XtremWeb & Condor : sharing resources between I nternet connected Condor
pools.

O. Lodygensky, G. Fedak, F. Cappello, V. Neri, M. Livny, D. Thain

LAL, Laboratoire de |’ Accelerateur Lineaire, France
LRI, Laboratoire de Recherche en Informatique, France
Department of Computer Science, University of Wisconsin-Madison, Wisconsin, USA

Abstract

Grid computing presents two major challenges for de-
ploying large scale applications across wide area networks
gathering volunteers PC and clusters/parallel computers as
computational resources: security and fault tolerance.

This paper presents a lightweight Grid solution for the
deployment of multi-parameters applications on a set of
clusters protected by firewalls. The system uses a hierar-
chical design based on Condor for managing each cluster
locally and XtremWeb for enabling resource sharing among
the clusters.

We discuss the security and fault tolerance mecha-
nisms used for this design and demonstrate the useful-
ness of the approach measuring the performances of a
multi-parameters bio-chemistry application deployed on
two sites: University of Wisconsin/Madison and Paris South
University.

This experiment shows that we can efficiently and safely
harness the computational power of about 200 PC dis-
tributed on two geographic sites.

1 Introduction

Multi-parameters applications represent very interesting
candidates for Grid deployments. Many high performance
computing users use such kind of application and their ex-
ecutions typically require the computation of many tasks
controlled by a central manager. As a matter of fact, many
of these users are not willing to spread their applications
among volunteer participants connected to Internet like for
SETI@home or Folding@home. They simply look for a
Grid solution helping them to harness efficiently, safely and
at a low installation cost, a flexible set of loosely coupled
clusters (secretary and engineer workstation connected to
switched Ethernet) and closely coupled clusters (Beowulf

cluster). The Grid solution must fulfill at least two enabling
features: security and fault tolerance.

These applications are also interesting from the com-
puter scientist point of view because they can fit the two
known approaches of Large Scale Distributed Computing :
peer to peer computing (P2P) and Grid computing [4].

“Grid” main goal is to achieve flexible and secure large
scale computing with high performances between so called
virtual organizations, entities that accept a resource ex-
change policy, based on high control about who shares
what, what is shared and what are the sharing conditions.
The main toolkit, Globus [14], is already used by several
projects. One of the main contributions of Globus is its
strong security mechanisms (GSI) which is the basis of
many current Grid deployments. However, Globus which
has been designed to allow many users to share resources
owned by institutions may not be appropriate in the specific
cases of multi-parameters applications ran from a central-
ized dispatcher. Another concern about Globus is its lack
of mechanism for transparent fault tolerance, which leads
to use a fault tolerance environment for executing multi-
parametric applications or a fault tolerant implementation of
multi-parametric application. The Heartbeat Monitor [13]
is a proposed a way to detect faults, but it is not transparent,
since applications have to register.

“P2P” has quite the same goals (to achieve flexible and se-
cure large scale computing), but in a more decentralized
way. Two of the main characteristics of P2P system are
the resource volatility and the lack of security mechanisms
for the participant resource, the application and its results.
For example there is almost no identification procedure for
users of P2P systems. However, current deployments such
as SETI@home for P2P Computing and Napster, Kazaa
for P2P file sharing, have demonstrated exceptional perfor-
mance (several tens of Teraflops for SETI@home and about
1 Terabit/s of service bandwidth for Kazaa) and fault toler-

3 XTREMWEB

ance (the time between two connections or disconnections
is lower than a minute).

The specific case of multi-parametric applications ran
for a single trusted institution/community using a central
dispatcher and a set of clusters protected by different ad-
ministration domains allows to consider a P2P approach for
solving the security and fault tolerance issues.

We present such a solution in this paper gathering clus-
ters managed by Condor and protected by firewall by the
XtremWeb P2P platform. The two first sections detail Con-
dor and XtremWeb technologies. The next section presents
how XtremWeb is used to safely harness firewall protected
Condor pools and how it provides fault tolerance. The
last section demonstrates the usefulness of the approach de-
scribing a real life multi-parameters application ran on two
clusters: one at University of Wisconsin/Madison in USA
and the other at University of Paris South in France.

2 Condor

Condor, a specialized batch system for managing

compute-intensive jobs, is a project developed at Univer-
sity of Wisconsin-Madison [11]. Like any batch system, it
manages submitted jobs, queuing and scheduling them ac-
cordingly to their priority.
Condor not only manages jobs; it more generally manages
different kind of resources included in so-called Condor
pools. A pool is an administrated domain of hosts, not
specifically dedicated to Condor, which Condor uses as any
user of the domain. Condor does not administrate these
hosts by itself; administration still relies on domain ad-
ministrator, especially (but not only) for security purposes
which are fully dependent of the domain administration.
For instance, jobs are launched with user/group rights as
defined in the domain.

As Condor only manages resources, hosts of the pool
are resources. Resources management follows rules defined
within ClassAds to enable matchmaking on resource shar-
ing. Condor uses ClassAds to resolve association between
requests and proposals of resources. Users could request
a host running an expected operating system, with an ex-
pected amount of memory to run jobs. The system would
then look if it has such a resource available and resolve the
request. On the other hand pool hosts may not be dedi-
cated to Condor, as we previously said; users could propose
their personal desktop, or laptop, publishing its ClassAds
specifying utilization conditions such as available schedul-
ing time (e.g. from 9PM to 6 AM), or owner CPU usage
condition (e.g. CPU available for Condor job if CPU usage
under 10%; Condor job don’t use more than 50% of CPU).

Condor manages tasks following master-worker
paradigm. This is a common parallel programming
paradigm where one host (the master) control the others

(the workers). The master centralizes jobs, and sends all
needed objects (binary, parameters files...) for each job to a
worker which runs the provided application with specified
environment (arguments, inputs...). As soon as a worker
has finished, it sends output files back to the master. As the
master keeps tracks of every resources, it is able to detect
any worker failure which may simply occurs on the case
host resource is not available any more accordingly to its
ClassAds; on such cases, the master reschedules that lost
job to another worker.

Rescheduling lost tasks is a waste of CPU time since
new elected workers have to restart computation from
the beginning. To avoid such loss of resources, Condor
provides a check point service allowing the worker to send
checkpoint images to a storage server.

We mentioned earlier in this section that Condor man-
ages pools deployed in a single administrative domain. Re-
source sharing is not limited to one pool only and different
ones (different domains) have a chance to communicate and
exchange resources and tasks. To do so, Condor implements
the “flocking”. This allows sharing between pools, with due
respect to policy of each. Unfortunately, the current Con-
dor version (6.4.3) does not provide any mechanism to deal
with firewall for inter administration domains resource shar-
ing. The Condor team currently investigates this problem,
considering the use of gateways [12].

Another Condor approach to break domain limitations
is to use Globus[1] to connect pools to grid machines to
submit jobs there. This Condor service, called Condor-G,
is not included in the standard Condor distribution and has
to be installed explicitly.

All this, of course, is possible if, and only if, one has access
to Globus resources; to do so it is necessary to get a Globus
account.

We will see on following sections how XtremWeb can
resolve this inter domain limitations and complexities.

3 XtremWeb

XtremWeb is a P2P project developed at University of
Paris-Sud, France[6]. It was originally designed to study
execution models in the general framework of Global Com-
puting and is now a fully production platform too; it has
been released for Linux, Windows and MacOS-X.

As other GC projects like SETI@home or Fold-
ing@Home, XtremWeb is intended to distribute applica-
tions over a set of hosts using a cycle stealing scheme
and particularly focuses on multi-parameters applications
which have to be computed several times with different in-
puts and/or parameters, each computation being fully in-
dependent from each others. Some other projects propose

4.1 XtremWeb workers as Condor service

4 LIGHT WEIGHT GRID OF CONDOR POOL S USING XTREMWEB

equivalent features, such as Nimrod [5]. But Nimrod uses
a static set of resources only and security relies on stan-
dard Unix level security. We see in following paragraphs
that XtremWeb uses dynamic resources, according to their
availability and implements its own policy security.

XtremWeb manages tasks following the coordinator-
worker paradigm. One host (the coordinator) manages a
bag of tasks and coordinates their scheduling among a set of
hosts (the workers) which are volunteers provided by insti-
tutional or private users and, as such, are not under the con-
trol of the coordinator and are very volatile in essence. Fol-
lowing these concepts, each action, all connections, are ini-
tiated by workers only. This behavior is commonly known
as pull model and clearly implies independence of all com-
ponents.

Tasks are scheduled to workers on their specific demand
only since they may appear (connect to coordinator) and
disappear (disconnect from coordinator) with no predictable
pattern. Every worker connection is registered by the coor-
dinator providing configuration (XtremWeb worker version,
operating system, CPU type, memory size...). Software
version helps the coordinator to check whether the worker
should be updated or not; other informations are used to
match scheduling accordingly to task needs.

XtremWeb uses connectionless protocols; workers are con-
sidered active as long as they contact the coordinator peri-
odically after registration.

A worker requests task to compute accordingly to its own
local policy dedicated to perturbation prevention, which is
customizable (available scheduling time, CPU usage condi-
tions...); it downloads task software and all expected objects
(input file, arguments...) and starts computing the provided
tasks. Computation goes on locally until it ends or dies for
any reason, including due to host utilization policy rules.
When a task is completed, the worker sends results back to
coordinator and may ask for another one.

Scheduling is in FIFO (first in, first out) mode, which is
a very trivial one. Since XtremWeb can schedule native and
Java applications, the only match done is about CPU type,
OS version and whether Java is enabled in workers. Java ap-
plications are distributed as class or jar files, whereas native
ones are binary.

4 Light weight Grid of Condor pools using
XtremWeb

We wish to gain profit from both technologies, Condor
and XtremWeb, to share resources between different Con-
dor pools as shown in figure 1. The big picture consists in
running XtremWeb workers as Condor tasks fetching their
jobs from the central coordinator possibly belonging to dif-
ferent administration domains. The first issue (4.1) is to
transform XtremWeb worker code as a stand alone applica-

1 Firewall
‘/> Chalenge
=> Encrypted coms

Condor Pool
Madison, Wisc

Condor Pool
Paris-South

Figure 1. Connecting Condor pools using
XtremWeb

tion runnable in Condor pools. The second issue (4.2) con-
cerns the coordination of Condor tasks (XtremWeb work-
ers) by a central coordinator. Third issue (4.3) consists in
providing security mechanism to ensure the Condor nodes,
results and applications protection. The final issue (4.4) is
about fault tolerance: we must ensure that failed tasks don’t
affect the system and are restarted transparently from the
user.

4.1 XtremWeb workers as Condor service

Deploying XtremWeb workers as Condor service is the
first point to address for our goal so that tasks could
be scheduled on any Condor pool and coordinated by
XtremWeb.

To deploy XtremWeb workers on Condor pools, we have
to be able to dispatch them as Condor tasks. We must first
make sure XtremWeb workers will not only be runnable,
but will not perturb Condor scheduling.

XtremWeb workers use some “’standard” Java libraries as
those needed to implement SSL connections, or logging
features. As no assumption should be made on Condor
pool to deploy tasks, it is then necessary to implement
XtremWeb worker as stand-alone application regarding its
system needs. Unfortunately, current XtremWeb worker
implementation can’t bypass two of its needs: disk access
first, as all downloaded objects are written down to ensure
tasks will be fully computed even if worker host reboots
and, second, Internet outgoing connections must be allowed
to be able to connect the coordinator (see next subsection).

4.3 Security

4 LIGHT WEIGHT GRID OF CONDOR POOL S USING XTREMWEB

An access to administrative domains is necessary to de-
ploy XtremWeb stand-alone worker as a Condor task. We
have installed a 40 hosts pool at LRI which we manage
ourselves and have an access to University of Wisconsin to
schedule our XtremWeb workers to the Condor pool there,
with up to nine hundred Condor workers installed.

These two pools are not dedicated to our experimentation
and are strongly loaded by users. Our workers are then
scheduled accordingly to pools policy and dedicated re-
source match makings, which are mainly proposed by vol-
unteer users.

There is no specific XtremWeb policy defined regarding
host utilization since Condor, which fully manages the
scheduling, schedules workers, using its ClassAds. On the
other hand, Condor master has no result because Xtrem\Web
workers, by themselves, make no output, neither any re-
sult. Generated results are not visible by Condor system
since XtremWeb already manages them; these results are
sent back to the coordinator and removed from local disk.
In fact, Condor only sees its own tasks (here, our Xtrem\Web
worker) and has no way to check what is done if it does not
rely on result files.

4.2 XtremWeb coordinator for Condor pools in-
terconnection

Solving domain administrations and firewalls problems
by connecting different Condor pools can be done through
XtremWeb coordinator. Nimrod, already cited in this paper,
proposes Nimrod/G [9], an implementation of Nimrod
with Globus to distribute tasks among grid resources.
We demonstrate in this section that XtremWeb solution
is very easy to implement and the least constraining
one we know so far since it does not need Globus a very
good but heavy solution to connect widely distributed hosts.

Condor team proposes their solution too, Condor-G,
based on Globus standard mechanisms: GSI, for security,
allows usage of grid resources with a single authentication;
GRAM, for tasks executions, helps to submit and manage
queues of jobs to grid hosts; and GASS, for file transfers
between grid resources. Condor-G uses that last to transfer
executables and all other needed files to remotely compute
a task.

XtremWeb protocols, as defined, resolve firewall prob-
lems by using single side communications. Firewalls are
usually configured asymmetrically allowing outgoing con-
nections and blocking incoming ones. Workers and clients
behind a firewall or even a gateway implementing NAT can
then contact the coordinator and receive answers through
the same opened canal. The coordinator, on his side, can
receive connections since it uses the standard Web port (80)

and firewalls are usually configured to let incoming connec-
tions to this port. If the firewall in front of the coordinator
stops these types of connections, this will be the only one to
be reconfigured so that the full system works.

Using XtremWeb coordinator doesn’t imply neither any
new Condor service installation nor firewall configuration
as mentioned earlier; as soon as a coordinator is imple-
mented, a global computing structure is ready and task
dispatching occur as connections arise. Coordinator does
not notice whether workers could run on a Condor pool, or
inside a cluster or even as individual contribution.

For now, there is no real communication between
XtremWeb and Condor; for instance, ClassAds as defined
in Condor are not used by XtremWeb to grant match
makings; neither are Condor queues: XtremWeb can’t
exchange any tasks with Condor. These are subject for
future work.

4.3 Security

Our goal is to safely connect different administration do-
mains in a single XtremWeb network. In this network, we
assume that the users connect to the dispatcher administra-
tion domain for submitting tasks. XtremWeb has the re-
sponsibility to ensure user authentication, hosts (workers)
integrity, application and results protection and user execu-
tion logging.

User authentication and execution logging. The coor-
dinator site manages a list of authorized users as ACLs. It
is the responsibility of the system administrator to register
new users (and revoke non desired ones) on the coordinator.
After registration, the coordinator provides a key to be used
by the user for each subsequent connection. For each con-
nection, a challenge is ran in order to ensure that the user is
registered on the coordinator. All communications between
the user XW client and the coordinator are encrypted using
SSL. Then the coordinator works as a proxy for the user: all
tasks are submitted to the workers through the coordinator
credential. All executions on the workers are logged in the
security perspective: all tasks contain a descriptor with the
actual user credential so that workers and coordinator can
take appropriate corrective action (user revocation), in case
of security problem.

The design does not currently rely on certificates and
presents a certain degree of risk for “Man is the Middle”
(MIM) attacks but risks are very limited since 1) attacks
should origin from within the Wisconsin or the LRI cluster
only (due to TCP protocols), and 2) workers and clients
software include coordinator public key, then if one is able
to securely ensure worker and client binaries installation

5 APPLICATIONSAND ANALYSES

to dedicated pools, the full system is not subject to MIM
attacks since key exchanges will not be necessary any more.

A certificate system, like GSI in Globus, is under in-
tegration in XtremWeb. Subsequent experiments and fu-
tures XtremWeb installations will implement one, based on
Open-SSL, allowing extension of clients and workers au-
thentication by the coordinator.

Applications, parametersand results protection. Con-
dor pools belonging to different administration domains
fetch applications and tasks, and store results on the cen-
tral coordinator. The only security issue concerning appli-
cations, parameters and results transfers is then about the
connections between the Condor pools and the coordinator.
To ensure connection security between domains, 1) every
connection from any client and worker to the coordinator
is encrypted through SSL tunnels; 2) workers can only con-
nect to the coordinator for which they have the public key.
These two mechanisms prevent malicious participants to be
able to intercept and read any connection, to connect to the
coordinator and Condor pool workers to connect to a wrong
XtremWeb coordinator.

Node integrity. If, for any reason, a malicious user suc-
ceeds on accessing the system and launching an aggres-
sive application, XtremWeb workers still protect their host
by implementing sand-boxing[2, 3, 7] for binary applica-
tions. This is a secure way to execute applications, pro-
viding rights to do some actions and denying some oth-
ers. One should note that Java applications are always exe-
cuted inside a virtual machine which includes security[10];
XtremWeb uses this functionality in two levels, one for the
worker itself and a more restrictive one for the downloaded
Java byte code. On the contrary, binary (or native) appli-
cations have access to the full hosting system by nature;
workers are configured to run any task of that type inside a
sand-box which is fully customizable, from memory usage
to file system operations.

Java, as sand-boxes, have a performance cost[8]; one can
then disable this functionality on highly secured systems,
such as clusters under a fully closed firewall.

4.4 Fault tolerance mechanisms

Several fault tolerance mechanisms are used in
XtremWeb to handle clients, workers and coordinator
failures. The main purpose of these mechanisms is to
enable the system to restart properly after any failure
(worker and coordinator). It is not currently intended to
provide minimum service interruption using techniques
like redundancy, but is planned as future work.

The client submits tasks to the coordinator as transac-
tions. Before submitting any task, the client contacts the
coordinator to fetch any previous submitted tasks. This
ensures that when the client restarts from a fault, it does not
resubmit previously submitted tasks. Results are managed
according to the user needs. They can be discarded
immediately after fetch or kept by the coordinator until the
end of the session. So if a failed client restarts, it is the
responsibility of the client programmer to fetch relevant
results.

Worker periodically informs the coordinator sending an
alive signal so that the coordinator doesn’t reschedule its
task to another worker. If this signal is not received after a
time out, the coordinator considers the worker as lost and
reschedules the same task on another available worker, if
any. A worker can unpromptingly be told to stop its current
task if it has been disconnected for too long (i.e. if it has not
signaled the coordinator in time) to avoid redundant task
and, more, result overwriting. After any interruption (shut
down or policy rule match), a worker restarts computing its
task from the beginning (no checkpointing); this is useful if
the task has not yet been rescheduled by the coordinator.

The coordinator stores on reliable media (disk) in-
formations concerning tasks and workers. On start, the
coordinator reads the information stored on reliable media
to setup its proper state; it then retrieves tasks that have
already been scheduled. The client submits tasks and the
worker fetches tasks using transactions. This ensures a
consistent state when the coordinator restarts from fault
while the client and the worker have not failed.

All this is fully transparent to the distributed application
and the end user is only aware about its results, computed
or not (if no matching worker available).

The only concern is the state of the coordinator; on failure
the system manager has to re launch it.

5 Applications and analyses

To demonstrate the full system, we ran a bio molec-
ular application for the IBBMC (Molecular and Cellular
Biochemistry and Biophysics Institute) laboratory at Paris
South University (France) which research interests include
understanding protein dynamic structure parameters that af-
fect stability and activity of proteins.

The general context is the understanding of stability
and expression parameters of proteins activity from the
analysis of their dynamic properties and their structure.
The main goal is to evaluate the stability and perturbing
factors of the protein folding by mutations. Molecular
modeling is used to explore the conformational possibilities

Used processors

5 APPLICATIONSAND ANALYSES

250 T T T T T T T T T
Wisc+LRl ——

200 | 1

150 . g

Time (mn)

Figure 2. Processors utilization for different
runs.

of macromolecules at a time scale lower than 1 nanosec.
The application consists in a multi-parameters computation
requiring a large set of independent tasks. This is a 4 steps
process. The first step generates n starting conformations
along coordinate of interest. The second step performs
m constrained molecular dynamics simulations for each
starting conformation (n * m workers). The third step
gathers statistics and the final step computes free energy
profile.

The experiment consists in 320 tasks. The execution
time of the run on a single machine (AMD 1.8Ghz) takes
43 hours and 44 min. This value is kept as reference in
the following. We then deploy the same amount of tasks
on three global computing configurations, all using Condor
as deployment system on volunteer hosts and XtremWeb as
dispatching system to enable inter domain hosts utilization.

Table 1 summarizes hosts types for each experiments.

Wisc LRI
Exp. 600Mhz | 900Mhz | 1800Mhz | Total
LRI 30 30
W sc 61 104 165
WHLRI | 50 73 9 132

Table 1. CPU provided by different domains

Figure 2 presents the number of CPUs used for each
minute of the execution and for all experiments.

For each experience the left slop is the "warmup” phase
where tasks are submitted but not yet distributed among

100

Time in minutes

Time in minutes

100 T T T T T T
Wisc+LRl ——

of o
80 | 1
70 - 1
60 - 1
s L R A
40 | , 1
30 |- R

20 ; 1

150 200
Executed works

Figure 3. Results relative arrival time for vari-
ous platforms.

all CPUs. The right slop is the ”cool down” phase where
are not enough jobs to use all CPUs. Since the scheduling
algorithm is naive (there is no task redistribution to faster
CPUEs), the execution finishes waiting for the slowest CPUSs.
Figure 3 shows needed delays to get the results, for these
different configurations, delays being calculated from the
first arrived result.

The speed up between the different configurations is
clearly visible here. Figure 4 presents an histogram of the
task duration (all task durations are plotted sorted in a de-
creasing order) for the all the experiments.

1 1 1
150 200 250
Works

!
100

Figure 4. Execution time per work.

350

350

Needed bandwidth Ko/s

REFERENCES

1000 T T T T T
Wisc+LRI Out

Wisc+LRI In -------

0.1 1 1 1 1
0 10 20 30 40 50 60

Time in minutes

Figure 5. Used network bandwidth.

In this graph we can easily distinguish the number of
CPU types (speed) use in each experiences, given by the
number of "plateau”. LRI uses only one kinds of CPUs
(AMD 1.8Ghz) while Wisc+LRI uses 3 kinds of CPUs. Fig-
ure 5 shows needed network bandwidth for the “full” con-
figuration, where Wisc and LRI pools were used.

Finally, figure 6 shows tasks distribution among hosts
for all experiments. They are detailed below.

First configuration uses 30 hosts available at LRI; all
AMD 1.8Ghz powered, ten are bi-processors, the other
twenty being mono-processors. This platform is used in
production and our experiment shares CPU cycles with oth-
ers users. Figure 3 shows that all tasks are done in 1 hour, 30
min and 54 seconds (speedup is about 29, due to other users
hosts utilization) with a very regular execution time due to a
single host configuration. The curve shows plateau, because
all hosts get their works and put results simultaneously as
they all need the same time to compute, as we can see in
figure 4; whereas figure 6 shows a quite regular distribution
among hosts: the load balancing is satisfying.

Second configuration has 165 hosts available at Univer-
sity of Wisconsin; 61 are P11l 600Mhz powered, the other
104 are PI1l 900Mhz, all bi-processors. Figure 3 shows
the execution is completed in 36 min and 41 seconds (a
speedup about 88); some plateau are still present here, but
less clearly visible since this configuration includes two
host types which react differently as shown in figure 4. That
last configuration is 4.5 times more powerful and the gain
is multiplied by three only, due to a lower availability of
nodes. In this case, tasks are regularly distributed as shown
in figure 6.

The third configuration used both domains. Only nine
hosts were available at LRI (5 mono-processors and 4 bi-
processors) and 123 at University of Wisconsin (still all bi-
processors, 50 at 500Mhz, 73 at 900Mhz); the throughput
gain has decreased of 20% compared to our second configu-
ration, exactly as available power (figures 2 and 3). Figures
3 and 4 show that the least regular curves are for this exper-
iment, because of three different host types.

Figure 5, only available for this experiment, shows the
needed network bandwidth. The bold line, labeled
Wisc+LRI Out shows the outgoing traffic from the coordina-
tor to workers (binary code and tasks parameters); the first
vertical line correspond to binary download and paramters
for initial tasks. The thin line, labeled Wisc+LRI In shows
the in-coming traffic from workers to the coordinator (tasks
results); the right most part of the figure shows only thin
lines, because there is no more task (and then no more pa-
rameter to download) after minute 32 of the experiment. A
significant point of this figure is the fact that lines are paral-
lels between minutes 10 and 32; this is due to the fact that
workers download new parameters immediatly after results
upload, as long as there are tasks to compute.

Figure 6 shows that the load balance is preserved (i.e. tasks
distribution among hosts in different domains corresponds
to the different hosts type).

6 Conclusions

We have presented a lightweight approach for harnessing
the computational power of clusters belonging to different
administration domains for the purpose of running multi-
parameters applications from a centralized coordinator.

We believe that this Grid deployment corresponds to the
expectations of many users who don’t need to have interac-
tive and direct access to several firewall protected clusters.

We have presented a hierarchical architecture based on
Condor for managing cluster nodes and XtremWeb for co-
ordinating the task execution among the connected clusters.

This architecture fulfills the requirements
of Grid deployments ensuring strong security
(client/worker/dispatcher authentication + communi-

cation encryption) and fault tolerance using resilient
components fetching their context before restarting.

We have demonstrated the usefulness of this approach
using a biochemistry application and running hundreds of
tasks on up to 200 nodes spread among two different sites
in USA and France.

References

[1] The physiology of the grid: An open grid services ar-
chitecture for distributed systems integration. In Open

REFERENCES

REFERENCES

(2]

(3]

[4]

(5]

(6]

[7]

(8]

LRI & Wisc (132 Hosts)

LRI (30 Hosts)

Wisc (165 Hosts)

70 14
60 1 — 12 1

1000

50 1+ 10 -
40

100

Hosts

30 1+

8
6 -
20 + 4-
2
0

10 1
o H

3 2 1

1211109 8 76 5 4 32 10 4 3 2 1 0

Tasks

Tasks

Tasks

Figure 6. Tasks distribution among hosts when running the biochemistry application.

Grid Service Infrastructure WG, Global Grid Forum,
2002.

P. Kmiec A. Alexandrov and K. Schauser. Consh: a
confinied execution environment for internet compu-
tations. In Proceedings of the Usenix annual technical
conference, http://www.usenix.org/events/usenix99/,
1999.

A. Acharya and M. Raje. Mapbox: using parame-
terized behavior classes to confine applications. In
Technical report TRCS99-25,University of California,
Santa Barbara, 1999.

lan Foster and Carl Kesselman. The grid: Blueprint
for a new computing infrastructure — isbn=1-55860-
475-8. Morgan Kaufman Publisher, 1998.

D. Abramson J. Giddy R. Sosic J. Giddy. Nimrod:
A tool for performing parametised simulations using
distributed workstations. In The 4th IEEE Symposium
on High Performance Distributed Computing, IEEE
Computer society, 1995.

Vincent Neri Gilles Fedak, Cecile Germain and
Franck Cappello. Xtremweb : a generic global com-
puting platform — ccgrid’2001 special session global
computing on personal devices. IEEE press, 2000.

R. Thomas I. Goldberg; D. Wagner and E. Brewer.
A secure environment for untrusted help application
— confining the wily hacker. In Proceedings of the 6th
Usenix Security Symposium, 1996.

L. Pottage J.M. Bull, L.A. Smith and R. Freeman.
Benchmarking java against ¢ and fortran for scientific

(9]

[10]

[11]

[12]

[13]

[14]

applications. In ISCOPE Conference, LNCS volumes
1343, Springer, pages 97-105, 2001.

D. Abramson J. Giddy L. Kotler. High performance
parametric modeling with nimrod/g: killer application
for the global grid? In International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 520—
528, 2000.

H. Prafullchandra L. Gong, M. Muller and
R. Schemers. Going beyond the sandbox: an
overview of the new security architecture in the
java development kit 1.2. In Usenix Symposium on
Internet Technologies ans Systems, 1997.

Miron Livny Michael Litzkow and Matt Mutka. Con-
dor - a hunter of idle workstations. In Proceedings of
the 8th International Conference of Distributed Com-
puting Systems, IEEE Computer Society Press, pages
104-111, Madison, Wisconsin, 1988.

Colby O’Donnell. Condor and firewalls. In
http://www.cs.wisc.edu/condor/, University of Wis-
consin - Madison, 2002.

P. Stelling, I. Foster, C. Kesselman, C.Lee, and Gre-
gor von Laszewski. A Fault Detection Service for
Wide Area Distributed Computations. In Proceed-
ings of the 7th IEEE International Symposium on High
Performance Distributed Computing, pages 268-278,
Chicago, IL, 28-31 July 1998.

I. Foster J. Geisler W. Nickless W. Smith S. Tuecke.
Globus: A metacomputing infrastructure toolkit. In
Proc. 5th IEEE Symposium on High Performance Dis-
tributed Computing, 1997.

