CS 760 - Final Project
Reinforcement Learning using ANN and FOIL

Tushar Khot

Computer Sciences Department
University of Wisconsin, Madison, WI

tushar@cs.wisc.edu

Abstract

In this paper, we use two techniques to generalize the Q-tables
in reinforcement learning. Perceptrons are useful to predict the Q-
values for unknown states but may not always be accurate. FOIL
derives rules for each action but sometimes may have no rules for some
states. Each approach has its advantages and in this paper, we try to
compare these approaches and ways to combine these approaches to
make better decisions.

1 Introduction

Reinforcement Learning uses various techniques for deciding on the next
move based on the current state. One technique is to score each state-action
pair based on their expected reward(Q-learning). If we were to store all these
Q-values in a table, then we would converge to the optimum policy, which
would be to select the maximum Q-valued action each time[I]. But if the
state space is too large then it would be impossible to store all the Q-values.
One solution is to predict the Q-values based on the Q-values of similar states
with techniques such as Perceptron. Another approach is to directly derive
the policy using predicate calculus techniques such as FOIL[2]. The later two
approaches help in generalizing from a comparatively smaller set of training
data.

If were to use just a perceptron for predicting the next action, we wouldn’t
need to store the entire table but just the weights of each feature. Every time
we obtain a new Q-value, we would update the weights based on this new
Q-value. But this would mean, that it may tend to forget the old values. To

solve this problem, after every game we update the perceptron with all the
Q-values in the Q-table currently. But even then the data may not be linear
and hence the predictions may still be off.

If we were to use any rule based system such as FOIL, it would generalize
well and also give human understandable results. For e.g., in the AgentWorld
framework we would expect the agent to learn rules such as - “if there is food
to the north and no opponent to the north, then move north”. But FOIL
unlike ANN can’t predict the next action for states that don’t satisfy any
rule. Also, FOIL has no easy way to perform incremental updates, hence we
use batch learning from the Q-table after every game with a small correction
during the game. If an action gives a negative reward, we delete the rules
that supported this action.

2 Problem definition and Algorithm

We use the AgentWorld framework to perform reinforcement learning. This
world has vegetables that an agent must obtain and opponents and walls
that it should avoid. There are minerals that it should avoid but can use
them to hit other opponents.

2.1 Features

The AgentWorld framework provides the sensor readings for each agent.
Each sensor measures the object type and distance of each object seen by it.
We convert these readings into 48 boolean features. We have one boolean fea-
ture for each object type(Opponent/Mineral/Vegetable) in each direction(8
directions).Also there are three distance features(Far/Mid/Near) for each di-
rection. There are 8 possible actions which are the 8 possible directions.

2.2 Q-Learning

Since the feature space is very huge(2?®), we use a sparse representation of
the Q-table. Instead of storing QQ-values for each state-action pair, we store
only those state-action pairs that have a non-zero Q-value. Also instead
of storing it as a pair, we maintain a list of action-reward pairs for each
state. This prevents repetition of states. We use 10-step Q-learning for
computing the @ values. Since there tend to be many empty spots in the
AgentWorld(specially corners) computing rewards over longer steps helps
the agent to move away form the corners. Other parameters:

v=10.9

a =1/#updates
Exploration probability, p = 1/y/moves

Update counts are also stored in the action-reward pair.

2.3 Perceptron

The Q-table is used as the training data for a perceptron. There is one
perceptron for each action. The boolean features are fed to a Perceptron as
input with an additional feature for threshold. At the end of each round,
the entire QQ-table is used to batch update the perceptrons. Also during each
game, the new Q-values are sent to perceptron for one round of forward and
back propagation.

2.4 FOIL

FOIL though designed for predicate calculus can be extended to propositional
logic by considering addition of a proposition at each step rather than a
predicate. Also the training data has Q-values instead of positive/negative
samples. We assumed all actions that result in negative scores as negative
samples and others as positive samples. We derived rules for each action
using FOIL but this could lead to rules for different actions returning true
for the same state. Hence we associated scores with each rule and used that
to score the actions. The algorithm used is very similar to FOIL except the
scores for the rules.

e Basic Algorithm

For each action, a
RULES = {}
POS = Positive eg’s not satisfied by RULES
NEG = Negative eg’s
While |POS| > O and |RULES| < 30
Rule = a :- {}
Neg = NEG
Pos = POS
While [Negl| > O
Take the best scoring feature, f.
Add £ to RHS of Rule.
Neg = Neg examples that satisfy new rule.
Pos = Pos examples that satisfy new rule.

Add Rule to RULES with score(Pos)
POS = POS - Pos

e Scoring Function

_ Ygex|reward(z)|
score(X) = RS E—

e Feature score
Each feature score is computed using
PO = current positive examples satisfying Rule.
NO = current negative examples satisfying Rule.
P1 = if feature added, new set of positive examples.
N1 = if feature added, new set of negative examples.

score(f) = |PO|x
(lO score(P1) _
g score(P1)+score(N1)
lo score(P0))
g score(P0)+score(NO)

e Inference
For inference, we sum the scores of the rules that are satisfied by the
current action and select the best action.

2.5 Combination

We tried various approaches to combine the results of the strategies men-
tioned above.

1. Only-Q/FOIL/ANN : This approach just uses one strategy(Q-
learning /FOIL/Perceptron) for making the next move.

2. Fallback-FOIL/ANN : If the Q-Table has no Q-value for a state or has
only negative values for a state, it cannot make a well informed decision
of the next step. So in such cases we use FOIL/ANN to take the next
step. We assume that opposite direction of the negative reward action,
is not necessarily the best direction.

3. Coll-FOIL/ANN : This is slightly more intelligent than the previous
approach by not just blindly following FOIL/ANN. If it has actions
in the Q-table with negative values, it will only accept results from
FOIL/ANN that don’t belong to the negative set.

2.6 Miscellaneous tricks

There are some minor tricks that were used for helping the agent.

e Continue Motion
For any score returned by the scoring function, we multiply the score
by a factor, if the action is the same as the last move and didn’t result
in a negative reward. This prevents oscillation between states.

e Hot Start
To save time on learning with random walks which can be very slow,
we had built a simple agent that just moves towards the food. This
agent was run in an identical AgentWorld framework and used as the
initial training data for each approach. The agents would use the logs
from this simple player on startup and pretend the state,action,reward
values to be obtained by actual interaction with the environment.

e Noisy Movement
To prevent the agent from oscillating between states, we add noise to
every action taken by the agent. For e.g., if the policy were to suggest
to move North, we would move at an angle of 0 +/- random noise(<10).

3 Experimental Evaluation

3.1 Methodology

For comparing the various approaches, we use the AgentWorld framework
with the following settings.

Minerals: 5. By keeping few minerals, we let the agents learn that the
minerals can be used to hit opponents but shouldn’t make finding food al-
most impossible. The count although is more to the conservative side.

Food: 50. By not keeping very large amount of food, we prevent just
random walks resulting in good scores.

Games: 30. We noticed that the AgentWorld framework may have patho-
logical setup of agents that can result in very low scores. For e.g., an agent
may be at a corner with a random walker blocking its exit. Hence we take
the scores over 30 games and plot histograms of the scores instead of plotting
them as learning curves which are jagged.

Moves: 1000. This count was selected to allow for faster execution of
the experiments yet provide enough time for the score to have stability. His-
togram over multiple games should reduce the impact of any instability in

few games.

Players : Assassin, SamplePlayer, Random Walker. Each game had three
other agents. An assassin who attacks an opponent. A Sample Player that
goes for food but is very afraid of other opponents. A RandomWalker that
takes random moves.

Unless otherwise mentioned most of the scores are obtained by one Agent
player in the above mentioned setting. Individual scores for various agents
in this scenario are not comparable but the histograms and average scores
should still be valid.

3.2 Results

1. Basic Policy

Figure [I]shows the histogram of scores for agents using Q-table, Percep-
tron and FOIL. As shown in the figure, FOIL seems to perform better
than the other approaches. It actually is comparable in performance
to the Sample Player that moves towards the nearest food and away
from an opponent.

To be able to actually compare the results, we ran all agents in the
same set of 30 games and compared the scores using a t-test.

FOIL Vs Perceptron

Il = 4.43 > Ty5.99
Ss

Q-Table Vs Perceptron

|M5’
— = 293> 1T
S, 95,29

FOIL Vs Q-Table

M = 1.69>T95729

Ss

This clearly gives the ranking that FOIL is the best approach, followed
by just using Q-tables and lastly the ANN. Though these results have
to be taken with a pinch of salt, because of the fact that if an agent
performs really better than others, it would further reduce the score
for that round for others as the food would be scarce.

As Figure [2 shows ANN suffer a lot in the beginning when they lack
sufficient training examples and hence dont approximate well to the

6

Count

Policy Histograns

»158

14 T T T T T T T T T T T T T
FOIL
Perceptron o0
12 | 0-Table E=ZEEER
Sanple Player
18+
B -
E -
4f 2
2r P P r:a FE
[+ LE] 4
3 | ks
a] |
==] =
L] - =
-] L] [=r] = = = = = =
1 1 1 [Iy m -] =] m Iy
=] ' e L1 1 1 1 1 - ==] = =] =] - - -
Iy [~=] = [~ .k . L1 - .k [1r] T3] [[=r] - L1 o
-]] 1r] -] =] = = = =~ L1 1 L1 L1 i = =
1 - - - o [Iy] m - =] =] o =] =] - m
A" 1 1 1 1 1 1 1 é = oy Iy [=] - -
core
Figure 1: Basic Policies
actual function. The figure also shows the spikiness of the graph and
hence the need to use histograms.
Fallback Policies

Figure [3| shows the comparison between using either FOIL or Percep-
tron as the backup for cases where Q-table is not sufficient. Also we
tried using Perceptron as the backup strategy for FOIL. Other config-
urations are not possible as ANN always would return a result even if

it has never seen a state before.

Similarly we made the three backup policies compete with each other

in 30 games and compared the scores for each game.

QT-Perceptron Vs QT-Foil

sl 050 < Tas 0

Ss ’
QT-Perceptron Vs FOIL-Perceptron

|

— = 235 >1T;

S5 95,29

QT-Foil Vs FOIL-Perceptron

Score

Policy Learning Curves

4“3 T T T T T
g-Table ——
FOIL ——
+
208 | Ferceptron 1

280

188

=188

=288

-300 A 1 1 1 1 1
a] 18 15 28 23

#Ganes

Figure 2: Basic Policies Learning Curves

I1s]

= 1.84 > T,
S5 95,29

So as the results show, QT-Perceptron and QT-Foil have almost similar
performance. This could be because of the fact that Q-Tables actually
donot have any result about 50% of the time(13K-15K times out of 30K
moves) and hence balances the policies well. FOIL on the other hand
is unable to decide actions for only 9K moves which makes it almost
same as the only-FOIL approach and doesn’t see any improvement.

3. Collaborative backups Figure {4/ shows the comparison between the var-

ious collaborative approaches and their counter-parts.

A t-test over 30 games with competing agents reveals:

QT-Perceptron-Coll Vs QT-Foil-Coll

Il = 0.62 < Ty5.99
Ss

QT-Perceptron-Coll Vs QT-Perceptron

38

Count

14

Policy Histograns

T T T T T T T T T T T T T T T T
Or=-FOIL —

AT=ANN E=—A
12 | FOIL-ANN B
Sanple Player

PR,

3

R

SEE LTSS R TS S n S S

A A A R WA W

ELEES SRR R R AR LR R BN R R

] i
] i
! 4
] F a: gEﬁ
:] H
==] =
L] - =
-] L] [=r] = = = = = =
1 1 1 P 'y} mn - ==} = mn g}
=] ' e L1 1 1 1 1 - ==] = =] =] - - -
Ty] = = = X X LX) 1) - [y] Ty == [=r] - 1) 1) =
-]] 1r] -] =] = = = =~ L1 1 L1 L1 i = = 15
1 - - - =r} [Ty} 3r} - = = ==} ==} = - 3r} -
' 1 1 1 1 1 1 1 é - 1y} g} [=7} - - sl
core
Figure 3: Basic Fallback Policies
Hs
l;;l = 1.16 <:75529
Ss
QT-Foil-Coll Vs QT-Foil
|15
- = 052 < T95,29
Ss
QT-Perceptron-Coll Vs SamplePlayer
|5
- = 101 < Tg5’29
Ss

As the results above indicate collaboration betweeen Q-tables and Per-
ceptrons/FOIL though seem to help the scores, the improvement is not
statistically significant. This could be because of the fact that col-
laboration was used only on 500-1000 moves out of 30000 moves.The
impact could also be less because of the fact that these policies are
learnt from the same Q-table and most of the time should have the
same predictions. The impact on Perceptron seems to be the only no-
ticeable improvement possibly because of the fact that Perceptrons may
have incorrectly approximated the function and suggest wrong moves,

Count

Policy Histograns

14 T T T T T T T T T T T T T T T T T
OT=-FOIL-COLL —
OT-AHN-COLL Forml
12 | FOIL-ANN B
OT-FOIL -
AT-AHN
1@ }Sanple Player 4
B -
B -
i
ar a
! i
I H i i .
! H i i k
2r q [P N H K t 4 H
1 [l] i i i k] ¥ H
1 11 / i il y 5 ol I
40 BAn BR B i iy B iz ullls:
I] H H it £ i 4
a - il 1 M i B [E
2 2 @
- = @ @ @ @ @ =z @
1 1 1 = B M = m @ MmN
-~ B T S T RN 1) 1 i 1] - @ @ @ @ e e e
Iy = [=~] -] (X (X * o -k [1r] T3] = (=] - * o =
= - = - - - - T T T T T - - - - B
1 o = = @ M= B M = @™ @ @ @ @ e o
N 1 1 1 i 1 | I é - M B R & e e A
core

Figure 4: Collaborative Policies

but now some of the negative reward moves are prevented.

Miscellaneous experiments
There were some experiments done for deciding on various features/parameters.

For deciding on the number of steps for Q-learning, we ran games with
different K values(#steps) and selected 10 to be the optimal choice.
After deciding K, we fixed the gamma to be 0.9 in a similar fashion.

Also we noticed that just using 4 directions as the actions was in-
sufficient as the Sample Player would move diagonally and hence would
reach the food before we did. Hence we decided to work with 8 actions
even if it increased the sparsity of the representation. Experiments
indicated that the average score improved with 8 directions even in the
absence of the Sample Player.

10

3.3 Discussion

As expected the backup policies bridge the gap between FOIL and Percep-
trons by using the more reliable Q-Table half the time. This was expected as
when one policy has insufficient information, rather than making a random
move we can make a more informed decision. Collaboration with the Q-
table improved the scores further as they prevented obvious mistakes. Since
Q-tables are mostly accurate, using it as a guide for the other policies is
helpful.

4 Related Work

Using perceptrons to approximate the Q-table is a very common approach.
Logic(MLN/Rules) on the other hand is predominantly used only as a trans-
fer mechanism from one RL task to another[3]. This is very similar to the
“Hot Start” idea to use the results from another agent to speedup learning.

The idea of using scores for each rule was derived from Markov Logic
Networks where each predicate rule has a weight instead of being absolute
truths [4].

5 Future Work

The current FOIL approach is not incremental and is just attempting to
cut the losses. Maybe a better approach could be derived to incorporate
incremental updates.

The collaboration between the various approaches can take into account
the result from each algorithm and use an ensemble kind approach to decide
which is the next best step to take. This would slow down each step and
maybe should be used only when required. Also too many policies would
also reduce the efficiency.

6 Conclusion

The experiments indicate that as a single policy, FOIL is better off than the
other two approaches as it generalizes well with even limited data. With the
combination with Q-tables, Perceptron avoids the early mistakes and hence
is comparable to FOIL. Using collaboration has little effect since Q-Tables
rarely have only actions with negative rewards. Even if they do, since the
backup policies learn from the same Q-Table, they make similar decisions.

11

References

1]

2]

Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK, 1989.

J.R. Quinlan. Learning logical definitions from relations. Machine Learn-
ing, 5:239-266, 1990

Lisa Torrey, Trevor Walker, Jude Shavlik, and Richard Maclin. Using
advice to transfer knowledge acquired in one reinforcement learning task
to another. In Proceedings of the Sixteenth European Conference on
Machine Learning, 2005.

Richardson, M., Domingos, P. (2004). Markov logic networks
(Tech. Rept.). Dept. Comp. Sci. Eng., Univ. Washington, Seattle.
http://www.cs.washington.edu/homes/pedrod /mln.pdf.

12

	Introduction
	Problem definition and Algorithm
	Features
	Q-Learning
	Perceptron
	FOIL
	Combination
	Miscellaneous tricks

	Experimental Evaluation
	Methodology
	Results
	Discussion

	Related Work
	Future Work
	Conclusion

