

3. modify call

Host Kernel

Agent ProcessApplication
Process

1. syscall

Figure 5. Ptrace Control Flow

bandwidth measurement demonstrates that the debugger trap
achieves less than half of the unmodified I/O bandwidth. It
should be fairly noted that this latency and bandwidth will
be dominated by the latency and bandwidth of accessing re-
mote services on commodity networks. Security and relia-
bility come at a measurable cost; the reasons for this cost are
explained in the next section.

4. The Debugger Trap in Detail

Here, we concentrate on the details of the debugger trap.
Other methods are explained in some detail in the publica-
tions referenced above. Alexandrov et al. [2] have described
the use of the Solaris proc debugger trap to instrument a pro-
cess in this manner. However, Linux is currently a much
more widely deployed platform for scientific and distributed
computing. Its ptrace debugger model is generally consid-
ered inferior to the Solaris proc model; it can still be used for
interposition, but it has limitations that must be accommo-
dated.

Figure 5 shows the control flow necessary to trap a system
call through the ptrace interface. The agent process registers
its interest in an application process with the host kernel. At
each attempt by the application to invoke a system call, the
host kernel notifies the agent of the attempt. The agent may
then modify the application’s address space or registers, in-
cluding the system call and its arguments. Once satisfied, the
agent instructs the host kernel to resume the system call. At
completion, the agent is given another opportunity to mod-
ify the application and the result. Once satisfied, the agent
resumes the return from the system call, and the application
regains control. This large number of context switches ac-
counts for the high latency measured in Figure 4.

Although conceptually simple, there are two complexities
in the ptrace interface:

bufferbuffer

mmap mmap

open fd

mmap(read only)

peek/poke

I/O Channel

read

write

read

write

output input

Agent Process
Application

Process

shared library

Figure 6. Ptrace Data Flow

Process ancestry. The ptrace interface forces all traced
processes to become the immediate children of the tracing
processes. This is because notification of trace events oc-
curs through the same path as notification of child comple-
tion events: the tracing process receives a signal, and then
must call waitpid to retrieve the details. As a consequence,
any tracing tool that wishes to follow a tree of processes must
maintain a table of process ancestry. All system calls that
communicate information about children (such as waitpid)
must be trapped and emulated by the agent. If a traced pro-
cess forks, the Linux kernel (inexplicably) does not propa-
gate the tracing flags to the child. This may be overcome by
trapping instances of fork and converting them into the more
flexible (and Linux specific) clone system call, which can be
instructed to create a new process with tracing activated.

Data flow. The emulation of system calls requires the
ability to move data in and out of the target application. Fig-
ure 6 shows all of the necessary data flow techniques. The
most convenient is to access a special file (/proc/n/mem) that
represents the entire memory space of the application. This
can be modified with read and write, or can be mapped into
the address space of the agent process. Although this pro-
vides high-bandwidth read access, writing to this file is not
permitted. 2 A pair of ptrace calls, peek and poke, are pro-
vided to read or write a single word in the target applica-
tion. This interface can be used for moving small amounts
of data into the target application, but is obviously not suited
for moving large amounts of data such as is required by the
read and write system calls.

To move data efficiently, the application must be coerced

2Writing to this file has been implemented, but is commented out in the
kernel source. The reasons appear to be lost to folklore, although comments
in the source suggest security concerns. Clearly, both read and write access
to another process’s address space must be revoked if the target process
can raise its privilege level via setuid. It is not clear to what extent such
revocation is implemented.

List
Mount

flags
csp

flags
csp

flags
csp

name
data

name
data

name
datadata

name

flags
csp

Handler

Resolver
Name

0 1 2 3 4 5 6 7 8 10

Chirp
Lookup

Page Fault

Driver Driver DriverDriver Driver Driver
Local NeSTFTP

Objects
File

Pointers
File

Drivers
Device

File
Descr.

Paged
Memory9

(poly, static, dynamic, binary, debug, remote, or kernel)
Interposition Technique

read write lseek memory ops open
Application Process

Parrot Library
parrot_read

parrot_write
parrot_lseek

Chirp RFIO DCAP

parrot_open

Figure 7. Architecture of Parrot

into assisting the agent. This is accomplished by converting
many system calls into preads and pwrites on a shared buffer
called the I/O channel. This is an ordinary file, created by the
agent, passed implicitly, and shared among all of its children.
The agent maps the channel into memory, to minimize copy-
ing, while all of the application processes simply maintain a
file descriptor pointing to the channel.

For example, suppose that the application issues a read on
a remote file. Upon trapping the system call entry, the agent
examines the parameters of read and retrieves the needed
data. These are copied directly into a buffer in the channel.
The read is then modified (via poke) to be a pread that ac-
cesses the I/O channel instead. The system call is resumed,
and the application pulls in the data from the channel, un-
aware of the activity necessary to place it there. This data
copy accounts for the diminished bandwidth in Figure 4.

5. Architecture of Parrot

Parrot is a library for performing POSIX-like I/O on re-
mote data services. It provides an interface with entry points
like parrot open and parrot read. An application may be
written or modified to invoke the library directly, or it may
be attached via the various interposition techniques described
above. The internal structures of Parrot, shown in Figure 7,
bear a strong resemblance to an operating system. Parrot
tracks a family tree of child processes, for each recording
a table of open file descriptors, seek pointers, and similar

device-independent structures. At the lowest layer are a se-
ries of device drivers that implement access to remote I/O
system. Unlike an operating system, Parrot does not know
the structure of remote devices at the level of inodes and
blocks. It refers to remote open files by name, and may mul-
tiplex many applications’ I/O requests through one remote
channel.

Parrot has a large number of entry points for I/O opera-
tions. We may classify them into two categories: operations
on file descriptors and operations on file names. The former
traverse most of the data structures in Parrot, while the latter
take a more direct route to the device drivers.

Operations such as read, write, and lseek operate on file
descriptors. Upon entering Parrot, these commands check
the validity of the arguments, and then descend the vari-
ous data structures. read and write examine the current file
pointer and use it as an argument to call a read method in the
corresponding file object. The file object, through the device
driver, performs the necessary remote operation. Other oper-
ations such as rename, stat, and delete operate on file names.
Upon entering Parrot, these commands first pass through the
name resolver, which may transform the program-supplied
name(s) according to a variety of rules and systems. The
transformed names are passed directly to the device driver,
which performs the operation on the remote system.

Name resolution itself is served by several drivers. In the
simplest case, no mapping is present, and Parrot operates on
the name unchanged. Applications may specify ordinary lo-
cal file names such as /etc/passwd or fully-qualified remote
filenames such as /ftp/ftp.cs.wisc.edu/RoadMap. A mount
list driver makes use of a simple file that maps logical file
names and directories to remote file names, much like the
Unix fstab. Alternatively, the chirp I/O driver itself provides
a lookup RPC that permits a remote controller to perform
run-time name binding on behalf of an application.

The name resolver is a natural place for attaching an ap-
plication to other external naming systems. For example,
both the Replica Location Service [33] and the Handle Sys-
tem [28] resolve abstract document names into physical loca-
tions where they may be accessed. The same interface could
be used to employ Parrot as a sandbox, selectively permit-
ting, renaming, or rejecting access to certain files in a manner
similar to that of Janus [14].

Most POSIX applications access file through explicit op-
erations such as read and write. However, files may also be
memory mapped. In a standard operating system, a mem-
ory mapped file is a separate virtual memory segment whose
backing store is kept in the file system rather than in the vir-
tual memory pool. Parrot accomplishes the same thing using
its own underlying drivers, thus reducing memory mapped
files into the same mechanisms as other open files.

Memory-mapped files are supported in one of two ways,
depending on the interposition method in use. If Parrot is
attached via an internal technique, then memory mapped files

may be supported by simply allocating memory with malloc
and loading the necessary data into memory by invoking the
necessary device driver. As a matter of policy, the entire file
can be loaded when mmap is invoked, or it can be paged
in on demand by setting the necessary memory protections
and trapping the software interrupts generated by access to
that memory. If Parrot is attached via an external technique,
then the entire file is loaded into the I/O channel, and the
application is redirected to mmap that portion of the channel,
as shown in Figure 6. Parrot does not currently have any
write mechanism or policy for memory-mapped files, as we
have yet to encounter any application that requires it.

Parrot has two buffering disciplines. By default, Parrot
simply performs fine-grained partial file operations on re-
mote services to access the minimal amount of data to sat-
isfy an application’s immediate reads and writes. We have
taken this route for several reasons. First, whole-file fetch-
ing introduces a large latency when a file is first opened.
This is often an unnecessary price when an application could
take advantage of overlapped CPU and I/O access by reading
streamed files sequentially. Second, few remote I/O proto-
cols have a reliable mechanism for ensuring synchronization
between shared and cached files; we do not wish to intro-
duce a new synchronization problem. Finally, a variety of
systems have already been proposed for managing wide area
replicated data [9, 25, 6]. We prefer to make Parrot leverage
such systems (via fine-grained access protocols) rather than
implement replica management anew.

Optionally, Parrot may perform whole-file staging and
caching upon first open, similar to that of UFO [2]. Once
this long latency is paid, a file may be accessed efficiently
in local storage. Protocols that only provide sequential ac-
cess, such as ftp, require the use of the cache to implement
random access. At each open, a cached file is validated by
performing a remote stat (or its equivalent, described below.)
If the file’s size or modification time has changed, then it is
re-fetched.

6 Protocols and Semantics

Parrot is equipped with a variety of drivers for communi-
cating with external storage systems; each has particular fea-
tures and limitations. The simplest is the Local driver, which
simply passes operations on to the underlying operating sys-
tem. The Chirp protocol was designed by the authors in an
earlier work [32] to provide remote I/O with semantics very
similar to POSIX. A standalone chirp server is distributed
with Parrot. The venerable File Transfer Protocol (FTP)
has been in heavy use since the early days of the Internet. Its
simplicity allows for a wide variety of of implementations,
which, for our purposes, results in an unfortunate degree of
imprecision which we will expand upon below. Parrot sup-
ports the secure GSI [3] variant of ftp. The NeST protocol is
the native language of the NeST storage appliance [8], which

provides an array of authentication, allocation, and account-
ing mechanisms for storage that may be shared among mul-
tiple transient users. The RFIO and DCAP protocols were
designed in the high-energy physics community to provide
access to hierarchical mass storage devices such as Castor [5]
and DCache [12].

Because Parrot must preserve POSIX semantics for the
sake of the application, our foremost concern is the ability of
each of these protocols to provide the necessary semantics.
Performance is a secondary concern, although it is affect sig-
nificantly by semantic issues. A summary of the semantics
of each of these protocols is given in Figure 8.

In POSIX, name binding is based on a separation between
the namespace of a filesystem and the file objects (i.e. in-
odes) that it contains. The open system call performs an
atomic binding of a file name to a file object, which allows a
program to lock a file object independently of the renaming,
linking, or unlinking of names that point to it. This model
is reflected in the Chirp, RFIO, and DCAP protocols, which
all provide distinct open/close actions separately from data
access. FTP and NeST have a get/put model, performing a
name lookup at every data access. In this model, an appli-
cation may lose files it has open if they are manipulated by
another process.

The distinction between the two models begins to blur if
we consider recovery of a failed connection. The get/put
models have the advantage of statelessness. If Parrot loses
a connection to such a service, it merely re-establishes the
connection and does no further work. However, if a connec-
tion is lost to an open/close service, Parrot must reconstruct
the state by re-opening the necessary files. Of course, this
recovery procedure may reconnect to a different file object
than was referenced by the original open. To detect this, Par-
rot examines the remote inode when opening and re-opening
remote files in order to detect if the binding has changed in
the mean time. If it has, then the file descriptor is considered
stale and all further reads and writes on that descriptor fail
with the error ESTALE, much as in NFS.

With the exception of FTP, all of the protocols provide in-
expensive random (i.e. non-sequential) access to a file with-
out closing and re-opening it. This permits the efficient ma-
nipulation of a small portion of a large remote file without
retrieving the whole thing. The sequential nature of FTP re-
quires that Parrot make local copies of such files in order to
make changes and then replace the whole file.

Directories are supported completely by Chirp, NeST, and
RFIO; one may create, delete and list their contents. DCAP
does not currently support directory access, although this
may be added in a later version. (This is because DCAP
is typically used alongside an kernel NFS client for metadata
access.) Support for directories in FTP varies greatly. Al-
though the FTP standard mandates two distinct commands
for directory lists, LIST and NLST, there is little agreement
on their proper behavior. LIST provides a completely free-

name binding discipline dirs metadata symlinks connections
posix open/close random yes direct yes -
chirp open/close random yes direct yes per client

ftp get/put sequential varies indirect no per file
nest get/put random yes indirect yes per client
rfio open/close random yes direct no per file/op

dcap open/close random no direct no per client

Figure 8. Protocol Compatibility with POSIX

form text dump that is readable to humans, but has no stan-
dard machine-readable structure. NLST is meant to provide
a simple machine-readable list of directory entries, but we
have encountered servers that omit subdirectory names, some
that omit names beginning with dot (.), some that insert mes-
sages into the directory list, and even some that do not dis-
tinguish between empty and non-existent directories.

Most metadata is communicated in the POSIX interface
through the stat structure returned by the stat, fstat, and lstat
system calls. Chirp, RFIO, and DCAP all provide direct sin-
gle RPCs that fill this structure with the necessary details.
FTP and NeST do not have single calls that provide all this
information, however, the necessary details may be obtained
through multiple RPCs that determine the type, size, and
other details one by one.

Only Chirp and NeST provide support for managing sym-
bolic links. This feature might be done without, except
that remote I/O protocols are often used to expose existing
filesystems that already contain symbolic links. This can re-
sult in confusion interactions for programs, as well as the
end user. For example, a symbolic link may appear as in a
directory listing, but without explicit operations for examin-
ing links, it will appear to be an inaccessible file with unusual
access permissions.

Finally, the connection structure of a remote I/O proto-
col has implications for semantics as well as performance.
Chirp, NeST, and DCAP require one TCP connection be-
tween each client and server. FTP and RFIO require a new
connection made for each file opened. In addition, RFIO re-
quires a new connection for each operation performed on a
non-open file. Because most file system operations are meta-
data queries, this can result in an extraordinary number of
connections in a short amount of time. Ignoring the latency
penalties of this activity, a large number of TCP connections
can consume resources at clients, servers, and network de-
vices such as address translators.

7. Errors and Boundary Conditions

Error handling has not been a pervasive problem in the de-
sign of traditional operating systems. As new models of file
interaction have developed, attending error modes have been
added to existing systems by expanding the software inter-
face at every level. For example, the addition of distributed

file systems to the Unix kernel created the new possibility of
a stale file handle, represented by the ESTALE error. As this
error mode was discovered at the very lowest layers of the
kernel, the value was added to the device driver interface, the
file system interface, the standard library, and expected to be
handled directly by applications.

We have no such luxury in an interposition agent. Appli-
cations use the existing interface, and we have neither the de-
sire nor the ability to change it. Sometimes, if we are lucky,
we may re-use an error such as ESTALE for an analogous,
if not identical purpose. Yet, the underlying device drivers
generate errors ranging from the vague “file system error” to
the microscopically precise “server’s certification authority
is not trusted.” How should the unlimited space of errors in
the lower layers be transformed into the fixed space of errors
available to the application?

Before we answer this question, we must remind our-
selves that an interposition agent does not live in a vacuum,
nor is it the last line of defense for errors. As Figure 1 shows,
the application and the agent often work under the supervi-
sion of a batch system. In this context, we may appeal to
the batch system to take some higher-level scheduling ac-
tion. This is not to say that we should always pass the buck
to the batch system. Rather, we must perform triage:
- A transformable error may easily be converted into a

form that is both honest and recognizable by the applica-
tion. Such errors are converted into an appropriate errno and
passed up to the application in the normal way. Some trans-
formable errors take considerable effort to pinpoint.
- A permanent error indicates that the process has a fatal
flaw and cannot possibly run to completion. With this type
of error, Parrot must halt the process in a way that makes it
clear the batch system must not reschedule it.
- A transient error indicates the process cannot run here and
now, but has no inherent flaw. When encountering transient
errors the I/O system must interact with the batch system. It
must indicate that the job is to release the CPU, but would
like to execute again later and retry the I/O operation.

Each of the three types of errors – transformable, perma-
nent, and transient – come from two distinct sources of errors
– a mismatch of requests, or a mismatch of results. A mis-
match of requests occurs when the target system does not
have the needed capability. A mismatch of results occurs
when the target system is capable, but the result has no obvi-

ous meaning to the application. Let’s consider each in turn.
Mismatched requests. Our first difficulty comes when

a device driver provides no support whatsoever for an oper-
ation requested by the application. We have three different
solutions to this problem, based on our expectation of the
application’s ability to handle an error. Representative ex-
amples are getdents, lseek, and stat.

Some I/O services, such as DCAP, do not permit directory
listings. A call to getdents cannot possibly succeed. Such a
failure may be trivially represented to the calling application
as “permission denied” or “not implemented” without undue
confusion. Applications understand that getdents may fail
for any number of other reasons on a normal filesystem, and
are thus prepared to understand and deal with such errors.

In contrast, almost no applications are prepared for lseek
to fail. It is generally understood that any non-terminal file
may be accessed randomly, so few (if any) applications even
bother to consider the return value of lseek. If we use lseek
on an FTP server without local caching enabled, we risk any
number of dangers by allowing a never-checked command
to fail. Therefore, an attempt to seek on a non-seekable file
results in a permanent error with a message on the standard
error stream.

The stat command offers the most puzzling difficulty of
all. stat simply provides a set of meta-data about a file, such
as the owner, access permissions, size, and last modification
time. The problem is that few remote storage systems pro-
vide all, or even most, of this data. For example, FTP pro-
vides a file’s size, but no other meta-data in a standard way.

One might cause stat to report “permission denied” on
such systems, under the assumption that brutal honesty is
best. Unfortunately, this causes all but the most trivial of pro-
grams to fail. stat is a very frequent operation that is called
implicitly by all manner of code, including command-line
tools, large applications, and the standard C library. At first
glance, it appears that the necessary information simply can-
not be extracted from most remote I/O systems. However,
we may construct a workaround by surveying the actual uses
of stat:
- Cataloging. Commands such as ls and program elements
such as file dialogs use stat to annotate lists of files with all
possible detail for the interactive user’s edification.
- Optimization. The standard C library, along with many
other tools, uses stat to retrieve the optimal block size to be
used with an I/O device.
- Short-circuiting. Many programs and libraries, including
the command-line shell and the Fortran standard library, use
stat or access to quickly check for the presence of a file be-
fore performing an expensive open or exec.
- Unique identity. Command line tools use the unique de-
vice and file numbers returned by stat to determine if two file
names refer to the same physical file. This is used to prevent
accidental overwriting and recursive operations.

In each of these cases, there is very little harm in pre-

senting default, or even guessed information. No program
can rely on the values returned by stat because it cannot be
done atomically with any other operation. If a program uses
stat to measure the existence or size of a file, it must still be
prepared for open or read to return conflicting information.
Therefore, we may fill the response to stat with benevolent
lies that encourage the program to continue for both reading
and writing. Each device driver fills in whatever values in
the structure it is able to determine, perhaps using multiple
remote operations, and then fills the rest with defaults. For
example, an inode may be computed from a hash of the file’s
full path, while the last modification time may be set to the
current time. Or course, if the device driver can determine
that the file actually does not exist, then it may truthfully
cause stat to fail.

Of particular interest is the block size field returned by
stat. In practice, the physical block size of the underlying
device is irrelevant to the file abstraction; some devices may
not have the concept of a block at all. However, many rou-
tines – particularly the standard C library – use the block
size as an indication of the file’s optimal transfer size. Par-
rot leverages this interpretation to hide the (potentially) high
latency of both interposition and remote access. By default,
Parrot indicates a block size of one megabyte for all files. We
explain the reason for this choice below.

Mismatched results. Several device drivers have the nec-
essary machinery to carry out all of a user’s possible requests,
but provide vague errors when a supported operation fails.
For example, the FTP driver allows an application to read a
file via the GET command. However, if the GET command
fails, the only available information is the error code 550,
which encompasses almost any sort of file system error in-
cluding “no such file,” “access denied,” and “is a directory.”
The POSIX interface does not permit a catch-all error value;
it requires a specific reason. Which error code should be re-
turned to the application?

One technique for dealing with this problem is to inter-
view the service in order to narrow down the cause of the er-
ror. This is similar to an expert system or the functional error-
interview system described by Efe [11]. Figure 9 shows the
interview tree for a GET operation. If the GET should fail,
we assume the named file is actually a directory and attempt
to move to it. If that succeeds, the error is “not a file.” Other-
wise, we attempt to SIZE the named file. If that succeeds, the
file is present but inaccessible, so the error is “access denied.”
If it fails, the error is finally “no such file.”

The error interview technique also has some drawbacks.
It significantly increases the latency of failed operations. (Al-
though it is generally not necessary to optimize error cases.)
In addition, the technique is not atomic, so it may determine
an incorrect value if the remote filesystem is simultaneously
modified by another process.

There is also a very large space of infrequent errors that
simply have no expression at all in the application’s inter-

550

550
Access denied.

Is a directory.

Success. Transient error.

Transient error.

Transient error.

No such file.

SIZE

CWD

GET
other

other

other
550

200

200

200

Figure 9. An Error Interview

face. A NeST might declare that a disk allocation has ex-
pired and been deleted. An FTP server may respond that a
backing store is temporarily offline. User credentials, such
as Kerberos or GSI certificates, may expire, and no longer be
valid. In response, we may reallocate lots, rebuild connec-
tions, or attempt to renew certificates. However, all of these
techniques take time and computing resources and have no
guarantee of eventual success. At some point, we must ac-
cept that an error has occurred. Because these errors have
no analogue in the interface to the application, Parrot must
declare a transient error and seek to reschedule the job.

8. Integrating Computation and I/O

The reality of transient errors requires the integration of
computation and storage systems. An interposition agent is
a natural device for mediating these systems, because it is
able to take complex actions on either without involving the
application in the flow of control.

Generally speaking, an agent is limited to the simple
scheduling actions exposed by the POSIX interface. For ex-
ample, a permanent error is caused by forcing the process to
call exit(1), indicating that it has completed unsuccessfully
and should be returned to the submitter. A transient error
is indicated by terminating the process with a forcible kill
signal. A batch system such as Condor interprets this as ev-
idence of outside interference, comparable to a workstation
owner evicting a visiting process. The job is then placed else-
where by the batch scheduler.

Here we must emphasize the difference between local
(operating system) scheduling and batch scheduling. In re-
sponse to a transient error, an agent could simply block until
the necessary data are available. This would indeed cause
the running process to release the CPU and move to a wait
state in the local scheduler. However, what the process is ac-
tually doing in the local scheduler is irrelevant to the batch
scheduler. Unless the program (or agent) issues some ex-
plicit instruction to the batch system, it still is in possession

 0

 1

 2

 3

 4

 5

 6

 7

 8

64M16M4M1M256K64K16K4K

B
an

dw
id

th
 (M

B
/s

)

Block Size

ftp
rfio

dcap
nest
chirp

Figure 10. Throughput of 128 MB File Copy

of the CPU. It will continued to be charged for holding the
resource, regardless of whether it is consuming physical cy-
cles.

If the batch system is Condor, more complex information
can be attached to a transient error through the use of a con-
trol port at the execution site. Each job executing in a Condor
system is overseen by a process known as a starter. One of
the starter’s tasks is to provide a local control port for an
application to invoke complex actions within the batch sys-
tem. (Incidentally, the protocol spoken on this port is Chirp.)
A constrain RPC provided by the starter specifies a clause
to be added to the job’s scheduling constraints expressed in
the ClassAd [24] language. For example, if Parrot discovers
that a needed file is not scheduled to be staged in from tape
until 9:15 AM, it can use constrain to add the requirement
(DayTime() > ’9:15:00’) and then kill the application. Con-
dor will not re-place the process until the new requirements
are satisfied. Alternatively, suppose that Parrot has already
moved a dataset to a nearby cache at considerable cost. With-
out releasing the CPU, it might call constrain to add the re-
quirement (Subnet==”128.105.175”)and then continue pro-
cessing. If the application should fail or be evicted at a later
time, it will be re-placed by Condor at any machine satisfy-
ing the constraints: that is, on the same subnet as the needed
data. Multiple calls to constrain overwrite the previous con-
straint, so that previous decisions may be un-done.

The notion of job-directed resource management is intro-
duced in J. Pruyne’s doctoral thesis [23]. A resource man-
agement interface called CARMI permits a running job to
request and release external resources at run-time. A similar
idea is found in the notion of execution domains [7], where
the Condor shadow directs future allocations based on the
location of checkpoint images. The Chirp constrain facil-
ity combines both of these ideas by permitting the job (or its
agent) to direct further allocation requests in concert with the
state of the external system.

protocol server stat open/close read 1B read 8KB write 1B write 8KB bandwidth
chirp (chirp-0.9.7) .50± .14 ms .84± .09 .61± .04 2.80± .06 .38± .03 2.23± .04 4.1 MB/s

ftp (wu-ftpd-2.6.2) .87± .09 ms 2.82± .26 (no random partial-file access) 7.9 MB/s
nest (nest-0.9.3) 2.51± .05 ms 2.53± .17 2.96± .17 4.48± .14 5.53± .09 7.41± .32 7.9 MB/s
rfio (rfiod-1.5.2.3) 13.41± .28 ms 23.11± 1.29 .50± .06 3.32± .14 39.80±1.32 2.85± .18 7.3 MB/s

dcap (dcache-1.2.25) 152.53±16.68 ms 159.09±16.68 40.05±0.17 3.01±0.62 40.14± .59 3.14± .62 7.5 MB/s

Figure 11. Performance of I/O Protocols On a Local-Area Network

9. Performance

We have deferred a discussion of performance until this
point so that we may see the performance effects of seman-
tic constraints. Although it is possible to write applications
explicitly to use remote I/O protocols in the most efficient
manner, Parrot must provide conservative and complete im-
plementations of POSIX operations. For example, an appli-
cation may only need to know the size of a file, but if it re-
quests this information via stat, Parrot is obliged to fill the
structure with everything it can, possibly at great cost.

The I/O services discussed here, with the exception of
Chirp, are designed primarily for efficient high-volume data
movement. This is demonstrated by Figure 10, which com-
pares the throughput of the protocols at various block sizes.
The throughput was measured by copying a 128 MB file into
the remote storage device with the standard cp command
equipped with Parrot and a varying default block size, as con-
trolled through the stat emulation described above.

Of course, the absolute values are an artifact of our sys-
tem, however, it can be seen that any of the protocols can be
tuned to near optimal performance for mass data movement.
(The default block size, explained earlier, is chosen to be 1
MB as a compromise between all protocols.) The exception
is Chirp, which only reaches about one half of the available
bandwidth. This is because of the strict RPC nature required
for POSIX semantics; the Chirp server does not extract from
the underlying filesystem any more data than necessary to
supply the immediate read. Although it is technically fea-
sible for the server to read ahead in anticipation of the next
operation, such data pulled into the server’s address space
might be invalidated by other actors on the file in the mean-
time and is thus semantically incorrect.

The hiccup in throughput of DCAP at a block size of
64KB is an unintended interaction with the default TCP
buffer size of 64 KB. The developers of DCAP are aware
of the artifact and recommend changing either the block size
of the buffer size to avoid it. This is reasonable advice, given
that all of the protocols require tuning of some kind.

Figure 11 benchmarks the latency of POSIX-equivalent
operations in each I/O protocol. These measurements were
obtained in a manner identical to that of Figure 4, with the
indicated servers residing on the same system as in Fig-
ure 10. Notice that the latencies are measured in millisec-
onds, whereas Figure 4 gave microseconds.

We hasten to note that this comparison, in a certain sense,
is not “fair.” These data servers provide vastly different ser-
vices, so the performance differences demonstrate the cost
of the service, not the cleverness of the implementation. For
example, Chirp and FTP achieve low latencies because they
are lightweight translation layers over an ordinary file sys-
tem. NeST has somewhat higher latency because it provides
the abstraction of a virtual file system, user namespace, ac-
cess control lists, and a storage allocation system, all built on
an existing filesystem. The cost is due to the necessary meta-
data log that records all such activity that cannot be stored
directly in the underlying file system. Both RFIO and DCAP
are designed to interact with mass storage systems; single
operations may result in gigabytes of activity within a disk
cache, possibly moving files to or from tape. In that context,
low latency is not a concern.

That said, several things may be observed from this ta-
ble. Although FTP has benefited from years of optimiza-
tions, the cost of a stat is greater than that of Chirp because
of the need for multiple round trips to fill in the necessary de-
tails. The additional latency of open/close is due to the multi-
ple round trips to name and establish a new TCP connection.
Both RFIO and DCAP have higher latencies for single byte
reads and writes than for 8KB reads and writes. This is due
to buffering which delays small operations in anticipation of
further data. Most importantly, all of these remote opera-
tions exceed the latency of the debugger trap itself by several
orders of magnitude. Thus, we are comfortable with the pre-
vious decision to sacrifice performance in favor of reliability
in the interposition technique.

We conclude with a macrobenchmark similar to the An-
drew benchmark. [15] 3 This Andrew-like benchmark con-
sists of a series of operations on the Parrot source tree, which
consists of 13 directories and 296 files totaling 955 KB. To
prepare, the source tree is moved to the remote device. In the
copy stage, the tree is duplicated on the remote device. In
the list stage, a detailed list (ls -lR) of the tree is made. In
the scan stage, all files in the tree are searched (grep) for a
text string. In the make stage, the software is built. From
an I/O perspective, this involves a sequential read of every
source file, a sequential write of every object file, and a se-
ries of random reads and writes to create the executables. In

3We considered the original Andrew benchmark, however, it is quite
small by today’s standards and has aged to the point where it no longer
compiles with standard tools.

distance cache protocol copy list scan make delete
local off local .15± .02 sec .09± .20 .08± .02 65.38±3.47 .86± .18 sec
local off chirp 1.22± .03 sec .34± .02 .40± .01 81.02±1.46 .79± .01 sec

lan off chirp 6.16± .22 sec .57± .30 1.32± .03 144.00±1.35 1.26± .02 sec
lan on chirp 10.67± .90 sec .53± .07 4.72± .32 95.05±2.33 1.24± .03 sec
lan on ftp 34.88±1.72 sec 1.47± .02 17.78±1.14 122.54±3.14 2.95± .15 sec
lan on nest 52.35±4.18 sec 12.92±4.87 28.14±4.52 307.19±3.26 31.73±4.37 sec
lan on rfio (overwhelmed by repeated connections)
lan on dcap (does not support directories without nfs)

Figure 12. Performance of the Andrew-Like Benchmark

the delete stage, the tree is deleted.
Figure 12 compares the performance of the Andrew-like

benchmark in a variety of configurations. In the three cases
above the horizontal rule, we measure the cost of each layer
of software added: first with Parrot only, then with a Chirp
server on the same host, then with a Chirp server across the
local area network. Not surprisingly, the I/O cost of separat-
ing computation from storage is high. Copying data is much
slower over the network, although the slowdown in the make
stage is quite acceptable if we intend to increase throughput
via remote parallelization.

In the two cases adjacent to the rule, the only change is
the enabling of caching. As might be expected, the cost of
unnecessary duplication causes an increase in copying the
source tree, although the difference is easily made up in the
make stage, where the cache eliminates the multiple random
I/O necessary to link executables. The list and delete stages
only involve directory structure and metadata access and are
thus not affected by the cache.

In the five cases below the horizontal rule, we explore the
use of various protocols to run the benchmark. In all of these
cases, caching is enabled in order to eliminate the cost of
random access as discussed. The DCAP protocol is seman-
tically unable to run the benchmark, as it does not provide
the necessary access to directories. The RFIO protocol is se-
mantically able to run the benchmark, but the high frequency
of filesystem operations results in a large number of TCP
connections, which quickly exhausts networking resources at
both the client and the server, thus preventing the benchmark
from running. Chirp, FTP, and NeST are all able to com-
plete the benchmark. The NeST results have a high variance,
due to delays incurred while the metadata log is periodically
compressed. The difference in performance between Chirp,
FTP, and NeST is primarily attributable to the cost of meta-
data lookups. All the stages make heavy use of stat; the mul-
tiple round trips necessary to implement this completely for
FTP and NeST have a striking cumulative effect.

10. Conclusions

Interposition agents provide a stable platform for bring-
ing old applications into new environments. We have out-

lined the difficulties that we have encountered as well as the
solutions we have constructed in the course of building and
deploying several types of agents within the Condor project.
In general, the interposition techniques with the lowest over-
head require the greatest amount of knowledge about the ap-
plication, while the more expensive techniques are more reli-
able but less flexible. As we have shown, the Linux debugger
trap has several limitations, but can still be put to good use.
As interest grows in the use of virtual machines in distributed
systems [35] the need for powerful but low overhead meth-
ods of interposition grows. The appropriate interface for this
task is still an open research topic.

The notion of virtualizing or multiplexing an existing in-
terface is a common technique [18, 10], but the plague of
errors and other boundary conditions seems to be suffered
silently by practitioners. Such problems are rarely publi-
cized, however, we are aware of two excellent exceptions.
C. Metz [20] describes how the Berkeley sockets interface
is surprisingly hard to multiplex. T. Garfinkel [13] describes
the subtle semantic problems of sandboxing untrusted appli-
cations.

We have emphasized that the problem of error handling
forces the integration of access to computation and storage.
Although sensible partitioning of technical problems tends
to focus practitioners on one problem or the other, a holistic
view is needed to properly bring the two together. Narrow
interfaces such as exit and kill are widely portable but provide
very coarse-grained control. We have presented an example
of a more powerful interface: the Chirp constrain call. We
believe a richer interface for integration remains a a fruitful
area of research.

For more information about Parrot:
http://www.cs.wisc.edu/˜thain/research/parrot

11. Acknowledgments

We thank John Bent and Sander Klous for their assistance
in deploying and debugging Parrot. Victor Zandy wrote the
mechanism for binary rewriting. Alain Roy gave thoughtful
comments on early drafts of this paper.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foundation
for Unix development. In Proceedings of the USENIX Summer
Technical Conference, Atlanta, GA, 1986.

[2] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman. UFO:
A personal global file system based on user-level extensions
to the operating system. ACM Transactions on Computer Sys-
tems, pages 207–233, August 1998.

[3] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and
S. Tuecke. Protocols and services for distributed data-intensive
science. In Proceedings of Advanced Computing and Analysis
Techniques in Physics Research, pages 161–163, 2000.

[4] D. Anderson, J. Chase, and A. Vahdat. Interposed request
routing for scalable network storage. In Proceedings of the
Fourth Symposium on Operating Systems Design and Imple-
mentation, 2000.

[5] O. Barring, J. Baud, and J. Durand. CASTOR project status.
In Proceedings of Computing in High Energy Physics, Padua,
Italy, 2000.

[6] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
storage resource broker. In Proceedings of CASCON, Toronto,
Canada, 1998.

[7] J. Basney, M. Livny, and P. Mazzanti. Utilizing widely dis-
tributed computational resources efficiently with execution do-
mains. Computer Physics Communications, 140, 2001.

[8] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley,
A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. Flex-
ibility, manageability, and performance in a grid storage ap-
pliance. In Proceedings of the Eleventh IEEE Symposium on
High Performance Distributed Computing, Edinburgh, Scot-
land, July 2002.

[9] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
GASS: A data movement and access service for wide area
computing systems. In 6th Workshop on I/O in Parallel and
Distributed Systems, May 1999.

[10] D. Cheriton. UIO: A uniform I/O system interface for dis-
tributed systems. ACM Transactions on Computer Systems,
5(1):12–46, February 1987.

[11] K. Efe. A proposed solution to the problem of levels in error-
message generation. ACM Computing Practices, 30(11):948–
955, November 1987.

[12] M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, and
C. Waldman. dCache, a distributed storage data caching sys-
tem. In Proceedings of Computing in High Energy Physics,
Beijing, China, 2001.

[13] T. Garfinkel. Traps and pitfalls: Practical problems in in sys-
tem call interposition based security tools. In Proceedings
of the Network and Distributed Systems Security Symposium,
February 2003.

[14] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications. In Pro-
ceedings of the Sixth USENIX Security Symposium, San Jose,
CA, 1996.

[15] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and perfor-
mance in a distributed file system. ACM Transactions on Com-
puter Systems, 6(1):51–81, February 1988.

[16] G. Hunt and D. Brubacher. Detours: Binary interception
of Win32 functions. Technical Report MSR-TR-98-33, Mi-
crosoft Research, February 1999.

[17] M. Jones. Interposition agents: Transparently interposing user
code at the system interface. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles, pages 80–93,
1993.

[18] S. Kleiman. Vnodes: An architecture for multiple file system
types in Sun Unix. In Proceedings of the USENIX Technical
Conference, pages 151–163, 1986.

[19] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and
L. Jones. SOCKS protocol version 5. Internet Engineering
Task Force (IETF) Request for Comments (RFC) 1928, March
1996.

[20] C. Metz. Protocol independence using the sockets API. In
Procedings of the USENIX Technical Conference, June 2002.

[21] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. B.
Irvin, K. Karavanic, K. Kunchithapadam, and T. Newhall. The
Paradyn parallel performance measurement tools. IEEE Com-
puter, 28(11):37–46, November 1995.

[22] B. Miller, A. Cortes, M. A. Senar, and M. Livny. The tool
daemon protocol (TDP). In Proceedings of Supercomputing,
Phoenix, AZ, November 2003.

[23] J. Pruyne. Resource Management Services for Parallel Appli-
cations. PhD thesis, University of Wisconsin-Madison, 1996.

[24] R. Raman. Matchmaking Frameworks for Distributed Re-
source Management. PhD thesis, University of Wisconsin,
October 2000.

[25] A. Samar and H. Stockinger. Grid Data Management Pilot.
In In Proceedings of IASTED International Conference on Ap-
plied Informatics, Innsbruck, Austria, February 2001.

[26] C. Small and M. Seltzer. A comparison of OS extension tech-
nologies. In Proceedings of the USENIX Technical Confer-
ence, pages 41–54, 1996.

[27] M. Solomon and M. Litzkow. Supporting checkpointing and
process migration outside the Unix kernel. In Proceedings
of the USENIX Winter Technical Conference, pages 283–290,
1992.

[28] S. Sun. Establishing persistent identity using the handle sys-
tem. In Proceedings of the Tenth International World Wide
Web Conference, Hong Kong, May 2001.

[29] D. Thain, J. Basney, S.-C. Son, and M. Livny. The Kangaroo
approach to data movement on the grid. In Proceedings of
the Tenth IEEE Symposium on High Performance Distributed
Computing, pages 325–333, San Francisco, California, August
2001.

[30] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and
M. Livny. Pipeline and batch sharing in grid workloads. In
Proceedings of the Twelfth IEEE Symposium on High Perfor-
mance Distributed Computing, Seattle, WA, June 2003.

[31] D. Thain and M. Livny. Multiple bypass: Interposition agents
for distributed computing. Journal of Cluster Computing,
4:39–47, 2001.

[32] D. Thain and M. Livny. Error scope on a computational grid.
In Proceedings of the Eleventh IEEE Symposium on High Per-
formance Distributed Computing, July 2002.

[33] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection in the
globus data grid. IEEE International Symposium on Cluster
Computing and the Grid, May 2001.

[34] K.-P. Vo. The discipline and method architecture for reusable
libraries. Software: Practice and Experience, 30:107–128,
2000.

[35] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and perfor-
mance in the Denali isolation kernel. In Proceedings of the
Fifth Symposium on Operating System Design and Implemen-
tation, Boston, MA, December 2002.

[36] B. White, A. Grimshaw, and A. Nguyen-Tuong. Grid-Based
File Access: The Legion I/O Model. In Proceedings of
the Ninth IEEE Symposium on High Performance Distributed
Computing, August 2000.

[37] V. Zandy and B. Miller. Reliable network connections. In
Proceedings of the Eighth ACM International Conference on
Mobile Computing and Networking, pages 95–106, Atlanta,
GA, September 2002.

[38] V. Zandy, B. Miller, and M. Livny. Process hijacking. In
Proceedings of the Eighth IEEE International Symposium on
High Performance Distributed Computing, 1999.

