Appears in Proceedings of European Conference in Machine Learning (ECML 2010)

Exploiting Causal Independence in Markov Logic
Networks: Combining Undirected and Directed Models

Sriraam Natarajan Tushar Khot, Daniel Lowd", Prasad Tadepaiti,
Kristian Kersting?, Jude Shavlik

* University of Wisconsin-Madisor; University of Oregon?* Oregon State University,
& Fraunhofer IAIS

Abstract. A new method is proposed for compiling causal indepen-
dencies into Markov logic networks (MLNs). An MLN can be viesv
as compactly representing a factorization of a joint prdigtnto the
product of a set of factors guided by logical formulas. Wespre a no-
tion of causal independence that enables one to furthenfaetthe fac-
tors into a combination of even smaller factors and consatyebtain
a finer-grain factorization of the joint probability. Theusal indepen-
dence lets us specify the factor in terms of weighted, ddclauses
and operators, such as “or”, “sum” or “max”, on the contribotof
the variables involved in the factors, hence combining hmttlirected
and directed knowledge. Our experimental evaluations shbat mak-
ing use of the finer-grain factorization provided by causdependence
can improve quality of parameter learning in MLNs.

1 Introduction

Most traditional Al methods are based on one of the two appresfirst-order logig
which excels at capturing the rich relationships among nudjgcts, orstatisticalrep-
resentations, which handle uncertain environments anslyraliservations. Statistical
relational learning (SRL) [5], an area of growing interesteks to unify these ap-
proaches in order to handle problems that are both compkbinaolve uncertainty.

The principal attraction of SRL models is that they are marecsict than their
propositional counterparts, leading to easier speciioadif their structure by domain
experts and faster learning of their parameters. Howeiféarent proposed models are
good at expressing different kinds of knowledge, makingffiadilt to compare their
empirical performance and to simultaneously exploit thergjths of each. The largest
divide is between directed and undirected representations

One of the primary advantages of the directed graphical tedslthe notion of “In-
dependence of Causal Influence” (ICl) [6, 14], a.k.a “cairsd¢pendence,” i.e., there
may be multiple independent causes for a target variableckid models can learn
conditional distributions due to each of the causes seggrabhd combine them using
a (possibly stochastic) function, thus making the procég=amning easier. This notion
of ICI has been extended to directed SRL models in two diffeveays: while PRMs
[3] use aggregators such amx, m n, andaver age to combine the influences due
to several parents, other formalisms such as BLPs [10] andsHB] use combination
functions such abloi sy- OR, mean, orwei ght ed nean to combine distributions.

natarasr
Text Box
Appears in Proceedings of European Conference in Machine Learning (ECML 2010)

One weakness of the directed models is the need to keep thk gegclic while
preserving sparsity. This problem is avoided by undireotedels such as Markov logic
networks (MLNSs) [1], which are based on Markov networks. Waected models do not
consider local models (i.e., do not treat each cause as émdemt from others) and
hence do not model the notion of ICI explicitly. Bayesian\Matks with tabular CPDs
(one parameter for each configuration of the parent vaisalkn be directly translated
to MLNSs by introducing one formula for each BN parameteWhat is less clear is
how combination functions from relational models can bestdpresented in an MLN.
We consider a subset of combination functions catledomposable combining rules
and derive a representation of MLNs that captures thess.rlitee important aspect of
this representation is that we do not use the “ground” Bayesetwork and instead use
a “lifted” representation that avoids the grounding of theuses, since grounding can
produce an exponentially large number of (variable-frésm)ges.

Representing combining rules using MLNs is a key step towvardfying directed
and undirected SRL approaches. Such a unified view on SRLtientyp of theoreti-
cal interest — it actually has many important practical iicgtions such as more natu-
ral model specification and development of specializedhliigfficient inference and
learning techniques that can be applied differently toedéht pieces of the model.

In this work, we make several major contributions: (1) A @ble linear repre-
sentation of decomposable combining functions within MLER Explicit examples
of average-based and noisy combination functions; (3) fnfdrdescription of the al-
gorithm for converting from directed models with combinindes to MLNs; (4) A
macro-definition that allows for succinct specificationtod resulting MLNSs; (5) Em-
pirical proof that combining rules can improve the learniid/lLNs when the domain
knowledge available is minimal.

We proceed as follows. After introducing the necessary tpantknd, we derive the
MLN clauses for representing decomposable combining raesprovide the clauses
for two common cases of combining rules. Next, we derive andaan the number of
clauses and provide the pseudo-code for the compilatiofar8e¢he conclusion, we
present empirical results in real-world tasks.

2 MLNs and Directed Models

A Bayesian Network (BN) compactly represents a joint pralitgtaistribution over a
set of variablesX = { X3, ..., X,,} as a directed, acyclic graph and a set of conditional
probability distributions (CPDs). The graph contains ondenfor each variable, and
encodes the assertion that each variable is independdstrafi-descendants given its
parents in the graph. These conditional independencetiasseallow us to represent
the joint probability distribution as the product of the dironal probability of each
variable,X;, given its parents, parerits;): P(X) = [[, P(X;|parent$X;)).

A Markov network (MN) (also called a Markov random field) sifies indepen-
dencies using an undirected graph. The graph encodes #rti@sshat each variable
is independent of all others given its neighbors in the grdjtiis set of independen-
cies guarantees that the probability distribution can loéofad into a set of potential

Yhttp://al cheny. cs. washi ngt on. edu/ f ag/ i ndex. ht m

functions defined over cliques in the graph. Unlike BNs, ¢h&ctors are not con-
strained to be conditional probabilities. Instead, a pidéfunction is allowed to take
on any non-negative value. The joint probability distribatis therefore defined as
follows:P(X = z) =+ [1; #;(D;), whereg; is the jth potential functionD; is the
set of variables over which; is defined, andZ is a normalization constant. MNs are
often written as log-linear models, where the potentiatfions are replaced by a set
of weighted features.

One of the most popular and general SRL representatidviatikov logic networks
(MLNSs) [1]. An MLN consists of a set of formulas in first-order logindatheir real-
valued weights{(w;, f;)}. Together with a set of constants, we can instantiate an MLN
as a Markov network with a node for each ground predicatex(pmd a feature for
each ground formula. All groundings of the same formula asigged the same weight,
leading to the following joint probability distribution ev all atomsP(X = z) = %
exp (>, win;(x)), wheren;(z) is the number of times thih formula is satisfied by a
possible worldr andZ is a normalization constant (as in Markov networks). Iinvelly,

a possible world where formulf is true one more time than different possible world
is e¥i times as probable, all other things being equal.

Directed Models with Combining Rules: Our work does not assume any represen-
tation for the directed models. We merely use an abstra¢tgyalled as First-Order
Conditional Influence (FOCI) statements [13] to presentsétmantics of the directed
models. We had earlier used this syntax to derive learnigarihms [13] and showed
how most directed models such as BLPs [10], RBNs[7], PRMgi8}babilistic rela-
tional language [4] and logical Bayes nets [2] can be remteskusing this syntax. The
goal of this work is not to convert from FOCI statements to MUt to show that the
knowledge captured by directed models can be represenitegl MéNs. FOCI state-
ments merely facilitate this conversion. We could replaesROCI statements with any
of the above directed models and still get the same resulll #seae models share a
common semantics as shown in [13].

Each statement has the forifi: (condition) then (qualitative influence, where
conditionis a set of literals, each literal being a predicate symbpliag to the appro-
priate number of variables. The set of literals is treateal@mjunction. Aqualitative
influence is of the formXy, ..., X; Qinf Y, where theX; andY are of the forni/.a,
andV is a variable that occurs ioonditionand a is an object attribute. Associated
with each statement is@nditional probability distributiorthat specifies a probability
distribution of the resultant conditioned on the influeets,. P(Y'| X1, ..., X)) for the
above statement.

CR2{
If {student(S), course(C), takes(T,S,C} then
T.grade Q nf (CR1) S.satisfaction.
I f {student(S), paper(P,S)} then
P.quality Qnf (CRl) S.satisfaction.}

The first rule specifies that the grade that a student obtamsourse influences his/her
satisfaction. The CPDP(S.satisfaction| T.gradg associated with the first statement
(partially) captures the quantitative relationships hesw the attributes. The second
states that if the student has authored a paper, then itsygnéllences the satisfaction

of the student. The distributions due to multiple instaidias of the respective rules
(the different course grades or the different paper gealitare combined using the
CR1 combining rule and the distributions due to different rudes combined using
CR2 combining rule. We assume discrete values and hence the @RDspresented
using conditional probability tables (CPTs).

Note that there are two levels of combination functions - famecombining multi-
ple instances of the same rule and the other for combinirigrdifit rules. This idea of
two-level combining rules is sufficient to capture the notad ICI in SRL models and
hence we address the 2-level combining rules in this work. dge of combining rules
make learning in directed SRL models easier: multiple imsta of the same rule share
the same CPT and hence can be treated as individual exantglesearning the CPTs.
Similarly, the different CPTs can be learnedependentlpf each other thus exploiting
the notion of causal independence. Yet another advantabe eabmbining rules is that
they allow for richer combination of probability distribans. MLNs in their default
representation use an exponentiated weighted count asdire(it) combination func-
tion of the different clauses. To express complex functienstraightforward method
would be to construct the grounded BN for each rule and thestoact the equivalent
Markov Network. Unfortunately, this leads to an expondntiamber of clauses in the
MLN, making the twin problems of learning and inference camapionally expensive.
Instead we resort to a “lifted” method that avoids unrolljggounding) all the clauses
to create the MLN.

3 Combination Functions using MLNs

In this section, we present the equivalent MLN represemdtr decomposable com-
bining functions.

3.1 Decomposable Combining Functions

In this work, we extend the definition of decomposable cainslpendence due to [6]
to the relational setting. To understand the notion of dgmusable combining rules,
consider Figure 1 whergis the target and’s are the influents. Th&'’s are the tem-
poraryy-values due to each instantiation :mjf Note that there are rules to predict
y. They's are deterministic nodes obtained using functigissfor the first level (that
combines instances of the same rule) gisdfor the second level (that combines dif-
ferent rules). The observed nodes are shown using soliigsivehile the dotted circles
correspond to the hidden nodes. These hidden nodes arectvela¢n the functions are
applied successively. In the figure, we present two levelsoafibining rules f; and
g). Let us consider the first level combining rule. For simipficconsider the set of
functionsf{. The resulty; can be represented as:

y1 = [N S () (1)

for the given ordering of the differentz?. p is some prior on the value gffor rule ;.
Equation 1 can be written as

Yy = fl,o(tylrj‘g; t’irjg_la "'tiaap) (2)

tl i n
S 2 ¥ 3 M. -2 -3 -

}fl ER Y jl 2"‘_]1 ‘fl Sy 7 1 ‘fn S 2%JIn fn nt
AV Y > —=V, i iV, —i Y — Vi
1
i

Rulen_ . _ . _ _._._._._._._ -

(o8
. Sy Vv

Fig. 1. Decomposable Combining Rules

wheref; is a combining rule operating over l.

Definition: A combining rule is called adecomposabli it satisfies equation 2 for
all orderings (i.e.¥o). This is to say that for every possible ordering of the ispthe
combining rule can be decomposed into a set of functionsyik#t the same distribu-
tion.

In our setting, we require that the combining rules at boéldvels arelecompos-
able i.e.,

Y= gn,o(yn,ov gnfl,o(ynfl,aa ---91,o(y1,aap)))VU (3)

The above condition specifies that the rules can themseklvesdered differently
but the resulting distribution always remains the sameeNat most common com-
bination functions used in the literature [12, 13, 8, 6, 14jtsas:Noisy-Or, Noisy-And
Noisy-Existentiglaverage-based combination functions suchmaan weighted-mean
andcontext specific independerf€&Sl) can be represented using the above definition.
In this work, we show how multi-level combining rules (rukbsit combine instances
of the same clause and the ones that combine the distrilsudiomto different clauses)
can be represented and learned using MLNSs.

3.2 Decomposable Combining Functions using MLNs

The notion of decomposability is crucial to deriving the negentation of combining
rules using MLNs. This allows us to consider the combinirigsias multiplexers (the
/] andg; in the figure above) on Bayesian NetworK#e key idea in our work is to
view the combination function as choosing a value amongrakvalues proposed by
the parentsFor instance, taking the average of distributions corredpdo choosing
the target value using an uniform distribution among theealproposed by the parents.
Weighted mean can be understood as choosing a value baske distribution given
by the weights. The BN representation is used only for the sdilpresentation and is

'd

Thewv) N U heg v, 2 h@L YK TRk
T e o= e T
e ST
e _rv,1) _rv,e) N
s R =
7 otr(yv,1) 7otr(v,k)
T oL ATL
J_hriv,1) 7 hr(Y,k)
by) O

Fig. 2. Understanding combining rules using multiplexers. Thehddsnodes are the hidden
nodes and the multiplexer nodes, while the solid nodes agereéd in the data.

not used in its full form during translation. The translatioccurs at the logical level
(i.e., on the variables rather than the groundings of thagallies).
Consider the following two FOCI statements:

a(X,Y) Qinf b(Y)
e(Z,Y) Qinf b(Y)

where(a, b, c) are predicates andX, Y, Z) are variables. Associated with each clause
is a conditional probability distributio® (b(y)|parent(b) where the parent for the first
statement is(z, y) and the second idz,). Note that there could be several possible
instantiations forX and Z in the above rules. For simplicity, let us assume that the
distributions due to the different instances of the same auné combined using R,

and the resulting distributions due to the different rules@mbined using’'Rs.

Consider the BN presented in Figure 2. For ease of explanagsume that there
aren instantiations of each rule arfdsuch rules (we present only two of them for
brevity). In addition to the:, b andc predicates, we introduce two more types of predi-
cates indicated using dashed nodedden(temporary) value predicatesgnd¢r) and
multiplexerpredicates § and hr). Since there are two levels of combining functions,
there are two different sets of multiplexers and hidden sadpresented by two differ-
ent boxes in the figure. The first box corresponds to choosuadLee from a single rule
(given byr(y,), where: is the rule index) and in the next level the final value of the
target is chosen from one among the differewilues. We now explain the multiplex-
ers inside the same rule (the top box) and the same idea isdeddor different rules
(bottom box).

The hidden predicate$ can be understood as choosing a value of the target given
the instantiation of the parent based on the CPD. The mex#grk -nodes) serve to
choose one of the t-values for the target. The idea is that if a particiias activated,
the value of the correspondirignode is chosen to be the value of the target for the
current rule (i.ey(y,4) is set to be that particularvalue). Given the different values
of r(y, I) for all I, the final value of the targétis chosen using the next level of the
multiplexer.

In our formalism, there is no restriction on the equality(@R; and CRs, i.e.,
they need not be similar combination functions as long ag éine decomposable. For
instance, it is possible to use a mean combining rule to coentlie instances of a
single rule while a Noisy-Or could be used to combine theedéft rules themselves.
It can be easily observed from our translation to MLNs (pnése later) that the only
change for the different cases would be the encoding of thiiptexers. Note that
it is possible to imagine developing specialized clauses&zh combination of the
combining functions. In this work, we aim to derive a genegpresentation that covers
all decomposable combining functions. Our translatiorsgsia for four different kinds
of clauses:

1. CPT Clauses:This follows the standard translation of Bayesian netwtohdLNs.
Each independent parameter in the CPT of the Bayes net bemwlause in the
MLN. An example of such a clause is

wi :a(X,Y) = t(X,Y,q)
w? 1 —a(X,Y) = t(X,Y,q) (4)

wherew? = Zog(lfjfpj), pl = P(b(Y) = 1]a(X,Y) = 5).2 Hence, for each

independent parameter of the original CPT in the directedehahere is a clause
in the MLN with the weight as a function of the parameter. Imgel, the set of
arguments in the temporary predicais the union of all the arguments in the body
of the clause and an argument for the rule index.

2. Multiplexer Clauses: These are the clauses that choose a particular value of the

target given a set of parent values. For the first-level mplgitier ¢ in the figure),
this set corresponds to the set of values due to differetdantiations of the same
rule. For the second-level multiplexer, this set consiste®@values due to different
rules. For the first level, the MLN clauses are of the form

0o h(X,Y,I) = ((X,Y,]) = r(Y,I)) (5)

The above clause is a hard clause (i.e., infinite weight) spatifies that for a
particular value ofX, if h(X,Y,4) is true for a rulei, then the value of the target
for that rule ¢(Y; 7)) must be chosen to be the correspondif, Y, 7). Note that
the multiplexer always has the same number of variablesaa®fh. Similarly, for
the next level, the multiplexer clause would be,

0o+ hr(Y, 1) = (tr(Y, 1) < b(Y)) (6)

3. Stochastic Function ClausesThese are the clauses that specify the stochastic
function to be employed on the values. These are essenti@lyprior” on theh
predicates. For mean, the idea is to choose a target valoetfre set ofi-values
uniformly. In the case of Noisy-Or, the target is chosen fiasing an Or function
over the hidden variables &nd¢r). We present the stochastic function clauses for
two different cases later in the section.

2 The CPT clauses are defined for rule 1 that uses predicatdl the other rules will have
similar clauses.

4. Integrity Constraints: These are the constraints that are used to specify that among
the different multiplexer nodes, onlgne of them can be true for any particular
example. These are of the form:

00 : h(X1, Y,) A (X2, Y, I) = (X1 = X2)
% : SX.W(X,Y,T) 7)

The above set of clauses specifies thatig true for 2 values o, they should be
identical and there exists a groundingXfto makeh-true. These constraints are
exactly similar for the second level as wéll.

4 Transformation of Combining Rules

As mentioned earlier, the Bayesian network represent&iosedonly to explain the
translation by the use of multiplexers. The translatioalitss independent of the num-
ber of groundings (note that all the predicates in the claase variablized and not
grounded). We now present two most common types of combimdtinctions from
literature: (1)averagebased and (2)oisycombination functions. Let us consider just
a single clause(X,Y) = b(Y) for ease of explanation. Associated with this clause
is a conditional probability distributio®(b|a) (we usea andb as shorthand notations
for the predicates). As we mentioned, the differences batwdifferent combination
functions lie mainly in the stochastic function clauses: &ach case, we first present
the translation and prove the correctness of the resulistglalition. We then present
the worked example corresponding to the student satiefadtiles presented earlier.

4.1 Average-Based Combining Rules:

Assume that the differentinstantiations of the above rideeambined using the weighted-
mean combining rule. Then the posterior over the tabggiven the different sets of
parents is given by

P(blas, - an) = Z%Z“’ % P(blas) (8)

wherea; denotesu(z;,y). For the case of mean, all; = 1 (note that thew's are
not the weights of the MLN clauses, they are the weights ottimabining rule). The
CPT clauses will be of the form presented in the earlier sactivhere the weights are
log functions of the CPT parameteris;g[(lf;%)) . The multiplexer clause is again a
hard clause that specifies the value of the target based orathe of the multiplexer
(h(X,Y, I)). The integrity constraints are also the same as the onssmerl above.
The stochastic function is the weighted-mean. This spe&difie prior on the multiplexer
nodesi.e., defines the prior probability with which eachtipléxer node is true. Hence,
they are of the formu; : h(z;,y,), whereu; = log(w;) is the log-odds of the given;.

3 Alchemy supports constraints of this form using the syitastgar "!” However, we ran into
issues when learning weights with "!” and hence explicittggent the constraints.

Actually, any weight of the formu; = log(const x w;) = log(const) + log(w;) would
work. For mean, the log-odds would imply = log(1/n), wheren is the number of
instantiations. From the previous equation, it follows tway «; are acceptable as long
as they are constant for allThe intuition is that eact(X, Y') chooses the value of the
target based on the CPT, and the final value of the target isechivom the different
t’s using the multiplexer nodes. The multiplexer is actidegach that it takes only one
value given by the stochastic function (mean or weightedme

Proposition:The given representation of MLNs exactly captures theidigion given
by equation 8.

Proof Sketch: For simplicity, consider only 2 instantiations of the rukegented above
and we are interested i(b|a1, az) Which is given by equation 8 far= 2. There will
correspondingly be 4 different cases: bottand¢, (hidden variables) are true and one
of hy or he (multiplexers) is true (2 cases) and 2 cases where only tHephexer h;
and the corresponding are true. i.e.,

P(b|a1, ag) =
P(b,ﬁl =1to=1,h1=1,hy = 0|a1,a2) —I—P(b,ﬁl =1,to=1,h; =0,hy =1
P(b,tl =].,tg = O,hl =].,hg = O|a1,a2) +P(b,t1 = O,tQ =].,hl = O,hg = 1|a1,a2
_ % (691+92+10g(w1) T 691+92+log(wg) + e@ﬁ-log(wl) T 692+10g(w2)) ,Where 91 _ log 1%@
_ 1 _wipitwaps __ wipitwaps
T Z (1-p1)(1—p2) wi+ws

whereZ can be shown to b% by summing over the two values bfi.e._,
over (0,1). We omit the calculation of for brevity. Thus we can show that the final
distribution due to these MLNs is equal to the distributioagented in equation 8. The
same proof can be extended for multi-level combining rutewell.

Worked Example: Consider the FOCI statements about student satisfactesepted
earlier. We now present the case whétR1 is mean whileC' R2 is weighted-mean. We
show the translation to MLNs below. First, consider the CRilises. Since the grade
of the student can be any of sy, B, C, D, F'), we use+G in Alchemy that uses all
possible groundings a¥. The CPT clauses for each rule are as follows:

we : student(S), course(C), takes(T, S, C), grade(T,+G) = t1(S,T,C, +G)
wq : student(S), paper(P, S), quality(P, +Q) = t2(S, P, +Q)
where eaclwg andwg are the log-odds for each grade)(and quality () respectively.
We refer to the Alchemy manual for a detailed discussior-oRor the purposes of this

paper, it suffices to say that for eagtade, studenandcoursecombination, there will
be a clause corresponding to the CPT entry. Next, we presemtltiplexer clauses.

o0 : h1(S,T,C,G) = t1(S,T,C,G) < r(S,1)
oo : h2(S, P, Q) = t2(S, P, Q) < r(S,2)
oo hr(S, R) = r(S, R) < satisfaction(S) 9
The first two clauses serve to choose the intermediate valilescorresponding to

rules1 and2. The third rule then chooses the final value of satisfactromfthe two
intermediate values. The stochastic function clausesiaes @y:

10

log(wq) : hr(S,1)

. log(ws) : hr(S,2) . : :
The above clauses specify the prior over the intermediadesas a function of their
weightsw;.* At the first level, the value of the intermediate node is chosecording
to an uniform distribution (mean combining rule) and herte weights of the MLN
clauses arg and are not presented here. Finally, we present the ingegnitstraints that
restrict the multiplexer to choose only one value from amaisgt of possible values
0o : h1(S,T1,01,G1) Ah1(S,T2,02,G2) = (T1 =T2AC1 = C2AG1 = G2)
oo : Exists T,C,Gh1(S,T,C,G)
oo : h2(S1, P1,Q1) A h2(S2, P2,Q2) = (P1 = P2 A Q1 = Q2)
oo : Exists P,Qr2(S, P, Q)
oo : hr(S,R1) A hr(S, R2) = R1 = R2
oo : Exists Rhr(S, R) (10)

4.2 Noisy Functions:

For this case, let us assume a single rule and that the differgtantiations of that rule
are combined using a noisy function. Rdoisy-Or, the marginal is computed as,
n

P(b=Tlay,...,a,) =1- [£ (11)
=1

where f;’s represent the probability that a present (Boolean-wjleauseq;, fails to
make the resulk true. When converting these to MLNSs, the transformation dssthy
similar to the earlier case. Thoughthe CPT clauses arercratl similarly, we present
them for clarity. They are of the form:

oo —a(X,Y) = (X, Y, 1).
w; : alx;,Y) = t(x, Y, 1).

where,w; = log((1 — f;)/fi). As can be seen, (X,Y) is false for a particular
value of X, ¢(X, Y, 1) will always be false while it is true,¢ can be false due to some
noise. The multiplexer and integrity clauses are similatheaverage case. A careful
reader will note that the multiplexer and integrity clauaesredundant for this case as
they derive the r-values directly from t-values as showmweT he stochastic function
(deterministic here) is given by,
oco:r(Y,I) & 3IXH(X,Y,I) (12)

This asserts that(Y, ¢) is true if and only if some(X, Y) is true, which is effec-
tively deterministic Or applied to noisy versions of theutg It can be shown that this
set of clauses exactly capture the distribution given byaéiqn 11. We omit the proof
as it is a trivial mathematical exercise similar to the wégghmean case.

Noisy existentials can be constructed similarly, except the have tied weights.
When constructing noisy-and, the noise adds a probabfiguccess instead of a prob-
ability of failure:

* These weights are the weights of the combining function angtmot be confused with the
weight of the MLN clauses.

11

w; :—a(X,Y,1) = —t(X,Y,1)

oo alx,Y,1) = t(x;, Y, 1).
The multiplexer and the stochastic functions are also mexdidiccordingly to reflect the
Andfunction.

Also, note that any MLN can be seen as a noisy-and in whichatgeth(Y) is
known to be true and eacl{x;,Y") is a clause from the original MLN. Because of the
infinite-weight conjunction, alt; must be true. Sincg is true, we can simplify each
implication—a(x;,Y) = —t(x;,Y) toa(z;, Y). The final, simplified MLN is therefore
just the weighted clauses from the original MLY; : a(z;,Y).

Worked Example: We now present the rules for the satisfaction example wbgt2
is Or while CR1 is Noisy-Orwith ¢; as inhibition probability. The CPT clauses are

log(:=2) : student(S), course(C), takes(T, S, C), grade(T,G) = t1(S,T,C, G)

q1
log(lq;“) : student(S), paper (P, S), quality(P, Q) = t2(S, P, Q)

Note that the CPT parameters are a function of the noisebifiidn) for the two
rules. The multiplexer clauses can be constructed sinolahe weighted mean case
given in Equation 9. The stochastic function clauses aredaccording to the follow-
ing clauses. Note that the stochastic function clauses #iat there is a@r function

at each level (the noise at the first-level is captured in th& €lauses).

oo :1(S,1) < Exists T,C,Gt1(S, T, C,G)
oo : (S, 2) < Exists P,Q2(S, P, Q)
oo : satis faction(S) < Exists Rtr(S, R)

The integrity constraints are similar to the earlier casgugion 10). The example here
combineNoisy-Orwith the Or combining rule. We can similarly imagine combining
different decomposable combining rules at the differergle We are not presenting all
the combinations in this work but note that the same templzda be used to construct
the different sets of combining functions.

4.3 Algorithm For Creating MLN Clauses From Decomposable Cenbining
Rules

This formulation allows for arbitrary nesting of combininges. The combining rules
used for combining different instantiations of differentas could be different. For
instance, we can imagine a situation suctVagsy And(w, A, wa B, ws NoisyOr(wy

C, ws Mean(ws D, wy E, wg F))) where we have both Noisy-Or and Mean inside
the Noisy-And functionw;’s are the weights whiled throughF' are first-order logic
Formulae. Such a representation is a significant genetialivaf MLNSs.

Figure 3 describes the pseudocode for constructing MLNs figet of FOCI state-
ments combined using combining rul&R,. Each statement; has its own1*¢ level
combining ruleC'R}. Lines3 through9 present the methods for constructing the clauses
corresponding te; and its combining rule. For each independent parameteei@Cil

12

Fig. 3. CreateMLNClauses (FOCI Statemef{s” Ry)

MLNClauses clauseList =[];)
/I Each FOCI Statement has CPT, Predicate§,R}
For Each FOCI statemest € S
For Each Independent paramefgiin s;.CPT
Add one CPT clause to clauselList, e.g. asin Eqn 4
Add to clauselList based dri* level combining ruleC' R} :
One multiplexer clause as in Eqn. 5
One stochastic function clause, e.g. as in Eqn. 12
: Two integrity constraint clauses as in Eqn. 7
10: For Each FOCI statemest € S ,
11: Add to clauseList based on th&? level combining ruleC' R%:
12: One multiplexer clause as in Egn. 6
13: One stochastic function clause, e.g. as in Eqn. 12
14: Two integrity constraint clauses as in Eqn. 7

©CINoORrWNE

of s;, a clause is created. Also for eagh one multiplexer clause, one stochastic func-
tion and two integrity constraints are created. Once allitidevel combining rules
are considered, the clauses corresponding & are constructed in lineg) through

14. We note that it require®(1) to construct each clause. We now provide a bound on
the number of clauses required by such an MLN. In particularconsider the general
SRL case of multi-level combining rules where the instaities of a single rule are
combined using’R; and different rules are combined usiagR;.

Theorem 1. For any joint distribution which can be representedrblyOCI statements
combined with nested decomposable combining rules kandependent parameters,
there exists an equivalent MLN @f(nk) rules which can be constructed @(nk)time.

Proof (sketch) The proof of equivalence is straightforward frdma tefinition of the
various clauses. Let be the number of FOCI statements dnte the number of in-
dependent CPT parameters. From the algorithm in FigurerZdoh rule, there arke
CPT clauses, one multiplexer clause, one stochastic fumctause and two integrity
constraints yielding: + 4 clauses. Hence the total number of clauses created in lines
(3 — 9) is n(k + 4). For lines10 — 14 of the algorithm, the number of clauses is
n(1+1) +2 = 2(n + 1). Hence the total number of clausesig: + 6) + 2 = O(nk).
Since each clause can be constructed in constant time dieeRQ@CI statement and
the combining rule, the resulting MLN can be constructe@{mnk) time. Note that the
minimal number of clauses required to model FOCI statemesitegy MLN is O(nk)

as we need a clause for every parameter. Hence, our tramstaates a model that is
no more complex than the minimal ML

4.4 MLN Macros

While theoretically MLNs can represent most of the distiitis that we considered,
it seems impractical to expect a domain expert to come uptivike rules. Firstly, the
domain expert has to understand the underlying distribudiiad the combining rules
as operating on values as against distributions (i.e, plekers). Secondly, the domain

13

expert needs to be an MLN expert as well and has to underdtarichinslation. In this
section, we present a macro that can be used to construct Igivids the domain ex-
pert’s statements. The key idea is to remove the burden cifgpey the MLNs from
the user and allow our “translator” to create the MLNs cquoesling to the true distri-
bution. We now present the structure of the macro:

CR{ CR;: Xin.AX! =Y

ni

CRy: X{AN..AXZ2 =Y... }

The above macro can be interpreted@®, C R; andC R, are the combination func-
tions —And, Or, Noisy-Or, Noisy-And et@Vhile C'R; combines the multiple instantia-
tions of clause, C'R combines the multiple clauseX; andY are predicates. The first
clauses specifies, causes for the target predicate X{ is the first cause of in rule 1

and so on. Instead of writing® different clauses, the user specifies a single clause that
is then unrolled into the different clauses by the transldtbe user can specify several
clauses that can be combined.

The translator then converts these macros to the MLN claapa¢sentation. A nat-
ural question now is: where do the weights come from? A sinsplation would be
to construct the clauses and allow the underlying MLN pael@@gour casedlchemy
[11]), to learn the weights. We could hold the weights of tlaedhclauses (integrity
constraints and some multiplexer clausers) and instruchéhy to learn the weights
of only the “soft clauses” leading to a more efficient leamim cases where the train-
ing data is not available, we allow the conditional prohitibs to be specified ag™
array corresponding to the different configurations of tredjrates in the body of the
clause. Hence the clauses are now of the fo, pz, ..., pan) X1 A ... A X, = Y,
wherep;, = P(Y = T|Config(X;, ..., X,) = i) is the conditional probability of the
target beingdl” given that the truth value of the predicates in the body fdret%* con-
figuration. Similarly, the parameters of the combining sufex. weights of weighted
mean) can also be specified@®& (w1, ..., wy,) for m clauses. Based on the combining
rule used, the translator then computes the weights of ffexelit clauses based on the
probabilities and assigns the weights to the correspordagses.

5 Experiments

In the following experiments, we used the Alchemy systemiearn the weights and/or
perform inference. The same settings were used for both Miiidscombining rules
(denoted byM LN) and the default MLNsY/ LN *). The clauses of the/ LN* are
the parent configurations of the CPT of each rule. Hence,doh éndependent param-
eter of the CPT, there exists a clauseii. N*. M L N* was chosen so that it had the
same number of parameters as that of a directed model to nfakecamparison. The
clauses of/ LN+ consist of the CPT clauses and the multiplexer, stochastiction
and integrity clauses. For botf LN+ and M LN*, we used the same settings for the
learning and inference algorithms (i.e., used the same puofhterations, discrimina-
tive learning, same number of MCMC steps, MC-SAT for infereptc.).

We present our learning results in two real-world domawraandUW-CSE The
goal of the experiment is: given minimal domain knowledgeigally 2 rules to predict
the target), will the structure imposed by combining rulesuseful in learning a good

5 http://alchemy.cs.washington.edu/

14

model? For the UW-dataset, the goal was to predicathésedByelationship between
a student and a professor. The rules that we used were:

NO |
N-O: student(S) A professor(P) A course(C) A taughtBy(P,C,Q A
ta(S,C, Q = advisedBy(S,P).
N-O: student(S) A professor(P) A publication(P,W A
publication(S,W = advisedBy(S,P).}

MLN* used all the combinations of the predicates in the head ofltheses and
learned weights for each of them. Fbf LN+, we used Noisy-Or as the combining
rule at both levels. We learned the weights using Alchemys&tl MC-SAT for per-
forming inference. We trained the algorithms on thé group data that consisted of
35 positive instances of ttedvisedByelation. We present the average likelihood (i.e.,
% > P(yi = 1;), wheren is the number of exampleg,is the predicted label angis
the true label) of the test set in the last column of Table teNioat since we are in the
relational setting, the test set will mostly consist of nege. Hence, an algorithm that
always predict$alsewill have a reasonably high likelihood. To avoid this siioat we
forced the test set to contaii % negative examples by sampling the negative examples
randomly. This way a likelihood di.5 would mean that everything is either predicted
true or asfalse There were a total of 80 test examples withpositives.

DomainAlgorithm| AUC-ROCIAUC-PR|Likelihood
MLNT 1.0 1.0 0.987
MLN* 1.0 1.0 0.963
MLNT | 0560 | 0.672 | 0.611
MLN* 0.472 0.523 0.5
Table 1.Results on real world domains.

Cora

uw

We also compare the area under curve for the ROC and PR cui/B&V* was
not able to learn reasonable weights with a small numberle§rand hence predicted
everything a%. In a test-set wittb0% positive examples, this yielded a likelihood of
0.5. On the other hand, with/ LN+, we were able to learn a more reasonable model
that had a higher likelihood. More importantlyf LN+ did not predict every query
predicate a® or 1 and instead had a reasonable distribution over the targetnWe
added more rules td/ L N* (7 more rules from Alchemy that were earlier used in other
MLN experiments to predicidvisedBythe average likelihood increased®3. The
values of AUC for ROC and PR fav/ LN+ are significantly higher thah/ LN *. This
demonstrates that in this domain the use of more complex rongfunctions seem to
improve the performance of MLN learning.

The results were far more impressive foora dataset where the goal is to predict
whethertwo citations refer to the same one. The training set consistatbaut7500
examples (about0% of them were negative examples) and the test set consistéd of
examples (out of whicB0% were negatives). The two rules that we used were:

NO |
N-O : Author(bcl, al) A Author(bc2,a2) A SanmeAut hor(al, a2)
= SaneBi b(bcl, bc2).

15

NO : Title(bcl,t1l) A Title(bc2,t2) A SameTitle(tl,t2)
= SaneBi b(bcl, bc2).}

As can be seen from the tabl®&/ LN learned nearly the perfect model for the
domain and had a very high likelihood and AUC values. Thiadyeshowed that with
just two rules, given some more knowledge (as hard conssrafithe combining rules),
MLNT was able to learn a highly predictive model. WhiléL N* with exactly the
same setting a&/ LN (i.e., discriminative, rules for all the combinations o thredi-
cates etc.) predicted all the test example8 asd thus had a lower likelihood and AUC
values (very similar to the UW data set). To improve the penince ofAM/ LN*, we
changed the settings (to generative learning, dropped seeraingly irrelevant clauses
that had a large number of groundings). With these changewese able to get/ LN *
to perform comparably witd/ LN .

Specialized inference algorithmadmittedly, the presence of hidden predicates in-
creased the running time of Alchemy, but this motivates teednfor learning algo-
rithms that exploit the special structure efficiently (aswsed the default EM learning
algorithm of Alchemy to learn weights faW/ LN).

We implemented an inference algorithm that exploits theigpstructure of these
clauses. We do not present the algorithm in detail in thiskvearthe goal of this work
is to show that the combining rules can be captured in MLNsraatilvate the need for
specialized algorithms that can exploit the local modetsilar to the ones presented
in [13]. Initial results indicate that the time taken fdf LN ' in the UW-data set igd
seconds while that ¥/ LN* is 30 seconds to obtain the same results presented in Table
1. As can be seen, there is a drastic improvement when theirde algorithm exploits
the knowledge of the structure of the clauses. The modifiedénce algorithm assumes
that the structure of the MLN is the one presented in Figunederforms sampling on
this network. Hence, it exploits the knowledge about thecsture of the network and
the multiplexers in the network. We expect that learninglzed models in MLNs will
enable efficient learning and inference. We are currentlyking on formalizing the
details of the learning algorithm that uses this infereneghrod. Our hypothesis is that
since learning requires inference in its inner loop, thecigdeed inference algorithm
will yield faster learning of the parameters.

6 Conclusions

Combining rules capture the notion of causal independesrc8RL models. We have
presented an algorithm for representing a class of comipiiles (decomposable com-
bining rules) in an undirected model (MLN). We derived theligglent clauses and
provided a bound on the number of clauses required for theeseptation. Our ex-
periments demonstrated that for a small number of clausesbining functions are
useful in learning more accurate models. The structure sagdy these functions help
in guiding the learning algorithms towards reasonable hisiglaeger [9], showed that
RBNSs can capture MLNs and pointed out to the reverse as anmebtem. We take
an important step in that direction by showing how MLNs captaee combination
functions of the directed models and in turn, most of theufesst of directed models.
However, this translation from combining rules to MLNs ist mathout its cost.
We found that the inference in the resulting MLN is 4-5 timlesv@r than the one that

16

does not use the combining rules. The problem is that whdeldclarative knowledge
embedded in the combining rules can be encoded into clandagsen to MLNs, there
are no effective means to exploit the causal independenceofutrolling inference.
To be effective, the inference engine has to essentialligceder the hidden structure
that is naturally exploited by the directed models. One ipbsguture direction is to
develop specialized inference algorithms that can detagttsire in MLNs and exploit
it for efficiency. We have taken the first step in this directibut are still working
on the details of the learning algorithm that will exploietktructure. A more general
and important direction is to develop hybrid models thadvalus to specify different
parts of the model differently and combine them using a dguasable structure. This
should allow the application of specialized learning ailifpons inside each module, and
combine the results in an efficient manner.

7 Acknowledgements

SN, TK and JS gratefully acknowledges the support of DARPA Air Force Research Lab-
oratory (AFRL) under prime contract no. FA8750-09-C-01BT. greatfully acknowledges the
support of DARPA grant FA8750-09-C-0179. KK was supportgdhe Fraunhofer ATTRACT
fellowship STREAM and by the Europen Commission under @ottnumber FP7-248258-First-
MM. DL was supported by the University of Oregon DepartmenComputer and Information
Science. Any opinions, findings, and conclusion or recontagans expressed in this material
are those of the author(s) and do not necessarily reflecti¢heaof the Air Force Research Lab-
oratory (AFRL), US government or DARPA.

References

1. P. Domingos and D. LowdMarkov Logic: An Interface Layer for AIMorgan & Claypool,
San Rafael, CA, 2009.

2. D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon. talgBayesian networks and
their relation to other probabilistic logical models. ILtP, 2005.

3. L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Leamiprobabilistic relational models.
Relational Data Mining, S. Dzeroski and N. Lavrac, E@Q01.

4. L. Getoor and J. Grant. PRL: A probabilistic relationaidaage.Mach. Learn, 62(1-2):7—

31, 2006.

. L. Getoor and B. Taskamtroduction to Statistical Relational Learning/IT Press, 2007.

D. Heckerman and J. Breese. A new look at causal indepeadémUAI, 1994.

M. Jaeger. Relational Bayesian networksPmceedings of UAI1997.

M. Jaeger. Parameter learning for Relational Bayesiamanks. InICML, 2007.

. M. Jaeger. Model-theoretic expressivity analysisPiobabilistic Inductive Logic Program-

ming, 2008.

10. K. Kersting and L. De Raedt. Bayesian logic programmiFigeory and tool. ImAn Intro-
duction to Statistical Relational Learning007.

11. S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, Dwd.oand P. Domingos. The
Alchemy system for statistical relational Al. Technicapogt, Department of Computer
Science and Engineering, University of Washington, SeatA, 2007.

12. D. Koller and A. Pfeffer. Learning probabilities for sgifirst-order rules. IhJCAI, 1997.

13. S. Natarajan, P. Tadepalli, T. G Dietterich, and A. Ferearning first-order probabilistic
models with combining rulesSpecial Issue on Probabilistic Relational Learning, AMAI
2009.

14. N. Zhang and D. Poole. Exploiting causal independendgaiyesian network inference.
JAIR, 5:301-328, 1996.

©o~No o

