
Image Classification using Latent Patch Concepts

Tushar Khot
Computer Sciences Department

University of Wisconsin, Madison, WI
tushar@cs.wisc.edu

Abstract

There have been many approaches to tackle the
problem of image classification. Some sacrifice
speed for a very complex model whereas other ap-
proaches try to limit the features for speed. In our
approach, we try to maintain spatial information
similar to the spatial pyramid approach and use the
pyramid match kernel for efficiency. We split the
images into overlapping patches at multiple scales
and train a latent concept model on these patches.
For testing, we find the most likely category using a
naive latent topic model. Patches of different scales
have different classifiers, which can be utilized for
parallelizing the process.

1 Introduction

The problem that we are attempting to solve is
the image categorization problem over the Caltech-
101[1] and Caltech-256[2] dataset. Over the last few
years, it has been shown that simpler approaches
actually work really well for image classification[5].
Using a simple histogram intersection kernel with
SVM actually performs really well as shown in [4].
The spatial pyramid kernel used in [4] splits the
image into partitions and builds a histogram over
all the partitions. By using the partitions they take
into account the location of the features too. Ex-
tending this idea, we built an image classification
tree where nodes at higher depths deal with smaller
partitions of the tree. Each node of the tree deals
with a particular partition of the image and learns
a classifier based on these partitions in all the im-
ages. Also if the SVM/KNN has a very high classi-
fication probability, we can completely avoid trav-
eling down the tree. Unfortunately, the recognition

performance of this approach was very poor as it
didn’t allow for matches across patches at differ-
ent positions. Hence we then decided to use latent
topic models, to allow for matches between patches
irrespective of their position.

2 Related Work

Grauman et al. [3] used a pyramid kernel, by split-
ting the feature space into partitions. But their
approach didn’t account for the location of these
features.

Lazebnik et al. [4] extended this idea but instead
of splitting the feature space, they split the image
into parts and built a histogram intersection kernel
on the features.But the objects in every image may
not be at the same location and hence this approach
may not always work.

There have been many other kernels such as [11]
which can then be used with KNN or SVM’s but
most of these approaches are too time consuming
and hence were not used.

There have been approaches that use other ma-
chine learning techniques such as decision trees [8]
or SVM/KNN [6] for classification.

Boiman et al. [5] have shown that using compli-
cated features that try to reduce the size of the fea-
ture space lose a lot of information and hence they
use a simple Nearest-Neighbor approach. We also
rely on the simplicity of our approach to make use
of the most information without taking too much
time.

Desai et al.[9] use object detection to solve the
image categorization problem. But they need the
objects in the training data which may not always
be available. Instead latent topic models,[10], [7]
are more appealing as they don’t rely on the objects

1

being provided in the training data.

3 Implementation

Since, we wanted to match patches irrespective of
their location, we needed to train a classifier on
all the patches of the same scale. Since nearest
neighbor approaches lose the least amount of in-
formation, we decided to use K-Nearest Neighbor
for classification. To reduce the search time during
testing, we also performed clustering on the train-
ing patches. The cluster centers formed the latent
topics for the classification problem. The probabil-
ity of an image can thus be calculated by computing
the probability of its patches being generated from
some concept and the probability of that concept
belonging to the given category.

3.1 Training

Every training image is partitioned into overlap-
ping patches at various scales.In our approach, a
scale of 1/2 indicates that the patches have half the
rows and columns as compared to the original im-
age. Given the boundaries of these patches, we can
find the PCA-SIFT features enclosed within these
boundaries. The set of PCA-SIFT features for each
window, form the feature patches.

All patches at the same scale but of different cat-
egories are collected together. We perform Hierar-
chical Agglomerative Clustering on these patches to
find the concepts as centroids. We use the pyramid
match kernel to find the pairwise distance between
all the pair of feature patches(set of PCA-SIFT fea-
tures). The pair of points with the highest similari-
ties are clustered and the centroids are added back
to the list of patches. For clustering two feature
patches, we perform KMeans clustering on the col-
lection of features within these patches. We then
select the set of PCA-SIFT features from the orig-
inal set nearest to the center. We don’t use the
centroids directly as the pyramid match kernel uses
a vocabulary tree on the original set of PCA-SIFT
features and fails on seeing unknown features.

To save on time, we cluster twenty patches at a
time before recomputing the distances. We stop
clustering once the number of clusters are small
enough or the similarity measures are too low for
any meaningful clustering.

The distance computation is skewed by the fact
that some patches may have very high number of
features and hence the intersection would also be
very high. Hence we divide the similarity score by
the number of features in each patch.

Also, images of certain classes are inherently
sparse and would always have low similarity mea-
sures. We cluster all patches with less than 5 fea-
tures into a default blank patch.

At the end of the HAC run, we have a set of
new patches where each patch, Lj was obtained by
combining njk patches from category Ck.

Prob(Ck|Lj) =
njk + m∑
k(njk + m)

,where m=0.1 (1)

Algo 1 Train(Images, Features, Categories)

1. Perform the following for windows at scale, s =
{1, 1/2, · · · 1/2n}.

2. Partition the image and the features into over-
lapping windows at scale s.

3. Perform HAC on the feature patches across
categories at scale s, till number of patches <
threshold.

4. For each cluster/concept, maintain the
Ps(Category|Concept).

3.2 Testing

At the end of training phase, we have a set of latent
concepts and their corresponding probabilities. For
testing on a new image, we perform the same parti-
tioning of an image into feature patches. For every
feature patch, we find the nearest neighbors in the
latent concepts at the same scale.For the patches
with less than 5 features, blank patch is their de-
fault and only neighbor.

The similarity scores for all patches except the
top k, are ignored and assumed to be 0. Given the
similarity between patch, Pj and concept patch, Lk

as djk,

Probd(Lk|Pj) =
djk∑
k djk

(2)

2

Now, we compute the probability of each cate-
gory for every patch. We assume that every patch
influences the category independently. Using this
Naive Bayes assumption, we get

Probd(Ci|Pj) =
∑

k

Prob(Ci|Lk) ∗ Prob(Lk|Pj) (3)

Probd(Ci|P1, P2, · · ·Pn) =
∏
j

Prob(Ci|Pj) (4)

These probabilities are only applied at a given
scale and we need to combine the probabilities at
multiple scales. Similar to spatial pyramids, we
also increase the weight as the size of the patches
reduce. Considering all patches at the scale of 1 at
depth 0, patches at scale 1/2 at depth 1 and so on.

Prob(Ci) =
depth∑
d=1

1
2depth−d+1

Probd(Ci|P1, · · ·Pn)

(5)

Algo 2 Test(Image, Features, Classifiers)

1. For each scale s ∈ {1, 1/2, · · · 1/2n}.

2. Create feature patches of scale s from the input
image.

3. For each patch, Pj

4. Find top k nearest neighbours in the training
concepts.

5. Compute P (Concept|Pj) for these concepts for
every patch.

6. Compute P (Category|Pj) using the training
probabilities.

7. Compute P (Cateogry|P1, P2, · · ·Pn).

8. Combine the probabilities at all scales, and se-
lect the category with the highest probability.

4 Experiments

We have tested our approach on Caltech256 dataset
and Caltech101 dataset. Unless otherwise men-
tioned, all the experiments have been trained on

Figure 3: Confusion Matrix for 10 categories

Figure 4: Confusion Matrix for 4 categories

30 images and tested on 10 images. All percentage
numbers are recognition rates which is the recall of
our classifier.

Figure 3 gives the confusion matrix over 10
Caltech-256 categories as a bar graph. The recogni-
tion rate was 25.45% which is better than random
guessing(10%).

Figure 4 gives the confusion matrix over 4
Caltech-101 categories as a bar graph. The recog-
nition rate was 20% which is worse than random
guessing. Our approach didn’t seem to work well

3

Figure 1: Caltech 256 Dataset

Figure 2: Caltech-101 Dataset

with Caltech-101 dataset.

4.1 Impact of overlap

Overlap is the portion of the feature patches that is
common with other feature patches too. Increasing
the overlap between the feature patches actually
has a negative impact on the performance, although
the difference is really small(60% to 69%).

0.9091 0.0909 0
0.1818 0.5455 0.2727
0.0909 0.2727 0.6364

Recognition Rate:69.69%

Confusion Matrix 1: Half of image overlaps

0.9091 0.0909 0
0.2727 0.3636 0.3636
0.0909 0.3636 0.5455

Recognition Rate:60.6%

Confusion Matrix 2: Two-thirds of image overlaps

4.2 Impact of scale

Scale of a patch is ratio of the number of
rows/columns in the patch to the rows/columns in
the original image. If we use smaller patches at
depth 2, i.e. use patches of scale 1/4 instead of
1/2, the performance doesn’t improve but actually
drops.

4.3 Impact of depth

Depth indicates how many times we split the
patches to form a new set of patches at a smaller

4

0.9091 0.0909 0
0.1818 0.5455 0.2727
0.0909 0.2727 0.6364

Recognition Rate:69.69%

Confusion Matrix 3: Patches of scale: 1/2

0.8182 0.1818 0
0.2727 0.3636 0.3636
0.0909 0.2727 0.6364

Recognition Rate:60.6%

Confusion Matrix 4: Patches of scale : 1/4

scale. At depth=d, the scale of the images is
1/2d−1. To check whether increasing the depth
of the tree has any advantages, we tested our ap-
proach using a tree with depth=2 and depth=3.
We trained on 30 images of 4 categories and tested
on 16 images. The confusion matrices(total counts
used instead of percentages) are shown below:

15 1 0 0
7 7 0 2
11 3 0 2
0 4 0 12

Confusion Matrix 5: Tree Depth 3

15 1 0 0
6 6 1 3
8 2 4 2
0 4 0 12

Confusion Matrix 6: Tree Depth 2

10 5 1 0
5 8 0 3
6 6 4 0
0 8 1 7

Confusion Matrix 7: Tree Depth 1

As it can be seen that the difference between
recognition rate for depth=2 and depth=3 is not
much but increasing the depth increases the time
by quite a margin. Actually increasing the depth

has a negative impact after depth=2. Whereas in-
creasing the depth to 2 from 1, improves the recog-
nition rate from 45% to 57%.

4.4 Impact of training data

As the amount of training data is increased, the
performance of the classifier improves.

0.9091 0.0909 0
0.3636 0.4545 0.1818

0 0.7273 0.2727
Recognition Rate:60.6%

Confusion Matrix 8: Training Set:20

0.9091 0.0909 0
0.3636 0.5455 0.0909
0.0909 0.5455 0.3636

Recognition Rate:60.6%

Confusion Matrix 9: Training Set:25

0.9091 0.0909 0
0.1818 0.5455 0.2727
0.0909 0.2727 0.6364

Recognition Rate:69.69%

Confusion Matrix 10: Training Set:30

1.0000 0 0
0.4545 0.3636 0.1818

0 0.2727 0.7273
Recognition Rate:69.69%

Confusion Matrix 11: Training Set:40

4.5 Impact of Clustering

We cluster the feature patches to about θ% of the
input set of patches. Having a high θ would have
faster training and slower test performance. Also,
since most of the patches are not clustered it would
behave like nearest neighbors. On the other hand,
smaller percentage would increase the training time

5

a lot, and would generalize better. But in our ex-
periments smaller threshold percentage worked bet-
ter.

0.9091 0.0909 0
0.1818 0.5455 0.2727
0.0909 0.2727 0.6364

Recognition Rate:69.69%

Confusion Matrix 12: Clustering 90%

0.9091 0.0909 0
0.2727 0.3636 0.3636
0.0909 0.3636 0.5455

Recognition Rate:60.6%

Confusion Matrix 13: Clustering 70%

5 Future Work

Currently the results don’t look great and also per-
forming HAC is really slow. Probably using a patch
tree similar to a vocabulary tree could speed up
search during testing and also prevent unnecessary
computations during HAC.

The model that is used currently is very naive
and can be improved upon by using models similar
to LDA. Probably using object cuts would be useful
to find better patches to match.

6 Conclusion

Using spatial information along with pyramid
match kernels brings in the good from both the
worlds. Clustering among patches helps to reduce
the test time and also generalizes across examples.
Using soft nearest neighbors also helps to capture
richer probability distributions among patches and
latent concepts.

References

[1] L. Fei-Fei, R. Fergus, and P. Perona. Learn-
ing generative visual models from few train-
ing examples: an incremental Bayesian ap-
proach tested on 101 object categories. In IEEE

CVPR Workshop on Generative-Model Based
Vision, 2004. http://www.vision.caltech.
edu/ImageDatasets/Caltech101.

[2] G. Griffin, A. Holub, and P. Perona. Caltech-
256 object category dataset. Technical report,
CalTech, 2007.http://www.vision.caltech.
edu/Image_Datasets/Caltech256/

[3] K. Grauman and T. Darrell. Pyramid match
kernels: Discriminative classification with sets
of image features. In Proc. ICCV, 2005.

[4] S. Lazebnik, C. Schmid, and J. Ponce. Beyond
bags of features: Spatial pyramid matching for
recognizing natural scene categories. In CVPR,
2006.

[5] O Boiman, E Shechtman, M Irani. In defense of
nearest-neighbor based image classification. In
CVPR, 2008.

[6] H. Zhang, A. Berg, M. Maire, and J. Ma-
lik. SVM-KNN: Discriminative nearest neigh-
bor classification for visual category recogni-
tion. In Proc. CVPR, 2006.

[7] Florent Monay, Pedro Quelhas, Jean-Marc
Odobez. Contextual classification of im-
age patches with latent aspect models. In
EURASIP 2009.

[8] R Mare, P Geurts, J Piater, L We-
henkel.Random subwindows for robust image
classification. In CVPR 2005.

[9] Chaitanya Desai ,Deva Ramanan, Charless
Fowlkes. Discriminative models for multi-class
object layout. In ICCV 2009.

[10] Chong Wang, David Blei, Li Fei-Fei. Simulta-
neous Image Classification and Annotation. In
CVPR 2009.

[11] R. Kondor and T. Jebara. A Kernel Between
Sets of Vectors. In Proccedings of ICML, 2003.

6

http://www.vision.caltech.edu/Image Datasets/Caltech101
http://www.vision.caltech.edu/Image Datasets/Caltech101
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/

	Introduction
	Related Work
	Implementation
	Training
	Testing

	Experiments
	Impact of overlap
	Impact of scale
	Impact of depth
	Impact of training data
	Impact of Clustering

	Future Work
	Conclusion

