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Abstract—Magnetic resonance imaging (MRI) has emerged
as an important tool to identify intermediate biomarkers of
Alzheimer’s disease (AD) due to its ability to measure regional
changes in the brain that are thought to reflect disease severity
and progression. In this paper, we set out a novel pipeline that
uses volumetric MRI data collected from different subjects as
input and classifies them into one of three classes: AD, mild
cognitive impairment (MCI) and cognitively normal (CN). Our
pipeline consists of three stages – (1) a segmentation layer where
brain MRI data is divided into clinically relevant regions; (2)
a classification layer that uses relational learning algorithms to
make pairwise predictions between the three classes; and (3)
a combination layer that combines the results of the different
classes to obtain the final classification. One of the key features
of our proposed approach is that it allows for domain expert’s
knowledge to guide the learning in all the layers. We evaluate our
pipeline on 397 patients acquired from the Alzheimer’s Disease
Neuroimaging Initiative and demonstrate that it obtains state-of-
the-art performance with minimal feature engineering.

Index Terms—Machine Learning, Medical Imaging, fMRI,
Classification, Probabilistic Reasoning

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegener-
ative condition that results in the loss of cognitive abilities
and memory, with associated high morbidity and cost to
society [1]. Accurate diagnosis of AD, as well as identification
of the prodromal stage, mild cognitive impairment (MCI)
is an important first step towards a cure and has been a
focus of many neuroimaging studies. Magnetic resonance
imaging (MRI) is a neuroimaging method that can be used
for visualization of brain anatomy with a high degree of
spatial resolution and contrast between brain tissue types.
Structural MRI methods have been used to identify regional
volumetric changes in brain areas known to be associated with
AD and MCI, demonstrating the utility of such methods for
studying this disease [1], [2]. In particular, structural MRI has
identified AD- and MCI-associated cross-sectional differences
and longitudinal changes in volume and size of specific brain
regions, such as the hippocampus and entorhinal cortex, as
well as regional alterations in gray matter, white matter and
cerebrospinal fluid (CSF) on a voxel-by-voxel basis [2]. More
recently, MRI data have become the focus of machine learning
experiments aimed at classifying subjects as AD vs cognitively

normal (CN) or MCI vs CN [3]. Recent approaches employ
network analysis [1], [4] or use machine learning directly on
the voxels [2], [5]. These approaches, however, only consider
a two-way classification paradigm, AD vs CN, in which a
clear decision boundary between these categories can be easily
obtained. In reality, this progressive neurodegenerative disease
is a continuum, with subjects spanning different stages from
MCI to AD, making classification much more difficult.

We develop a novel data mining approach for the signifi-
cantly more challenging problem of automatically classifying
the subjects into one of three categories 〈AD, MCI, CN〉
given volumetric structural MRI data. Specifically, we propose
a novel knowledge-based approach that allows the combination
of state-of-the-art MRI data processing and modern machine
learning techniques. Our pipeline consists of three stages –
first is the segmentation stage that takes volumetric brain
MRI data as an input and is then divided into anatomically
relevant regions, second is a relational mining stage that uses
the different segmenting information obtained over the image
to build a series of binary classifiers and the final stage is
the combination stage that combines the different classifiers
to provide a single prediction.

The idea underlying this pipeline is simple and akin to
the classical mixture of experts idea: rather than choose a
single segmentation technique, we combine multiple segmen-
tation techniques and different imaging data. For example,
the knowledge-based segmentation method uses an atlas-
based parcellation of the data into 116 anatomically relevant
regions from which region-specific volumetric data can be
extracted. Alternatively, one could employ a knowledge-free
segmentation such as EM [6] that could result in different
number of segments for different subjects depending on their
brain characteristics . Hence, there is a necessity for employing
learning algorithms that can be generalized across different
number of segments or different modalities of the images. For
this purpose, we employ a recently developed Statistical Rela-
tional Learning (SRL) [7] algorithm that can learn the structure
and parameters of the combined model simultaneously [8].
SRL deals with machine learning in relational domains where
observations can be missing, partially observed, and/or noisy.
It thus addresses the challenge of applying statistical inference



and learning approaches to problems which involve rich col-
lections of objects linked together in complex relational net-
works. Given the importance of the brain network connectivity
in identifying AD, SRL becomes a natural choice due to its
ability to model relations such as neighborhood information.
Note that if we employ a propositional classifier, we have to
assume that all the subjects have equal number of segments,
which is not the case in knowledge-free segmentations. As
we show in our experiments, our methods outperform propo-
sitional classifiers. Also, the ability to use domain knowledge
is one of the attractive features of SRL algorithms and is an
essential attribute from a medical imaging perspective since
the knowledge gained from decades of medical research can
be very useful in guiding learning/mining algorithms.

Most SRL approaches are based on predicate logic that
essentially employ binary classification while we are address-
ing the more challenging three-way classification. In order to
still employ existing SRL approaches, we propose to solve
this problem as a series of binary classification tasks (i.e.,
AD vs CN, AD vs MCI and MCI vs CN). This is inspired
from the classical One-vs-One (OvO) classification approach
that has long demonstrated to be very successful in machine
learning [9], [10]. The results are compared against a One-vs-
all strategy (OvA) where a classifier is learned for each class
separately and each class is discriminated from the others.

We evaluate the pipeline on a real-world dataset, namely the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
of 397 subjects. It should be mentioned that in the experiments
we report no subject selection took place (to identify good
cases vs controls) and instead we used the complete set of sub-
jects. This particular group of 397 subjects was selected based
upon having both structural MRI and functional metabolic
positron emission tomography data as part of a separate
study. Similarly, we do not employ a careful feature selection
but rather simply use resulting average tissue-type volume
measurements obtained from the segmentation algorithms as
features for our classification. Our results demonstrate that we
have comparable or better performance than the current meth-
ods based upon individual binary and collective classification
tasks with minimal feature engineering.

II. THE PIPELINE

We face the following problem:
Given a set D of tuples {〈x1, y1〉, · · · 〈xn, yn〉}, where each

xi is a 3D voxel image corresponding to a subject and yi is a
class label (AD, MCI or CN). Find a function h that predicts
yi given xi such that the predictions match the data drawn
from the distribution that D has been drawn from.

Indeed, one is tempted to apply a standard classifcation
approach. That is, we assume examples in D are drawn i.i.d.
and assume that there is a function g such that g(x) = y,
for every 〈x, y〉 drawn from the distribution, and we aim
to derive a function h that approximates g as closely as
possible. Unfortunately, for a problem as complex as the 3-way
classification of AD the standard approaches do not capture the

Fig. 1. Graphical Representation of the Pipeline.

visual aspects of the image data. They are, however, considered
crucial when an MRI scan is observed by a physician.

Instead, we model the function g as a three stage pipeline
i.e. g(x) is approximated by h3(h2(h1(x))). Each stage hi of
the pipeline is designed to expose interesting and informative
aspects of the data. We model the search for building the
pipeline as a sequential search over individual stages. In
particular we solve three problems (1)-(3):

(1) Given the dataset D generate the dataset D′ =
{〈h1(x1), y1〉, · · ·, 〈h1(xn), yn〉} where each h1(xi) is a
representation of the image xi segmented into regions.

Each h1(xi) is a set of vectors 〈〈si,1, f(si,1)〉 . . .
〈si,m, f(si,m)〉〉 where each si,j is a segmented region and
f(si,j) is a vector of features and neighborhood information
for si,j . Intuitively, h1(xi) can be viewed as a graph where
each si,j is a node, and there is an edge between two nodes if
the corresponding regions are neighbors in the original image.
An important thing to note here is that two examples in D′

need not have the same number of regions. Also, two regions
need not have the same number of features (because each
region can have a different set of neighbors). This makes
it difficult — if not impossible — to represent D′ by a
flat feature vector without extensive feature engineering. A
relational representation, however, is ideally suited.

(2) Given the dataset D′ train a relational probabilistic
classifier on D′ that given example 〈h1(x), y〉 generates ex-
ample 〈h2(h1(x)), y〉 where h2(h1(x)) is a distribution over
the classes AD, MCI and N.

A single classifier in this stage can be replaced by a set of
classifiers trained to produce a distribution between every pair
of classes (OvO). As mentioned earlier, we use a relational
classifier for this purpose. Since D′ is a relational database,
we cannot use propositional classifiers and have to resort
to relational methods. Additionally relational methods are
extremely well suited to leverage neighborhood information.

(3) Given the classifiers learned from the previous stage,
i.e., h2 for the three different combinations design a combi-
nation function h3 that combines their results.

The resulting pipeline (1)-(3) is illustrated in Fig. 1. Next
we explain each of the stages (1)-(3) in detail.

A. Stage 1 — Image Segmentation

To segment volumetric brain MRI data into a number of re-
gions, we used two different segmentation techniques, namely
(1) a knowledge based segmentation method using an anatomic
atlas and (2) a knowledge-free segmentation technique based



on Expectation Maximization (EM). (1) parcellates the MRI
data into different anatomically relevant regions whereas (2)
divides the brain MRI data into different homogeneous regions
based on T1-weighted voxel signal intensity (which represents
the combination of three different cerebral tissues: gray matter
(GM), white matter (WM) and cerebro-spinal fluid (CSF)).
(1) incorporates the knowledge of anatomical parcellations of
volumetric brain data whereas the output segments generated
by (2) are free from a priori knowledge and clinical anatomical
significance.

Atlas-based Segmentation:
The individual subject MR images were segmented into

GM, WM and CSF regions, then spatially normalized to
Montreal Neurologic Imaging (MNI) space and modulated
with the Jacobian determinants of the warping procedure
to generate volumetric tissue maps using the Dartel high-
dimensional warping and the SPM8 new segment procedure as
implemented in the VBM8 toolbox1. The resulting modulated
tissue volumetric maps were further parcellated into 116
regions using the Automated Anatomic Label (AAL) atlas
[11], [12] as implemented by the wfu pickatlas[13]. Fig. 2
shows some of the AAL regions. The volumetric data from
each AAL region was used as features for input of SRL based
classifiers. We present these features in the next section.

Fig. 2. AAL atlas segmentation showing the different regions of interest in
the brain (Best viewed in color)

Expectation Maximization: For EM, we use voxel in-
tensity of spatially normalized volumetric T1-weighted MRI
to find natural clusters within images. EM depends on soft
assignment of voxels to a given set of partitions. Every voxel
is associated with every partition through a system of weights
based on how strongly the voxels should be associated with a
particular partition. The Expectation step is defined by:

E[zij ] =
p(x = xi|µ = µj)∑k

n=1
p(x = xi|µ = µn))

=
e−(xi−µj)

2/(2σ2)∑k

n=1
e−(xi−µn)

2/(2σ2)

This equation states that the expectation or weight zij for voxel
i with respect to partition j equals the probability that x is
voxel xi given that µ is partition µj divided by the sum over
all partitions k of these probabilities. The σ2 in the second
expression represents the covariance of the voxel intensity.
Once the E-step has been performed and every voxel has a
weight or expectation for each partition, the Maximization
step begins. This step is defined by µj ←

∑m

i=1
E[zij ]xi .

This equation states that the partition value j is changed to

1http://dbm.neuro.uni-jena.de/vbm.html

the weighted average of the voxel values where the weights
are the weights from the E step for this particular partition.
This EM cycle is repeated for each new set of partitions
until the partition values no longer change by a significant
amount. Note that the EM algorithm assumes that the initial
partition values are close to the natural clusters of the given
voxels. We select the initial partitions randomly. Then, we
run the EM algorithm for a given number of partitions and
choose the number of partitions having minimum Akaike
Information Criterion (AIC) [14]. We assign each voxel to a
particular partition having largest posterior probability for the
voxel, weighted by component probability. Finally, we find the
segments or connected components from each volumetric T1-
weighted MRI by assigning the neighboring voxels belonging
to the same partition into the same segment.

Now, we have everything necessary to begin stage (2).

B. Stage 2 — Boosted Relational Models

Recall that the output of the stage (1) is the complex
network of the brain with information about each region. x.
Now, to solve problem (2), we employ functional gradient
boosting.Assume that the training examples are of the form
(xi, yi) for i = 1, ..., N and yi ∈ {1, ...,K}. The goal
is to fit a model P (y|x) ∝ eψ(y,x). The standard method
of supervised learning is based on gradient-descent where
the learning algorithm starts with initial parameters θ0 and
computes the gradient of the likelihood function. Dietterich et
al. [15] used a more general approach to train the potential
functions based on Friedman’s [16] gradient-tree boosting
algorithm where the potential functions are represented by
sums of regression trees that are grown stage-wise. Functional
gradient ascent starts with an initial potential ψ0 and iteratively
adds gradients ∆i. This is to say that after m iterations, the
potential is given by

ψm = ψ0 + ∆1 + ...+ ∆m (1)

Here, ∆m is the functional gradient at episode m and is

∆m = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (2)

where ηm is the learning rate. Dietterich et al. suggested
evaluating the gradient at every position in every training
example and fitting a regression tree to these derived exam-
ples i.e., fit a regression tree hm on the training examples
[(xi, yi),∆m(yi;xi)]. They point out that although the fitted
function hm is not exactly the same as the desired ∆m, it will
point in the same direction (assuming that there are enough
training examples). So ascent in the direction of hm will
approximate the true functional gradient. The same idea has
later been used to learn relational models [8]. Hence, the main
idea in the gradient-tree boosting is to fit a regression-tree
on the training examples at each gradient step. In this work,
we replace the propositional regression trees with relational
regression trees.

The functional gradient with respect to ψ(yi = 1;xi) of
the likelihood for each example 〈yi,xi〉 can be shown to be:
∂ logP (yi;xi)
∂ψ(yi=1;xi)

= I(yi = 1;xi) − P (yi = 1;xi), where I is



the indicator function that is 1 if yi = 1 and 0 otherwise.
Following prior work [8], we use Relational Regression Trees
(RRTs)[17] to fit the gradient function for every training exam-
ple. These trees upgrade the attribute-value representation used
within classical regression trees. Each RRT can be viewed as
defining several new feature combinations, one corresponding
to each path from the root to a leaf. The resulting potential
functions still have the form of a linear combination of features
but the features can be quite complex.

At a fairly high level, the learning of RRT proceeds as
follows: The learning algorithm starts with an empty tree and
repeatedly searches for the best test for a node according
to some splitting criterion such as weighted variance. Next,
the examples in the node are split into success and failure
according to the test. For each split, the procedure is recur-
sively applied further obtaining subtrees for the splits. We use
weighted variance on the examples as the test criterion. In our
method, we use a small depth limit (of at most 3) to terminate
the search. In the leaves, the average regression values are
computed. Finally, to prepare for stage (3), we represent the
distribution over the classes as a set of RRTs on the features.
For example, when we classify AD vs. CN patients, we learn
20 RRTs for predicting if the person has AD. Since it is a
binary classification, it is sufficient to learn one set of 20 trees
for the class AD. Similarly, we learn two other sets of 20
trees each for predicting AD vs MCI and CN vs MCI leading
to a final model with three sets of 20 trees each. In the case
of OvA, there will be three sets of 20 trees - one each for
predicting AD, MCI, and CN given the rest of the classes.

Now, we have everything together for the final stage (3) of
our pipeline.

C. Stage 3 — Combining Classifiers

The result of previous step is a set of probabilistic classifiers
for each pair of classes from AD, MCI and CN (in essence,
3 classifiers). For a detailed review, see [9]. Let us denote
each classifier as ck, k = 1, 2, 3. We have used the following
combination functions:
• Voting: Each ck outputs a prediction and the class has the

maximum vote i.e., argmaxc
∑
k[I(yk = c)], where yk is the

predicted label of the kth classifier and c is the class.
• Weighted Voting: In this case, class = argmaxc

∑
k[wk ·

P (yk = c)]. We derived a gradient for the log likelihood of
the training data and also used a grid search over the weight
space.
• Pairwise Coupling: We considered the PC method [18]

where the goal is to determine the posterior over each of the
classes from the estimated joint distributions.
• Classifier method: We used the output of each OvO clas-

sifier to train a proposional classifier such as SVM, Bagging
etc. that combines the output of these different classifiers to
make its final prediction. The input of the new classifier is
essentially the predictions of the classifiers of the previous
stage. More precisely, the input is a set P = 〈p11, p12, ..., p33〉
for each patient i, where pkj is the posterior probability of the
class j as predicted by the classifier k. Hence, we aim to learn

a function h3 such that h3(P ) = yi where yi is one of AD,
CN or MCI. The advantage is that we can combine the OvO
results in a non-linear fashion.
The OvA strategy employs three classifiers. Each of them
discriminate class j from j′ ∈ class \ j. We use a simple
aggregation method called as Maximum confidence strategy
which is similar to the voting strategy presented earlier. The
output class is taken from the classifier that has the largest
posterior probability argmaxc pc. For more details on the
OvA aggregation, please refer to [9].

Given the above combination functions, the net result is the
prediction of the disease state for the patient given the T1
weighted scan. Hence the resulting classifier h is essentially a
nested classifier h3(h2(h1(x))); the final output of our pipeline
(1)-(3).

III. EXPERIMENTAL SETUP

ADNI Subjects. Data used in this study were obtained
from the Alzheimer’s disease Neuroimaging Initiative (ADNI)
database (www.loni.ucla.edu/ADNI) sponsored by the NIH
and industrial partners. The primary goal of ADNI is to test
whether serial MRI, PET, other biological markers, and clin-
ical and neuropsychological assessment can measure the pro-
gression of mild cognitive impairment and early Alzheimer’s
disease. Further information can be found at www.adni-
info.org. We used data available from 102 CN (average age
75.8, 62 male, 40 female), 92 AD (average age 75.5, 55 male,
37 female), and 203 MCI (average age 74.8, 137 male, 66
female) participants.

Set up. Each subject’s T1-weighted MRI data was used
(2122945 voxels). We used the spatially normalized voxel
data to run EM and the pre-processed modulated segmentation
maps for the AAL segmentation algorithm. For each segment,
several features were extracted - avgWMI, avgGMI, avgCSFI
(which are the average value of intensity for the WM, GM and
CSF respectively), size, centroid and spread of each segment.
The centroid is a three-dimensional attribute. Also included
were the neighborhood information about the segments, where
the number of neighbors for each segment can be very different
and necessitates the use of SRL-based algorithms.

We used 10-fold cross validation in all our experiments.
For the OvO based learners, we created training sets for each
classifier (AD vs CN, AD vs MCI, MCI vs CN). Hence the
cases and controls were chosen separately for each classifier.
To ensure correctness of comparison, we went through the
entire data base and created 10 different folds such that each
subject was in the test set for one fold and in the training for
the rest. Given this, for each fold, we used the training set data
to create three different training sets for the OvO classifier. For
instance, when creating the training set for the first fold of AD
vs CN classifier, we remove all the subjects who had MCI in
that training fold. This ensured that we trained on the same set
of subjects for all the three classifiers in each fold and that the
test examples were never seen by any of the three classifiers.

Once the individual classifiers were learned, we used the
common training set to learn the combination function for



combining their predictions. The common training set is the
union of the three training sets and do not contain a single
example from the test fold. Once the combination function is
learned the predictions were made on the test fold and the
results averaged over 10 runs. For the OvA classifier, things
are simpler in the sense that we can use just the 10 training
and test sets and evaluate the performance as there is no need
for creating smaller training sets from the given training set.
For the propositional classifiers we used the default functions
of Weka and LibSVM to create the 10 folds.

It should be reiterated that these training and test folds were
chosen at random – no careful selection of cases vs controls
was performed. Also, we did not perform any major feature
selection. The features of each segment were used as they
are. We preprocessed the data only to convert it into predicate
logic format. Also, since most SRL methods are based on
predicate logic and almost all the features are real numbers in
our problem, we had to discretize these features. Each feature
was discretized into several bins based on the histograms
of values and natural points for discretization were picked
automatically using filters in Weka. Using domain knowledge
in this step (clinically relevant discretizations) remains one
very interesting future direction.

IV. RESULTS

We compare several versions of the algorithms in this
section, including the list of propositional classifiers on the
AAL segmented data and the relational classifiers using both
segmentation methods (EM and AAL) as well as different
combination functions. To understand the need for segmenta-
tion, we used modulated gray matter voxel data with LibSVM.
We report these results as well. We did not use any segmenta-
tion algorithm for this setting of SVM, which we will denote
as SVMMG.
• Propositional Classifiers - Naive Bayes (NB), Decision

Trees (J48), SVMs, AdaBoost and Bagging on the AAL data
and SVMs with gray matter data (that we denote as SVMMG).
• Relational OvO with AAL segmentation - Using vari-

ous combination functions: Weighted voting with grid search
(AALGS), gradient descent (AALGD), bagging (AALB), Ad-
aBoost (AALA) and Pairwise coupling (AALPC).
• Relational OvO with EM segmentation - Also using

various combination functions: Weighted voting with grid
search (EMGS), gradient descent (EMGD), bagging (EMB),
AdaBoost (EMA) and Pairwise coupling (EMPC).
• Relational OvA - With AAL (OvAAAL) and EM

(OvAEM).
The best parameter settings for propositional classifiers are

presented in Figure 3.c. First, we compared the propositional
classifiers with AAL segmentation. Results are presented in
Figure 3.a. We used Weka and used the multi-class classifica-
tion setting. As can be seen from the figure, the propositional
algorithms do not show a good performance using the AAL
data. We also present the results of running LibSVM on
the voxel data (i.e., without any segmentation - SVMMG).
As can be seen, the performance is slightly better but still

is not comparable to the performance of the best relational
+ segmentation algorithm (AAALB) which is presented for
comparison purposes. Measuring accuracy over the entire data
set can be misleading [19], hence, we present AUC-ROC.

We also evaluate different versions of the relational learning
algorithms. Results are presented in Figure 3.b. We also
included the OvA classifiers with AAL and EM in the results.
It can be seen that the best performing algorithms use AAL and
some combination function based on a classifier. AALB has
the best results among the different algorithms presented in the
figure. The other classification functions did not have nearly as
good a performance as bagging but are significantly better than
the propositional algorithms. This clearly shows that treating
the problem as a multi-class classification problem may not
be the best solution (OvA methods also do not perform well).
Instead, posing the problem as a slightly more complex OvO
problem significantly improves performance.

In general, the relational methods have a superior perfor-
mance compared to the propositional algorithms with AAL
segmentation. Note that AALPC which is the method that
uses pairwise coupling as against a classifier has a competitive
performance compared to AALB. This justifies observations
made earlier [9] that pairwise coupling can be a very promising
method to combine multiple OvO classifiers. The knowledge-
based segmentation algorithm of AAL also has a higher per-
formance than the knowledge-free EM algorithm. It remains
an interesting future direction to explore the use of domain
knowledge to guide the EM algorithm to better segment the
images in order to increase performance. While this may not
be very useful in our current task, in other problems such
as identifying MCI patients who are likely to develop AD,
it may help to combine the clinical knowledge to guide the
segmentation algorithm and the classifier, which is something
that our method is prepared to do.

We present the segments that are used in our learned models
in Figure 4. These are the regions that discriminate between
the classes as identified by our models and correspond to the
medically relevant regions as verified by our neuroradiologists.
The first, second and third images correspond to predicting
AD (vs CN), AD (vs MCI) and MCI (vs CN) respectively.
Our proposed algorithm shows consistency in detecting the
regions that are known clinically to be affected by AD [1]
(regions of interest – for example, hippocampus, occipital,
parietal and temporal regions). This shows that the learning
algorithms perfectly compliment the segmentation algorithms
in this task.

Our results show that SRL algorithms better interact with
the segments created by AAL. It is also clear that while
learning to predict three classes, individual classifiers are
themselves quite predictive. Finally, it is very encouraging
that the algorithms are able to identify the segments that are
known to be clinically interesting in predicting AD. Most of
the methods to-date have computed the correlation between
the regions for predicting AD, but our methods automatically
identify the interesting segments for this 3-class task.



Fig. 3. Classification performances in terms of “Area under the ROC curve” of the different algorithms: (a) propositional classifiers (blue)
compared against the relational AALB (red), and (b) relational classifiers. (c) Parameter settings for propositional classifiers

Fig. 4. Predictive segments as identified by our pipeline (different colors
indicate different regions).

V. CONCLUSION AND FUTURE WORK

We have addressed a challenging three class classification
problem from MRI images. Specifically, we proposed to
solve the problem of classifying patients into one of AD,
MCI or CN using a pipeline that consists of three different
stages. Our extensive experimental results demonstrate that
the pipeline obtains state-of-the-art performance with minimal
feature engineering. The pipeline is the first application of
SRL to MRI classification, and the results clearly illustrate
the benefits of using a relational representation in the first and
second stage of the pipeline. It naturally accounts for varying
numbers of segments, suits a knowledge-based segmentation,
and scales well from the two-class to the three-class prob-
lem; while having a reasonable performance in the two-class
setting, propositional approaches yield a significantly lower
performance in the three-class case.

Our work provides several interesting avenues for future
work. One of our future directions is to use the knowledge of
the domain experts in guiding the segmentation algorithms to
identifying more clinically relevant regions. Due to the use of
logical variables and unification, statistical relational models
generalize well. Hence, we plan to apply the algorithms to
more challenging tasks such as identifying those MCI patients
who are affected by AD later in life. Our initial results
indicate that clinical data can be very useful for this task
when combined with MRI scans. We plan to combine the two
different data types to determine whether their combination is
an improvement over either of them separately.
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