A Machine Learning Pipeline for Three-way Classification of Alzheimer Patients from Structural Magnetic Resonance Images of the Brain

Srirama Natarajan, Saket Joshi*, Baidya Saha, Adam Edwards
Tushar Khot †, Elizabeth Moody, Kristian Kersting **, Christopher T. Whitlow, Joseph A. Maldjian
Wake Forest School of Medicine, USA, * Oregon State University, USA, † University of Wisconsin-Madison, USA, ** Fraunhofer IAIS, Germany

Abstract—Magnetic resonance imaging (MRI) has emerged as an important tool to identify intermediate biomarkers of Alzheimer’s disease (AD) due to its ability to measure regional changes in the brain that are thought to reflect disease severity and progression. In this paper, we set out a novel pipeline that uses volumetric MRI data collected from different subjects as input and classifies them into one of three classes: AD, mild cognitive impairment (MCI) and cognitively normal (CN). Our pipeline consists of three stages – (1) a segmentation layer where brain MRI data is divided into clinically relevant regions; (2) a classification layer that uses relational learning algorithms to make pairwise predictions between the three classes; and (3) a combination layer that combines the results of the different classes to obtain the final classification. One of the key features of our proposed approach is that it allows for domain expert’s knowledge to guide the learning in all the layers. We evaluate our pipeline on 397 patients acquired from the Alzheimer’s Disease Neuroimaging Initiative and demonstrate that it obtains state-of-the-art performance with minimal feature engineering.

Index Terms—Machine Learning, Medical Imaging, fMRI, Classification, Probabilistic Reasoning

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative condition that results in the loss of cognitive abilities and memory, with associated high morbidity and cost to society [1]. Accurate diagnosis of AD, as well as identification of the prodromal stage, mild cognitive impairment (MCI) is an important first step towards a cure and has been a focus of many neuroimaging studies. Magnetic resonance imaging (MRI) is a neuroimaging method that can be used for visualization of brain anatomy with a high degree of spatial resolution and contrast between brain tissue types. Structural MRI methods have been used to identify regional volumetric changes in brain areas known to be associated with AD and MCI, demonstrating the utility of such methods for studying this disease [1], [2]. In particular, structural MRI has identified AD- and MCI-associated cross-sectional differences and longitudinal changes in volume and size of specific brain regions, such as the hippocampus and entorhinal cortex, as well as regional alterations in gray matter, white matter and cerebrospinal fluid (CSF) on a voxel-by-voxel basis [2]. More recently, MRI data have become the focus of machine learning experiments aimed at classifying subjects as AD vs cognitively normal (CN) or MCI vs CN [3]. Recent approaches employ network analysis [1], [4] or use machine learning directly on the voxels [2], [5]. These approaches, however, only consider a two-way classification paradigm, AD vs CN, in which a clear decision boundary between these categories can be easily obtained. In reality, this progressive neurodegenerative disease is a continuum, with subjects spanning different stages from MCI to AD, making classification much more difficult.

We develop a novel data mining approach for the significantly more challenging problem of automatically classifying the subjects into one of three categories (AD, MCI, CN) given volumetric structural MRI data. Specifically, we propose a novel knowledge-based approach that allows the combination of state-of-the-art MRI data processing and modern machine learning techniques. Our pipeline consists of three stages – first is the segmentation stage that takes volumetric brain MRI data as an input and is then divided into anatomically relevant regions, second is a relational mining stage that uses the different segmenting information obtained over the image to build a series of binary classifiers and the final stage is the combination stage that combines the different classifiers to provide a single prediction.

The idea underlying this pipeline is simple and akin to the classical mixture of experts idea: rather than choose a single segmentation technique, we combine multiple segmentation techniques and different imaging data. For example, the knowledge-based segmentation method uses an atlas-based parcellation of the data into 116 anatomically relevant regions from which region-specific volumetric data can be extracted. Alternatively, one could employ a knowledge-free segmentation such as EM [6] that could result in different number of segments for different subjects depending on their brain characteristics. Hence, there is a necessity for employing learning algorithms that can be generalized across different number of segments or different modalities of the images. For this purpose, we employ a recently developed Statistical Relational Learning (SRL) [7] algorithm that can learn the structure and parameters of the combined model simultaneously [8]. SRL deals with machine learning in relational domains where observations can be missing, partially observed, and/or noisy. It thus addresses the challenge of applying statistical inference
and learning approaches to problems which involve rich collections of objects linked together in complex relational networks. Given the importance of the brain network connectivity in identifying AD, SRL becomes a natural choice due to its ability to model relations such as neighborhood information. Note that if we employ a propositional classifier, we have to assume that all the subjects have equal number of segments, which is not the case in knowledge-free segmentations. As we show in our experiments, our methods outperform propositional classifiers. Also, the ability to use domain knowledge is one of the attractive features of SRL algorithms and is an essential attribute from a medical imaging perspective since the knowledge gained from decades of medical research can be very useful in guiding learning/mining algorithms.

Most SRL approaches are based on predicate logic that essentially employ binary classification while we are addressing the more challenging three-way classification. In order to still employ existing SRL approaches, we propose to solve this problem as a series of binary classification tasks (i.e., AD vs CN, AD vs MCI and MCI vs CN). This is inspired from the classical One-vs-One (OvO) classification approach that has long demonstrated to be very successful in machine learning [9], [10]. The results are compared against a One-vs-all strategy (OvA) where a classifier is learned for each class separately and each class is discriminated from the others.

We evaluate the pipeline on a real-world dataset, namely the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database of 397 subjects. It should be mentioned that in the experiments we report no subject selection took place (to identify good cases vs controls) and instead we used the complete set of subjects. This particular group of 397 subjects was selected based upon having both structural MRI and functional metabolic positron emission tomography data as part of a separate study. Similarly, we do not employ a careful feature selection but rather simply use resulting average tissue-type volume measurements obtained from the segmentation algorithms as features for our classification. Our results demonstrate that we have comparable or better performance than the current methods based upon individual binary and collective classification tasks with minimal feature engineering.

II. THE PIPELINE

We face the following problem:

Given a set D of tuples $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, where each x_i is a 3D voxel image corresponding to a subject and y_i is a class label (AD, MCI or CN). Find a function h that predicts y_i, given x_i such that the predictions match the data drawn from the distribution that D has been drawn from.

Indeed, one is tempted to apply a standard classification approach. That is, we assume examples in D are drawn i.i.d. and assume that there is a function g such that $g(x) = y$, for every (x, y) drawn from the distribution, and we aim to derive a function h that approximates g as closely as possible. Unfortunately, for a problem as complex as the 3-way classification of AD the standard approaches do not capture the visual aspects of the image data. They are, however, considered crucial when an MRI scan is observed by a physician.

Instead, we model the function g as a three stage pipeline i.e., $g(x)$ is approximated by $h_3(h_2(h_1(x)))$. Each stage h_i of the pipeline is designed to expose interesting and informative aspects of the data. We model the search for building the pipeline as a sequential search over individual stages. In particular we solve three problems (1)-(3):

1. Given the dataset D generate the dataset $D' = \{\langle h_1(x_1), y_1 \rangle, \ldots, \langle h_1(x_n), y_n \rangle\}$ where each $h_1(x_i)$ is a representation of the image x_i segmented into regions.

 Each $h_1(x_i)$ is a set of vectors $\langle s_{i,1}, f(s_{i,1}) \rangle \ldots \langle s_{i,m}, f(s_{i,m}) \rangle$ where each $s_{i,j}$ is a segmented region and $f(s_{i,j})$ is a vector of features and neighborhood information for $s_{i,j}$. Intuitively, $h_1(x_i)$ can be viewed as a graph where each $s_{i,j}$ is a node, and there is an edge between two nodes if the corresponding regions are neighbors in the original image. An important thing to note here is that two examples in D' need not have the same number of regions. Also, two regions need not have the same number of features (because each region can have a different set of neighbors). This makes it difficult — if not impossible — to represent D' by a flat feature vector without extensive feature engineering. A relational representation, however, is ideally suited.

2. Given the dataset D' train a relational probabilistic classifier on D' that given example $\langle h_1(x), y \rangle$ generates example $\langle h_2(h_1(x)), y' \rangle$ where $h_2(h_1(x))$ is a distribution over the classes AD, MCI and N.

 A single classifier in this stage can be replaced by a set of classifiers trained to produce a distribution between every pair of classes (OvO). As mentioned earlier, we use a relational classifier for this purpose. Since D' is a relational database, we cannot use propositional classifiers and have to resort to relational methods. Additionally relational methods are extremely well suited to leverage neighborhood information.

3. Given the classifiers learned from the previous stage, i.e., h_2 for the three different combinations design a combination function h_3 that combines their results.

The resulting pipeline (1)-(3) is illustrated in Fig. 1. Next we explain each of the stages (1)-(3) in detail.

A. Stage 1 — Image Segmentation

To segment volumetric brain MRI data into a number of regions, we used two different segmentation techniques, namely (1) a knowledge based segmentation method using an anatomic atlas and (2) a knowledge-free segmentation technique based...
on Expectation Maximization (EM). (1) parcellates the MRI data into different anatomically relevant regions whereas (2) divides the brain MRI data into different homogeneous regions based on T1-weighted voxel signal intensity (which represents the combination of three different cerebral tissues: gray matter (GM), white matter (WM) and cerebro-spinal fluid (CSF)). (1) incorporates the knowledge of anatomical parcellations of volumetric brain data whereas the output segments generated by (2) are free from a priori knowledge and clinical anatomical significance.

Atlas-based Segmentation:

The individual subject MR images were segmented into GM, WM and CSF regions, then spatially normalized to Montreal Neurologic Imaging (MNI) space and modulated with the Jacobian determinants of the warping procedure to generate volumetric tissue maps using the Dartel high-dimensional warping and the SPM8 new segment procedure as implemented in the VBM8 toolbox. The resulting modulated tissue volumetric maps were further parcellated into 116 regions using the Automated Anatomic Label (AAL) atlas [11], [12] as implemented by the *f* *w* *i* *t* *u* *c* *k* *a* *t* *a* *s* [13]. Fig. 2 shows some of the AAL regions. The volumetric data from each AAL region was used as features for input of SRL based classifiers. We present these features in the next section.

![AAL atlas segmentation showing the different regions of interest in the brain (Best viewed in color)](image)

Expectation Maximization: For EM, we use voxel intensity of spatially normalized volumetric T1-weighted MRI to find natural clusters within images. EM depends on soft assignment of voxels to a given set of partitions. Every voxel is associated with every partition through a system of weights based on how strongly the voxels should be associated with a particular partition. The Expectation step is defined by:

\[
E[z_{ij}] = \frac{p(x = x_i | \mu = \mu_j)}{\sum_{n=1}^{k} p(x = x_i | \mu = \mu_n)} = \frac{e^{-(x_i - \mu_j)^2/(2\sigma^2)}}{\sum_{n=1}^{k} e^{-(x_i - \mu_n)^2/(2\sigma^2)}}
\]

This equation states that the expectation or weight \(z_{ij} \) for voxel \(i \) with respect to partition \(j \) equals the probability that \(x \) is voxel \(x_i \) given that \(\mu \) is partition \(\mu_j \) divided by the sum over all partitions \(k \) of these probabilities. The \(\sigma^2 \) in the second expression represents the covariance of the voxel intensity. Once the E-step has been performed and every voxel has a weight or expectation for each partition, the Maximization step begins. This step is defined by \(\mu_j \leftarrow \sum_{j=1}^{m} E[z_{ij}]x_i \). This equation states that the partition value \(j \) is changed to the weighted average of the voxel values where the weights are the weights from the E step for this particular partition. The EM cycle is repeated for each new set of partitions until the partition values no longer change by a significant amount. Note that the EM algorithm assumes that the initial partition values are close to the natural clusters of the given voxels. We select the initial partitions randomly. Then, we run the EM algorithm for a given number of partitions and choose the number of partitions having minimum Akaike Information Criterion (AIC) [14]. We assign each voxel to a particular partition having largest posterior probability for the voxel, weighted by component probability. Finally, we find the segments or connected components from each volumetric T1-weighted MRI by assigning the neighboring voxels belonging to the same partition into the same segment.

Now, we have everything necessary to begin stage (2).

B. Stage 2 — Boosted Relational Models

Recall that the output of the stage (1) is the complex network of the brain with information about each region. \(x \). Now, to solve problem (2), we employ functional gradient boosting. Assume that the training examples are of the form \((x_i, y_i)\) for \(i = 1, ..., N \) and \(y_i \in \{1, ..., K\} \). The goal is to fit a model \(P(y|x) \propto e^{\psi(y,x)} \). The standard method of supervised learning is based on gradient-descent where the learning algorithm starts with initial parameters \(\theta_0 \) and computes the gradient of the likelihood function. Dietterich et al. [15] used a more general approach to train the potential functions based on Friedman’s [16] gradient-tree boosting algorithm where the potential functions are represented by sums of regression trees that are grown stage-wise. Functional gradient ascent starts with an initial potential \(\psi_0 \) and iteratively adds gradients \(\Delta \). This is to say that after \(m \) iterations, the potential is given by

\[
\psi_m = \psi_0 + \Delta_1 + \ldots + \Delta_m
\]

Here, \(\Delta_m \) is the functional gradient at episode \(m \) and is

\[
\Delta_m = \eta_m \times E_{x,y}[\partial / \partial \psi_{m-1} \log P(y|x; \psi_{m-1})]
\]

where \(\eta_m \) is the learning rate. Dietterich et al. suggested evaluating the gradient at every position in every training example and fitting a regression tree to these derived examples i.e., fit a regression tree \(h_m \) on the training examples \((x_i, y_i)\), \(\Delta_m (y_i; x_i) \). They point out that although the fitted function \(h_m \) is not exactly the same as the derived \(\Delta_m \), it will point in the same direction (assuming that there are enough training examples). So ascent in the direction of \(h_m \) will approximate the true functional gradient. The same idea has later been used to learn relational models [8]. Hence, the main idea in the gradient-tree boosting is to fit a regression-tree on the training examples at each gradient step. In this work, we replace the propositional regression trees with relational regression trees.

The functional gradient with respect to \(\psi(y_i = 1; x_i) \) of the likelihood for each example \((y_i, x_i)\) can be shown to be:

\[
\frac{\partial \log P(y_i = 1|x_i)}{\partial \psi(y_i = 1; x_i)} = I(y_i = 1; x_i) - P(y_i = 1; x_i),
\]

where \(I \) is
the indicator function that is 1 if \(y_i = 1 \) and 0 otherwise. Following prior work [8], we use Relational Regression Trees (RRTs) [17] to fit the gradient function for every training example. These trees upgrade the attribute-value representation used within classical regression trees. Each RRT can be viewed as defining several new feature combinations, one corresponding to each path from the root to a leaf. The resulting potential functions still have the form of a linear combination of features but the features can be quite complex.

At a fairly high level, the learning of RRT proceeds as follows: The learning algorithm starts with an empty tree and repeatedly searches for the best test for a node according to some splitting criterion such as weighted variance. Next, the examples in the node are split into success and failure according to the test. For each split, the procedure is recursively applied further obtaining subtrees for the splits. We use weighted variance on the examples as the test criterion. In our method, we use a small depth limit (of at most 3) to terminate the search. In the leaves, the average regression values are computed. Finally, to prepare for stage (3), we represent the distribution over the classes as a set of RRTs on the features. For example, when we classify AD vs. CN patients, we learn 20 RRTs for predicting if the person has AD. Since it is a binary classification, it is sufficient to learn one set of 20 trees for the class AD. Similarly, we learn two other sets of 20 trees each for predicting AD vs MCI and CN vs MCI leading to a final model with three sets of 20 trees each for predicting AD, MCI, and CN given the rest of the classes.

Now, we have everything together for the final stage (3) of our pipeline.

C. Stage 3 — Combining Classifiers

The result of previous step is a set of probabilistic classifiers for each pair of classes from AD, MCI and CN (in essence, 3 classifiers). For a detailed review, see [9]. Let us denote each classifier as \(c^k \), \(k = 1, 2, 3 \). We have used the following combination functions:

- **Voting**: Each \(c^k \) outputs a prediction and the class has the maximum vote i.e., \(\arg \max_k [I(y^k = c)] \), where \(y^k \) is the predicted label of the \(k^{th} \) classifier and \(c \) is the class.

- **Weighted Voting**: In this case, \(\text{class} = \arg \max_k \sum_k [w_k \cdot P(y^k = c)] \). We derived a gradient for the log likelihood of the training data and also used a grid search over the weight space.

- **Pairwise Coupling**: We considered the PC method [18] where the goal is to determine the posterior over each of the classes from the estimated joint distributions.

- **Classifier method**: We used the output of each OvO classifier to train a propositional classifier such as SVM, Bagging etc. that combines the output of these different classifiers to make its final prediction. The input of the new classifier is essentially the predictions of the classifiers of the previous stage. More precisely, the input is a set \(P = \{p_1^1, p_1^2, ..., p_3^3\} \) for each patient \(i \), where \(p_j^k \) is the posterior probability of the class \(j \) as predicted by the classifier \(k \). Hence, we aim to learn a function \(h_3 \) such that \(h_3(P) = y_i \) where \(y_i \) is one of AD, CN or MCI. The advantage is that we can combine the OvO results in a non-linear fashion.

The OvA strategy employs three classifiers. Each of them discriminate class \(j \) from \(j' \in \text{class} \setminus j \). We use a simple aggregation method called as Maximum confidence strategy which is similar to the voting strategy presented earlier. The output class is taken from the classifier that has the largest posterior probability \(\arg \max_c P_c \). For more details on the OvA aggregation, please refer to [9].

Given the above combination functions, the net result is the prediction of the disease state for the patient given the \(T_1 \) weighted scan. Hence the resulting classifier \(h \) is essentially a nested classifier \(h_3(h_2(h_1(x))) \); the final output of our pipeline (1)-(3).

III. Experimental Setup

ADNI Subjects. Data used in this study were obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI) sponsored by the NIH and industrial partners. The primary goal of ADNI is to test whether serial MRI, PET, other biological markers, and clinical and neuropsychological assessment can measure the progression of mild cognitive impairment and early Alzheimer’s disease. Further information can be found at www.adni-info.org. We used data available from 102 CN (average age 75.8, 62 male, 40 female), 92 AD (average age 75.5, 55 male, 37 female), and 203 MCI (average age 74.8, 137 male, 66 female) participants.

Set up. Each subject’s \(T_1 \)-weighted MRI data was used (2122945 voxels). We used the spatially normalized voxel data to run EM and the pre-processed modulated segmentation maps for the AAL segmentation algorithm. For each segment, several features were extracted - \(\text{avgWMI}, \text{avgGMI}, \text{avgCSFI} \) (which are the average value of intensity for the WM, GM and CSF respectively), size, centroid and spread of each segment. The centroid is a three-dimensional attribute. Also included were the neighborhood information about the segments, where the number of neighbors for each segment can be very different and necessitates the use of SRL-based algorithms.

We used 10-fold cross validation in all our experiments. For the OvO based learners, we created training sets for each classifier (AD vs CN, AD vs MCI, MCI vs CN). Hence the cases and controls were chosen separately for each classifier. To ensure correctness of comparison, we went through the entire data base and created 10 different folds such that each subject was in the test set for one fold and in the training for the rest. Given this, for each fold, we used the training set data to create three different training sets for the OvO classifier. For instance, when creating the training set for the first fold of AD vs CN classifier, we remove all the subjects who had MCI in that training fold. This ensured that we trained on the same set of subjects for all the three classifiers in each fold and that the test examples were never seen by any of the three classifiers.

Once the individual classifiers were learned, we used the common training set to learn the combination function for
combining their predictions. The common training set is the union of the three training sets and do not contain a single example from the test fold. Once the combination function is learned the predictions were made on the test fold and the results averaged over 10 runs. For the OvA classifier, things are simpler in the sense that we can use just the 10 training and test sets and evaluate the performance as there is no need for creating smaller training sets from the given training set. For the propositional classifiers we used the default functions of Weka and LibSVM to create the 10 folds.

It should be reiterated that these training and test folds were chosen at random – no careful selection of cases vs controls was performed. Also, we did not perform any major feature selection. The features of each segment were used as they are. We preprocessed the data only to convert it into predicate logic format. Also, since most SRL methods are based on predicate logic and almost all the features are real numbers in our problem, we had to discretize these features. Each feature was discretized into several bins based on the histograms of values and natural points for discretization were picked automatically using filters in Weka. Using domain knowledge in this step (clinically relevant discretizations) remains one very interesting future direction.

IV. RESULTS

We compare several versions of the algorithms in this section, including the list of propositional classifiers on the AAL segmented data and the relational classifiers using both segmentation methods (EM and AAL) as well as different combination functions. To understand the need for segmentation, we used modulated gray matter voxel data with LibSVM. We report these results as well. We did not use any segmentation algorithm for this setting of SVM, which we will denote as SVMMG.

- **Propositional Classifiers** - Naive Bayes (NB), Decision Trees (J48), SVMs, AdaBoost and Bagging on the AAL data and SVMs with gray matter data (that we denote as SVMGG).
- **Relational OvO with AAL segmentation** - Using various combination functions: Weighted voting with grid search (AALGS), gradient descent (AALGD), bagging (AALB), AdaBoost (AALA) and Pairwise coupling (AALPC).
- **Relational OvO with EM segmentation** - Also using various combination functions: Weighted voting with grid search (EMGS), gradient descent (EMGD), bagging (EMB), AdaBoost (EMA) and Pairwise coupling (EMP).
- **Relational OvA** - With AAL (OvAAAL) and EM (OvAEM).

The best parameter settings for propositional classifiers are presented in Figure 3.c. First, we compared the propositional classifiers with AAL segmentation. Results are presented in Figure 3.a. We used Weka and used the multi-class classification setting. As can be seen from the figure, the propositional algorithms do not show a good performance using the AAL data. We also present the results of running LibSVM on the voxel data (i.e., without any segmentation - SVMGG). As can be seen, the performance is slightly better but still is not comparable to the performance of the best relational + segmentation algorithm (AALB) which is presented for comparison purposes. Measuring accuracy over the entire data set can be misleading [19], hence, we present AUC-ROC.

We also evaluate different versions of the relational learning algorithms. Results are presented in Figure 3.b. We also included the OvA classifiers with AAL and EM in the results. It can be seen that the best performing algorithms use AAL and some combination function based on a classifier. AALB has the best results among the different algorithms presented in the figure. The other classification functions did not have nearly as good a performance as bagging but are significantly better than the propositional algorithms. This clearly shows that treating the problem as a multi-class classification problem may not be the best solution (OvA methods also do not perform well). Instead, posing the problem as a slightly more complex OvO problem significantly improves performance.

In general, the relational methods have a superior performance compared to the propositional algorithms with AAL segmentation. Note that AALPC which is the method that uses pairwise coupling as against a classifier has a competitive performance compared to AALB. This justifies observations made earlier [9] that pairwise coupling can be a very promising method to combine multiple OvO classifiers. The knowledge-based segmentation algorithm of AAL also has a higher performance than the knowledge-free EM algorithm. It remains an interesting future direction to explore the use of domain knowledge to guide the EM algorithm to better segment the images in order to increase performance. While this may not be very useful in our current task, in other problems such as identifying MCI patients who are likely to develop AD, it may help to combine the clinical knowledge to guide the segmentation algorithm and the classifier, which is something that our method is prepared to do.

We present the segments that are used in our learned models in Figure 4. These are the regions that discriminate between the classes as identified by our models and correspond to the medically relevant regions as verified by our neuroradiologists. The first, second and third images correspond to predicting AD (vs CN), AD (vs MCI) and MCI (vs CN) respectively. Our proposed algorithm shows consistency in detecting the regions that are known clinically to be affected by AD [1] (regions of interest – for example, hippocampus, occipital, parietal and temporal regions). This shows that the learning algorithms perfectly compliment the segmentation algorithms in this task.

Our results show that SRL algorithms better interact with the segments created by AAL. It is also clear that while learning to predict three classes, individual classifiers are themselves quite predictive. Finally, it is very encouraging that the algorithms are able to identify the segments that are known to be clinically interesting in predicting AD. Most of the methods to-date have computed the correlation between the regions for predicting AD, but our methods automatically identify the interesting segments for this 3-class task.
Fig. 3. Classification performances in terms of “Area under the ROC curve” of the different algorithms: (a) propositional classifiers (blue) compared against the relational AALB (red), and (b) relational classifiers. (c) Parameter settings for propositional classifiers

Fig. 4. Predictive segments as identified by our pipeline (different colors indicate different regions).

V. CONCLUSION AND FUTURE WORK

We have addressed a challenging three class classification problem from MRI images. Specifically, we proposed to solve the problem of classifying patients into one of AD, MCI or CN using a pipeline that consists of three different stages. Our extensive experimental results demonstrate that the pipeline obtains state-of-the-art performance with minimal feature engineering. The pipeline is the first application of SRL to MRI classification, and the results clearly illustrate the benefits of using a relational representation in the first and second stage of the pipeline. It naturally accounts for varying numbers of segments, suits a knowledge-based segmentation, and scales well from the two-class to the three-class problem; while having a reasonable performance in the two-class setting, propositional approaches yield a significantly lower performance in the three-class case.

Our work provides several interesting avenues for future work. One of our future directions is to use the knowledge of the domain experts in guiding the segmentation algorithms to identifying more clinically relevant regions. Due to the use of logical variables and unification, statistical relational models generalize well. Hence, we plan to apply the algorithms to more challenging tasks such as identifying those MCI patients who are affected by AD later in life. Our initial results indicate that clinical data can be very useful for this task when combined with MRI scans. We plan to combine the two different data types to determine whether their combination is an improvement over either of them separately.

REFERENCES

