
Exploiting Causal Independence in Markov Logic
Networks: Combining Undirected and Directed Models

Sriraam Natarajan∗, Tushar Khot∗, Daniel Lowd+, Prasad Tadepalli#,
Kristian Kersting&, Jude Shavlik∗

∗ University of Wisconsin-Madison,+ University of Oregon,# Oregon State University,
& Fraunhofer IAIS

Abstract. A new method is proposed for compiling causal indepen-
dencies into Markov logic networks (MLNs). An MLN can be viewed
as compactly representing a factorization of a joint probability into the
product of a set of factors guided by logical formulas. We present a no-
tion of causal independence that enables one to further factorize the fac-
tors into a combination of even smaller factors and consequently obtain
a finer-grain factorization of the joint probability. The causal indepen-
dence lets us specify the factor in terms of weighted, directed clauses
and operators, such as “or”, “sum” or “max”, on the contribution of
the variables involved in the factors, hence combining bothundirected
and directed knowledge. Our experimental evaluations shows that mak-
ing use of the finer-grain factorization provided by causal independence
can improve quality of parameter learning in MLNs.

1 Introduction

Most traditional AI methods are based on one of the two approaches:first-order logic,
which excels at capturing the rich relationships among manyobjects, orstatisticalrep-
resentations, which handle uncertain environments and noisy observations. Statistical
relational learning (SRL) [5], an area of growing interest,seeks to unify these ap-
proaches in order to handle problems that are both complex and involve uncertainty.

The principal attraction of SRL models is that they are more succinct than their
propositional counterparts, leading to easier specification of their structure by domain
experts and faster learning of their parameters. However, different proposed models are
good at expressing different kinds of knowledge, making it difficult to compare their
empirical performance and to simultaneously exploit the strengths of each. The largest
divide is between directed and undirected representations.

One of the primary advantages of the directed graphical models is the notion of “In-
dependence of Causal Influence” (ICI) [6, 14], a.k.a “causalindependence,” i.e., there
may be multiple independent causes for a target variable. Directed models can learn
conditional distributions due to each of the causes separately and combine them using
a (possibly stochastic) function, thus making the process of learning easier. This notion
of ICI has been extended to directed SRL models in two different ways: while PRMs
[3] use aggregators such asmax, min, andaverage to combine the influences due
to several parents, other formalisms such as BLPs [10] and RBNs [8] use combination
functions such asNoisy-OR, mean, orweighted mean to combine distributions.

natarasr
Text Box
Appears in Proceedings of European Conference in Machine Learning (ECML 2010)

2

One weakness of the directed models is the need to keep the graph acyclic while
preserving sparsity. This problem is avoided by undirectedmodels such as Markov logic
networks (MLNs) [1], which are based on Markov networks. Undirected models do not
consider local models (i.e., do not treat each cause as independent from others) and
hence do not model the notion of ICI explicitly. Bayesian Networks with tabular CPDs
(one parameter for each configuration of the parent variables) can be directly translated
to MLNs by introducing one formula for each BN parameter.1 What is less clear is
how combination functions from relational models can best be represented in an MLN.
We consider a subset of combination functions calleddecomposable combining rules
and derive a representation of MLNs that captures these rules. The important aspect of
this representation is that we do not use the “ground” Bayesian network and instead use
a “lifted” representation that avoids the grounding of the clauses, since grounding can
produce an exponentially large number of (variable-free) clauses.

Representing combining rules using MLNs is a key step towards unifying directed
and undirected SRL approaches. Such a unified view on SRL is not only of theoreti-
cal interest – it actually has many important practical implications such as more natu-
ral model specification and development of specialized, highly efficient inference and
learning techniques that can be applied differently to different pieces of the model.

In this work, we make several major contributions: (1) A provable linear repre-
sentation of decomposable combining functions within MLNs; (2) Explicit examples
of average-based and noisy combination functions; (3) A formal description of the al-
gorithm for converting from directed models with combiningrules to MLNs; (4) A
macro-definition that allows for succinct specification of the resulting MLNs; (5) Em-
pirical proof that combining rules can improve the learningof MLNs when the domain
knowledge available is minimal.

We proceed as follows. After introducing the necessary background, we derive the
MLN clauses for representing decomposable combining rulesand provide the clauses
for two common cases of combining rules. Next, we derive a bound on the number of
clauses and provide the pseudo-code for the compilation. Before the conclusion, we
present empirical results in real-world tasks.

2 MLNs and Directed Models

A Bayesian Network (BN) compactly represents a joint probability distribution over a
set of variablesX = {X1, . . . , Xn} as a directed, acyclic graph and a set of conditional
probability distributions (CPDs). The graph contains one node for each variable, and
encodes the assertion that each variable is independent of its non-descendants given its
parents in the graph. These conditional independence assertions allow us to represent
the joint probability distribution as the product of the conditional probability of each
variable,Xi, given its parents, parents(Xi): P (X) =

∏

i P (Xi|parents(Xi)).
A Markov network (MN) (also called a Markov random field) specifies indepen-

dencies using an undirected graph. The graph encodes the assertion that each variable
is independent of all others given its neighbors in the graph. This set of independen-
cies guarantees that the probability distribution can be factored into a set of potential

1 http://alchemy.cs.washington.edu/faq/index.html

3

functions defined over cliques in the graph. Unlike BNs, these factors are not con-
strained to be conditional probabilities. Instead, a potential function is allowed to take
on any non-negative value. The joint probability distribution is therefore defined as
follows:P (X = x) = 1

Z

∏

j φj(Dj), whereφj is thejth potential function,Dj is the
set of variables over whichφj is defined, andZ is a normalization constant. MNs are
often written as log-linear models, where the potential functions are replaced by a set
of weighted features.

One of the most popular and general SRL representations isMarkov logic networks
(MLNs) [1]. An MLN consists of a set of formulas in first-order logic and their real-
valued weights,{(wi, fi)}. Together with a set of constants, we can instantiate an MLN
as a Markov network with a node for each ground predicate (atom) and a feature for
each ground formula. All groundings of the same formula are assigned the same weight,
leading to the following joint probability distribution over all atoms:P (X = x) = 1

Z

exp (
∑

i wini(x)), whereni(x) is the number of times theith formula is satisfied by a
possible worldx andZ is a normalization constant (as in Markov networks). Intuitively,
a possible world where formulafi is true one more time than different possible world
is ewi times as probable, all other things being equal.

Directed Models with Combining Rules:Our work does not assume any represen-
tation for the directed models. We merely use an abstract syntax called as First-Order
Conditional Influence (FOCI) statements [13] to present thesemantics of the directed
models. We had earlier used this syntax to derive learning algorithms [13] and showed
how most directed models such as BLPs [10], RBNs[7], PRMs[3], probabilistic rela-
tional language [4] and logical Bayes nets [2] can be represented using this syntax. The
goal of this work is not to convert from FOCI statements to MLNs but to show that the
knowledge captured by directed models can be represented using MLNs. FOCI state-
ments merely facilitate this conversion. We could replace the FOCI statements with any
of the above directed models and still get the same result as all these models share a
common semantics as shown in [13].

Each statement has the form:If 〈condition〉 then〈qualitative influence〉, where
conditionis a set of literals, each literal being a predicate symbol applied to the appro-
priate number of variables. The set of literals is treated asa conjunction. A〈qualitative
influence〉 is of the formX1, . . . , Xk Qinf Y , where theXi andY are of the formV.a,
andV is a variable that occurs inconditionanda is an object attribute. Associated
with each statement is aconditional probability distributionthat specifies a probability
distribution of the resultant conditioned on the influents,e.g.P (Y |X1, . . . , Xk) for the
above statement.

CR2{
If {student(S), course(C), takes(T,S,C)} then
T.grade Qinf (CR1) S.satisfaction.

If {student(S),paper(P,S)} then
P.quality Qinf (CR1) S.satisfaction.}

The first rule specifies that the grade that a student obtains in a course influences his/her
satisfaction. The CPDP (S.satisfaction| T.grade) associated with the first statement
(partially) captures the quantitative relationships between the attributes. The second
states that if the student has authored a paper, then its quality influences the satisfaction

4

of the student. The distributions due to multiple instantiations of the respective rules
(the different course grades or the different paper qualities) are combined using the
CR1 combining rule and the distributions due to different rulesare combined using
CR2 combining rule. We assume discrete values and hence the CPDsare represented
using conditional probability tables (CPTs).

Note that there are two levels of combination functions - onefor combining multi-
ple instances of the same rule and the other for combining different rules. This idea of
two-level combining rules is sufficient to capture the notion of ICI in SRL models and
hence we address the 2-level combining rules in this work. The use of combining rules
make learning in directed SRL models easier: multiple instances of the same rule share
the same CPT and hence can be treated as individual examples while learning the CPTs.
Similarly, the different CPTs can be learnedindependentlyof each other thus exploiting
the notion of causal independence. Yet another advantage ofthe combining rules is that
they allow for richer combination of probability distributions. MLNs in their default
representation use an exponentiated weighted count as an (indirect) combination func-
tion of the different clauses. To express complex functions, a straightforward method
would be to construct the grounded BN for each rule and then construct the equivalent
Markov Network. Unfortunately, this leads to an exponential number of clauses in the
MLN, making the twin problems of learning and inference computationally expensive.
Instead we resort to a “lifted” method that avoids unrolling(grounding) all the clauses
to create the MLN.

3 Combination Functions using MLNs

In this section, we present the equivalent MLN representation for decomposable com-
bining functions.

3.1 Decomposable Combining Functions

In this work, we extend the definition of decomposable causalindependence due to [6]
to the relational setting. To understand the notion of decomposable combining rules,
consider Figure 1 wherey is the target andx’s are the influents. Thetji ’s are the tem-
poraryy-values due to each instantiation ofxj

i . Note that there aren rules to predict
y. They’s are deterministic nodes obtained using functionsf ’s for the first level (that
combines instances of the same rule) andg’s for the second level (that combines dif-
ferent rules). The observed nodes are shown using solid circles while the dotted circles
correspond to the hidden nodes. These hidden nodes are created when the functions are
applied successively. In the figure, we present two levels ofcombining rules (fi and
g). Let us consider the first level combining rule. For simplicity, consider the set of
functionsf i

1. The resulty1 can be represented as:

y1 = fm
1,σ(tm1,σ, fm−1

1,σ (tm−1
1,σ , ...f1

1,σ(t11,σ, p))) (1)

for the given orderingσ of the differentxi
1. p is some prior on the value ofy for rule j.

Equation 1 can be written as

y1 = f1,σ(tm1,σ, tm−1
1,σ , ...t11,σ, p) (2)

5

Fig. 1.Decomposable Combining Rules

wheref1 is a combining rule operating over allti1.
Definition: A combining rule is called asdecomposableif it satisfies equation 2 for

all orderings (i.e.,∀σ). This is to say that for every possible ordering of the inputs, the
combining rule can be decomposed into a set of functions thatyield the same distribu-
tion.

In our setting, we require that the combining rules at both the levels aredecompos-
able. i.e.,

y = gn,σ(yn,σ, gn−1,σ(yn−1,σ, ...g1,σ(y1,σ, p)))∀σ (3)

The above condition specifies that the rules can themselves be ordered differently
but the resulting distribution always remains the same. Note that most common com-
bination functions used in the literature [12, 13, 8, 6, 14] such as:Noisy-Or, Noisy-And,
Noisy-Existential, average-based combination functions such asmean, weighted-mean
andcontext specific independence(CSI) can be represented using the above definition.
In this work, we show how multi-level combining rules (rulesthat combine instances
of the same clause and the ones that combine the distributions due to different clauses)
can be represented and learned using MLNs.

3.2 Decomposable Combining Functions using MLNs

The notion of decomposability is crucial to deriving the representation of combining
rules using MLNs. This allows us to consider the combining rules as multiplexers (the
f j

i andgi in the figure above) on Bayesian Networks.The key idea in our work is to
view the combination function as choosing a value among several values proposed by
the parents.For instance, taking the average of distributions corresponds to choosing
the target value using an uniform distribution among the values proposed by the parents.
Weighted mean can be understood as choosing a value based on the distribution given
by the weights. The BN representation is used only for the sake of presentation and is

6

a(x1,Y)

t(x1,Y,1)

a(xn,Y) c(zn,Y)c(z1,Y)

r(Y,1)

b(Y)

… …

…

hr(Y,1)

tr(Y,1)

r(Y,k)

hr(Y,k)

tr(Y,k)

h(x1,Y,1) h(xn,Y,1)

t(xn,Y,1) t(z1,Y,k)

h(z1,Y,k)

t(zn,Y,k)

h(zn,Y,k)

Fig. 2. Understanding combining rules using multiplexers. The dashed nodes are the hidden
nodes and the multiplexer nodes, while the solid nodes are observed in the data.

not used in its full form during translation. The translation occurs at the logical level
(i.e., on the variables rather than the groundings of these variables).

Consider the following two FOCI statements:

a(X, Y) Qinf b(Y)
c(Z, Y) Qinf b(Y)

where〈a, b, c〉 are predicates and〈X, Y, Z〉 are variables. Associated with each clause
is a conditional probability distributionP (b(y)|parent(b)) where the parent for the first
statement isa(x, y) and the second isc(z, y). Note that there could be several possible
instantiations forX andZ in the above rules. For simplicity, let us assume that the
distributions due to the different instances of the same rule are combined usingCR1

and the resulting distributions due to the different rules are combined usingCR2.
Consider the BN presented in Figure 2. For ease of explanation, assume that there

aren instantiations of each rule andk such rules (we present only two of them for
brevity). In addition to thea, b andc predicates, we introduce two more types of predi-
cates indicated using dashed nodes:hidden(temporary) value predicates (t andtr) and
multiplexerpredicates (h andhr). Since there are two levels of combining functions,
there are two different sets of multiplexers and hidden nodes represented by two differ-
ent boxes in the figure. The first box corresponds to choosing avalue from a single rule
(given byr(y, i), wherei is the rule index) and in the next level the final value of the
target is chosen from one among the differentr-values. We now explain the multiplex-
ers inside the same rule (the top box) and the same idea is extended for different rules
(bottom box).

The hidden predicatest’s can be understood as choosing a value of the target given
the instantiation of the parent based on the CPD. The multiplexers (h-nodes) serve to
choose one of then t-values for the target. The idea is that if a particularh is activated,
the value of the correspondingt node is chosen to be the value of the target for the
current rule (i.e,r(y, i) is set to be that particulart-value). Given the different values
of r(y, I) for all I, the final value of the targetb is chosen using the next level of the
multiplexer.

7

In our formalism, there is no restriction on the equality ofCR1 and CR2, i.e.,
they need not be similar combination functions as long as they are decomposable. For
instance, it is possible to use a mean combining rule to combine the instances of a
single rule while a Noisy-Or could be used to combine the different rules themselves.
It can be easily observed from our translation to MLNs (presented later) that the only
change for the different cases would be the encoding of the multiplexers. Note that
it is possible to imagine developing specialized clauses for each combination of the
combining functions. In this work, we aim to derive a generalrepresentation that covers
all decomposable combining functions. Our translation consists for four different kinds
of clauses:

1. CPT Clauses:This follows the standard translation of Bayesian networksto MLNs.
Each independent parameter in the CPT of the Bayes net becomes a clause in the
MLN. An example of such a clause is

w1
i : a(X, Y) ⇒ t(X, Y, i)

w0
i : ¬a(X, Y) ⇒ t(X, Y, i) (4)

wherewj
i = log

p
j

i

(1−p
j

i
)
, pj

i = P (b(Y) = 1|a(X, Y) = j).2 Hence, for each

independent parameter of the original CPT in the directed model, there is a clause
in the MLN with the weight as a function of the parameter. In general, the set of
arguments in the temporary predicatet is the union of all the arguments in the body
of the clause and an argument for the rule index.

2. Multiplexer Clauses: These are the clauses that choose a particular value of the
target given a set of parent values. For the first-level multiplexer (h in the figure),
this set corresponds to the set of values due to different instantiations of the same
rule. For the second-level multiplexer, this set consists of the values due to different
rules. For the first level, the MLN clauses are of the form

∞ : h(X, Y, I) ⇒ (t(X, Y, I) ⇔ r(Y, I)) (5)

The above clause is a hard clause (i.e., infinite weight) thatspecifies that for a
particular value ofX , if h(X, Y, i) is true for a rulei, then the value of the target
for that rule (r(Y, i)) must be chosen to be the correspondingt(X, Y, i). Note that
the multiplexer always has the same number of variables as that of t. Similarly, for
the next level, the multiplexer clause would be,

∞ : hr(Y, I) ⇒ (tr(Y, I) ⇔ b(Y)) (6)

3. Stochastic Function Clauses:These are the clauses that specify the stochastic
function to be employed on the values. These are essentiallythe “prior” on theh
predicates. For mean, the idea is to choose a target value from the set ofh-values
uniformly. In the case of Noisy-Or, the target is chosen fromusing an Or function
over the hidden variables (t andtr). We present the stochastic function clauses for
two different cases later in the section.

2 The CPT clauses are defined for rule 1 that uses predicatea. All the other rules will have
similar clauses.

8

4. Integrity Constraints: These are the constraints that are used to specify that among
the different multiplexer nodes, onlyone of them can be true for any particular
example. These are of the form:

∞ : h(X1, Y, I) ∧ h(X2, Y, I) ⇒ (X1 = X2)

∞ : ∃X.h(X, Y, I) (7)

The above set of clauses specifies that ifh is true for 2 values ofX , they should be
identical and there exists a grounding ofX to makeh-true. These constraints are
exactly similar for the second level as well.3

4 Transformation of Combining Rules

As mentioned earlier, the Bayesian network representationis usedonly to explain the
translation by the use of multiplexers. The translation itself is independent of the num-
ber of groundings (note that all the predicates in the clauses are variablized and not
grounded). We now present two most common types of combination functions from
literature: (1)average-based and (2)noisycombination functions. Let us consider just
a single clausea(X, Y) ⇒ b(Y) for ease of explanation. Associated with this clause
is a conditional probability distributionP (b|a) (we usea andb as shorthand notations
for the predicates). As we mentioned, the differences between different combination
functions lie mainly in the stochastic function clauses. For each case, we first present
the translation and prove the correctness of the resulting distribution. We then present
the worked example corresponding to the student satisfaction rules presented earlier.

4.1 Average-Based Combining Rules:

Assume that the different instantiations of the above rule are combined using the weighted-
mean combining rule. Then the posterior over the targetb given the different sets of
parents is given by

P (b|a1, ..., an) =
1

∑

wi

∑

i

wi × P (b|ai) (8)

whereai denotesa(xi, y). For the case of mean, allwi = 1 (note that thew’s are
not the weights of the MLN clauses, they are the weights of thecombining rule). The
CPT clauses will be of the form presented in the earlier section, where the weights are
log functions of the CPT parameters (log pi

(1−pi)
) . The multiplexer clause is again a

hard clause that specifies the value of the target based on thevalue of the multiplexer
(h(X, Y, I)). The integrity constraints are also the same as the ones presented above.
The stochastic function is the weighted-mean. This specifies the prior on the multiplexer
nodes i.e., defines the prior probability with which each multiplexer node is true. Hence,
they are of the form:ui : h(xi, y, i), whereui = log(wi) is the log-odds of the givenxi.

3 Alchemy supports constraints of this form using the syntactic sugar ”!” However, we ran into
issues when learning weights with ”!” and hence explicitly present the constraints.

9

Actually, any weight of the formui = log(const×wi) = log(const)+ log(wi) would
work. For mean, the log-odds would implyui = log(1/n), wheren is the number of
instantiations. From the previous equation, it follows that anyui are acceptable as long
as they are constant for alli. The intuition is that eacht(X, Y) chooses the value of the
target based on the CPT, and the final value of the target is chosen from the different
t’s using the multiplexer nodes. The multiplexer is activated such that it takes only one
value given by the stochastic function (mean or weighted-mean).
Proposition:The given representation of MLNs exactly captures the distribution given
by equation 8.
Proof Sketch:For simplicity, consider only 2 instantiations of the rule presented above
and we are interested inP (b|a1, a2) which is given by equation 8 fori = 2. There will
correspondingly be 4 different cases: botht1 andt2 (hidden variables) are true and one
of h1 or h2 (multiplexers) is true (2 cases) and 2 cases where only the multiplexer hi

and the correspondingti are true. i.e.,

P (b|a1, a2) =
P (b, t1 = 1, t2 = 1, h1 = 1, h2 = 0|a1, a2) + P (b, t1 = 1, t2 = 1, h1 = 0, h2 = 1|a1, a2)+
P (b, t1 = 1, t2 = 0, h1 = 1, h2 = 0|a1, a2) + P (b, t1 = 0, t2 = 1, h1 = 0, h2 = 1|a1, a2)

= 1
Z

(

eθ1+θ2+log(w1) + eθ1+θ2+log(w2) + eθ1+log(w1) + eθ2+log(w2)
)

, where θi = log pi

1−pi

= 1
Z

w1p1+w2p2

(1−p1)(1−p2) = w1p1+w2p2

w1+w2

whereZ can be shown to be w1+w2

(1−p1)(1−p2) by summing over the two values ofb i.e.,
over (0, 1). We omit the calculation ofZ for brevity. Thus we can show that the final
distribution due to these MLNs is equal to the distribution presented in equation 8. The
same proof can be extended for multi-level combining rules as well.
Worked Example: Consider the FOCI statements about student satisfaction presented
earlier. We now present the case whereCR1 is mean whileCR2 is weighted-mean. We
show the translation to MLNs below. First, consider the CPT clauses. Since the grade
of the student can be any of say,〈A, B, C, D, F 〉, we use+G in Alchemy that uses all
possible groundings ofG. The CPT clauses for each rule are as follows:

wG : student(S), course(C), takes(T, S, C), grade(T, +G) ⇒ t1(S, T, C, +G)

wQ : student(S), paper(P, S), quality(P, +Q) ⇒ t2(S, P, +Q)

where eachwG andwQ are the log-odds for each grade (G) and quality (Q) respectively.
We refer to the Alchemy manual for a detailed discussion on+. For the purposes of this
paper, it suffices to say that for eachgrade, studentandcoursecombination, there will
be a clause corresponding to the CPT entry. Next, we present the multiplexer clauses.

∞ : h1(S, T, C, G) ⇒ t1(S, T, C, G) ⇔ r(S, 1)

∞ : h2(S, P, Q) ⇒ t2(S, P, Q) ⇔ r(S, 2)

∞ : hr(S, R) ⇒ r(S, R) ⇔ satisfaction(S) (9)
The first two clauses serve to choose the intermediate valuesof r corresponding to
rules1 and2. The third rule then chooses the final value of satisfaction from the two
intermediate values. The stochastic function clauses are given by:

10

log(w1) : hr(S, 1)
log(w2) : hr(S, 2)

The above clauses specify the prior over the intermediate nodes as a function of their
weightswi.4 At the first level, the value of the intermediate node is chosen according
to an uniform distribution (mean combining rule) and hence the weights of the MLN
clauses are0 and are not presented here. Finally, we present the integrity constraints that
restrict the multiplexer to choose only one value from amonga set of possible values

∞ : h1(S, T 1, C1, G1)∧ h1(S, T 2, C2, G2) ⇒ (T 1 = T 2 ∧ C1 = C2 ∧ G1 = G2)
∞ : Exists T,C,Gh1(S, T, C, G)
∞ : h2(S1, P1, Q1)∧ h2(S2, P2, Q2) ⇒ (P1 = P2 ∧ Q1 = Q2)
∞ : Exists P,Qh2(S, P, Q)
∞ : hr(S, R1) ∧ hr(S, R2) ⇒ R1 = R2

∞ : Exists Rhr(S, R) (10)

4.2 Noisy Functions:

For this case, let us assume a single rule and that the different instantiations of that rule
are combined using a noisy function. ForNoisy-Or, the marginal is computed as,

P (b = T|a1, . . . , an) = 1 −

n
∏

i=1

fai

i (11)

wherefi’s represent the probability that a present (Boolean-valued) cause,ai, fails to
make the resultb true. When converting these to MLNs, the transformation is mostly
similar to the earlier case. Though the CPT clauses are constructed similarly, we present
them for clarity. They are of the form:

∞ : ¬a(X, Y) ⇒ ¬t(X, Y, 1).

wi : a(xi, Y) ⇒ t(xi, Y, 1).

where,wi = log((1 − fi)/fi). As can be seen, ifa(X, Y) is false for a particular
value ofX , t(X, Y, 1) will always be false while ifa is true,t can be false due to some
noise. The multiplexer and integrity clauses are similar tothe average case. A careful
reader will note that the multiplexer and integrity clausesare redundant for this case as
they derive the r-values directly from t-values as shown below. The stochastic function
(deterministic here) is given by,

∞ : r(Y, I) ⇔ ∃X.t(X, Y, I) (12)

This asserts thatr(Y, i) is true if and only if somet(X, Y, i) is true, which is effec-
tively deterministic Or applied to noisy versions of the inputs. It can be shown that this
set of clauses exactly capture the distribution given by equation 11. We omit the proof
as it is a trivial mathematical exercise similar to the weighted-mean case.

Noisy existentials can be constructed similarly, except that we have tied weights.
When constructing noisy-and, the noise adds a probability of success instead of a prob-
ability of failure:

4 These weights are the weights of the combining function and must not be confused with the
weight of the MLN clauses.

11

wi : ¬a(X, Y, 1) ⇒ ¬t(X, Y, 1)

∞ : a(xi, Y, 1) ⇒ t(xi, Y, 1).

The multiplexer and the stochastic functions are also modified accordingly to reflect the
And function.

Also, note that any MLN can be seen as a noisy-and in which the targetb(Y) is
known to be true and eacha(xi, Y) is a clause from the original MLN. Because of the
infinite-weight conjunction, allti must be true. Sinceti is true, we can simplify each
implication¬a(xi, Y) ⇒ ¬t(xi, Y) to a(xi, Y). The final, simplified MLN is therefore
just the weighted clauses from the original MLN:wi : a(xi, Y).
Worked Example: We now present the rules for the satisfaction example whereCR2
is Or while CR1 is Noisy-Orwith qi as inhibition probability. The CPT clauses are

log(1−q1

q1

) : student(S), course(C), takes(T, S, C), grade(T, G) ⇒ t1(S, T, C, G)

log(1−q2

q2

) : student(S), paper(P, S), quality(P, Q) ⇒ t2(S, P, Q)

Note that the CPT parameters are a function of the noise (inhibition) for the two
rules. The multiplexer clauses can be constructed similar to the weighted mean case
given in Equation 9. The stochastic function clauses are created according to the follow-
ing clauses. Note that the stochastic function clauses state that there is anOr function
at each level (the noise at the first-level is captured in the CPT clauses).

∞ : r(S, 1) ⇔ Exists T,C,Gt1(S, T, C, G)
∞ : r(S, 2) ⇔ Exists P,Qt2(S, P, Q)
∞ : satisfaction(S) ⇔ Exists Rtr(S, R)

The integrity constraints are similar to the earlier case (Equation 10). The example here
combinesNoisy-Orwith theOr combining rule. We can similarly imagine combining
different decomposable combining rules at the different levels. We are not presenting all
the combinations in this work but note that the same templates can be used to construct
the different sets of combining functions.

4.3 Algorithm For Creating MLN Clauses From Decomposable Combining
Rules

This formulation allows for arbitrary nesting of combiningrules. The combining rules
used for combining different instantiations of different rules could be different. For
instance, we can imagine a situation such asNoisyAnd(w1 A, w2 B, w3 NoisyOr(w4

C, w5 Mean(w6 D, w7 E, w8 F))) where we have both Noisy-Or and Mean inside
the Noisy-And function.wi’s are the weights whileA throughF are first-order logic
Formulae. Such a representation is a significant generalization of MLNs.

Figure 3 describes the pseudocode for constructing MLNs from a set of FOCI state-
ments combined using combining ruleCR2. Each statementsi has its own1st level
combining ruleCRi

1. Lines3 through9 present the methods for constructing the clauses
corresponding tosi and its combining rule. For each independent parameter in the CPT

12

Fig. 3. CreateMLNClauses (FOCI StatementsS, CR2)

1: MLNClauses clauseList = [];
2: // Each FOCI Statementsi has CPT, Predicates,CR

i
1

3: For Each FOCI statementsi ∈ S

4: For Each Independent parameterθ
j

i in si.CPT
5: Add one CPT clause to clauseList, e.g. as in Eqn 4
6: Add to clauseList based on1st level combining ruleCR

i
1:

7: One multiplexer clause as in Eqn. 5
8: One stochastic function clause, e.g. as in Eqn. 12
9: Two integrity constraint clauses as in Eqn. 7

10: For Each FOCI statementsi ∈ S

11: Add to clauseList based on the2
nd level combining ruleCR

i
2:

12: One multiplexer clause as in Eqn. 6
13: One stochastic function clause, e.g. as in Eqn. 12
14: Two integrity constraint clauses as in Eqn. 7

of si, a clause is created. Also for eachsi, one multiplexer clause, one stochastic func-
tion and two integrity constraints are created. Once all the1st level combining rules
are considered, the clauses corresponding toCR2 are constructed in lines10 through
14. We note that it requiresO(1) to construct each clause. We now provide a bound on
the number of clauses required by such an MLN. In particular,we consider the general
SRL case of multi-level combining rules where the instantiations of a single rule are
combined usingCR1 and different rules are combined usingCR2.

Theorem 1. For any joint distribution which can be represented byn FOCI statements
combined with nested decomposable combining rules, andk independent parameters,
there exists an equivalent MLN ofO(nk) rules which can be constructed inO(nk) time.

Proof (sketch) The proof of equivalence is straightforward from the definition of the
various clauses. Letn be the number of FOCI statements andk be the number of in-
dependent CPT parameters. From the algorithm in Figure 3, for each rule, there arek
CPT clauses, one multiplexer clause, one stochastic function clause and two integrity
constraints yieldingk + 4 clauses. Hence the total number of clauses created in lines
(3 − 9) is n(k + 4). For lines10 − 14 of the algorithm, the number of clauses is
n(1 + 1) + 2 = 2(n + 1). Hence the total number of clauses isn(k + 6) + 2 = O(nk).
Since each clause can be constructed in constant time given the FOCI statement and
the combining rule, the resulting MLN can be constructed inO(nk) time. Note that the
minimal number of clauses required to model FOCI statementsusing MLN isO(nk)
as we need a clause for every parameter. Hence, our translation creates a model that is
no more complex than the minimal MLN.�

4.4 MLN Macros

While theoretically MLNs can represent most of the distributions that we considered,
it seems impractical to expect a domain expert to come up withthese rules. Firstly, the
domain expert has to understand the underlying distribution and the combining rules
as operating on values as against distributions (i.e, multiplexers). Secondly, the domain

13

expert needs to be an MLN expert as well and has to understand the translation. In this
section, we present a macro that can be used to construct MLNsgiven the domain ex-
pert’s statements. The key idea is to remove the burden of specifying the MLNs from
the user and allow our “translator” to create the MLNs corresponding to the true distri-
bution. We now present the structure of the macro:
CR{ CR1: X1

1 ∧ ... ∧ X1
n1

⇒ Y
CR2: X2

1 ∧ ... ∧ X2
n2

⇒ Y ... }
The above macro can be interpreted as:CR, CR1 andCR2 are the combination func-
tions –And, Or, Noisy-Or, Noisy-And etc. While CRi combines the multiple instantia-
tions of clausei, CR combines the multiple clauses.Xj

i andY are predicates. The first
clauses specifiesn1 causes for the target predicateY . X1

1 is the first cause ofY in rule 1
and so on. Instead of writing2n different clauses, the user specifies a single clause that
is then unrolled into the different clauses by the translator. The user can specify several
clauses that can be combined.

The translator then converts these macros to the MLN clausalrepresentation. A nat-
ural question now is: where do the weights come from? A simplesolution would be
to construct the clauses and allow the underlying MLN package (in our caseAlchemy
[11]), to learn the weights. We could hold the weights of the hard clauses (integrity
constraints and some multiplexer clausers) and instruct Alchemy to learn the weights
of only the “soft clauses” leading to a more efficient learning. In cases where the train-
ing data is not available, we allow the conditional probabilities to be specified as2n

array corresponding to the different configurations of the predicates in the body of the
clause. Hence the clauses are now of the form,〈p1, p2, ..., p2n〉X1 ∧ ... ∧ Xn ⇒ Y ,
wherepi = P (Y = T |Config(X1, ..., Xn) = i) is the conditional probability of the
target beingT given that the truth value of the predicates in the body form theith con-
figuration. Similarly, the parameters of the combining rules (ex. weights of weighted
mean) can also be specified asCR〈w1, ..., wm〉 for m clauses. Based on the combining
rule used, the translator then computes the weights of the different clauses based on the
probabilities and assigns the weights to the correspondingclauses.

5 Experiments

In the following experiments, we used the Alchemy system5 to learn the weights and/or
perform inference. The same settings were used for both MLNswith combining rules
(denoted byMLN+) and the default MLNs(MLN∗). The clauses of theMLN∗ are
the parent configurations of the CPT of each rule. Hence, for each independent param-
eter of the CPT, there exists a clause inMLN∗. MLN∗ was chosen so that it had the
same number of parameters as that of a directed model to make afair comparison. The
clauses ofMLN+ consist of the CPT clauses and the multiplexer, stochastic function
and integrity clauses. For bothMLN+ andMLN∗, we used the same settings for the
learning and inference algorithms (i.e., used the same number of iterations, discrimina-
tive learning, same number of MCMC steps, MC-SAT for inference etc.).

We present our learning results in two real-world domains:CoraandUW-CSE. The
goal of the experiment is: given minimal domain knowledge (typically2 rules to predict
the target), will the structure imposed by combining rules be useful in learning a good

5 http://alchemy.cs.washington.edu/

14

model? For the UW-dataset, the goal was to predict theadvisedByrelationship between
a student and a professor. The rules that we used were:
N-Or {

N-Or: student(S) ∧ professor(P) ∧ course(C) ∧ taughtBy(P,C,Q) ∧

ta(S,C,Q) ⇒ advisedBy(S,P).

N-Or: student(S) ∧ professor(P) ∧ publication(P,W) ∧

publication(S,W) ⇒ advisedBy(S,P).}
MLN∗ used all the combinations of the predicates in the head of theclauses and

learned weights for each of them. ForMLN+, we used Noisy-Or as the combining
rule at both levels. We learned the weights using Alchemy andused MC-SAT for per-
forming inference. We trained the algorithms on theAI group data that consisted of
35 positive instances of theadvisedByrelation. We present the average likelihood (i.e.,
1
n

∑

i P (yi = ŷi), wheren is the number of examples,ŷ is the predicted label andy is
the true label) of the test set in the last column of Table 1. Note that since we are in the
relational setting, the test set will mostly consist of negatives. Hence, an algorithm that
always predictsfalsewill have a reasonably high likelihood. To avoid this situation, we
forced the test set to contain50% negative examples by sampling the negative examples
randomly. This way a likelihood of0.5 would mean that everything is either predicted
true or asfalse. There were a total of 80 test examples with40 positives.

DomainAlgorithm AUC-ROCAUC-PRLikelihood

Cora
MLN

+ 1.0 1.0 0.987
MLN

∗ 1.0 1.0 0.963

UW
MLN

+ 0.560 0.672 0.611
MLN

∗ 0.472 0.523 0.5
Table 1.Results on real world domains.

We also compare the area under curve for the ROC and PR curves.MLN∗ was
not able to learn reasonable weights with a small number of rules and hence predicted
everything as0. In a test-set with50% positive examples, this yielded a likelihood of
0.5. On the other hand, withMLN+, we were able to learn a more reasonable model
that had a higher likelihood. More importantly,MLN+ did not predict every query
predicate as0 or 1 and instead had a reasonable distribution over the target. When we
added more rules toMLN∗ (7 more rules from Alchemy that were earlier used in other
MLN experiments to predictadvisedBy) the average likelihood increased to0.63. The
values of AUC for ROC and PR forMLN+ are significantly higher thanMLN∗. This
demonstrates that in this domain the use of more complex combining functions seem to
improve the performance of MLN learning.

The results were far more impressive forCora dataset where the goal is to predict
whethertwo citations refer to the same one. The training set consisted of about7500
examples (about70% of them were negative examples) and the test set consisted of100
examples (out of which50% were negatives). The two rules that we used were:
N-Or {

N-Or : Author(bc1,a1) ∧ Author(bc2,a2) ∧ SameAuthor(a1,a2)

⇒ SameBib(bc1,bc2).

15

N-Or : Title(bc1,t1) ∧ Title(bc2,t2) ∧ SameTitle(t1,t2)

⇒ SameBib(bc1,bc2).}

As can be seen from the table,MLN+ learned nearly the perfect model for the
domain and had a very high likelihood and AUC values. This clearly showed that with
just two rules, given some more knowledge (as hard constraints of the combining rules),
MLN+ was able to learn a highly predictive model. WhileMLN∗ with exactly the
same setting asMLN+ (i.e., discriminative, rules for all the combinations of the predi-
cates etc.) predicted all the test examples as0 and thus had a lower likelihood and AUC
values (very similar to the UW data set). To improve the performance ofMLN∗, we
changed the settings (to generative learning, dropped someseemingly irrelevant clauses
that had a large number of groundings). With these changes, we were able to getMLN∗

to perform comparably withMLN+.

Specialized inference algorithmsAdmittedly, the presence of hidden predicates in-
creased the running time of Alchemy, but this motivates the need for learning algo-
rithms that exploit the special structure efficiently (as weused the default EM learning
algorithm of Alchemy to learn weights forMLN+).

We implemented an inference algorithm that exploits the special structure of these
clauses. We do not present the algorithm in detail in this work as the goal of this work
is to show that the combining rules can be captured in MLNs andmotivate the need for
specialized algorithms that can exploit the local models similar to the ones presented
in [13]. Initial results indicate that the time taken forMLN+ in the UW-data set is4
seconds while that ofMLN∗ is30 seconds to obtain the same results presented in Table
1. As can be seen, there is a drastic improvement when the inference algorithm exploits
the knowledge of the structure of the clauses. The modified inference algorithm assumes
that the structure of the MLN is the one presented in Figure 2 and performs sampling on
this network. Hence, it exploits the knowledge about the structure of the network and
the multiplexers in the network. We expect that learning localized models in MLNs will
enable efficient learning and inference. We are currently working on formalizing the
details of the learning algorithm that uses this inference method. Our hypothesis is that
since learning requires inference in its inner loop, the specialized inference algorithm
will yield faster learning of the parameters.

6 Conclusions
Combining rules capture the notion of causal independence for SRL models. We have
presented an algorithm for representing a class of combining rules (decomposable com-
bining rules) in an undirected model (MLN). We derived the equivalent clauses and
provided a bound on the number of clauses required for the representation. Our ex-
periments demonstrated that for a small number of clauses, combining functions are
useful in learning more accurate models. The structure imposed by these functions help
in guiding the learning algorithms towards reasonable weights. Jaeger [9], showed that
RBNs can capture MLNs and pointed out to the reverse as an openproblem. We take
an important step in that direction by showing how MLNs can capture combination
functions of the directed models and in turn, most of the features of directed models.

However, this translation from combining rules to MLNs is not without its cost.
We found that the inference in the resulting MLN is 4-5 times slower than the one that

16

does not use the combining rules. The problem is that while the declarative knowledge
embedded in the combining rules can be encoded into clauses and given to MLNs, there
are no effective means to exploit the causal independence for controlling inference.
To be effective, the inference engine has to essentially rediscover the hidden structure
that is naturally exploited by the directed models. One possible future direction is to
develop specialized inference algorithms that can detect structure in MLNs and exploit
it for efficiency. We have taken the first step in this direction, but are still working
on the details of the learning algorithm that will exploit the structure. A more general
and important direction is to develop hybrid models that allow us to specify different
parts of the model differently and combine them using a decomposable structure. This
should allow the application of specialized learning algorithms inside each module, and
combine the results in an efficient manner.

7 Acknowledgements
SN, TK and JS gratefully acknowledges the support of DARPA via Air Force Research Lab-
oratory (AFRL) under prime contract no. FA8750-09-C-0181.PT greatfully acknowledges the
support of DARPA grant FA8750-09-C-0179. KK was supported by the Fraunhofer ATTRACT
fellowship STREAM and by the Europen Commission under contract number FP7-248258-First-
MM. DL was supported by the University of Oregon Department of Computer and Information
Science. Any opinions, findings, and conclusion or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the view of the Air Force Research Lab-
oratory (AFRL), US government or DARPA.

References

1. P. Domingos and D. Lowd.Markov Logic: An Interface Layer for AI. Morgan & Claypool,
San Rafael, CA, 2009.

2. D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon. Logical Bayesian networks and
their relation to other probabilistic logical models. InILP, 2005.

3. L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models.
Relational Data Mining, S. Dzeroski and N. Lavrac, Eds., 2001.

4. L. Getoor and J. Grant. PRL: A probabilistic relational language.Mach. Learn., 62(1-2):7–
31, 2006.

5. L. Getoor and B. Taskar.Introduction to Statistical Relational Learning. MIT Press, 2007.
6. D. Heckerman and J. Breese. A new look at causal independence. InUAI, 1994.
7. M. Jaeger. Relational Bayesian networks. InProceedings of UAI, 1997.
8. M. Jaeger. Parameter learning for Relational Bayesian networks. InICML, 2007.
9. M. Jaeger. Model-theoretic expressivity analysis. InProbabilistic Inductive Logic Program-

ming, 2008.
10. K. Kersting and L. De Raedt. Bayesian logic programming:Theory and tool. InAn Intro-

duction to Statistical Relational Learning, 2007.
11. S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domingos. The

Alchemy system for statistical relational AI. Technical report, Department of Computer
Science and Engineering, University of Washington, Seattle, WA, 2007.

12. D. Koller and A. Pfeffer. Learning probabilities for noisy first-order rules. InIJCAI, 1997.
13. S. Natarajan, P. Tadepalli, T. G Dietterich, and A. Fern.Learning first-order probabilistic

models with combining rules.Special Issue on Probabilistic Relational Learning, AMAI,
2009.

14. N. Zhang and D. Poole. Exploiting causal independence inBayesian network inference.
JAIR, 5:301–328, 1996.

