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Abstract

Recent years have seen a surge of interest
in learning the structure of Statistical Rela-
tional Learning (SRL) models, which com-
bine logic with probabilities. Most of these
models apply the closed-world assumption
i.e., whatever is not observed is false in the
world. We consider the problem of learn-
ing the structure of SRL models in the pres-
ence of hidden data, i.e. we open the closed-
world assumption. We develop a functional-
gradient boosting algorithm based on EM to
learn the structure and parameters of the
models simultaneously and apply it to learn
two kinds of models — Relational Dependency
Networks (RDNs) and Markov Logic Net-
works (MLNs). Our results in two testbeds
demonstrate that the algorithms can effec-
tively learn with missing data.

1. Introduction

Statistical Relational Learning (SRL) (Getoor &
Taskar, 2007) elevates propositional graphical models
to a first-order level, achieving a more compact repre-
sentation of states. The compactness and even com-
prehensibility gained by SRL, however, comes at the
expense of a typically much more complex learning
task. There have been some advances in this problem,
especially in the case of Markov Logic Networks (Kok
& Domingos, 2009; 2010; Khot et al., 2011). More re-
cently, algorithms based on functional-gradient boost-
ing (Friedman, 2001) have been developed for learning
SRL models such as RDNS (Natarajan et al., 2012),
and MLNs (Khot et al., 2011).

While these methods exhibit good empirical perfor-
mance, they apply the closed-world assumption, i.e.,
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whatever is unobserved in the world is considered to be
false. Research on handling missing data in SRL has
mainly focused on learning the parameters (Natara-
jan et al., 2009; Jaeger, 2007; Kameya & Sato, 2000).
Li and Zhou (2007) directly learn the structure of a
PRM model from hidden data. Since they are learn-
ing a directed model, they have to perform the expen-
sive check of ensuring acyclicity in the ground model.
Kersting and Raiko (2005) learn the structure of logi-
cal HMMs in the presence of missing data. Their ap-
proach computes the sufficient statistics over the hid-
den states and does a greedy hill-climbing search over
the clauses. We significantly extend this approach — in-
spired by the success of structural EM on propositional
graphical models (Friedman, 1998) and the success of
boosting in learning SRL models, we propose an EM
algorithm for functional-gradient boosting. One of the
key features of our algorithm is that we consider the
set of distributions in the models to be a product of po-
tentials. This allows us to learn different models such
as MLNs (Domingos & Lowd, 2009; Khot et al., 2011)
and RDNs (Neville & Jensen, 2007; Natarajan et al.,
2012). After deriving the EM algorithm, we adopt the
standard approach of approximating the full likelihood
by the MAP states (i.e., hard EM). We empirically
evaluate the proposed algorithm in two datasets.

2. Background

Statistical Relational Learning Models: RDNs
(Neville & Jensen, 2007) are relational extensions of
dependency networks (Heckerman et al., 2001), which
are directed graphical models that may contain cycles.
The joint distribution can be factored as a product of
individual conditionals and can be represented by Re-
lational Probability Trees (RPT; Neville et al. 2003) or
Relational Regression Trees (RRT; Blockeel & Raedt
1998) with a sigmoid applied to the regression output.
MLNs (Domingos & Lowd, 2009) are relational undi-
rected models where first-order logic formulas corre-
spond to the cliques of a Markov network and formula
weights correspond to the clique potentials. An MLN



can be instantiated as a Markov network with a node
for each ground predicate (atom) and a clique for each
ground formula, where all groundings of the same for-
mula are assigned the same weight.

Functional Gradient Boosting: A standard
method of supervised learning is based on gradient-
descent where the learning algorithm starts with ini-
tial parameters 6y and computes the gradient of the
likelihood function. Dietterich et al. (2004) used a
more general approach to train the potential functions
based on Friedman’s (2001) gradient-tree boosting al-
gorithm, where the potential functions are represented
by sums of regression trees that are grown stage-wise.

More formally, functional gradient ascent starts with
an initial potential ¢y and iteratively adds gradients
A;. Hence after m iterations, the potential is given
by ¥m = o + A1 + ... + A,,. Here, A,, is the func-
tional gradient at episode m. Instead of computing
the functional gradients over the potential function,
they are instead computed for each training example
i, given as (xj,y;). This set of local gradients forms
a set of training examples for learning the gradient at
stage m. Friedman (2001) suggested fitting a regres-
sion tree to these derived examples i.e., fit a regression
tree hy, on the training examples {(x;, y;), A (yi; 24) }-
In this work, we replace the propositional regression
trees with relational regression trees.

Functional Gradient Boosting in SRL: Func-
tional gradient boosting has been applied to SRL mod-
els such as RDNs (Natarajan et al., 2012) and MLNs
(Khot et al., 2011). Since structure learning using
the true likelihood function for MLNs is computa-
tionally prohibitive due to the computation of the
normalization constant, the pseudo-likelihood func-
tion is popularly used for learning in MLNs. Pseudo-
likelihood in MLNs is defined as the product of the
conditional probabilities of the ground variables given
their Markov blankets (MB). Note that in the case
of RDNs, the joint distribution is approximated by
the product of the conditional distributions. Hence
the learning problem for both RDN and MLN opti-
mizes the product of conditional distributions. Ear-
lier work (Natarajan et al., 2012; Khot et al., 2011)
represented these conditional distributions as a sig-
moid over a function ¢, i.e. P(z|Pa(x)) in RDNs and

P(z|MB(z)) in MLNs were represented as [1_‘7_17;()1)]

For both these problems, the functional gradient of
the likelihood for each example (y;, x;) with respect to
Olog P(yiixi) _ I(y; =
oY (yi=1;x;) v
1;x;3) — P(y; = 1;x3), where [ is the indicator function
that is 1, if y; = 1 and 0 otherwise. We refer the reader

¥(y; = 1;x;) was shown to be:

to previous work (Natarajan et al., 2012; Khot et al.,
2011) for further details.

3. Structural EM

We first define some notation that will be used
throughout the paper. Note that we use the same
notation across the formalisms. We use capital letters
such as X, Y, Z to represent variables (predicates in
our formalisms) and small letters such as x, y, z to
represent values taken by the variables. We use bold-
faced letters to represents sets. Letters such as X, Y,
Z represent sets of variables and x, y, z represent sets
of values. We use script letters such as X, ), Z to rep-
resent world states, i.e. ) would represent a set of

y.

3.1. RFGB-EM

We present the basic pseudocode for our RFGB-EM
(Relational Functional Gradient Boosting - EM) ap-
proach in Algorithm 1. Similar to other EM ap-
proaches, we sample the states for the hidden ground-
ings based on our current model in the E-step and use
the sampled states to update our model in the M-step.
1, represents the model in the #** iteration. The initial
model, ¥y can be as simple as a uniform probability
for all examples or could be a model specified by a do-
main expert. We perform T steps of the EM algorithm,
where we fix T = 10 since results didn’t change much
after 10 iterations. We now derive the update equa-
tions for the M-step for functional-gradient boosting
and then present the approximations for the E-step.

Algorithm 1 RFGB-EM(P, H, D)

{P is the set of target and hidden predicates}
{H is the set of hidden groundings}
{D is the set of observed groundings}
Set initial model, g
t:=10
for t <T do
W := sampleWorlds(H, D, ;) {E-step}
Ye11 := updateModel(W, P, D, ¢;) {M-Step}
end for

3.1.1. DERIVATION FOR M-STEP

For ease of explanation, let X be all the observed pred-
icates and Y be all the hidden predicates (their cor-
responding groundings are x and y). Following prior
work (Natarajan et al., 2012; Khot et al., 2011), we
seek to maximize the log likelihood of the observed
groundings. We average the likelihood function over
all possible values of the hidden groundings to compute



the marginal probabilities of the observed groundings
shown below,

() = logP(X =x[¢p) =log » _ P(x;y|v)
yeYy
P(x;y[)
= log (ylx;9)
S {romorats]

As explained in the background section, v is the re-
gression function that is used to calculate P(X =
x|Pa(z)). As mentioned earlier, the regression func-
tion is represented as a sum of relational regression
trees. The trees define the structure of the potential
function and the leaves of the trees represent the pa-
rameters of this potentials. After t iterations of the
EM steps, 1 represents the current model and we
must update this model by finding a 1 that maximizes
the log-likelihood. Similar to previous EM approaches,
we can maximize the lower bound on ¢(v) given by

() > Q(Ysahe) — Qhes Wy) + £(ty)

where the only term that depends on % is given by
Qi) = Y Plylx; ve) log P(x; y|¢))

yey

For computational purposes following prior work
on MLNs and Markov nets, we use the pseudo-
loglikelihood instead of the loglikelihood in Q(v; ;).
We define Z as the union of all the predicates i.e.
Z =X UY. We shall use z_, to denote z\ z and Y_;
to represent the world states for the set of groundings
y—y, (e. ¥\ ;). Hence we can now rewrite Q(1;1y):

> Pylxith) Y log P(zlz—;%)

yey zExUy

Q(ﬂ’% 7/%)

Since we do not have a closed form solution for v, we
use steepest descent with functional gradients. Also,
following the procedures used in generalized EM algo-
rithms (Dempster et al., 1977) rather than finding the
maximum at every step, we take S gradient steps in
the M-step. Finding a 1 that improves over Q(t; )
might suffice since it will ensure that the log-likelihood
would increase. In prior work, each gradient step was
approximated by a single tree. Hence in this work, we
learn S trees for every M-step.

We present the algorithm for updating the model in
Algorithm 2. We do not maximize the @ function but
take S gradient steps in each iteration. In our exper-
iments, S was set to 2. This allowed us to amortize
the cost of sampling the world states and run enough
EM iterations in reasonable time without making the

model too large. We would learn S x T trees in the
end, which would be 20 trees in our case. We iterate
through all the query and hidden predicates and learn
one tree for each predicate. We compute the gradients
for the groundings of predicate p given by F,, using
the world states W and current model ¥. We then
learn a relational regression tree using this dataset and
add it to our current model. The learnTree function
depends on the model class that we are learning. To

Algorithm 2 updateModel(W, P, D, v)

1: S := 2 {Number of trees learned in M-step}
2: for 1 < S do

3:  {Iterate over target and hidden predicates, P}
4: forpe P do
5: {E, := Downsampled groundings of p}
6: D, := buildDataset(E,, W, D, )
T: » = learnTree(D,, D)
8: Yv=v+1T,
9: end for
10: end for
11: return v

apply functional-gradient boosting, we need to com-
pute the gradients for each example (i.e. hidden and
observed groundings of the target and hidden predi-
cates) which will be used to learn the next regression
tree (T}).

Gradients for hidden groundings

We now focus on obtaining the gradients of Q w.r.t
the hidden groundings before considering the observed
predicates. Taking partial derivatives of Q with re-
spect to 9(y;) where y; is a hidden grounding, pro-
duces:

0

Y yey zexUy
= P(y; = 1]x;v)
— Y Py = Uzy;9)Ply—ilxi¢h) (2)
Y_i€YV_;

Intuitively, the gradients correspond to the difference
between the probability of the hidden grounding being
true based on our previous model and expected prob-
ability based on the current model averaged over all
the hidden groundings states.

Gradients for observed groundings
To compute the gradients for the observed groundings,
we take partial derivatives of Q with respect to 1 (x;)



where x; is observed in the data.

0
m%P(ﬂx; y) zezx;y log P(z|z_.; )

yey

Intuitively, this corresponds to the difference between
the true value of the observed groundings and the
expected probability averaged over all the hidden
groundings states. We can also rewrite the gradients
as a weighted sum of gradients corresponding to each
world state.

Algorithm 3 describes the buildDataset function used
to compute the gradients for the examples in F,. For
every example e and every world state w along with the
observed groundings D, we compute the gradient of
the example. The gradient formula in equations 2 and
3 can be understood as a weighted mean of gradients
computed for each world state. Hence we can compute
the gradient of an example by summing the weighted
gradients as shown in line 5.

Algorithm 3 buildDataset(E,, W, D, )
1: Dy = 1]
2: for e € £, do
3 A.:=0
4 for w e W do
5 A¢ = A + gradient(e,w U D) % prob(w)
6: end for
7
8:
9:

D, :=D,U<e A, >
end for
return D,

3.1.2. APPROXIMATIONS FOR THE E-STEP

We approximated the loglikelihood with the pseudo-
loglikelihood as shown in the derivation. This ap-
proximation is necessary to make the approach com-
putationally feasible and has been used in many struc-
ture and weight-learning approaches for SRL (Kok &
Domingos, 2009; 2010).

Computing probabilities for all possible world states
would be exponential in number of hidden ground-
ings. This would also result in computing the gradi-
ents for all examples in each one of these world states.
Hence we use Gibbs sampling to generate |W| sam-
ples from the distribution P(y|x;;) to approximate
all the world states, ) and compute the expected
counts over only the sampled world states, W. The
gradient for the observed groundings now simplifies to

I(@i) = > yew PyIxsve) P(x; = 1|z—g,59). Similar

gradients can be obtained for the hidden groundings
too. This is analogous to the Monte Carlo Expecta-
tion Maximization (MCEM) approach used for high-
dimensional data (Wei & Tanner, 1990). We shall refer
to this approximation of the RFGB-EM approach as
SEM from now on.

Computing gradients for each example still involves
computing the probability of an example for each sam-
pled world state. We can further approximate the ex-
pected probability of an example by using the most
likely world state/most probable explanation (MPE)
instead of using all the world states. The MPE state
corresponds to ¥y = arg maxy P(y|x;1;). The gradient
for the observed groundings now simplifies to I(x;) -
P(z; = 1|x—;;¥;%). This is similar to the hard-EM
approach and is much faster than SEM. We shall refer
to this approach as H-SEM. Using MPE to approx-
imate the expected counts has been used in HMMs
(Collins, 2002) and MLNs (Singla & Domingos, 2005).

Adapting RFGB-EM for RDN and MLN

In the prior work for learning RDN structure (Natara-
jan et al., 2012), all the trees are learned for a given tar-
get predicate before going on to the next predicate. In
our EM approach, we update the hidden world states
after every two iterations and hence for every predi-
cate we would learn two trees at a time using the last
sampled world state. When applying our approach to
learn MLNs, the current set of trees for all the pred-
icates are used to compute the marginal probability
(and thereby the gradients) of each example. A sin-
gle tree is learned for each predicate and the gradients
are computed based on all the trees learned before the
current iteration. We resample the hidden states af-
ter every two iterations of learning trees for the target
and hidden predicates. RFGB-EM can be extended to
relational imitation learning where functional gradi-
ent boosting has been successfully applied (Natarajan
et al., 2011). For imitation learning, we get results
(not reported here) similar to the ones presented for
RDNs and MLNs in the next section.

4. Experiments

In this section, we present the results of our approaches
on two different problems. We use SEM to represent
the structural EM approach, which uses Gibbs sam-
pling for generating the samples. We use H-SEM to
represent the EM approach that uses the single MPE
state instead of sampling multiple hidden states, since
it is similar to the hard EM approach. We also present
the results of using RFGB without using EM but in-
stead setting all hidden groundings to false, i.e. use
the closed world assumption. We denote this as CWA.



Please note that we use the general term CWA to de-
note our prior work on RDNs (Natarajan et al., 2012)
and MLNs (Khot et al., 2011). They correspond to the
appropriate prior work based on the experiment. In
the case where we used MLNs, we used the default set-
tings in Alchemy (http://alchemy.cs.washington.edu).
We compare the methods using two different measures:
conditional log likelihood (CLL) and area under the
PR curve (AUC-PR). We use bold face to indicate
results that are statistically significantly better (at p-
value=0.05) than all the other methods.

4.1. Disjunctive dataset

We generated a simple synthetic dataset to compare
SEM against H-SEM using RDNs as the base model.
We generated groundings of q(X,Y) using a prior dis-
tribution over q where X = {1...100}. We ran two
different experiments with different number of possi-
ble values (i.e., range) of Y, |[Y]| = 3 and |Y| = 10 as
shown in Table 1. Similarly, we also vary the amount
of hidden data (Hidden % indicates the percentage of
the groundings being hidden). We generate r(X,Y)
given q(X,Y) using a conditional probability distribu-
tion, P(r|g). We then combine r(X,Y) for different
values of Y using an OR condition to generate s(X).
Hence s(X) given r(X,Y) is a deterministic rule where
s(X) is true if for some Y, r(X,Y) is true. We gen-
erated 10 synthetic datasets with randomly sampled
hidden data, trained one model on each dataset and
evaluated each model on the other nine datasets. We
average the results from all these runs.

The results on this dataset are presented in Table 1.
We only present the CLL values since the AUC-PR
values are same for all the approaches. SEM outper-
forms both H-SEM and CWA methods on this dataset.
H-SEM assigns the most likely value to each hidden
grounding which happens to be false in this dataset.
Hence, there is no difference between H-SEM and
CWA in this dataset. On the other hand, SEM sam-
ples multiple world states where some of the ground-
ings might be true. Hence, there is some probabilistic
mass on r(X,Y) — s(X) being true unlike H-SEM that
assumes all hidden r(X,Y) to be false.

4.2. Cancer dataset

The cancer MLN has been popularly referred and
used in SRL literature. We created a friend
network represented using a symmetric predicate,
friends(X,Y). Each person has three attributes:
stress(X), cancer(X) and smokes(X). A person is
more likely to smoke if he has stress or a lot of friends
who smoke. Similarly, a person is likely to have can-
cer if he smokes or has a lot of friends who smoke.
The more smoker friends a person has, the more likely
he is to get cancer. Such rules can be captured by
MLNSs since the probabilities are proportional to the
number of groundings of a clause such as smokes (y)
Afriend(x, y) — smokes(x). The target predicate
is cancer while smokes has some missing groundings.

For this synthetic dataset, we trained one model on
each of the 10 generated datasets with randomly sam-
pled hidden data and evaluate each model on the other
nine datasets. We average the results from all these
runs. As with the previous case, we present the re-
sults for different amounts of hidden data (20% and
40%). It can be clearly seen from Table 2 that the
SEM algorithm dominates the H-SEM and the CWA
algorithm of Khot et al. (2011). Comparing CWA and
H-SEM it is clear that the latter dominates in all the
measures (at p-value=0.05). Since Alchemy does not
have a mechanism to handle missing data for structure
learning, we ran weight learning on hand-written rules
with their version of EM. Alchemy weight learning as-
signs the MPE state to the missing values and hence
is similar to our H-SEM approach. As seen in Table
2, Alch, which is only doing weight learning, performs
better than CWA and H-SEM structure learning ap-
proaches, but is worse than SEM.

Hidden % 20% 40%
Algorithm CLL AUC-PR CLL AUC-PR
SEM -0.709 0.650 -0.693 0.673
H-SEM -1.086 0.577 -1.266 0.544
CWA -1.232 0.535 -1.710 0.521
Alch -0.967 0.591 -0.730 0.656

Hidden % 20% 40%
Algorithm | |[Y]|=3 | [Y|=10| [Y|=3 | |[Y| =10
SEM -0.050 | -0.065 | -0.055 | -0.078
H-SEM -0.093 -0.108 -0.170 -0.175
CWA -0.093 -0.108 -0.170 -0.175

Table 1. CLL values on the Disjunctive dataset.

Table 2. Results for Cancer dataset.

5. Conclusions

We addressed the challenging problem of learning SRL
models in the presence of hidden data. For this goal,
we developed an EM-based algorithm for functional-
gradient boosting. We derived the gradients for the
M-step by maximizing the lower bound of the gradient
and showed how to approximate the E-step. We em-
ployed the proposed approach for two different types
of relational learning problems - RDNs (Disjunctive



dataset) and MLNs (Cancer dataset). Our results in-
dicate that the proposed algorithms outperform the
respective algorithms that make closed-world assump-
tions.

Our current approach computes the probability of an
example for each world state of the hidden ground-
ings. But based on the relational tree structure, we
can avoid recomputing the probabilities for some ex-
amples, e.g. the groundings of a predicate whose truth
value has changed may be absent from the trees. We
could also calculate the marginal probabilities of each
hidden grounding and use them as probabilistic facts
to compute the gradients. There has been work on
improving the MCEM approach (Jank, 2005) by using
samples from previous iterations, changing the number
of samples in each iteration and deciding the number
of iterations that could be applied to this work. Ex-
tending our approach to a purely directed model is an
interesting avenue for future research.
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