
1

Thanh Do*, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi	

	

	

2

q Growing complexity of …	

§  Technology scaling	

§  Manufacturing	

§  Design logic	

§  Usage	

§  Operating environment	

q … makes HW fail differently	

§  Complete fail-stop	

§  Fail partial 	

§  Corruption	

§  Performance degradation? 	

Rich literature	

3

“… 1Gb NIC card on a machine that suddenly starts
transmitting at 1 kbps, 	

this slow machine caused a chain reaction upstream in
such a way that the performance of entire workload for a
100 node cluster was crawling at a snail's pace, effectively
making the system unavailable for all practical purposes.”
– Borthakur of Facebook	

Degraded NIC!
(1000000x)	

Cascading	

impact!	

More stories in the paper	

4

q Does HW degrade? Yes	

§  Limpware: Hardware whose performance degrades

significantly compared to its specification 	

q Is this a destructive failure mode? Yes	

§  Cascading failures, no “fail in place”	

q No systematic analysis on its impact	

5

q 56 experiments that benchmark 5 systems	

§  Hadoop, HDFS, Zookeeper, Cassandra, HBase	

§  22 protocols	

§  8 hours under normal scenarios	

§  207 hours under limpware scenarios	

q Unearth many limpware-intolerant designs	

Our findings:	

A single piece of limpware (e.g. NIC)
causes severe impact on a whole cluster	

6

q Introduction	

q System analysis	

q Limplock	

q Limpware-Tolerant Systems	

q Conclusion	

7

q “The performance of a 100 node cluster was
crawling at a snail's pace” – Facebook	

q But, … why?	

8

q Goals	

§  Measure system-level impacts	

§  Find design flaws	

q Methodology	

§  Target cloud systems (e.g., HDFS, Hadoop, ZooKeeper)	

§  Inject load + limpware	

-  E.g. slow a NIC to 1 Mbps, 0.1 Mbps, etc.	

§  White-box analysis (internal probes)	

-  Find design flaws	

9

q Run a distributed protocol	

§  E.g., 3-node write in HDFS	

q Measure slowdowns under:	

§  No failure, crash, a degraded NIC	

workload	

10 Mbps	

NIC	

1Mbps	

NIC	

0.1 Mbps	

NIC	

1

10x	

slower	

100x	

slower	

1000x	

slower	

Execution	

slowdown	

10

q Introduction	

q System analysis	

§  Hadoop case study	

q Limplock	

q Limpware Tolerant Cloud Systems	

q Conclusion	

11

q Hadoop tail-tolerant?	

§  Why speculative exec is not triggered?	

q Consider degraded NIC on a map node	

§  Task M2’s speed = M1 and M3	

§  Input data is local!	

q But all reducers are slow	

§  Straggler: slow vs. others of same job	

§  No straggler detected!	

q Flaws	

§  Task-level straggler detection	

§  Single point of failure!	

Wordcount	

on Hadoop	

Mappers	

 Reducers	

M1	

M2	

M3	

1

10	

12

q A degraded NIC à degraded tasks	

§  (Degraded tasks are slower by orders of magnitude)	

q Slow tasks use up slots à degraded node	

§  Default: 2 mappers and 2 reducers per node	

§  If all slots are used à node is “unavailable”	

q All nodes in limp mode à degraded cluster	

M	

 M	

R	

 R	

Healthy node	

in limp mode	

Node	

with	

slow 	

NIC	

1
10

100
1000

Ex
ec

ut
io

n
Sl

ow
do

wn

No failure
Disk crash

8 MB/s
0.8 MB/s

0.08 MB/s
F1. Logging

(Master)
F2. Write

(Data)
F3. Read

(Data)
F4. Read/Logging

(Master)
F5. Checkpoint

(Secondary)

1
10

100
1000

Ex
ec

ut
io

n
Sl

ow
do

wn

No failure
Node crash

10 Mbps
1 Mbps

0.1 Mbps
F6. Write

(Data)
F7. Read

(Data)
F8. Regeneration

(Data)
F9. Regeneration
(Data-S/Data-D)

F10. Balancing
(Data-O/Data-U)

1
10

100
1000

Ex
ec

ut
io

n
Sl

ow
do

wn

F11. Decommission
(Data-L/Data-R)

H1. Spec. Exec.
(Mapper)

H2. Spec. Exec.
(Reducer)

H3. Spec. Exec.
(Job Tracker)

H4. Spec. Exec.
(Task Node)

Z1. Get
(Leader)

1
10

100
1000

Ex
ec

ut
io

n
Sl

ow
do

wn

Z2. Get
(Follower)

Z3. Set
(Leader)

Z4. Set
(Follower)

Z5. Set
(Follower)

C1. Write(quorum)
(Data)

C2. Read(quorum)
(Data)

1
10

100
1000

Ex
ec

ut
io

n
Sl

ow
do

wn

C3. Get(one) + Write(all)

(Data)
B1. Put

(Region Server)
B2. Get

(Region Server)
B3. Scan

(Region Server)
B4. Cache Get/Put

(Data-H)

Figure 1: Limpbench Results. Each graph represents the result of each experiment (e.g., F1) described in Table 1. The
y-axis plots the slowdowns (in log scale) of an experiment under various limpware scenarios. In the first row, a limping disk is
injected. In the rest, a limping NIC is injected. The graphs show that cloud systems are crash tolerant, but not limpware tolerant.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

Pr
og

re
ss

 S
co

re

Time (second)

(a) Limplocked Reducers

Normal reducer
Limplocked reducer 1
Limplocked reducer 2
Limplocked reducer 3 0

 200
 400
 600
 800

 1000
 1200

 0 50 100 150 200 250 300 350

of

 J
ob

s
Fi

ni
sh

ed

Time (minute)

Job Throughput

Normal
w/ 1 limpware

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

Li
m

pl
oc

ke
d

No
de

s
(%

)

Time (minute)

Cascading Limplock

Figure 2: Hadoop Limplock. The graphs show (a) the progress scores of limplocked reducers of a job in experiment H1 (a
normal reducer is shown for comparison), (b) cascades of node limplock due to a single limpware, and (c) a throughput collapse
of a Hadoop cluster due to a limpware. For Figures (b) and (c), we ran a Facebook workload [1] on a 30-node cluster.

 0
 0.2
 0.4
 0.6
 0.8

 1

5 20 40 60 80 100

Pr
ob

ab
ilit

y

Nodes

a) Read

r = 40
r = 20
r = 10
r = 5
r = 1

 0
 0.2
 0.4
 0.6
 0.8

 1

5 20 40 60 80 100
Nodes

b) Write

r = 40
r = 20
r = 10
r = 5
r = 1

 0
 0.2
 0.4
 0.6
 0.8

 1

5 20 40 60 80 100
Nodes

c) Block Regeneration

b = 3200
b = 1600
b = 800
b = 400 0

 0.2
 0.4
 0.6
 0.8

 1

5 20 40 60 80 100
Nodes

d) Cluster Regeneration

b = 6400
b = 3200
b = 1600
b = 800
b = 400

Figure 3: HDFS Limplock Probabilities. The figures plot the probabilities of (a) read limplock/Prl, (b) write limplock/Pwl,
(c) block limplock/Pbl, (d) and cluster regeneration limplock/Pcl, as defined in Table 2. The x-axis plots cluster size.

3

13

q Macrobenchmark: Facebook workload 	

§  30-node cluster 	

§  One node w/ degraded NIC (0.1 Mbps)	

Cluster collapse!
Why?	

1 job/hour	

14

Fail-stop tolerant, but not limpware tolerant	

(no failover recovery)	

15

q Introduction	

q System analysis	

q Formalizing the problem: Limplock	

§  Definitions and causes	

q Limpware-Tolerant Systems	

q Conclusion	

16

q Definition	

§  The system progresses slowly due to limpware

and is not capable of failing over to healthy
components 	

§  (i.e., the system is “locked” in limping mode)	

q 3 levels of limplock	

§  Operation	

§  Node	

§  Cluster	

17

q Operation Limplock	

§  Operation involving limpware is “locked” in limping

mode; no failover	

q Node Limplock	

§  A situation where operations that must be served by

this node experience limplock, although the operations
do not involve limpware	

q Cluster Limplock	

§  The whole cluster is in limplock due to limpware	

18

q  Operation Limplock	

§  Single point of failure	

-  Hadoop slow map task	

-  HBase “Gateway”	

	

M1	

M2	

M3	

Mappers	

 Reducers	

19

q  Operation Limplock	

§  Single point of failure	

§  Coarse-grained timeout	

§  (more in the paper)	

	

512MB write	

to HDFS	

1Sl
ow

do
w

n	

10	

100	

Reason: No timeout is triggered	

	

Coarse-grained timeout in HDFS	

60 second timeout on every 64 KB	

Could limp almost to 1 KB/s	

20

q  Operation Limplock	

§  Single point of failure	

§  Coarse-grained timeout	

§  …	

q  Node Limplock	

§  Bounded multi-purpose thread pool	

	

In-memory	

meta reads	

 Master	

Meta writes	

In-memory	

meta reads	

 Master	

In-memory reads > 100x
slower than normal	

1

Sl
ow

do
w

n	

10	

100	

Resource exhaustion by limplocked operation	

In-memory metadata reads are blocked	

21

q  Operation Limplock	

§  Single point of failure	

§  Coarse-grained timeout	

§  …	

q  Node Limplock	

§  Bounded multi-purpose thread pool	

§  Bounded multi-purpose queue	

messages	

messages	

22

q  Operation Limplock	

§  Single point of failure	

§  Coarse-grained timeout	

§  …	

q  Node Limplock	

§  Bounded multi-purpose thread pool	

§  Bounded multi-purpose queue	

§  Unbounded thread pool/queue	

-  Ex: Backlogged queue at leader	

-  Node limplock at leader because	

 garbage collection works hard	

-  Quorum write: 10x slowdown	

Stress load	

20 seconds	

1

Sl
ow

do
w

n	

10	

ZooKeeper 	

Leader	

Client quorum write	

Followers	

Stress load	

600 seconds	

q  Operation Limplock	

§  Single point of failure	

§  Coarse-grained timeout	

§  …	

q  Node Limplock	

§  Bounded multi-purpose thread pool	

§  Bounded multi-purpose queue	

§  Unbounded thread pool/queue	

q  Cluster Limplock	

§  All nodes in limplock	

-  Ex: resource exhaustion in Hadoop, HDFS Regeneration 	

§  Master limplock in master-slave architecture	

-  Ex: cases in ZooKeeper, HDFS	

24

q Found 15 protocols that exhibit limplock	

§  8 in HDFS	

§  1 in Hadoop	

§  2 in ZooKeeper	

§  4 in HBase	

Limplock happens in almost all
systems we have analyzed	

25

q Introduction	

q System analysis	

q Limplock	

q Limpware-Tolerant Cloud Systems	

q Conclusion	

q Anticipation	

§  Limpware-tolerant design

patterns	

§  Limpware static analysis	

§  Limpware statistics	

-  Existing work: memory failure,
disk failure, etc.	

q Detection	

§  Performance degradation à

implicit (no hard errors)	

§  Study explicit causes (e.g.

block remapping, error
correcting)	

q Recovery	

§  How to “fail in place”?	

§  Better to fail-stop than

fail-slow?	

§  Quarantine?	

q Utilization	

§  Fail-stop: fail or

working	

§  Limpware: degrade

1-100%	

26

27

q New failure modes à transform systems	

q Limpware is a “new”, destructive failure mode	

§  Orders of magnitude slowdown	

§  Cascading failures	

§  No “fail in place” in current systems	

A need for 	

Limpware-Tolerant Systems	

28

