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Abstract—Recent years have seen a surge of interest in
Statistical Relational Learning (SRL) models that combine logic
with probabilities. One prominent example is Markov Logic
Networks (MLNs). While MLNs are indeed highly expressive,
this expressiveness comes at a cost. Learning MLNs is a hard
problem and therefore has attracted much interest in the SRL
community. Current methods for learning MLNs follow a two-
step approach: first, perform a search through the space of
possible clauses and then learn appropriate weights for these
clauses. We propose to take a different approach, namely
to learn both the weights and the structure of the MLN
simultaneously. Our approach is based on functional gradient
boosting where the problem of learning MLNs is turned into
a series of relational functional approximation problems. We
use two kinds of representations for the gradients: clause-
based and tree-based. Our experimental evaluation on several
benchmark data sets demonstrates that our new approach can
learn MLNs as good or better than those found with state-of-
the-art methods, but often in a fraction of the time.

INTRODUCTION

In recent years, there has been an increasing interest in

addressing challenging problems that involve rich relational

and noisy data. Fueled by this, several Statistical Relational

Learning methods [1] have been proposed that combine

the expressiveness of first-order logic and the ability of

probability theory to handle uncertainty. These models range

from directed models [2]–[4] to undirected models [5], [6]

and sampling-based approaches [7], [8]. The advantage of

these models is that they can succinctly represent probabilis-

tic dependencies among the attributes of different related

objects, leading to a compact representation of learned

models.

While these models are highly attractive due to their

compactness and comprehensibility, the problem of learn-

ing in these models is computationally intensive. This is

particularly true for Markov Logic Networks (MLNs) [5].

MLNs extend Markov networks to the relational setting by

expressing domain knowledge as a set of weighted logic

formulas. One of the nice features of MLNs is that they

allow the user to write many rules about the domain and

then learn weights for the rules to perform inference.

But the task of learning the rules themselves is an impor-

tant and challenging task and has received much attention

lately [9]–[12]. Bottom-up structure learning [10] uses a

propositional Markov network learning algorithm to identify

paths of ground atoms. These form the templates that are

generalized into first-order formulas. Hypergraph lifting [11]

on the other hand clusters the constants and true atoms to

construct a lifted (first-order) graph. Relational path-finding

on this hypergraph is used to obtain the MLN clauses.

Structural motif learning [12] uses random walks on the

ground network to find symmetrical paths and cluster nodes

with similar path distributions. All the methods obtain the

candidate clauses first, learn the weights and modify the

clauses accordingly.

We propose a different route. We present a MLN-learning

approach that learns the weights and the clauses simultane-

ously. Specifically, we turn the problem of learning MLNs

into a series of relational regression problems by using

Friedman’s functional gradient boosting algorithm [13]. The

key idea in this algorithm is to consider the target potential

function as a series of regression trees learned in a stage-wise

manner. The functional gradient approach has produced state

of the art results in building relational dependency networks

over many domains [14] and has been employed in other

relational learning problems such as relational CRFs [15],

relational policies [16], relational sequences [17], etc.

We use two kinds of representations for the functional

gradients on the pseudo-likelihood for MLNs: clauses and

trees. The former version simply learns a set of clauses

at each gradient step, each with an associated regression

value, while the latter version views MLNs as a set of

relational regression trees. The regression values are the

weights on the MLN clauses. Finally, we compare them

against state-of-the-art algorithms in four different standard

SRL testbeds. The experimental results demonstrate the

superior performance of boosting, both in terms of time

and accuracy of the learned model. Our approach also has

the advantage of learning more predictive rules than the

current MLN structure-learning algorithms. As we show

empirically, in spite of learning more rules, our algorithms

have shorter running times compared to the state-of-the-art

MLN algorithms.

Compared to existing MLN learning approaches, boost-

ing MLNs has the following benefits: (1) The number of

clauses grows with the number of training episodes, in

turn increasing the size of the MLN only as needed; (2)

It learns both the clauses and weights simultaneously; (3)



Because most off-the-shelf relational regression tree/clause

learners can be used for this purpose, it is a flexible learning

algorithm for MLNs. In fact, (4) viewing MLNs as a set of

regression functions itself is a significant contribution. This

view allows one to treat learning MLNs as boosting a set

of conditional distributions. Intuitively, we view an MLN

as a set of Horn clauses per query predicate. In turn, this

suggests one can generalize efficient boosting approaches

recently developed for rapid learning of Relational Depen-

dency Networks (RDNs) [14] to MLNs.

The rest of the paper is organized as follows: we first

introduce the necessary background on MLNs and functional

gradients. Next, we derive the functional gradient for MLNs

and present our two new learning methods. We then present

our empirical evaluation in four different testbeds and finally

conclude by outlining some areas for future research.

MARKOV LOGIC NETWORKS

One of the most popular and general SRL representations

is Markov Logic Networks (MLNs) [5]. An MLN consists

of a set of formulas in first-order logic and their real-valued

weights, {(wi, fi)}. Together with a set of constants, we can
instantiate an MLN as a Markov network with a node for

each ground predicate (atom) and a feature for each ground

formula. All groundings of the same formula are assigned

the same weight, leading to the following joint probability

distribution over all atoms:

P (X = x) =
1

Z
exp

(

∑

i

wini(x)

)

(1)

where ni(x) is the number of times the ith formula is
satisfied by possible world x and Z is a normalization
constant (as in Markov networks). Intuitively, a possible

world where formula fi is true one more time than a different
possible world is ewi times as probable, all other things

being equal.

FUNCTIONAL GRADIENT BOOSTING OF MLNS

Functional gradient methods have been used previously

to train conditional random fields (CRF) [18] and their

relational extension (TILDE-CRF) [15], to learn relational

policies [16], to learn to label relational sequences [17], and,

as mentioned above, to train RDNs [14].

Assume that the training examples are of the form (xi, yi)
for i = 1, ..., N and yi ∈ {0, 1}. The goal is to fit a model
P (y|x) ∝ eψ(y,x). A standard approach for learning such

models is based on gradient-descent, where the learning

algorithm starts with initial parameters θ0 and computes
the gradient of the likelihood function. Dietterich et al.

[18] used a more general approach to train the potential

functions based on Friedman’s [13] gradient-tree boosting

algorithm where the potential functions are represented by

sums of regression trees that are grown stage-wise. More

formally, Functional Gradient Ascent (FGA) starts with an

initial potential ψ0 and iteratively adds gradients ∆i. After

m steps, the potential is given by ψm = ψ0 + ∆1 +...+
∆m. Here, ∆m, the functional gradient at episode m is

∆m = ηm × Ex,y[∂/∂ψm−1 log P (y|x;ψm−1)] (2)

ηm is the learning rate and ∂/∂ψm−1 is used to represent

the partial derivative with respect to ψm−1. Dietterich et al.

suggested evaluating the gradient at every position in every

example and fitting a regression tree to the derived examples.

FGA is different from the standard gradient ascent meth-

ods in one key aspect - it does not assume a linear

parameterization for the potential function. The standard

assumption is that the potential function ψ is represented
as ψ =

∑

βifi where {β1, ..., βn} = θ are the parameters
of ψ. In FGA, the assumption is more general in that ψ
is a weighted sum of functions (as shown earlier) and the

gradient is given by Equation 2. As Dietterich et al. point

out, the expectation Ex,y[..] cannot be computed as the joint
distribution P (x,y) is unknown. Since the joint distribution
is unknown, FGA methods treat the data as a surrogate

for the joint distribution. Hence, instead of computing the

functional gradient over the potential function, the functional

gradients are computed for each training example, i.e.,

∆m(yi;xi) = ∇ψ

∑

i

log(P (yi|xi;ψ))|ψm−1
(3)

These are point-wise gradients of the potential ψ computed
in the model from the previous iteration using the poten-

tial ψm−1. Now this set of local gradients form a set of

training examples for the gradient at stage m. The key step
in functional gradient boosting (FGB) is the fitting of a

regression function (typically a regression tree) hm on the
training examples [(xi, yi),∆m(yi;xi)] [13]. Dietterich et
al. [18] point out that although the fitted function hm is
not exactly the same as the desired ∆m, it will point in

the same direction (assuming that there are enough training

examples). So ascent in the direction of hm will approximate
the true functional gradient.

For the rest of the paper, we denote variables using

capitalized letters, values as small letters and sets using

bold-faced letters. Also, since there is a one-to-one mapping

from xi to yi, we just use xi to indicate an example and its
label. P(xi = 1) is the probability of example xi being true,
whereas P(xi) is the probability of the example having the
same label as provided in the data.

Derivation of the Functional Gradient

The joint likelihood of MLNs (given in Equation 1) is

hard to optimize due to the normalization constant. Hence,

we take the standard approach of optimizing the pseudo-

likelihood (PL) that is given by,

PL(X = x) =
∏

xi∈x
P (xi|MB(xi)) (4)



where MB(xi) is the Markov blanket.

P (xi = 1|MB(xi)) =
exp(

P

j
wjnj(xi=1;MB(xi)))

P

x′ exp(
P

j
wjnj(xi=x′;MB(xi)))

=
exp(

P

j
wjntj(xi;MB(xi)))

exp(
P

j
wjntj(xi;MB(xi)))+1

(5)

where ntj(xi;MB(xi)) = nj(xi = 1;MB(xi))

−nj(xi = 0;MB(xi)) (6)

nj(x) is the number of groundings of clause Cj given x.

ntj(xi;MB(xi)) corresponds to the non-trivial groundings
of an example (explained below), xi given its Markov
blanket [19]. Hence we can define the potential functions

ψ(xi;MB(xi)) =
∑

j

wjntj(xi;MB(xi)) (7)

ψ(xi;MB(xi)) is the potential function of xi given all other
xj 6= xi and (xj ∈ x). Hence Equation 5 becomes,

P (xi = 1|MB(xi)) =
exp (ψ(xi;MB(xi)))

exp (ψ(xi;MB(xi))) + 1

As mentioned earlier, we optimize the pseudo-log-

likelihood,

PLL(X = x) =
∑

xi∈x

logP (xi|MB(xi)) (8)

Taking the derivative of PLL w.r.t. the function ψ, we get

∂PLL(X=x)
∂ψ(xi=1;MB(xi))

= ∂ logP (xi;MB(xi))
∂ψ(xi=1;MB(xi))

= I(xi = 1;MB(xi)) − P (xi = 1;MB(xi))2 (9)

Note that the gradient at each example is now simply

the adjustment required for the probabilities to match the

observed value (xi) for that example. This gradient serves
as the weight for the current regression example at the next

training episode.

The expression in Equation 9 is very similar to the one in

Dietterich et al. [18]. The key feature of the above expression

is that the functional gradient for each example is dependent

on the observed value. If the example is positive, the gradient

(I−P ) is positive indicating that the model should increase
the probability of the ground predicate being true. On the

contrary if the example is negative, the gradient is negative,

implying that it will push the probability towards 0.
Our algorithm is restricted to learn only non-recursive

Horn clauses, but extended to allow negation-by-failure. De-

spite this restriction, we are able to perform better than other

structure-learning algorithms as shown in our experiments.

For notational ease, we will represent a Horn clause, say,

p1(X1) ∧ . . . ∧ pc(Xc) → target(X′)

as ∧k pk(Xk) → target(X′)

where Xk are the arguments for pk and X′ ⊆ ∪kXk.
Recall the definition of ntj(xi) given in Equation 6.
When xi only appears in the head of the clause Cj , ntj(xi)

corresponds to the number of non-trivial groundings for

xi that satisfy the Horn clause Cj . Groundings of Cj that
remain true irrespective of the truth value of xi are defined
as the trivial groundings for xi that satisfy Cj , while others
are called as the non-trivial groundings. So the non-trivial

groundings for satisfying a clause ∧kpk(Xk) → target(X′)
would correspond to the groundings for ∪kXk that satisfy

the body of the clause i.e. ∧kpk(xk) = true, after unifying
the head of the clause (target(X′)) with the example, xi.
For a more detailed discussion of non-trivial groundings, see

Shavlik and Natarajan [19].

We made two assumptions in our model: (1) Every ground

literal does not have any other ground literal with the same

predicate in its Markov blanket. (2) The Markov blanket is

completely observed during training, i.e. there is no missing

data. Also we consider only a single target predicate while

learning a regression tree, but we learn a joint model that

uses the regression trees learned for all the predicates. We

explain the joint model learning in the Algorithm section.

Representation of Functional Gradients for MLNs

Our goal is to find ψ̂ such that the squared error between
ψ̂ and the functional gradient is minimized. i.e.,

argmin
ψ̂

n
∑

i=1

(ψ̂(xi;MB(xi)) − ∆(xi))
2 (10)

over all examples. We present our two representations of

ψ̂s: trees and clauses. For our first representation, we use a
relational regression tree learner [20] to fit the gradients on

each example. In order to do so, we modified the splitting

criterion at each node to be the one presented below. Each

path from the root to a leaf can be seen as a clause and

the weigh ton the leaf correspond to the weight of the

clause. As an example, let us consider the literal q(X′′)
to be added to the tree at a node N. Let the current

clause formed by the path from the root to the node N be

∧kpk(Xk) → target(X′). So adding q(X′′) would split the
current clause to two clauses,

C1 : ∧kpk(Xk) ∧ q(X
′′) → target(X′)

C2 : ∧kpk(Xk) ∧ ∀Xf ,¬q(X
′′) → target(X′)

where Xf are the free variables in q(X′′). For all the
examples that reach the node N , assume I to be the set
of examples that satisfy q(X′′) and J be the ones that do
not. Let w1 and w2 be the regression values that would be

assigned to C1 and C2 respectively. Let nx,1 and nx,2 be
the number of non-trivial groundings for an example x with
clauses C1 and C2. The regression value returned for an

example would depend on whether it belongs to I or J .
Now,

ψ̂(xi) = nxi,1 ·w1 · I(xi ∈ I)+nxi,2 ·w2 · I(xi ∈ J ) (11)



and the squared error is

SE =
∑

x∈I

[nx,1 · w1 − ∆x]
2

+
∑

x∈J

[nx,2 · w2 − ∆x]
2

∂

∂w1
SE =

∑

x∈I

2 · [nx,1 · w1 − ∆x] · nx,1 + 0 = 0

w1 =

∑

x∈I
∆x · nx,1

∑

x∈I
n2
x,1

∂

∂w2
SE = 0 +

∑

x∈J

2 · [nx,2 · w2 − ∆x] · nx,2 = 0

w2 =

∑

x∈J
∆x · nx,2

∑

x∈J
n2
x,2

When adding each literal to the clause, we greedily search

for the literal that minimizes this squared error. The false

branch at every node with condition C(X), would be
converted to ∀Xf ,¬C(X) which in its CNF form becomes
∃Xf , C(X), where Xf ⊂ X are the free variables in C(X).
This can result in a large clique in the grounded Markov

Network. To avoid this, we maintain an ordered list of

clauses and return the weight for the first clause that has

at least one grounding for a given example. We can then

ignore the condition on a given node, if the false branch is

picked in the path to the leaf. It is worth noting that C(X)
maybe a conjunction of literals depending on the maximum

number of literals allowed at an inner node.

Figure 1. Example tree for target(X).

Figure 1 gives an example regression tree for target(X).
If we are scoring the node q(X,Y ), we would split all
the examples that satisfy p(X) into two sets I and J . I
would contain all examples that have at least one grounding

for q(X,Y ) and J would contain the rest; target(x1)
would be in I if p(x1) ∧ q(x1, Y ) is true and target(x2)
would be in J , if p(x2) ∧ (∀Y,¬q(x2, Y )) is true. The
parameter nx1,1 corresponds to the number of groundings

of p(x1)∧ q(x1, Y ), while nx2,2 corresponds to the number

of groundings of p(x2)∧(∀Y,¬q(X2, Y ). The corresponding
ordered list of MLN rules is:

w1 : p(X), q(X,Y ) → target(X)

w2 : p(X) → target(X)

w3 : target(X)

For our second representation, we learn Horn clauses by

using a beam search that adds literals to clauses that reduce

the squared error. We maintain a (beam-size limited) list of

clauses ordered by their squared error and keep expanding

clauses from the top of the list. We add clauses as long as

their lengths do not exceed a threshold and the beam still

contains clauses. We recommend using clauses when the

negation-by-failures introduced by the trees would make the

inference step too slow.

Hence, we replace the tree with a set of clauses learned

independently at each gradient-step. Since we do not have

two branches when every new condition is added, the error

function becomes:

SE =
∑

x∈I

[nx,1 · w − ∆x]
2

+
∑

x∈J

∆2
x

=⇒ w =

∑

x∈I
∆x · nx,1

∑

x∈I
n2
x,1

Note that the key change is that we do not split the nodes

and instead just search for new literals to add to the current

set of clauses. Hence, instead of an ordered list for each

gradient step, we learn a pre-set number of clauses (C). We
use a similar parameter for the regression-tree learner as well

with a pre-set number of leaves (L). The values of C and
L are fixed at 3 and 8 respectively for all our experiments.
Hence, the depth of tree is quite small and so is the number

of Horn clauses per gradient-step.

Before presenting the algorithmic details, we summa-

rize our strengths. Apart from learning the structure and

weight simultaneously, functional gradient boosting ap-

proach has other key advantages: (1) Our models are es-

sentially weighted Horn clauses. This makes the inference

process easier, especially given that we use the procedure

presented in Shavlik and Natarajan [19] to keep track of

the non-trivial groundings for a clause/predicate. (2) Our

learning algorithms can use prior knowledge as an initial

set of MLN clauses and learn more clauses as needed to

minimize the error on a training set.

Algorithm for Learning MLNs

Functional gradient boosting of MLNs with both the

tree and the clause learner is presented in Algorithm 1.

In TreeBoostForMLNs, we iterate through M gradi-

ent steps and in each gradient step learn a regression

tree for the target predicates one at a time. We create

examples for the regression learner for a given predi-

cate, P using the GenExamples method. We use the
function FitRelRegressionTree(S, P, L) to learn a tree
that best fits these examples. We limit our trees to have

maximum L leaves and greedily pick the best node to
expand. In our experiments, we set L = 8 and M =
20. FitRelRegressionClause(S, P,N,B) can be called
here to learn clauses instead. N is the maximum length



Algorithm 1 MLN-Boost: FGB for MLN’s

1: function TREEBOOSTFORMLNS(Data)
2: for 1 ≤ m ≤M do ⊲ M gradient steps
3: Fm := Fm−1

4: for P in T do ⊲ Iterate through target predicates
5: S := GenExamples(Data;Fm−1, P )
6: ∆m := FitRelRegressTree(S, P, L) ⊲ FG
7: Fm := Fm + ∆m ⊲ Update models
8: end for

9: end for

10: P (xi|MB(xi)) ∝ ψ ⊲ Obtained by grounding FM
11: end function

12: function FITRELREGRESSIONTREE(S, P, L)
13: Tree := createTree(P (X))
14: Beam := {root(Tree)}
15: while numLeaves(Tree) ≤ L do
16: Node := popBack(Beam)⊲ Node w/ worst score
17: C := createChildren(Node) ⊲ Create children
18: BN := popFront(Sort(C)) ⊲ Node w/ best score
19: addNode(Tree, Node, BN)

20: ⊲ Replace Node with BN
21: insert(Beam, BN.left, BN.left.score)

22: insert(Beam, BN.right, BN.right.score)

23: end while

24: return Tree

25: end function

26: function FITRELREGRESSIONCLAUSE(S, P,N,B)
27: Beam := {P(X)}
28: BC := P(X)

29: while ¬empty(Beam) do
30: Clause := popFront(Beam)⊲ Best scoring clause
31: if length(Clause) ≥ N then
32: continue ⊲ Clause cannot be expanded
33: end if

34: C := addLiterals(Clause)

35: for c ∈ C do
36: c.score = SE(c) ⊲ Squared error
37: if c.score ≥ Clause.score then
38: insert(Beam, c, c.score)

39: end if

40: if c.score ≥ BC.score then
41: BC := c

42: end if

43: end for

44: while length(Beam) ≥ B do
45: popBack(Beam)

46: end while

47: end while

48: return BC

49: end function

of the clause and B is the maximum beam size. In

FitRelRegressionTree, we begin with an empty tree that

returns a constant value. We use the background predicate

definitions (mode specifications) to create the potential lit-

erals that can be added (createChildren). We pick the best
scoring node (based on square error) and replace the current

leaf node with the new node (addNode). Then both the left
and right branch of the new node are added to the potential

list of nodes to expand. To avoid overfitting, we only insert

and hence expand nodes that have at least 6 examples. We

pick the node with the worst score and repeat the process.

The function for learning clauses is shown as

FitRelRegressionClause which takes the maximum
clause length as the parameter, N (we set this to 3) and
beam size, B (we set this to 10). It greedily tries to find
the best scoring clause (BC) with length ≤ N . This
method only learns one clause at a time. Hence for learning

multiple clauses, we call this function multiple times

during one gradient step and update the gradients for each

example before each call. In all our experiments we learn

a maximum of 3 clauses in a single gradient step.

Learning Joint Models

One of the key features of SRL methods is the ability

to learn and reason about predicates and examples jointly.

To handle multiple target predicates, we learn a joint model

by learning tree/clauses for each predicate in turn. We use

the MLN’s learned for all the predicates prior to the current

iteration to calculate the regression value for the examples.

We implement this by learning one tree for every target

predicate in line 4 in Algorithm 1. For efficiency, while
learning a tree for one target predicate, we do not consider

the influence of that tree on other predicates.

Since we use the clauses learned for other predicates

to compute the regression value for an example, we have

to handle cases where the examples unify with a literal

in the body of the clause. Consider the clause, Cj :
p(X), q(X,Y ) → target(X). If we learn a joint model
over target and p, this clause will be used to compute the
regression value for p(X) in the next iteration. In such a
case, the number of non-trivial groundings corresponding

to an example, say p(x) for a given grounding (X = x)
and the given clause would be the number of groundings of

q(x, Y )∧¬target(x). Since p(x) appears in the body of the
clause, the difference

ntj(p(x)) = [nj(p(x) = 1) − nj(p(x) = 0)] (12)

would be negative. As can be seen, ntj(p(x)) is simply the
negative of number of non-trivial groundings of p(x) for
the above clause. Computing ntj(xi) this way allows us to
compute the ψ̂ values for every example quickly without
grounding the entire MLN at every iteration as the number

of groundings can be simply negated in some cases.

EXPERIMENTS

We next compare our two boosting algorithms - tree-based

(MLN-BT) and clause-based (MLN-BC) to four state-of-



the-art MLN structure learning methods: LHL [11], BUSL

[10], Motif-S (short rules) and Motif-L (long rules) [12])

on four standard datasets. In order to make the comparison

as fair as possible, we used the following protocol. We

employed the default settings of Alchemy [21] for weight

learning on all the datasets, unless mentioned otherwise.

We set the multipleDatabases flag to true for weight
learning. For inference, we used MC-SAT sampling with 1

million sampling steps or 24 hours whichever occurs earlier.

For learning structure using motifs, we used the settings

provided by Kok and Domingos [12]. While employing LHL

and BUSL for structure learning, we used the default settings

in Alchemy. We set the maximum number of leaves in MLN-

BT to 8 and maximum number of clauses to 3 in MLN-BC.
The beam-width was set to 10 and maximum clause length
was set to 3 for MLN-BC. We used 20 gradient steps on all
the boosting approaches.

In all our experiments, we present MLN-BT and MLN-BC

numbers in bold whenever they are statistically significantly

better than all the other datasets (except each other). We used

the paired t-test with p-value=0.05 for determining statistical

significance. Since the Cora and IMDB datasets are much

bigger than the UW dataset, we ran the experiments on a

heterogenous cluster of machines and hence do not report

the learning time for these datasets.

For the Alchemy-based structure-learning algorithms, we

tried several different weight learning methods and present

the ones with the best results. For instance, Motifs with

generative weight learning yielded the best results in the

UW dataset, while discriminative weight learning was better

in Cora (in the other two domains, they were comparable).

Hence, our Motif-S and Motif-L results correspond to gen-

erative weight learning in UW and discriminative in Cora.

We also ran different weight-learning algorithms such as

voted perceptron and conjugate gradient descent from the

Alchemy package with every structure-learning algorithm

and report the best results. We use the AUC-PR (Area

under the Precision-Recall curve) and CLL (Conditional

log-likelihood) values to compare the various approaches.

We employ AUC-PR as it has been shown to be a more

conservative estimate of the learning performance compared

to AUC-ROC [22].

A key property of most relational data sets is the number

of negative examples. This is also seen in Table I which

shows the size of the various datasets used. Since most

relations such as actedIn, cancer, advisedBy etc.

are false in the real-world, the number of negatives can be

order of magnitude more than the number of positives. In

these cases, simply measuring CLL over the entire data set

can be misleading. It can be shown easily that predicting

all the examples as the majority class (when the number of

examples in one class are far greater than the other) can

have a very good CLL value, but a very low AUC-PR value

(nearly 0). Hence, considering only CLL (which close to

0 indicates a very good performance) can be misleading in
the case of skewed data sets. In fact, a major strength of PR

curves is that they ignore the impact of correctly labeling

negative examples and instead focus on the typically rarer

and yet more important, positive examples. Hence, we not

only present the CLL values, but also the AUC-PR values.

In addition, we present results where the number of negative

examples is twice the number of positives.

Dataset Types Predicates Constants
True Total
literals literals

UW-CSE 9 12 929 2112 260,254
IMDB 3 5 306 1046 17,257
Cora 5 10 3,079 42,558 687,422
WebKB 3 6 1,700 2,065 688,193

Table I
DATASET SIZE

UW Dataset

The goal in the UW data set [23] is to predict

the advisedBy relationship between a student

and a professor. The data set consists of details of

professors, students and courses from 5 different

sub-areas of computer science (AI, programming

languages, theory, system and graphics). Predicates

include professor, student, publication,

advisedBy, hasPosition, projectMember,

yearsInProgram, courseLevel, taughtBy,

teachingAssistant etc. Our task is to learn using

the other predicates, to predict the advisedBy relation.

We employ 5-fold cross validation where, we learn from

four areas and predict on the other area. Apart from the

methods describe above, we also compared against the

handcoded MLN available on Alchemy’s website with

discriminative weight learning (shown as A-D in the tables).

We were unable to get BUSL to run on this data set due

to segmentation fault issues and hence we do not report

BUSL for this testbed.

Table II presents the AUC and CLL values, along with the

training time taken by each method averaged over five-folds.

The training time does not change for the different test-

sets. As can be seen, for the complete dataset both boosting

approaches (MLN-BT and MLN-BC) perform significantly

better than other MLN learning techniques on the AUC-PR

values. Current MLN learning algorithms on the other hand

are able to achieve lower CLL values over the complete

dataset by pushing the probabilities to 0, but are not able
to differentiate between positive and negative examples as

shown by the low AUC-PR values.

When we reduce the negatives in the test set to twice the

number of positives, the boosting techniques dominate on

both the AUC-PR and CLL values, while the other tech-

niques, which cannot differentiate between the examples,

have poor CLL values. Also, there is no significant differ-

ence between learning the trees or the clauses in the case of

boosting MLNs. We performed additional experiments on



Algo
2X negatives All negatives

Time
AUC-PR CLL AUC-PR CLL

BT 0.94 ± 0.06 −0.52 ± 0.45 0.21 ± 0.17 −0.46 ± 0.36 18.4 sec
BC 0.95 ± 0.05 −0.30 ± 0.06 0.22 ± 0.17 −0.47 ± 0.14 33.3 sec
M-S 0.43 ± 0.03 −3.23 ± 0.78 0.01 ± 0.00 −0.06 ± 0.03 1.8 hrs
M-L 0.27 ± 0.06 −3.60 ± 0.56 0.01 ± 0.00 −0.07 ± 0.02 10.1 hrs
A-D 0.31 ± 0.10 −3.90 ± 0.41 0.01 ± 0.00 −0.08 ± 0.02 7.1 hrs
LHL 0.42 ± 0.10 −2.94 ± 0.31 0.01 ± 0.01 −0.06 ± 0.02 37.2 sec

Table II
RESULTS ON UW DATA SET. BT = BOOSTING WITH TREES,

BC=BOOSTING WITH CLAUSES, M-S=MOTIF WITH SHORT RULES,
M-L=MOTIF LONG RULES, A-D=HAND-CODED RULES WITH

DISCRIMINATIVE LEARNING, LHL=LIFTED HYPERGRAPH LEARNING
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Figure 2. Number of trees used for inference vs. conditional log-likelihood
over all examples in the UW-data set.

this data set to understand the impact of number of trees

on the performance of the boosting algorithms. Figures 2

and 3 present the CLL and AUC-PR values averaged over

30 runs as a function of the number of trees. As can be
seen, CLL values improve as the number of trees increase.

This is due to the fact that adding more trees essentially

amounts to moving the likelihood of the examples towards

1. On the other hand, the AUC-PR values increase for the

first few trees. After a small amount of trees (in this case

around 6), the value seem to attain a local optimum. In all

our experiments, we observed that increasing the number

of trees beyond 20 had no significant impact in AUC-PR
values. Our results show that with a small number of trees,

the boosting based methods are able to achieve reasonable

predictive performance.

Cora Entity Resolution

The Cora dataset, now a standard dataset for citation

matching, was first created by Andrew McCallum, later

segmented by Bilenko and Mooney [24], and fixed by

Poon and Domingos [25]1. In citation matching, a group

is a set of citations that refer to the same paper, and a

nontrivial group contains more than one citation [25]. The

1Available for download at http://alchemy.cs.washington.edu/papers/-
poon07
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Figure 3. Number of trees used for inference vs. AUC-PR over all
examples in the UW-data set.

Cora dataset has 1,295 citations and 134 groups where

almost every citation in Cora belongs to a nontrivial

group; the largest group contains 54 citations. It contains

the predicates: HasWordAuthor, HasWordTitle,

HasWordVenue, Title, Venue, Author.

For Cora, we learn a joint model over SameBib,

SameVenue, SameTitle and SameAuthor. Since this

dataset is large, to speedup learning we sampled 25% of the

examples during every gradient step for MLN-BT. Similar

to the UW dataset, we used a handcoded MLN(B+N+C+T)

for Cora presented by Singla et al. [26]. We evaluated all

the models jointly over the four target predicates given

the evidence predicates. We used the queryEvidence flag

for Alchemy weight learning and inference. As with the

previous case, we could not get BUSL to run on this data

set.

We performed 5-fold cross-validation and averaged the
results over all the folds. The AUC-PR and CLL values are

presented in Table III. MLN-BT has a slightly lower per-

formance compared to MLN-BC since we need longer rules

to accurately cluster entities. The entity-resolution task re-

quires rules such as Title(B1,T1), Title(B2,T2),

SameBib(B1,B2) → SameTitle(T1,T2) which the

greedy approach used in boosting may never find. Since

any subset of the given rule would have little impact on

the squared error, MLN-BT never learn such rules. MLN-

BT scores two literals at a time for a given node and as a

result learns short rules that only capture common words

between the titles. MLN-BC on the other hand searches

for clauses of length 3 and hence may learn longer rules.

Nevertheless, both methods are significantly better than other

MLN learning methods. While structural Motifs and LHL

methods are comparable when predicting the SameAuthor

relationship, our boosting-based methods are significantly

better for all the other relationships.



AUC-PR CLL

Algorithm SameBib SameVenue SameTitle SameAuthor SameBib SameVenue SameTitle SameAuthor

MLN-BT 0.96 ± 0.02 0.56 ± 0.17 0.71 ± 0.20 0.96 ± 0.04 −0.39 ± 0.04 −5.32 ± 1.88 −8.09 ± 2.97 −0.29 ± 0.14

MLN-BC 0.96 ± 0.02 0.68 ± 0.09 0.82 ± 0.13 0.98 ± 0.02 −0.33 ± 0.06 −5.12 ± 3.86 −11.18 ± 7.28 −0.60 ± 0.39

Alch-G 0.63 ± 0.17 0.45 ± 0.11 0.54 ± 0.14 0.90 ± 0.05 −5.58 ± 1.49 −4.27 ± 0.96 −5.14 ± 1.39 −8.87 ± 0.37

Alch-D 0.63 ± 0.17 0.48 ± 0.12 0.58 ± 0.16 0.92 ± 0.06 −4.95 ± 0.06 −4.08 ± 1.14 −4.34 ± 0.82 −3.32 ± 1.82

Motif-S 0.63 ± 0.16 0.45 ± 0.10 0.61 ± 0.17 0.93 ± 0.09 −2.54 ± 1.45 −1.80 ± 1.57 −2.79 ± 1.36 −1.57 ± 1.63

LHL 0.63 ± 0.17 0.45 ± 0.10 0.52 ± 0.15 0.91 ± 0.04 −5.99 ± 1.60 −4.20 ± 0.97 −5.11 ± 1.41 −8.80 ± 0.34

Table III
RESULTS ON THE CORA TESTBED.

AUC-PR CLL

Algorithm workedUnder genre gender workedUnder genre gender

MLN-BT 0.90 ± 0.07 0.94 ± 0.08 0.45 ± 0.06 −0.18 ± 0.06 −0.20 ± 0.09 −0.62 ± 0.05

MLN-BC 1.00 ± 0.00 1.00 ± 0.00 0.39 ± 0.07 −0.11 ± 0.04 −0.12 ± 0.08 −0.84 ± 0.21

RDN-B 0.99 ± 0.02 0.91 ± 0.12 0.46 ± 0.18 −0.88 ± 0.20 −0.25 ± 0.22 −0.76 ± 0.16

BUSL 0.89 ± 0.11 0.94 ± 0.08 0.44 ± 0.08 −0.56 ± 0.05 −0.27 ± 0.09 −0.69 ± 0.01

LHL 1.00 ± 0.00 0.37 ± 0.09 0.39 ± 0.12 −0.02 ± 0.01 −1.13 ± 0.23 −0.73 ± 0.05

Motif-S 0.56 ± 0.16 0.52 ± 0.29 0.48 ± 0.08 −2.73 ± 1.66 −3.99 ± 2.70 −0.71 ± 0.08

Motif-L 0.48 ± 0.27 0.39 ± 0.03 0.46 ± 0.08 −2.30 ± 1.16 −2.32 ± 1.15 −0.69 ± 0.06

Table IV
RESULTS ON IMDB DATA SET

IMDB

The IMDB dataset was first used by Mihalkova and

Mooney [10] and contains five predicates: actor,

director, genre, gender and workedUnder. We

do not evaluate the actor and director predi-

cates as they are mutually exclusive facts in this

dataset and easy to learn for all the methods. Also

since gender can take only two values, we convert the

gender(person,gender) predicate to a single argu-

ment predicate female_gender(person). Following

[11], we omitted the four equality predicates. We performed

five-fold cross-validation using the folds generated by Mi-

halkova and Mooney [10] and averaged the results across all

the folds. We perform inference over every predicate given

all other predicates as evidence.

Table IV shows the AUC values for the three predicates:

workedUnder, genre and gender. The boosting ap-

proaches perform better on average, on both the AUC and

CLL values, than the other methods. The BUSL method

seems to exhibit the best performance of the prior structure-

learning methods in this domain. Our boosting algorithms

seem to be comparable or better than BUSL on all the

predicates. For workedUnder, LHL has comparable AUC

values to the boosting approaches, while it is clearly worse

on the other predicates. There is no significant difference

between the two versions of the boosting algorithms.

The other interesting question that we consider in this

domain is: how do boosted MLNs compare against boosted

RDNs [14]? To answer this question, we compared our pro-

posed methods against boosted RDNs (RDN-B). As can be

seen from Table IV, the MLN-based methods are marginally

better than the boosted RDNs for predicting workedUnder

predicate, while comparable for others. It should be noted

that the goal of this work is not to justify the use of MLNs

instead of RDNs, but to derive a new and effective learning

algorithm for MLNs.

WebKB

The WebKB dataset was first created by Craven

et al. [27] and contains information about department

webpages and the links between them. It also con-

tains the categories for each webpage and the words

within each page. This dataset was converted by Mi-

halkova and Mooney [10] to contain only the cate-

gory of each webpage and links between these pages.

They created the following predicates: Student(A),

Faculty(A), CourseTA(C, A), CourseProf(C,

A), Project(P, A) and SamePerson(A, B) from

these webpages. The textual information was ignored. We

removed the SamePerson(A, B) predicate as it only had

groundings with both the arguments being exactly same (i.e.,

SamePerson(A,A)). We evaluated all the methods over

the CourseProf and CourseTA predicates since all other

predicates had trivial rules such as courseTA(C,A) →
Student(A). We performed 4-fold cross-validation where

each fold corresponds to one university. We do not present

the performance of BUSL with default setting and Motif-

S (short rules) in this domain because the algorithms were

unable to learn any useful rules in our formulation and hence

had a AUC-PR value of 0.
Table V presents the results of the different algorithms in

this domain. As with UW data set we present two different

cases here. First is the data set with all the negative examples



in the test set and the second is the data set with twice

the number of negatives as positives. Similar to the earlier

case, in the test set with all negatives, current MLN methods

such as LHL and Motifs exhibit good performance for

the CLL evaluation measure for both the courseTA and

courseProf predicates. On the other hand, the AUC-PR

values are significantly lower than that of our boosting-based

methods. This difference is magnified when we limit the

number of negatives to twice the number of positives. In

the latter case, even the CLL for the current MLN structure

learning algorithms are significantly worse than our boosting

methods. There is no statistically significant difference be-

tween the performance of the boosting methods. Our current

results show that employing a test set with a reasonable

distribution of the classes yields a better insight into the

difference in the performance of the learning algorithms.

Precision-Recall curves

We also present the PR curves for the first fold on

workedUnder predicate in IMDB in Figure 5, genre

predicate in IMDB in Figure 6, SameBib predicate in Cora

in Figure 7, the SameVenue predicate in Cora in Figure 8

and the courseTA predicate in Web-KB in Figure 9. We

only show the curves for the best previously published

structure-learning methods. Our algorithms exhibit a clear

superior performance especially in the high-recall regions.

CONCLUSION

Since MLNs provide clear semantics and convergent

inference approaches [28], they are among the most popular

SRL methods. But learning the structure of MLNs remains

one of the hardest and challenging problems. We address

the problem of structure learning by using gradient-boosting

with the added benefit of learning weights simultaneously. A

similar approach has been taken in the propositional world

for learning Markov Networks by Lowd and Davis [29].

In their work, they learn Markov network structure as a

series of local models where each local model is a set

of decision trees. Our proposed approach can be seen as

generalizing their approach to learning MLNs by using

functional gradient boosting and extending the work of

Natarajan et al. [14], who learned RDNs as a series of

first-order regression trees. Building upon the success of

pseudo-likelihood methods for MLNs, we derived tree-based

and clause-based gradient boosting algorithms. We evaluated

the algorithms on four standard datasets and established the

superior performance of the boosting method across all the

domains and all the predicates. Our methods’ restriction that

the structure be only Horn clauses did not affect the results.

One future direction is to derive the functional gradients

for the full likelihood instead of the pseudo-likelihood

and learn the trees/clauses for jointly predicting several

predicates. Another direction is to induce a simpler MLN

that approximates the learned set of clauses/trees; this will

ensure that the learned model is interpretable as well. An

additional avenue for future work is learning with partially

observed data or even in open-world domains. Finally, it is

an interesting future direction to demonstrate the usefulness

of boosting in additional real-world tasks.
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