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BUILDING HIGH-PERFORMANCE WIRELESS SYSTEMS THROUGH
DYNAMIC SPECTRUM ACCESS

Tan Zhang

Under the supervision of Professor Suman Banerjee
At the University of Wisconsin-Madison

There is a surging demand for providing ubiquitous and high-speed Internet
connectivity with the proliferation of smartphones, tablets, and other mobile
devices. Nevertheless, existing wireless spectrum for mobile access has
become overcrowded to meet such demand. To alleviate the spectrum
crunch, regulatory agencies worldwide has started embracing a dynamic
spectrum access model, which allows opportunistic communications in the
unused spectral blocks. A key requirement therein is to protect existing
wireless services, leading to various inefficiencies in the unlicensed, secondary
applications.

To address this problem, this dissertation makes contributions in building
measurement infrastructures, network architectures, and communication
protocols to enhance this dynamic spectrum access model in the specific context
of TV whitespaces (unused television channels).

We start by deploying a vehicle-based measurement system called V-
Scope to enhance existing approaches for whitespace determination. V-Scope
leverages spectrum sensors on public vehicles to collect measurements from
the road. These measurements are used to refine various propagation models
that can better determine whitespace spectrum, estimate its channel quality,
and localize primary and secondary devices. Given the improved spectrum
knowledge, we then focus on extending the coverage of whitespace networks to
provide vehicular Internet connectivity. We present a heterogeneous network
called Scout, which leverages TV whitespaces for downlink communications
and a traditional cellular path for uplink to address the power asymmetry
issue. Scout further uses an additional radio to “foresee” the channel condition
to improve the transmission decisions under delayed feedback. It can also
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coordinate multiple base stations to enhance the network coverage and
throughput.

In the last part of the thesis, we focus on improving the bandwidth efficiency
of whitespace networks. We present an edge computing system Vigil to provide
intelligent video surveillance in real-time. Vigil uses TV whitespaces to connect
edge computing nodes co-located with camera sensors, which can filter video
traffic locally to conserve wireless bandwidth.

We believe that our measurement infrastructure, network architectures, and
wireless protocols are useful in enhancing the performance of TV whitespace
networks. Furthermore, most of the concepts and techniques can have broader
applications to dynamic spectrum access beyond TV whitespaces.

Suman Banerjee



1

1 introduction

Many users have the annoying experience of their browsers getting stuck,
video streaming becoming slow and choppy, and navigation services no longer
accessible, especially in big cities like Chicago and New York. Most of these
common frustrations come from a spotty wireless connection. Despite more
and more cellular towers being deployed today, often heard from wireless
providers is the concern that the surging demand for ubiquitous connectivity,
intrigued by smartphones, tablets and other mobile devices, is outpacing
their network capacity. A key communication resource being exhausted is
the radio frequency spectrum over which wireless signals propagate. To address
the ongoing spectrum crunch, various regulatory agencies across the world
intend to open up additional spectrum bands for wireless broadband access.

Since most of the wireless spectrum has been assigned to some existing
communication services, a dynamic spectrum access model is widely embraced
by regulatory agencies around the world, which allows opportunistic com-
munications in those spectrum blocks that are not being used by the primary
applications. As the first incarnation of this concept, the unused spectrum
portions in the television band (512 – 698MHz), popularly referred to as TV
whitespaces, has been released for unlicensed usage in many parts of the world
(e.g., US, UK, Singapore). This new swathe of spectrum contains substantial
spectrum resource (up to 180MHz) that can be used for free. Further, signals in
the TV band can propagate at a much longer range (up to 30km) than those
in the WiFi and cellular band. Hence, as the demand for mobile and wireless
connectivity continues to grow, such spectrum is going to be particularly helpful
to alleviate the ongoing spectrum crunch. Moreover, the regulations and
technologies developed for TV whitespaces are valuable for the release of other
spectral blocks in near future, such as the 3.5 GHz band [27] and 5 GHz UNII
band [26] advocated by FCC, to sustain the prosperity of mobile broadband
networks.

An unique and fundamental requirement of dynamic spectrum access is to
avoid interrupting those primary spectrum incumbents – a set of wireless devices
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Figure 1.1: A typical whitespace network today, in which base stations query
the vacant TV channels from a spectrum database on behalf of their clients.
This thesis includes optimizations at the spectrum occupancy database, as well
as the network architectures and communication protocols employed between
the base stations and clients.

for which a spectral band is licensed. As a result, the unlicensed, secondary
devices are required to only operate in the vacant channels free from primary
communications. There are two types of primary devices in TV whitespaces, i.e.,
TV broadcast transmitters and wireless microphones. A present-day whitespace
network (as depicted in Figure 1.1) relies on a few spectrum occupancy database to
determine the unused channels as required by many regulation agencies [25, 94].
These databases are operated by some third-party companies according to some
spectrum regulations. They receive queries from whitespace devices with their
operating locations, and return all the vacant channels as response. Such queries
are periodically sent by each whitespace device, and relayed through a subset
of static base stations with wired connections to the database. Internally, each
database leverages a fixed, widely-used propagation model [16] to predict the
coverage contour of primary devices. A channel is concluded to be “whitespace”
only for a secondary device operating outside the predicted contours of all the
primary devices.



3

The fundamental requirement of protecting primary incumbents and the
corresponding operation model of whitespace networks have brought various
challenges as detailed below.

• Spectrum wastage: Existing spectrum occupancy databases are likely
to have errors in predicting whitespace spectrum. Often observed are
available whitespaces to be marked as occupied, leading to wasted
opportunities for communications. This is because the underlying
propagation model used by the databases is not able to capture the fine-
grained environment variation, e.g., shadowing and multipath fading of
specific contours, objects, and topologies. Since protecting primary users
is at the top priority, they have to adopt a very conservative configuration
for their models, which causes under-utilization of whitespace channels
over a large area. Also missing from the spectrum database is the ability
to validate the location of primary and secondary transmitters, which is a
crucial parameter for determining the whitespace availability. Further,
the databases do not attempt to distinguish the quality of vacant channels,
which can differ significantly and thus have a large impact on the network
performance.

• Power asymmetry: A mobile whitespace network today suffers from a
limited communication range of its individual links due to the asymmetric
transmit power limits. According to the ruling of many regulatory
agencies [25, 94], the transmit power of the mobile whitespace devices is
limited to 100 mW, whereas the power of static base stations can be up to
4 W. This 40× difference in power limit is to prevent mobile devices from
causing harmful interference to the primary incumbents during roaming,
as it is fairly hard for a database to determine the exact location of all
the devices on the move. Hence, the stringent power limit for mobile
devices seems a necessary precaution to limit their potential interference.
Since most of the communication protocols need to be bi-directional, the
asymmetric power limits have significantly reduced the operating range
of a whitespace link to that of a “weaker” mobile client. The shorter
communication range in turn necessitates much more base stations to be
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deployed, causing a dramatic increase in deployment cost, along with
frequent client handoff that degrades link performance.

• Routing and handoff: Apart from the issue of power asymmetry, the
coverage of a single base station might not be sufficient for providing
a satisfying wide-area coverage. In such case, a network comprising
multiple base stations is needed. This can bring a variety of challenges
in base station assignment, traffic scheduling, and client handoff, all of
which are further complicated by the fast varying channel condition under
mobility.

• Bandwidth limitation: While the amount of whitespace spectrum is
abundant in many rural areas, it can be quite scarce in other metropolitan
districts, e.g., the Times Square in which only a 5MHz TV channel is
reported to be available [92]. The precious link capacity might be further
cut down by various protocol overhead such as loss recovery and channel
contention, especially for wide-area networks. When the link capacity
is at a premium, it is far more challenging to support many popular, yet
bandwidth-hungry applications like video streaming as would be done
in wired networks.

These challenges motivate solutions from two broad spaces – i) building
scalable measurement infrastructures for improving spectrum utilization, and
ii) designing efficient network architecture and robust wireless protocols for
optimizing network performance and bandwidth consumption.

1.1 focus of this thesis

As discussed, the inefficiency in whitespace determination, asymmetry in
transmit power limits, channel dynamics under mobility, and scarcity in
link capacity, have collectively restricted the performance and applicability
of present-day whitespace networks. Since these problems lie in the two
constituent components of the dynamic spectrum access model – spectrum
occupancy databases and wireless network designs, they naturally lead to two
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orthogonal, yet complementary solution spaces that we have explored in this
thesis.

To enhance the spectrum occupancy databases, we posit that the spectrum
measurements can serve as an useful gauge for measuring and calibrating their
underlying propagation models, as they can best reflect a given propagation
environment and the wireless signal activity present therein. Nevertheless,
collecting these measurements from arbitrary locations over a large area is
a fairly challenging and laborious task. Hence, this dissertation explores
scalable spectrum measurement infrastructures that is able to collect wide-area
measurements at a relatively low cost, while efficiently utilizing this substantial
measurements using statistical methods to enhance various functions of a
spectrum database.

Accurately determining the available and high-quality whitespace spectrum
is merely the first step toward building a high-performance dynamic spectrum
access network. Challenges such as power asymmetry, link dynamics, and
capacity limitation, still plague the operation of a whitespace network. We
thus embark on a complementary research endeavor in this dissertation – to
optimize various aspects of a wireless network to tackle the specific challenges
deriving from the dynamic spectrum access.

Problem Statement and Solution Approaches

Problem statement: Given the fundamental requirement of protecting primary
incumbents for a whitespace network, this thesis has attempted to address the
following question —

How can we build scalable measurement infrastructures as well as robust
network architectures and communication protocols, to enhance the per-
formance of wireless networks through dynamic spectrum access?

More specifically, we explore the design and deployment of low-cost
measurement systems to enhance existing spectrum databases for better
predicting whitespace channels and their individual quality, while investigating
stylized network architectures, wireless protocols and cross-layer techniques
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Figure 1.2: Our solutions in this thesis. V-Scope is implemented and
deployed on public transit vehicles to quantify and enrich various management
functions of existing spectrum databases, which include whitespace spectrum
determination, channel quality estimation, and transmitter localization. Scout is
a whitespace network that uses a heterogeneous architecture and a coordination
framework to provide extensive coverage for vehicles and other mobile entities.
Vigil is an intelligent video surveillance system built over TV whitespace
networks, which leverages edge computing to conserve wireless bandwidth.
As illustrated above, each system contributes toward enhancing whitespace
networks from a different aspect.

to improve the coverage, efficiency, and robustness of a whitespace network.
Figure 1.2 illustrates our approaches towards this goal, by augmenting the
external spectrum databases and underlying wireless networks respectively.
We next describe these solutions in more details.

Our solutions: We divide our solution space into two complementary
components, each including a set of optimizations at spectrum occupancy
databases or whitespace networks. To enhance spectrum databases, we build
an opportunistic measurement system called V-Scope (Vehicular Spectrum
Scope). V-Scope leverages spectrum sensors on public vehicles to collect wide-
area measurements at a low cost. Through only a 6-week deployment on a
single metro bus at Madison, WI, V-Scope is able to collect spectral data at over
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one million distinct locations across a 120 sq. km. area. These measurements
are used to refine various propagation models, which can enable a spectrum
database to better predict the availability of whitespace spectrum, estimate the
quality of individual channels (in noise power), and validate the location of
primary and secondary devices.

We next switch our attention to extending network coverage in mobility
scenarios, and explore a particularly challenging application of providing
vehicular Internet connectivity. Our system Scout aims to address the dual
challenges of power asymmetry and base station coordination. To deal with
the power asymmetry issue, Scout leverages a heterogeneous architecture that
uses TV whitespaces for downlink communications (from a base station to a
vehicular client), while leveraging existing cellular connectivity for the uplink
(from a client to the base station). The ubiquitous cellular coverage has helped
circumvent the weak whitespace uplink, thereby maximizing the coverage of
each whitespace base station. To compensate the high feedback delay in the
cellular path, Scout leverages an additional radio to “foresees” the channel
condition at each client, thereby improving the transmission decisions made by
each base station. Scout can further coordinate multiple base stations through
a central controller to enhance network coverage and throughput.

In the last part of the thesis, we focus on optimizing the bandwidth
utilization in whitespace networks using an edge computing architecture. We
build Vigil - a real-time, intelligent video surveillance system operating over
a whitespace network. Vigil leverages edge computing units attached to
distributed camera sensors to pre-process camera feed, while only selecting
those relevant frames to upload to the cloud for deeper analysis. Such a context-
aware uploading strategy can eliminate a large fraction of irrelevant video frames
to conserve wireless bandwidth usage. To further improve bandwidth efficiency,
Vigil leverages a cross-layer technique to prioritize video frames based on their
utility value and the wireless capacity. It also coordinates multiple cameras
monitoring a common area to boost the surveillance accuracy, while eliminating
their redundant video frames to conserve bandwidth. We now describe each of
these systems in more details in the following sections.
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1.2 a vehicle-based measurement framework to enhance whitespace
spectrum databases

We start by exploring scalable measurement infrastructures and efficient statis-
tical approaches to augment existing approaches for whitespace determination.
The present-day approach for determining the vacant whitespace channels is
to have secondary devices to query a spectrum occupancy database [25, 94].
These databases are operated by some third-party companies as delegated
by regulatory agencies like FCC. They use a fixed, widely-used propagation
model [16] to predict the coverage contour of TV broadcasts. In addition, they
establish a fixed (2km) protection contour around the location of each licensed
microphone, while reserving two channels nationwide for their exclusive usage.
A channel is concluded to be whitespace if a secondary device is operating
outside the predicted contours of all the primary devices.

Being based solely on an empirical propagation model, such databases tend
to be very conservative in protecting primary incumbents, causing unnecessary
blocking of some whitespace channels over a large area (up to 71%). Further,
the databases do not attempt to distinguish the quality of individual whitespace
channels, which can differ significantly (40dB) at a given location, due to
the co-channel interference from unlicensed devices (i.e., whitespace devices
and unlicensed microphones), as well as adjacent-channel leakage from TV
broadcasts. The large variation in channel quality can significantly impact
the performance of a whitespace link. Also missing from the databases is the
ability to validate the locations reported by primary and secondary devices.
Such information can be inaccurate due to various reasons, such as incorrect
entries to databases and transmitter reallocation, which causes additional errors
in whitespace determination.

To quantify and address the limitations of existing databases, we build
V-Scope, a low-cost measurement system that leverages public transit buses to
carry spectrum sensors and collect measurements opportunistically as they
travel. Such an approach has an unique advantage in that each mobile sensor
can contribute a proportional volume of useful measurements over a relatively
large area. Through only a 6-week deployment on a single metro bus at Madison,
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WI, we have been able to collect measurements at more than one million distinct
locations over a 120 sq. km. area (Figure 1.3). These measurements are used
to augment existing databases to better predict the availability of whitespace
spectrum, estimate the quality of individual vacant channels, and localize
primary and secondary devices as follows.

V-Scope leverages two complementary approaches to improve the accuracy
of whitespace determination. It first uses an enhanced version of feature
detection technique to accurately detect primary signals based on the spectrum
measurements, while being able to measure their signal strength up to the
FCC-mandated sensing threshold (-114dBm [25]). It then utilizes the accurate
signal strength estimates as “anchor points” to refine the parameters of any
given propagation model (e.g., the slope α in Figure 1.4). The calibrated model
can be used by existing databases to better predict the coverage of primary
incumbents. Using a similar model fitting technique, V-Scope builds a signal
strength model for each unlicensed device, while constructing a leakage model
for each TV broadcast transmitter to empower the database to estimate the
quality of whitespace channels. Apart from signal strength prediction, V-Scope
can help pinpoint the location of any primary and secondary device. To do
so, it uses a variant of the RSSI modeling localization technique [12, 75] that
is tailored specifically to the outdoor scenario. Such a technique only uses a
fraction of measurements that match well with an expected propagation trend
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for localization, thereby reducing the impact of environment-induced variation
on localization accuracy.

Based on our wide-area measurements and a combination of the proposed
techniques, we find that commercial databases that are based solely on
propagation models cause under-utilization of whitespace spectrum over a
wide area (up to 71% measured locations for protecting TV and 70% locations for
microphones). We further demonstrate that V-Scope can reclaim the spectrum
wastage for protecting primary incumbents at up to 59% locations. Further,
V-Scope can help identify all the suitable whitespace channels at 72 – 83%
locations given different channel quality constraints. It can also pinpoint TV-
band devices at various locations at a low error of 16 – 27m, outperforming the
state-of-the-art localization techniques by 1.2 – 3.5×.

1.3 a heterogeneous network architecture to extend coverage

In the next piece of work, we explore a heterogeneous network architecture to
address the power asymmetry issue in whitespaces. We focus on a particularly
challenging application of providing vehicular Internet access, which has
become increasingly popular for diverse applications, e.g., improved traffic
intelligence, transportation safety, and infotainment for passengers. As our
long-term deployment goal, we intend to bring “on-board” Internet access to
the commuters of the Madison Metro Transit operating hundreds of buses.
To this end, we have mounted a few base stations along the roadside. Each
base station uses a whitespace radio to communicate with a mobile gateway
(client) mounted on buses. The gateway provides a WiFi hotspot inside the bus,
allowing users to connect with their WiFi-capable devices.

A key challenge in this setup is the asymmetric power limits that significantly
limits the coverage of each base station. Specifically, the mobile whitespace
devices (gateway nodes) are required to use a much lower transmit power (up
to 100 mW) than that of static base stations (4 W) [25, 94]. This 40× difference
in the transmit power is to restrict the roaming-induced interference of mobile
devices. Since most of the communication protocols need to be bi-directional,
the asymmetric power limits have significantly limited the coverage radius



11

InternetCellular 

Base Station

Cellular 

Uplink 

Transmission Range
2km

Whitespaces Downlink

Cellular 

Card

Wired Network

TV Whitespaces

Base Station

Rear Front

Rear Front

Time

Locationl
(a) (b)

Figure 1.5: Scout design to improve base station coverage: (a) heterogeneous
architecture; (b) illustration of channel “scouting”.

of a base station to that of a “weaker” mobile client (e.g., from 2km to 500m).
To produce a similar coverage, much more base stations would be deployed,
significantly increasing the infrastructure and management cost.

To circumvent the bottleneck of “weak” whitespace uplink, we build a
heterogeneous network called Scout. Scout sends the downlink traffic primarily
over the whitespace path, whereas communicating the uplink traffic over
existing cellular paths (depicted in Figure 1.5(a)). The extensive cellular
connectivity allow Scout to maximize the downlink coverage of each whitespace
base station. Further, Scout is efficient in utilizing TV whitespaces for relaying
network traffic, as many networking applications are downlink dominated (10×
in WiRover [36]). While effectively extending the coverage, the high latency in
the cellular uplink significant degrades the performance of a heterogeneous
network. Since most of communication systems rely on channel estimation for
making various protocol decisions, e.g., rate adaptation, the stale feedback leads
to inaccurate channel estimation, especially in the mobile environment, causing
poor transmission decisions at the base stations.

To improve the channel estimation with a slow feedback path, we leverage
an extra “scouting” radio to measure the channel condition at each reception
location in advance (depicted in Figure 1.5(b)). Our core intuition is that
the reception location of a radio largely determines its experienced channel
condition [61, 63, 83]. We exploit this location-specific channel characteristics
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by mounting the scouting radio at the head of the vehicle, while placing the
receiving radio at the rear. The head radio can “scout” the likely channel
condition at each future location where the rear radio will visit shortly. By
the time the rear radio reaches the same location l, the base station can use
this more relevant channel estimate previously reported by the front radio
at l to improve transmission decisions. Built on this scouting-based channel
estimation technique, we have developed multiple aggressive transmission
techniques to improve individual link robustness, while coordinating multiple
base stations to enhance network coverage and throughput.

1.4 an edge computing architecture to improve bandwidth efficiency

We now focus on enhancing an orthogonal aspect of whitespace network –
wireless bandwidth utilization. We explore the solutions under a bandwidth-
hungry application of providing intelligent video surveillance. Automated
surveillance systems continue to pervade our physical existence with many
valuable applications. Examples include business analytics at retail stores,
security monitoring in corporate and educational campuses, and traffic control
in smart cities. Nevertheless, most of these camera surveillance systems today
such as DropCam [21] rely on a wired network infrastructure to upload camera
feeds to the cloud for offline analysis. This significantly limits the coverage of
surveillance applications, while increasing the deployment cost.

To remove the constraints of wired connections, we explore a wireless
video surveillance network that leverages a TV whitespace network to connect
distributed camera sensors to the cloud. The key challenge in such a system is
the limited capacity of the underlying whitespace network, which can be far
from sufficient to accommodate simultaneously uploading of multiple high-
definition video feeds (22 Mbps for each 1080p video). When the wireless
capacity lags behind the bandwidth demand of video traffic, large video backlog
and even dropping of video frames can occur, significantly degrading the
accuracy and responsiveness of a surveillance application. While prior work in
video compression [1, 2] and upload shaping techniques [17, 37] have explored
reducing the bandwidth consumption of video traffic, most of these techniques
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are agnostic to the usefulness of video frames pertaining to the end surveillance
application, hence leading to significant bandwidth wastage of uploading
irrelevant data.

To address this bandwidth inefficiency, we build Vigil – a real-time wireless
video surveillance system that uses an edge computing framework to filter
surveillance traffic at the network edge (depicted in Figure 1.6). These edge
computing units (ECNs) are collocated with camera nodes to pre-process video
feed based on a specific user query, such as locating people or tracking objects
with certain features. Each ECN node uses lightweight vision algorithms
(e.g., motion and object detection) as specified in the query to process video
feed, while generating a stream of analytic results for individual video frames.
These analytics include the frame significance and object features, which are
uploaded over TV whitespaces to a cloud based controller. Based on the vision
analytics, the controller subsequently pulls those significant frames from the
corresponding ECNs for deeper analysis, e.g., people recognition or trajectory
synthesis. This context-aware uploading strategy can eliminate a large fraction
of unrelated video frames from uploading to the cloud, thus conserving the
bandwidth usage of the underlying whitespace network. The saved capacity is
scavenged by each ECN to backhaul users’ WiFi traffic from its attached access
point, thereby offsetting the deployment cost.

We develop a cross-layer frame selection algorithm at the controller to
further improve the bandwidth utilization of uploading video surveillance
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traffic. Such an algorithm prioritizes video frames based on their significance
and the underlying capacity of wireless links. To quantify a frame’s significance,
we design the ops metric (objects per second), which captures both the amount of
useful information contained in a video frame (in number of objects in interest),
and the bandwidth cost of uploading this frame to the cloud. Based on this
metric, our algorithm uploads video frames in the descending order of their
significance under the estimated bandwidth constraint. This greedy algorithm
is shown to maximize the number of query-specific objects delivered to the
cloud, while minimizing their bandwidth consumption.

To boost the accuracy of vision analytic functions, Vigil can leverage multiple
cameras to monitor a common area from different locations. Such an approach
can deal with the inherent inaccuracy of vision algorithms that are sensitive to
various environmental factors such as lighting and capture angle. It can further
detect and eliminate redundant frames captured by multiple cameras, based
on a light-weight image stitching technique running at the controller.

We have deployed Vigil at three sites across two countries, and evaluated its
efficacy in surveillance applications under vastly different network conditions.
Given a wide range of activity levels in different monitored scenarios, Vigil is
able to extend the video surveillance coverage by 5 – 200 times over a simpler
approach that streams video feeds directly over the underlying whitespace
network.

1.5 contributions

While dynamic spectrum access is a promising solution to address the
continued spectrum crunch, building a mobile broadband network based on
this opportunistic access model is particularly challenging. The hardness stems
from the fundamental requirement of protecting primary incumbents, and is
further exacerbated by the link dynamics caused by device mobility and channel
contention. This leads to a range of challenges in whitespace determination
and management, network coverage, and bandwidth utilization of present-day
whitespace networks. To tackle these problems, this dissertation has explored
two complementary solution spaces to optimize the constituent components of
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dynamic spectrum access – the spectrum management module and wireless
networks. These efforts involve developing low-cost measurement systems
and model refinement techniques to augment existing spectrum occupancy
databases, while building stylized network architectures, robust wireless
protocols, and intelligent scheduling techniques to improve the coverage and
bandwidth efficiency of whitespace networks. Specifically, the contributions of
this dissertation are described as follows:

1. We designed and implemented V-Scope, an opportunistic measurement
system that leverages spectrum sensors on public vehicles to collect wide-
area measurements at low-cost. The measurements are used to quantify
the performance of existing spectrum databases, while enhancing them
to better predict whitespace spectrum, estimate the channel quality, and
localize primary and secondary devices. While a few prior studies [56,
105] have reported the inefficiency of databases for protecting primary
incumbents, they are based on measurements manually collected at a very
few locations. In contrast, V-Scope has enabled the first of its kind study
over wide-area, by leveraging a metro bus to collect data at about 1 million
distinct locations over a 120 square-km area at Madison, WI. Using these
measurements and an enhanced signal detection algorithm, we show
that commercial databases cause under-utilization of several whitespace
channels over a wide area (up to 71% measured locations). We also report
that the quality of whitespace channels can differ significantly at a given
location (e.g., up to 40dB in noise power), due to various primary and
secondary interference. Motivated by these observations, we developed
model fitting techniques in V-Scope, which can use measurements as
“anchor points” to refine various propagation models for augmenting
databases. We show that the calibrated models are able to reclaim the
wasted area in whitespace determination by up to 59%. They can further
enable the databases to identify suitable whitespace channels at 72 – 83%
locations given different quality constraints. In addition, these models
can be extended to localize TV-band devices in outdoor scenarios with a
relatively low error (16 – 27m).
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2. We designed and implemented Scout, a heterogeneous network that
tackles the specific problem of power asymmetry in whitespaces for
providing robust Internet connectivity to vehicles. Scout leverages a
heterogeneous network architecture where the downlink communications
is primarily conducted over TV whitespaces, whereas the uplink data
is sent over the cellular path. The extensive cellular coverage enables
Scout to circumvent the bottleneck of weak whitespace uplink, thereby
maximizing the coverage of each whitespace base station. To address
the problem of feedback delay over the cellular uplink, we introduce
the notion and demonstrate the benefits of a scouting radio for channel
estimation. In a vehicular setting, since it is natural for a rear radio to
follow a front radio along a given path, the scouting radio placed at the
head of a vehicle is able to provide accurate channel estimates for the
main receiving radio at the rear. We have built a functional system around
this scouting based channel estimation to adapt aggressive transmission
techniques, i.e., rate adaptation, inter-packet FEC, and intelligent traffic
duplication over cellular paths, for enhancing the downlink performance
of vehicular connectivity (by 3 – 8× in TCP throughput). We further built
a centralized controller to coordinate multiple whitespace base stations to
enhance the aggregate network capacity (at 73 – 374% gain), while forcing
flexible channel contention policies.

3. We designed and implemented Vigil, a real-time intelligent video surveil-
lance system over TV whitespaces. Vigil leverages a TV whitespace
network to connect distributed camera sensors wirelessly to a cloud-based
controller to support pervasive video surveillance functions. To deal with
the bandwidth limitation of whitespace links, Vigil intelligently partitions
video processing between ECNs co-located with camera nodes and the
cloud. Each ECN processes the camera feed locally with some light-weight
vision analytic algorithms, while reporting the results to the controller.
These analytics enables the controller to only request the relevant video
frames from the ECNs to conduct sophisticated analysis for conserving
wireless bandwidth. The saved wireless capacity is further scavenged by
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each ECN node to provide WiFi access to recoup the operation cost. To
further improve bandwidth efficiency, Vigil leverages a frame scheduling
algorithm to prioritize video frames based on their utility and the available
wireless capacity. It further leverages multiple cameras to monitor an
overlapping area from different angles and locations to improve accuracy.
Such a technique can also identify frames containing duplicate objects
captured by these cameras based on their vision analytics, while only
uploading a best copy to minimize bandwidth usage. Through three
deployments across two countries, we demonstrate significant benefits of
Vigil for improving the bandwidth efficiency of whitespace networks, by
supporting a 5 – 200× larger surveillance area compared to a traditional
approach streaming the entire video to the cloud.

1.6 outline

The rest of the thesis is organized as follows. In Chapter 2, we present
our measurement infrastructure V-Scope, which leverages public vehicles for
collecting wide-area measurements to augment spectrum occupancy databases.
In Chapter 3, we focus on enhancing the coverage of whitespace networks
under mobility scenarios. We present Scout, a TV whitespace network based
on a heterogeneous architecture and a centralized coordination framework
to provide robust Internet connectivity to vehicles. In Chapter 4, we aim to
enhance the bandwidth efficiency of whitespace networks. We present Vigil, a
real-time wireless video surveillance network that leverages edge computing to
conserve wireless bandwidth. In Chapter 5, we compare our work with prior
approaches and systems to manage and enhance wireless networks through
dynamic spectrum access. We conclude and discuss the avenues for further
research in Chapter 6.
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2 a vehicle-based measurement system to enhance
whitespace spectrum databases

2.1 motivation

In this chapter, we describe our work to address the first and foremost
issue in dynamic spectrum access — to accurately determine vacant and
high-quality channels. We leave how to optimize wireless networks to
utilize such spectrum in following chapters. The current mechanism for
determining vacant TV whitespaces is to have secondary devices to query
spectrum occupancy databases [25, 94]. These databases are operated by some
third-party companies following the spectrum regulation. They rely on a same,
widely-used propagation model (R6602 [16]) to predict the coverage contour of
TV broadcasts. In addition, they set up a fixed (2km) protection contour around
licensed microphones and reserve two channels nationwide for their exclusive
usage. A channel is concluded to be whitespace if a secondary device is outside
the predicted contours of all the primary devices.

Being based solely on a propagation model with conservative configurations,
such databases are likely to have errors in predicting the available whitespace
spectrum, causing under-utilization of some whitespace channels over large
area (up to 71%). Further, the databases do not attempt to distinguish the
quality of whitespace channels, nor are they responsible for validating the
locations of primary and secondary transmitters. To address the limitations of
existing databases, we explore the use of spectrum measurements combined
with propagation models to better determine whitespace spectrum, estimate
the quality of whitespace channels, and localize primary and secondary devices.
In particular, we present V-Scope (Vehicular Spectrum Scope), a measurement
system that leverages public transit buses to carry spectrum sensors and collect
wide-area measurements opportunistically as they travel. These measurements
are used to enhance various functions of databases as follows.

V-Scope uses two related techniques based on measurements to enhance
databases for whitespace determination. It first uses an enhanced version of
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feature detection that can detect primary signals and measure their power at
up to the FCC-mandated detection threshold (-114dBm [25]). Based on the
measured signal strength of primary devices, V-Scope refines the parameters
of a propagation model, which can be used by databases to better predict the
coverage of primary devices.

Apart from whitespace determination, V-Scope enables databases to
estimate the quality of whitespace channels. Such a function is particularly
valuable as the noise power in whitespace channels can differ significantly (up
to 40dB) based on our measurements. Such variation in channel quality is
contributed by the co-channel interference from unlicensed devices (whitespace
devices and unlicensed microphones), and adjacent-channel leakage from TV
broadcasts. Unfortunately, both types of interference cannot be captured by
existing databases without knowing their transmission characteristics (i.e.,
location and transmit power). To predict co-channel interference, V-Scope uses
a similar model fitting procedure mentioned above to construct signal strength
models for each unlicensed device. For adjacent-channel leakage, V-Scope
constructs a leakage model that can take the strength of a TV broadcast signal
to accurately estimate its leakage power at a given location.

V-Scope can also empower databases to localize primary and secondary
devices. Such location information is needed to predict the availability and
quality of whitespace channels. But it is currently missing from existing
databases for secondary devices, and can be inaccurate for primary transmitters.
V-Scope utilizes the measured signal strength of these devices to pinpoint
their location, thereby enabling database operators to obtain and validate such
information. To achieve this, we have leveraged a RSSI modeling technique that
is commonly used in indoor localization systems [12, 75], while enhancing it to
account for environmental variation in outdoor scenarios.

While our opportunistic wardriving approach has some unique advantages
in collecting wide area measurements, a similar goal can certainly be achieved
by other approaches such as local spectrum sensing and crowd-sourcing mobile
whitespace devices. Regardless of how measurements are collected, most of
our proposed techniques remain useful for enhancing databases based on these
measurements.
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2.2 limitation of existing spectrum occupancy databases

We now motivate the design of V-Scope by demonstrating the two major
limitations in existing spectrum databases. First, to tolerate the inaccuracy
of propagation models, the databases assign very conservative protection
contours for primary devices, which cause non-negligible wastage in whitespace
utilization. Second, they are agnostic to the quality of whitespace channels,
which can differ significantly at a given location, and thus can have a large
impact on the performance of a whitespace network. We start by describing
our measurement setup and datasets.

Measurement setup

Our current deployment consists of a server and a client as shown in Figure 2.1.
The client has been deployed on a metro bus traveling in and around a mid-sized
US city for a 6-week period. It uses a laptop to configure a portable spectrum
analyzer (WSA4000 [96]) for collecting spectrum samples (FFTs) in all the UHF
channels. An omni-directional TV antenna with 0dB gain is used to capture
signals from all the directions. Based on these spectrum samples of a channel,
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Dataset Measured
Locations

Coverage
(sq. km.)

Channels Vehicle Target Device

A 1 million 120 30 UHF channels A metro bus All TV-band devices
B 3.5K 3 Channel 42 A personal vehicle A 3.8W whitespace trans-

mitter atop a 8-floor build-
ing

C 2.5K 2 Channel 28 A personal vehicle A 100mW microphone in 5
buildings

Table 2.1: Summary of datasets.

the laptop performs some real-time analysis (§ 2.3), i.e., primary detection and
power estimation, while obtaining the measured location from a GPS module.
It uploads the GPS reading and measurement results to our server over cellular
networks. The server is situated in our laboratory, with an Ethernet to receive
the measurement results. It queries a commercial database [92] at measured
locations to evaluate the database’s accuracy.

Datasets: Using this measurement setup, we have collected three datasets
on different vehicles. Table 2.1 summarizes their salient features. Dataset
A is our main dataset collected from the metro bus, and covers about one
million distinct locations over a 120 sq. km. area. The data consists of signal
type, power and the database’s prediction for all (30) UHF channels at each
measured location. We will use this dataset to evaluate the performance of the
database and V-Scope as well as studying whitespace channel quality. Dataset
B contains measurements in a whitespace channel where our whitespace radio
was transmitting 12Mbps UDP packets using the 802.11 baseband technology.
This whitespace device was mounted atop a 8-floor building with a transmit
power of 3.8W. Dataset C contains measurements in a whitespace channel
for a microphone device transmitting at 100mW in 5 different buildings at a
downtown area. Dataset B and C were collected from a personal vehicle driving
along multiple road stretches, and comprise the signal type and channel power
at each measured location. We will use them to benchmark our measurement
clustering algorithm (§ 2.3) and localization technique (§ 2.3).
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Ground truth Prediction
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Table 2.2: Two types of errors in whitespace determination.
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Figure 2.2: Wastage of whitespace spectrum by existing databases for protecting
primary incumbents. (a) False negative rates in predicting TV broadcasts.
(b) Spatial distribution of false negatives and true negatives in channel 43.
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Inefficiency in protecting primary users

We study the performance of a commercial database (SpectrumBridge [92]) in
predicting TV and licensed microphones respectively. Note that other FCC-
approved databases would produce the same prediction results. Our focus is to
understand its performance tradeoff between the safety in primary protection
and efficiency in whitespace utilization. All the evaluation in this section is
based on dataset A unless otherwise mentioned.

Performance in protecting TV broadcasts: Borrowing the definition from
prior work [56], we divide the errors in whitespace determination into two types,
i.e., false positive and false negative as summarized in Table 2.2. A false positive is
a location where the database mis-predicts an occupied channel (with measured
power > -114dBm) as whitespaces, whereas the opposite being a false negative.
We find negligible false positives (<0.29%) of database in predicting all the TV
broadcasts, which is similar to a prior report [56]. Thus, existing databases can
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reliably protect TV broadcasts. However, the first panel of Figure 2.2 shows a
13–71% false negative rate in half of these channels, indicating these channels
being unnecessarily blocked for unlicensed usage over a wide area. The second
panel of Figure 2.2 shows a typical spatial distribution of false negatives in one
such channel, along with those locations with this channel correctly predicted
to be whitespace (true negatives). We note most of these false negatives are at
the north-east side, which is at the closer side to the TV tower. Thus, we believe
these false negatives are caused by over-provisioning the protection contour of
TV broadcasts.

Performance in protecting licensed microphones: To quantify false
negatives in protecting licensed microphones, we calculate the power of about
200k measurements collected in their reserved channels. The last panel of
Figure 2.2 shows that about 70% measurements have very low power, suggesting
that microphone signals are unlikely to be present in many reserved locations.
While these wardriving measurements might not capture every instance of
microphone transmissions, they are statistically sufficient to suggest that
licensed microphones are not making efficient use of their reserved channel,
possibly due to coarse-grained reservation periods (24 hours) and over-sized
protection contours (2km). On the other hand, we find no other type of signals
in these channels, suggesting the database to be sufficient in protecting licensed
microphones.

Variation in whitespace channel quality

We now study the variation in whitespace channel quality, which are caused by
co-channel interference from secondary devices and adjacent-channel leakage from
TV broadcasts.

Magnitude of quality variation: Figure 2.3 shows the CDF of absolute
differences in noise power between the best channel and the worst channel at
each measured location. Overall, TV-adjacent, and Non-adjacent choose the worst
channel from all the whitespace channels, adjacent channels to TV broadcasts,
and non-adjacent channels, respectively. All of them pick the best channel from
all the whitespace channels. We observe that the worst channel in Overall has a



24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40  45

C
D

F

Absolute Difference (dB)

Non-adjacent
TV-adjacent

Overall

Figure 2.3: CDF of the max-
imum power differences of
whitespace channels at different
measured locations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160

C
D

F

Whitespace Spectrum (MHz)

Database
Measure (<-80dBm)
Measure (<-75dBm)
Measure (<-65dBm)

Figure 2.4: CDF of the available
whitespace spectrum at differ-
ent locations based on measure-
ments and database prediction.

8dB higher power in median and 17dB higher power in 90-quartile compared
to the best channel. Such variation is currently contributed by unlicensed
microphone transmission and TV broadcast leakage. We also note the non-
adjacent channels generally have better quality than adjacent channels due to
the absence of broadcast leakage. However, its worst channel still has 8dB higher
power than the best channel at 10% locations due to unlicensed microphones.
We envision this quality variation to become more prominent with the future
proliferation of whitespace devices.

Prevalence of quality variation: Figure 2.4 shows the CDF of the amount
of whitespace spectrum below different channel power based on our measure-
ments and the database. We observe that for about 80% locations, the amount
of whitespace spectrum identified by measurements is similar across different
power thresholds, which is about 18 – 24MHz more than that predicted by
the database. For the rest 20% locations, this measured amount differs by 12 –
48MHz (2 – 8 channels) between the highest and the lowest power threshold
(-65dBm and -80dBm). Thus, whitespace devices are likely to operate in a low-
quality channel at these locations, if they randomly pick a channel suggested
by the database.
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Figure 2.5: Flow of operations in V-Scope.

2.3 v-scope design

V-Scope is based on our measurement architecture described in § 2.2, and
consists of following components to augment databases with measurements
— i) primary detection, ii) measurement clustering, iii) propagation model
refinement, iv) localization, and v) leakage model construction. Figure 2.5
shows its operation flow.

Overview: Our proposed system leverages a few clients mounted on public
vehicles to detect primary and secondary devices based on spectrum samples
collected in different UHF channels (§ 2.3). The detection results that include
the device type and and power of each channel are forwarded to our server.
The server groups these measurements according to different device types in
each UHF channel, and segregates each group for individual devices (§ 2.3).
It then localizes those (secondary) devices if their location is not available in
databases (§ 2.3). Using each device’s location and its associated measurements,
the server constructs a propagation model that is tailored to local environment
to predict its signal strength (§ 2.3). It also builds a model to predict the power
of adjacent-channel leakage from TV broadcasts (§ 2.3). To predict whitespace
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channels in the vicinity of measurements, the databases can use our refined
propagation models to better estimate the coverage of TV broadcasts. Similarly,
the databases may use our models constructed for secondary users to predict
their in-band interference, while leveraging the leakage model to estimate the
adjacent-channel leakage from TV broadcasts. The sum of the predicted power
of these interference signals is the quality of a whitespace channel. To predict
for those locations far from measurements, the databases may switch back to
use its default model (R6602). Finally, we envision the databases to use its
current mechanism for protecting licensed microphones due to the limitations
of our wardriving approach as will be discussed in § 2.3. We now explain each
of these components in detail.

Zoom-in pilot tracking algorithm for primary detection

Our measurement module aims to utilize spectrum samples for detecting
different types of primary transmitters and unlicensed devices (i.e., whitespace
devices and unlicensed microphones). We accomplish this task by leveraging
feature detection algorithms [45, 59] that identify different signals based on their
spectral features. While such a technique performs well for detecting unlicensed
signals, we find non-trivial challenges in satisfying the FCC’s requirement for
detecting primary signals at up to -114dBm in our measurement setup. Such
a stringent detection threshold is to tolerate the sensing inaccuracy caused
by fading and shadowing, and to take account the transmission range of a
whitespace device. We use TV detection to illustrate this challenge and our
specific solution.

Existing algorithms detect a TV signal by tracking its pilot in the spectral
domain. A pilot is a set of preambles in a TV packet, which produces a
predominant peak at a fixed frequency. Unfortunately, for a TV signal close to
the detection threshold, even this peak can be overwhelmed by noise and thus
unable to be captured. To illustrate this, we attenuated a TV signal to be about
-114dBm, while collecting its spectrum over a 6MHz TV channel with the largest
number of FFTs (32768) available in our high-end spectrum analyzer [96]. As
shown in the first panel of Figure 2.6, the pilot of this TV spectrum is hard to
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Figure 2.6: Different spectrum captures of a -114dBm digital TV signal. (a) Full-
channel capture; (b) Zoom-in capture at the first 488KHz band. Both captures
consist of 32768 FFTs.

be distinguished from the noise floor. This is because the noise spectral density
is -159dBm/Hz in our spectrum analyzer. When using 32768 FFTs to represent
a 6MHz band, the bandwidth per FFT bin is 183Hz (6MHz/32768) and thus
the noise power per bin is about -135dBm. As will be discussed later, the pilot
power is usually about 10 - 15dB lower than the total power of a TV signal,
and thus can be as low as -129dBm. Comparing to the -135dBm noise floor,
the 6dB stronger pilot is not robust enough for tolerating the signal strength
fluctuation due to fading and shadowing. Prior systems [59] have overcome
this challenge by leveraging low-noise amplifiers to amplify a weak signal by a
fixed amount (e.g., 20dB). But such an approach is observed to cause saturation
of a spectrum analyzer when capturing strong signals (>-35dBm), leading to
distorted spectrum that can significantly degrade detection performance. The
alternative solution of using tunable amplifiers would largely increase design
complexity and hardware cost.

Zoom-in pilot tracking algorithm: Instead of resorting to signal ampli-
fication, V-Scope improves the sensitivity of feature detection by capturing
the most prominent portion of spectrum with the available FFTs. To detect
a TV signal, for example, we configure a spectrum analyzer to capture at a
narrow band (488KHz) around its pilot frequency. This can effectively improve
spectral resolution while reducing the noise floor, thereby producing a clear
pilot peak as shown in the second panel of Figure 2.6. Since this peak is well
distinguishable at the detection threshold after zoom-in, V-Scope uses it as an
unique feature to detect TV signals.
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The detected pilot is, however, insufficient to determine whether the power
of a TV signal to be above or below the -114dBm threshold. We also need
the precise power information of a primary signal for constructing its signal
strength models (§ 2.3). To achieve this goal, V-Scope leverages the power of
a TV pilot to estimate its total power. According to the digital and analog TV
standards [15], there is a fixed power offset between a TV signal and its pilot.
For example, the pilot of a digital TV is required to be 11.3dB lower than its
total power. Figure 2.7 shows this relationship indeed holds for a DTV signal at
a wide range of power, albeit with some variation (10 – 15dB). Thus, V-Scope
computes the total power of a TV signal by adding to its pilot power a constant
offset η (20dB in our implementation). The estimated power is then compared
with the -114dBm detection threshold to determine TV whitespaces.

Our proposed technique can be applied to microphone detection in a similar
way. Briefly, we start by examining the 6MHz wide spectrum of each TV channel
for detecting potential microphone tones that are narrow spikes carrying audio
signals. Since these spikes can also be a result of noise fluctuation, we perform
a narrow-band capture around each spike, extracting various features from
its zoom-in spectrum for further validation. Once a microphone signal is
confirmed, we use the power of its tones in the zoom-in spectrum as its total
power because these tones contain most of the power (> 95%) of a microphone
signal. Despite the effectiveness of this detection technique, V-Scope might not
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Detected Digital TV Analog TV Microphone
Ground truth

Digital TV 94.9% 0.7% 4.4%
Analog TV 0.5% 97.4% 2.1%

Microphone 1.2% 0.7% 98.1%

Table 2.3: Accuracy of primary detection algorithm.

be able to sense all the intermittent microphone transmissions because a client
visits each location only for a short amount of time. To guarantee sufficient
protection, we envision the databases to protect licensed microphones as is. As
our future work, we intend to enhance our system with static sensors deployed
in the proximity of microphone devices to reliably capture their transmission.

To benchmark the accuracy of our detection algorithms, we collected
spectrum data from 30 UHF channels at multiple locations. We established the
ground truth results by using a TV receiver and our microphone transmitters.
The identified primary signals were further attenuated for constructing spec-
trum traces at a wide range of power (-40dBm to -114dBm). A standard cross
validation was then performed by randomly choosing 90% spectrum traces to
detect the rest 10%. Table 2.3 shows the accuracy of our detection algorithm.
We observe reasonably low error rates (<5%) in detecting different types of
signals.

Summarizing, our measurement procedure works as follows. (a) A client
captures spectrum fragments around pilot frequencies in each UHF channel. (b)
It extracts a potential pilot by searching for the maximum FFT bin and including
all the surrounding bins with power above a threshold. (c) From the obtained
FFT bins, several features (e.g., power, center frequency) are extracted and fed to
a classifier for detecting TV pilots and broadcast type (analog or digital). (d) If a
pilot is detected, the client estimates its total power by adding a specific power
offset η to the pilot power. (e) The estimated power is then compared with
-114dBm threshold to determine the presence of TV signals. (f) If no TV signal is
detected in a given channel, the client further captures a full-channel spectrum
to detect microphones and unlicensed devices while measuring their in-band
power. g) If the full-channel spectrum contain potential microphone tones, a
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narrow-band capture is performed around each spike for validation. The entire
procedure takes less than 1 second for processing all 30 UHF channels at a
location, and produces results of signal type and power in each channel.

Measurement clustering

Since a V-Scope client has classified measurements to different device types (i.e.,
TV, microphone, whitespace devices), our clustering module further segregates
measurements among devices of a same type. We developed a preliminary
algorithm that leverages k-medoids clustering based on the power and inter-
distance of measurements. k-medoids clustering aims to minimize the sum
of pairwise dissimilarities of measurements in each cluster. We define the
dissimilarity metric between pair of measurements using gower dissimilarity
score [31]. An unique feature of gower dissimilarity score is its capability of
assigning different weights to observations. By assigning higher weights to
stronger measurements, our algorithm is robust to noise and outliers in choosing
the center of clusters. Specially, we take only measurements with power Pn >
-90 dB to reduce computational overhead. With N selected measurements,
we first calculate distance between each pair of measures. This gives us a
N-by-N symmetric matrix, in which the (i,n)th entry din indicates physical
distance between measure i and n. We call columns of this matrix as variables,
gower dissimilarity score between the ith and jth measure (row) is defined
as a weighted sum of dissimilarities for each variable

∑
n=1,...,NwnD

n
ij∑

n=1,...,Nwn
, in which

Dnij is defined as |din − djn| and the weight of variable n is defined as wn =

log(Pn + 90). We iteratively apply this algorithm with different number of
clusters k between 1 – kmax, and determine the optimal k that can maximize
the silhouette distance [81]. kmax is set to be 100 in our implementation and
a R package [49] is used to perform clustering. To evaluate this algorithm,
we merged groups of measurements corresponding to different transmission
locations of our microphone device in dataset C. We applied our algorithm on
the aggregated measurements, and found only 6% measurements mis-classified
to a different location. One limitation of our current approach is that mis-
classification may happen when devices are close to each other. However, the
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Figure 2.8: Illustration of region models in V-Scope.

mis-classified measurements are generally far from a device location and have
relatively lower power, thus imposing limited impact on the overall prediction
accuracy of V-Scope.

Region model for predicting signal strength of different devices

Using the clustered measurements of each device, V-Scope refines the parame-
ters of a propagation model that can be used to better predict its signal strength
in the vicinity of measurements. To choose an appropriate model, we note that
most of the UHF-band models can be generalized in a form of P = α log10(d)+ε,
where P is the power of a device at a reception location, d is the distance between
this location to the device, α is the rate at which the signal power attenuates
over an increasing distance, and ε captures both the transmission power of a
device and the fixed attenuation of environmental shadowing. The difference
of these models lies in how the parameters α, ε are determined, e.g., based on
antenna height (in Egli, Hata) and various environmental factors (in Longley-
Rice, R6602). Since the measured signal strength can best reflect a propagation
environment, V-Scope uses this general model and calculates α, ε based on
measurements.

A standard model fitting procedure [68] solves α, ε by plugging mea-
surements Pi,di into a given propagation model. This forms a set of linear
equations Pi = α log10 di + ε. It uses least-squares linear regression to
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calculate α, ε, with the objective of minimizing the squared sum of fitting
errors

∑
i(Pi−α log10 di−ε)

2. V-Scope improves this approach by (i) fitting an
individual set of parameters for each local area to better model its propagation
environment, and (ii) performing a weighted regression to avoid fitting bias
caused by non-uniform distribution of vehicular measurements.

Region-specific model: V-Scope groups measurements into road segments
and fits a different set of parameters for each segment as shown in Figure 2.8.
The motivation is that these regions are likely to have different propagation
characteristics, especially in an urban environment. This region-specific
variation can hardly be captured by a global propagation model using a single
set of parameters. To demonstrate this, we fit different α and ε based on
measured signal strength of TV broadcasts in each 100m road segment. We
compare this model with a global model fitted with all the measurements in
predicting the strength of TV signals.

Figure 2.9 shows that our region model achieves a median error of 1.4dB
and 75 quartile error of 2.6dB, which are 3× and 2.9× lower than a global model.
Thus, V-Scope fits a different set of model parameters (α, ε) to better capture
each local propagation environment.

Weighted regression fitting: In fitting a region model, we note the non-
evenly spaced vehicular measurements can degrade the performance of linear
regression. Since a public vehicle drives at a varying speed and stops quite
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often, V-Scope collects measurements at non-uniform density. This causes
linear regression to produce a biased model that favors densely measured area,
and has large errors at sparsely measured area. The underlying reason is that
linear regression aims to minimize the squared sum of fitting error; the area
with sparse measurements contribute less to this squared sum, thus being
under-fitted. Figure 2.10 shows an example where we fit a model for a 100m
region with most of training measurements collocated at a bus top. We observe
that the model fitted by linear regression has up to 36dB error in predicting TV
signal strength at the testing locations.

V-Scope uses weighted regression to compensate the effect of non-uniform
measurement density in model fitting. The algorithm assigns a weight
Wi to each measurement i, with the objective of minimizing the weighted
squared sum of fitting errors

∑
iWi(Pi − α log10 di − ε). A higher weight can

indicate greater importance in fitting a measurement. Therefore, we assign
higher weights to sparse measurements to compensate for the difference in
measurement density in model fitting. To accurately capture this measurement
sparsity, we calculate the weight of a measurement based on its total distance
to other measurementsWi =

∑
j dist(i, j). Figure 2.10 shows our model fitted

by weighted regression achieves high prediction accuracy at all the testing
locations.
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Figure 2.11: Measured signal strength vs. propagation range (in log scale) of a
whitespace transmitter.

To recapitulate, our model fitting procedure first bins measurements of
each device into road segments. For each segment, it computes a weight for
each measurement based on its distance to other measurements. It then takes
these measurements and their weights as the input to weighted least-squares
regression for constructing region models.

The fitted model will then be used to predict for a m-by-m square-shape
region centered around the measured road segment. The region sizem is the
length of the road segment. We will explore the performance tradeoff between
the prediction accuracy and storage overhead of different region sizes in § 2.4.
Finally, beyond the coverage of these regions, the database may use its default
model (R6602) for predicting TV whitespaces.

Sector based localization

The above model fitting procedure requires the location of a transmitting
device to calculate the distance di for each measurement. V-Scope leverages
popular RSSI modeling techniques [12, 75] to localize a device if its location is
unknown or awaits validation. Our motivation of using this technique comes
from its flexibility in localizing a device from arbitrarily measured locations,
and the simplicity of using signal strength (RSSI) information that is readily
available from spectrum measurements. Such an approach works similarly
to model fitting. It uses signal strength measurements and a propagation
model to form a set of equations Pi = α log10 di + ε. Here di is replaced with
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2
√

(xt − xi)2 + (yt − yi)2, where (xt,yt) is the transmitter location and (xi,yi)
is the location of each measurement. The algorithm solvesα, ε, xt,yt to estimate
a device’s location. V-Scope adapts this approach to outdoor scenario by (i)
carefully selecting measurements in certain radiation sectors of a device and
(ii) constructing a sector-specific model based on the chosen sectors.

While a RSSI modeling approach is reported to achieve a high accuracy
within few meters in an indoor scenario, directly applying this technique to our
outdoor area leads to large localization error (up to 100m in § 2.4). The reason is
that its underlying propagation model matches poorly with the signal strength
pattern of a transmitting device in an outdoor scenario. We use the wardriving
measurements collected for our whitespace device in dataset B to demonstrate
this. The first panel of Figure 2.11 shows the received signal strength over
different transmission ranges for all the measurements. A propagation model
expects a linear trend of the measured signal strength Pi over an increasing
distance log10di, but we observe many measurements deviate from this trend
(the fitted line). We use Pearson correlation coefficient to quantify the linearity
of these measurements, with 1 and -1 being an extract positive and negative
linear trend and 0 implying no correlation. We find the correlation value to be
merely -0.57.

Such a poor linear trend is caused by surrounding environment, e.g., terrain
elevation, obstacles, etc. To illustrate this, we decompose measurements
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according to different radiation sectors of the device with 10-degree angle
as shown in Figure 2.12. The second panel of Figure 2.11 is a scatter plot
for measurements from one such sector. We observe a sharp drop of signal
strength at a distance between 350 – 500m due to a building blocking the
transmission, but a drastic increase in signal strength beyond 500m due to the
rising terrain elevation coupled with diminishing blocking effect of the building
at faraway locations. This environmental-induced variation can largely perturb
a propagation model in capturing the large-scale path loss, leading to large
localization error. Fortunately, we find measurements in some other radiation
sectors present a less noisy propagation trend as show in the third panel of
Figure 2.11. This is owing to the environmental shadowing being unlikely to
affect the signal along all the directions. Thus, V-Scope only uses measurements
in a few sectors that present a good propagation trend for localization.

Localization procedure: Our proposed algorithm proceeds in five steps.
(a) We use the centroid location of the strongest measurements (top 5dB) as the
partitioning center, while grouping measurements into radiation sectors at a
narrow angle (10 degree). The intuition behind this heuristic approach is that
the centroid location is usually not far from a device’s actual location (e.g., 100m
in Figure 2.12); and by using a narrow angle, some radiation sectors are likely to
“fall through” the gaps of a blocking environment, thus having measurements
following a good propagation trend. To validate this intuition, Figure 2.13
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shows the absolute correlation of measurements in different sectors partitioned
at various angles for the whitespace device. We observe that the narrowest angle
used in our implementation indeed leads to best correlation (>0.9) for some
sectors. (c) Post partitioning, we calculate the Pearson correlation value between
the measured signal strength and the transmission range for those sectors that
have at least some measurements present. We then select the sectors with a
high correlation value (top 0.1 bin) for localization. (d) Given these candidate
sectors, we use a sector-specific model with different αj, εj for each sector j. This
is because these chosen sectors can still have a different propagation trend in
slope and intercept due to environmental variation. We omit this result for
the sake of brevity. (e) We construct linear equations based on measurements
from all the chosen sectors, and solve xt,yt and all αj, εj to estimate a device’s
location using an optimization function from a statistics package[71].

Adjacent-channel model for predicting TV broadcast leakage

V-Scope builds a model to predict the leakage power of a TV broadcast into its
adjacent channels based on its in-band power 1. It first identifies those locations
with adjacent-channel measurements classified to be noise because the leakage
is simply high-power noise. It then leverages a linear relationship between
the measured power of this TV broadcast and that of its adjacent channel
to construct the model. To demonstrate this power relationship, Figure 2.14
shows the power of a TV broadcast in channel 26 and that of its leakage
in channel 27 at each chosen location. We observe that the leakage power
increases approximately along a 45-degree line with TV power, and can be as
high as -65dBm. The Pearson correlation between these datasets is 0.91. This
prominent linear relationship comes from both a TV signal and its leakage
being transmitted from a same location and at a power of constant difference.
After traversing along similar paths to any location, their power still differ
approximately by this amount leading to a linear trend between the in-band
power and adjacent-channel power.

1Different TV broadcasts are usually allocated in far apart channels, and their adjacent
channels therefore do not overlap.
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Figure 2.14: Power of a TV broadcast vs. power of its adjacent-channel leakage
at different locations.

Since the specific leakage trend is different among TV transmitters, V-Scope
constructs an individual model for each TV broadcast. The model takes the
form Pl = γPtv + β, where Ptv and Pl are the power of a TV signal and its
leakage at a given location, and γ,β are tunable parameters to capture the
power relationship between these signals. V-Scope calculates γ,β by applying
linear regression on the power measurements. To estimate the leakage of a TV
broadcast at a given location, the databases can first use our region model to
predict its in-band power Ptv, then leveraging the leakage model to predict Pl.

2.4 experimental results

We evaluate the performance of V-Scope based on three datasets collected over
a 120 square-km area in and around a US city as described in § 2.2. We start by
evaluating the overall performance of V-Scope in § 2.4. We then benchmark the
performance of individual components in § 2.4. Overall, we find V-Scope can
reduce false negative rates for protecting TV broadcasts by up to 59%, identify all
the suitable whitespace channels at 72 – 83% locations under different channel
quality constraints, and localize unlicensed devices at various locations with
an error of 16 – 27m.
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Implementation: We have implemented the measurement collection module
and all the data processing modules in 7500 lines of Python, and built a database
query utility in 650 lines of C++.
Methodology: We apply a standard five-fold cross-validation by using 80%

randomly selected measurements to construct V-Scope models. The fitted
models are used to predict the power of TV broadcasts, unlicensed devices
and adjacent-channel leakage at remaining measured (testing) locations. We
compare the predicted power of TV broadcasts with the -114dBm threshold to
determine TV whitespace, while combining the predicted power of unlicensed
devices and adjacent-channel leakage to estimate the noise power of whitespace
channels. We compared our predictions with ground truth results based on
measurements at these testing locations. To evaluate localization, we use
measurements for our whitespace device and microphones operating at various
locations, with ground truth locations determined by a GPS device.
Evaluation metrics: We use a variety of metrics to evaluate the performance
of V-Scope such as false positive and false negative rates in predicting the
availability of TV whitespaces, number of inappropriate whitespace channels
selected under different channel quality constraints, absolute error in predicted
signal strength, localization error between the actual location and predicted
location of different TV-band devices.

Overall performance of V-Scope

We use dataset A to evaluate overall performance of V-Scope in predicting
whitespace channels and estimating their quality. We quantify the gain of
V-Scope over a FCC-approved database [92] that predicts whitespace channels
based solely on a propagation model without distinguishing their quality. We
also evaluate the performance of V-Scope models fitted under different region
sizes. This can provide database operators with insights about the tradeoff
between prediction accuracy and storage overhead in choosing an appropriate
region size for different spectrum management tasks.
Predicting TV whitespace spectrum: We start by quantifying the false

negative rates of the database and V-Scope models fitted at different region
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Approach Database VS-100m VS-200m VS-400m VS-800m

False Positive Rate 0.29% 0.29% 0.22% 0.17% 0.17%

Table 2.4: False positive rates of the database and V-Scope models fitted for
different region sizes in predicting TV broadcasts.

sizes for predicting TV broadcast channels that are accessible at least in part
of our measured area. Figure 2.15 shows that different V-Scope models can
reclaim the spectrum wastage of the databases by up to 59% locations. We then
present the false positive rates averaged across different broadcast channels for
these approaches in Table 2.4. Compared to the conservative database, we find
the V-Scope models are able to offer same or even better protection to primary
users. One important observation is that the V-Scope models fitted under
different region sizes present little difference in the accuracy of whitespace
determination, e.g., 62% in false negative rate and 60.1% in false positive
rate. This is because most of their differences in predicted signal strengths are
masked when comparing them with the detection threshold. We may therefore
use a large region size (e.g., 800m) to fit V-Scope models for TV broadcasts,
thereby reducing the overhead of storing model parameters.
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Signal Type 25th Median 75th 95th 99th

TV broadcast 0.2dB 0.5dB 1.1dB 3.2dB 7.7dB
Unlicensed signal 0.2dB 0.6dB 1.3dB 3.4dB 6.9dB

TV leakage 0.3dB 0.7dB 1.4dB 3.6dB 6.9dB

Table 2.5: Absolute error in predicting the power of different types of signals
by a 100m V-Scope model.

Selecting suitable whitespace channels: Using the predicted whitespace
channels, we evaluate V-Scope and the database in selecting appropriate
channels under different power constraints. A whitespace channel is deemed to
be suitable if its interference power is below a given constraint. Such a quality
constraint can be estimated by network operators based on parameters such as
the distance of wireless links, transmission power, and the minimum signal-to-
noise ratio (SNR) for decoding a received signal (under desired modulations).

Figure 2.16 shows the CDF of the number of wrongly selected channels
at different locations for a 100m V-Scope model and the database under
different quality constraints. Note that a 5dB increase in two consecutive power
constraints can lead to a 15 – 30Mbps drop in the achievable PHY rates for the
802.11n technology [99]. Without attempting to distinguish channel quality, the
database can select all the appropriate channels at less than 2% of the locations,
and have 3 – 4 channels wrongly selected for 50% of the locations. In contrast,
V-Scope correctly selects all the qualified whitespace channels at 72% – 83%
locations, and mis-predicts at most 1 channel for 92% – 97% locations. The much
higher accuracy suggests that V-Scope can help avoid most of the performance
penalty on a whitespace network due to channel mis-selection. We break down
the accuracy of V-Scope in predicting the power of different types of signals in
Table 2.5. We note for all the signal types, the median error is below 0.7dB and
a 95 quartile error below 3.6dB, thus explaining its high accuracy in channel
selection.

We now study the impact of region sizes on the accuracy of V-Scope models
for selecting suitable whitespace channels. Figure 2.17 shows the fraction of
locations where all the appropriate channels are correctly identified by these
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models. We observe that the accuracy degrades at a larger region size. For
example, a 800m region model correctly selects all the suitable channels at 8% –
11% fewer locations than a 100m region model, and a global model has 27% –
31% fewer such locations than a 100m model. This is because a model fitted
for a larger region is not fine-tuned enough to capture local environment. The
database operators may use this information to choose an appropriate region
size for channel quality estimation based on available storage and desired accuracy.

Microbenchmarks of V-Scope

We now benchmark the performance of individual components in V-Scope,
which are region-specific model in predicting TV broadcasts, sector-based
localization algorithm, region-specific model in predicting unlicensed signals,
and adjacent-channel models in predicting the leakage of TV broadcasts.
Accuracy in predicting TV broadcasts: We compare the V-Scope model with
those models fitted by two alternative approaches. Global is a single model
fitted for the entire measured area. Local is a region model fitted by linear
regression instead of weighted regression. We quantify the gain of V-Scope
models based on two datasets — dataset A collected during a 6-week period
and a subset of it collected in an initial week.

The first panel of Figure 2.18 shows the 99th quartile error of different models
fitted based on the 1-week dataset. We first observe that Global has the highest
prediction error since a global model can hardly be tailored to different local
propagation environments. We then note a 19% – 40% reduction in prediction
error achieved by Local over Global because Local tunes an individual model to
each small region. V-Scope outperforms Local by 8% – 13% due to the use of
weighted regression to compensate the non-uniform measurement density in
model fitting.

As more measurements were subsequently collected, the measurement
density tends to become uniform in each road segment. As a result, the second
panel of Figure 2.18 shows Local achieves a similar accuracy to V-Scope based
on the 6-week data. This suggests that both versions of regression apply well
on uniformly distributed measurements, but our weighted regression has its
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Figure 2.18: Accuracy in predicting the power of TV signals.

unique advantage in dealing with non-uniform measurements collected during
a short wardriving period. Finally, we observe the accuracy in predicting the
TV power improves at a smaller region size from both datasets.
Accuracy in localizing unlicensed devices: We use measurements collected
for our whitespace transmitter and a microphone device in dataset B and C
for evaluating our localization technique. The ground truth locations of these
devices were obtained by a GPS device as mentioned before. We compare
following localization techniques.

Single-deter and Single-prob are two popular RSSI modeling techniques used
in EZ system[12] and WiFiNet system [75] respectively. Single-deter uses a
deterministic propagation model as described in § 2.3, whereas Single-prob
uses a probability model based on the same propagation trend. Sector-deter and
Sector-prob are our sector based versions of these common techniques. Centroid
is the center location used by our technique to partition sectors, which is the
geometric center of the strongest measurements (top 5dB).

Figure 2.19(left) shows the error of different algorithms for localizing
our whitespace device. The measurements were selected based on different
maximum power thresholds to emulate a variety of localization environment.
We first observe that Single-deter achieves a low error of 26.9m using all the
measurements (-45dBm threshold). Under different power thresholds, our
sector based techniques improve Single-deter and Single-prob by 1.2 – 3× and 1.5
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Figure 2.19: Accuracy in localizing a whitespace device (left) and microphone
device (right).

– 3.5×, because they carefully choose a few sectors and develop an individual
propagation model for them. Sector-deter also refines the partitioning center
Centroid by 1.2 – 4.1×. The error of Sector-deter and Sector-prob increases by up
to 2.8× and 1.8× when using measurements at a lower power (e.g., -80dBm
threshold). This is because the weak measurements present a less distinct path
loss trend and the partitioning center ( Centroid) deviates more from the device’s
actual location.

Figure 2.19(right) shows the accuracy of Sector-deter and Single-deter for
localizing our microphone device in 5 different buildings based on clustered
measurements as described in § 2.3. The maximum measured power ranges
from -70dBm to -60dBm for different operating locations of the device. We
observe that our technique Sector-deter achieves a low error between 16 – 27m,
which are 2 – 2.8× lower than Single-deter.

To understand the effect of partitioning angles on the performance of sector
based localization approach, The first panel of Figure 2.20 shows the accuracy
of Sector-deter with different partitioning angles for localizing the whitespace
device. We observe that a larger angle leads to worse performance, e.g., the
error increases by 1.5× from the 10-degree angle to the 30-degree angle, and
by 2.06× to a 360-degree angle that is the baseline algorithm – Single-deter. To
explain this performance degradation, we present the absolute correlation ratio
averaged over the selected sectors for localization. Note that these sectors have a
correlation ratio within the top 0.1 bin of all the sectors (§ 2.3). The second panel
of Figure 2.20 shows the absolute correlation decreases over an increasing angle,
with a 360-degree sector having 0.36 lower correlation than a 10-degree. The
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Figure 2.20: Performance of different partitioning angles used by our approach
for localizing the whitespace device.
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Figure 2.21: Accuracy in predicting the power of unlicensed devices.

highest correlation of 10-degree sectors indicates a best match of the selected
measurements to the linear path loss trend, which in turn leads to highest
accuracy. This justifies our use of the narrowest partitioning angle in the final
algorithm.
Accuracy in predicting unlicensed signals: Using the device locations

predicted by Sector-deter, we construct region-specific models for predicting the
signal strength of the whitespace device and all (5) the microphone instances.
Figure 2.21 shows the CDF of absolute errors in predicting the signal strength
of different types of devices. We observe a 100m V-Scope model can achieve a
median error of 1.3dB and 0.9dB, and a 75-quartile error of 2.8dB and 2.7dB for
predicting the whitespace and microphone devices respectively. The prediction
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Figure 2.22: Accuracy in predicting the leakage power from TV broadcasts.

error increases at a larger region size, with a global model having about 3×
higher median error than a 100m region model for both types of devices.
Accuracy in predicting TV broadcast leakage: We compare our leakage model
tuned to individual TV broadcasts with an alternative model (All-Broadcast)
comprising a single set of parameters fitted for all the TV broadcasts. Figure 2.22
shows the CDF of absolute error for predicting the TV leakage power in all
the adjacent channels based on dataset A. We observe that V-Scope achieves
a 0.7dB median error and a 1.4dB 75-quartile error. All-Broadcast, albeit with
slightly lower storage overhead, has a 1.6× higher error in median and 1.4×
higher error at 75-quartile. The worse performance in All-Broadcast is because
a single model fitted for all the TV broadcasts cannot accurately capture the
specific leakage characteristics of each TV transmitter. Since the overhead of
storing a separate set of model parameters for a few TV broadcasts is low, we
choose this broadcast-specific model in our final design to improve accuracy.

2.5 issues and discussion

V-Scope has taken an initial but important step towards augmenting spectrum
databases using wide-area measurements. We comment on its impact on
spectrum regulations, its performance limitations and possible enhancements.
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• Impact on FCC ruling. To harvest the benefits of V-Scope, we envision
several changes to be made to the current FCC ruling. To ensure
the validity of spectrum measurements, the measurement hardware
needs to be rigorously tested to ensure the required detection accuracy,
perhaps following the same testing procedure for the sensing-based
whitespace devices. To utilize the opportunistic measurements, the
database may choose an appropriate region size to fit the V-Scope
models based on the desired accuracy. It may fall back to use its
default model (R6602) when predicting those areas beyond the regions
covered by measurements. Finally, while we find non-negligible temporal
and spatial under-utilization of whitespace spectrum in microphone
protection, our system has inherent limitations in reliably protecting
licensed microphones with the use of vehicular measurements. To achieve
this goal, perhaps some static sensors can be deployed in the proximity of
microphone reserved locations for continuously monitoring their activity,
or a proactive protocol can be adopted by microphones to alert interference
from whitespace devices as suggested in prior work [64].

• Coping with deployment cost. Our opportunistic wardriving approach
has costs and overheads in deploying and managing whitespace sensors.
Perhaps this measurement infrastructure is most useful in urban areas
where seizing additional spectrum of good quality can be particularly
beneficial to users. In such scenarios, spectrum database providers may
contract with public vehicle operators to deploy this infrastructure, and
recoup their costs by charging additional fees to use the services enabled
by them. In this paper, we do not explore the economic aspects of
opportunistic wardriving, but focus on the technical aspects in collecting
and utilizing spectrum measurements to augment databases.

• Addressing temporal variations and storage overhead. The collected
measurements can become invalid with the change of environment and
transmission behavior of (secondary) devices. While such temporal
variation is observed to be small (<5dB) at most of our measured locations,
it can increase with the future proliferation of whitespace devices. We
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envision to use time-based filtering, backed up by statistical algorithms
such as Dixon’s test[18], to identify up-to-date measurements. To
mitigate storage overhead, the databases may only store the fitted model
parameters and device locations while discarding the measurements after
using them.

• Impact of measurement volume and coverage. Since our measurements
are collected on a public transit bus opportunistically, the number of
measurements in each region vary to a large extent. For example, different
100m regions can have measurements ranging from two to hundreds. We
do not observe any clear trend between the number of measurements
and the accuracy of the fitted model. Instead, the location of these
measurements can play a more significant role. For example, using
densely distributed measurements to fit a model can have lower accuracy
than using a few measurements collected on sparse locations, which
is the very motivation for our weighted regression model. Finally, the
evaluation of our region model is not applicable to those locations beyond
road segments. However, for those neighborhoods surrounded by the
roads, we expect similar fading and shadowing effects introduced by the
same environment, hence rendering our models to be relatively useful in
predicting these areas.

2.6 summary of v-scope

In this chapter, we presented V-Scope, a measurement system that leverages
public vehicles to collect wide-area measurements to augment whitespace
spectrum databases. V-Scope applies an advance feature detection algorithm on
the vehicular measurements to detect primary signals at the -114dBm threshold,
while using the measured signal strength to refine various propagation models.
These models can enhance spectrum databases to better predict whitespace
channels, estimate their channel quality, and pinpoint the location of primary
and secondary devices.
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We have deployed V-Scope on a metro bus traveling in Madison, WI, and
strived to collect measurements at one million distinct locations over a 120 sq.
km. area. Using the substantial measurements combined with our statistic
approaches, we have shown that commercial databases cause under-utilization
of whitespace spectrum over a wide area (up to 71% measured locations). We
also reported large variation (up to 50dB) in the quality of whitespace channels,
which the databases are not designed to capture. V-Scope can enable spectrum
databases to reclaim the spectrum wastage by up to 59% locations. It further
allows databases to identify all the suitable whitespace channels at 72 – 83%
locations under different channel quality constraints. In addition, V-Scope
can localize TV-band devices at a decent accuracy of 16 – 27m, improving
state-of-the-art techniques by 1.2 – 3.5× in outdoor scenarios.
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3 a heterogeneous network architecture to extend
coverage

3.1 motivation

We now focus our attention on how to efficiently use the vacant whitespace
spectrum to provide wide-area network coverage. We investigate this question
in a particularly challenging use case — providing vehicular Internet access.
Such a service has become increasingly popular for diverse applications, e.g.,
navigation, infotainment, and driving assistance. Numerous research projects
such as MAR [80], WiRover [36], ViFi [7], Wiffler [6], CaberNet [22], along with
commercial endeavors, manage to provide this today through existing cellular
technologies and opportunistic WiFi access. We have explored the use of TV
whitespaces not merely because of the low spectrum cost, but for its excellent
propagation characteristics to match the needs of vehicular connectivity. Our
long term deployment goal is to provide an “on-board” Internet service for a
city metro transit operating hundreds of buses at Madison, WI.

To efficiently utilize TV whitespaces, we propose a heterogeneous network
design called Scout , which (i) communicates the downlink traffic primarily over
TV whitespaces paths while sending the uplink traffic over existing cellular
paths, and (ii) uses an additional ”scouting” radio on a vehicle to probe the
channel condition in advance, thereby compensating for the high feedback
latency in making protocol decisions. Figure 3.1 (left side) shows our proposed
architecture. Gateway nodes (clients) on buses are each equipped with two TV
whitespaces radios and one cellular radio. Each of these radios communicates
with its corresponding base station. The gateway serves as a WiFi hotspot inside
the bus, allowing users to connect to the Internet through their WiFi-capable
devices. It relays users’ WiFi traffic through an aggregation proxy situated
behind the whitespace and the cellular networks to Internet.
Why a heterogeneous network design? Our use of the heterogeneous archi-
tecture comes from the asymmetric transmit power limits widely imposed
by regulatory agencies [25, 94]. That is, the transmission power of mobile
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Figure 3.1: Scout uses TV whitespaces path primarily for downlink traffic and
cellular path primarily for uplink, unlike a traditional, homogeneous design
that uses the same path for both directions.

.

whitespace devices is limited to 100 mW, whereas the power of static base
stations can be up to 4 W. This 40× difference in the power limits is to prevent
mobile devices from causing harmful interference during roaming. Since most
of networking applications have bi-directional traffic, a conventional whitespace-
only network, as depicted in Figure 3.1 (right), would limit the operating range
of a base station to that of “weaker” mobile clients. The significant reduction in
operating range (from 2km to 2m) requires much more whitespace base stations
to be deployed, largely increasing the infrastructure cost.

To address the power asymmetry issue, Scout employs a heterogeneous
network architecture where the downlink traffic is mainly communicated over
TV whitespaces, while the uplink traffic is sent over a cellular link. The extensive
cellular connectivity has helped to circumvent the weak whitespace uplink,
thereby maximizing the downlink coverage of each whitespace base station.
Further, since many applications are downlink dominated (10× in WiRover [36]),
Scout is efficient for using unlicensed whitespaces to offload network traffic.
Why the use of a scouting radio? While effectively extending the coverage,
a heterogeneous network based on traditional networking protocols yields
poor downlink performance. This is because of the high feedback latency in
the cellular uplink, which leads to inaccurate channel estimates, especially
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in the mobile environment. Since most of communication systems rely on
channel estimates for making various protocol decisions, e.g., rate adaptation
and FEC, the stale feedback leads to higher packet losses. Further, the high
uplink latency drastically inflates the bandwidth delay product of whitespace
networks, rendering TCP based applications extremely susceptible to channel
losses. It also slows down retransmissions for loss recovery, which further
exacerbates this bandwidth inefficiency.

To deal with the slow feedback, we explore the use of an extra “scouting”
radio to accurately measure the channel condition for any future reception
location. Our core intuition is that the location of a radio largely determines its
experienced channel condition [61, 63, 83]. For a single-radio system as shown
in Figure 3.2 (Single), the radio’s actual channel experience in a new location
would be different from the feedback conveyed at the old location by the time
our base station acts on this delayed feedback. In contrast, if we were to place
two radios as shown in Figure 3.2 (Scout), the channel condition experienced
by the front radio would be somewhat similar to that of the rear radio after
it reaches the forward post. In essence, the front radio can “scout” the likely
channel condition for future reception conditions of the rear radio. Hence, we
can send the channel estimates made by the front radio over the cellular path.
By the time the rear radio reaches the same location l, the base station can use
this earlier feedback to choose better transmission parameters for the rear radio.
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Note that our use of a scouting radio is independent to multi-antenna
techniques [97] (MIMO) that combine signals at the physical layer for scaling
throughput or enhancing reception robustness. Furthermore, our technique is
complementary to MIMO, and a significant performance gain can be achieved
when a scouting radio is leveraged by MIMO for compensating feedback
delay as will be shown in § 3.5. Based on this scouting radio based channel
estimation technique, we have developed multiple aggressive transmission
adaptation techniques, i.e., rate adaptation, inter-packet FEC, and intelligent
traffic duplication, to enhance the robustness of individual vehicular links.
How to coordinate multiple base stations? Built on this heterogeneous
architecture, Scout further leverages multiple whitespace base stations to extend
the network coverage and throughput. It achieves this through a central
controller situated in the network backbone, which acts as an aggregation
proxy to connect all the base stations to the Internet. It forwards downlink
traffic through a best base station to each client, while forwarding its uplink
traffic from the cellular path to the Internet. Such a centralized backplane
allows efficient base station assignment based on the global view of network
condition using an optimization technique (§ 3.3). It also uses a flexible
packet forwarding framework to enforce any given channel contention policy,
while supporting seamless client handoff — a feature often missing in existing
systems [6, 7, 22, 36].

We have deployed Scout in a campus testbed with multiple base stations and
vehicular clients spanning several square kilometers. Based on experiments
conducted by driving multiple vehicles around various routes for hundreds of
miles, we find that Scout can significantly enhance the robustness of vehicular
connectivity, while maximizing the overall network throughput.

3.2 advantages of a scouting radio

Most wireless communication systems use rate adaptation and link-layer
retransmission (or their variants) for adapting to changes in channel conditions.
Rate adaptation enables the sender to choose a combination of modulation
and channel coding suitable for the channel characteristics experienced by the
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Figure 3.3: Outdoor deployment at the campus area of Madison, WI, USA: (a)
High-gain antennas used by two base stations on top of a building; (b) The
third base station deployed inside a building; (c) vehicular client with two TV
antennas mounted atop.

receiver. Link-layer retransmission allows the sender to retransmit lost frames
to avoid their negative impact at higher layers, e.g., TCP. In this section, we
will show the limitations of a single radio system under mobility in making
these protocol decisions. We then demonstrate the advantage of leveraging a
scouting radio in obtaining better channel estimates to improve such decisions.
We start by describing our experiment setup.

Testbed Setup

Our testbed is built around the UW campus area with a coverage radius of
several kilometers. It currently consists of three base stations and several mobile
clients. Figure 3.3(a) shows the antennas used by the two base stations mounted
atop a 8th floor building. Each antenna has a 60 degree beam-width pointing in
different directions along a bus route. Figure 3.3(b) shows the third base station
deployed in a building, which uses a directional antenna focusing on another
direction. Each base station uses a whitespace radio transmitting at a fixed
frequency of 574MHz, 602MHz or 638MHz, and a 20MHz bandwidth spanning
across 4 contiguous, unused TV channels according to a spectrum database [92].
The transmission power of these base stations are configured to be 4 watt as per
FCC’s ruling [25]. Each base station is equipped with an Ethernet connection
to the central controller, which is running on a desktop in our lab. As the
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mobile client, we use a personal vehicle carrying two whitespaces radios to
receive downlink traffic as shown in Figure 3.3(c). Each radio is connected to an
omni-directional antenna for capturing signal from all directions. A 3G cellular
card is used for uplink communications.

Our radio platform is similar to the WhiteFi radio [4]. It performs a frequency
translation function by converting the signal from commercial WiFi cards to
the UHF band. We will describe this platform for more details in § 3.4. Note
that most of the techniques in Scout are not limited to the 802.11 baseband
technology, but applicable to other technologies (WiMax, LTE, etc) as well.

Limitations of a single-radio system under vehicular mobility

We now discuss how vehicular mobility in a single radio setup impacts the
accuracy of rate adaptation and the efficiency of link layer retransmission. In
particular, this impact is exacerbated by the feedback delays in the cellular uplink.
Rate selection mismatch with mobility: We conducted experiments where

we drove a vehicle along road segment A (depicted in Figure 3.11) for multiple
times at speeds of about 35 km/hr. The vehicular gateway sent the feedback
over cellular links to the TV whitespace base station for selecting downlink
data rates. As the vehicle kept moving, the usable PHY rates relevant to a
given location changed quickly. Thus, by the time the base station could
act on a received feedback, the location of the receiving radio on the vehicle
had changed and the feedback become stale. As a result, any rate selection
algorithm that depends on such feedback experienced poor performance. To
illustrate this, Figure 3.4 presents the MAC layer loss rates for two state-of-the-
art rate adaptation algorithms (Minstrel [8] and RRAA [103]) calculated over
100 millisecond intervals. We observe a median loss rate of 57% and 62% for
each algorithm based on the delayed feedback.
Retransmission overhead: While MAC layer retransmissions can hide some
of the packet losses, they introduce bandwidth inefficiency and additional
delay that can also limit the performance of a system. Based on our testbed
measurements, the current cellular paths (3G and 4G) have a minimum delay
of 25 milliseconds and a typical delay between 50 and 150 milliseconds.
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Figure 3.4: CDF of MAC layer losses of two state-of-the-art rate adaptation
algorithms with mobility and under feedback delay in the cellular uplink.

Each retransmission will therefore inflate the end-to-end path latency by a
corresponding amount, significantly cutting down TCP throughput. As will be
shown in § 3.5, for a single radio system using a combination of a state-of-the-art
rate adaptation algorithm (RRAA), link layer retransmissions, and a cellular
uplink, the achieved downlink TCP throughput can be quite low (about 40
Kbps). In contrast, our alternative design is able to provide a performance
more than two orders of magnitude better in many cases. We next validate the
intuition of the scouting based channel estimation, which is the core technique
used in Scout.

Using a scouting radio to improve channel estimation

The advantage of the scouting based channel estimation can be ascertained by
comparing the following two schemes as shown in Figure 3.2. In Scout, suppose
the front radio measures the loss property at location l, time t. How accurate is
this measurement in predicting the channel condition for the rear radio when it
reaches the same location l at time t+ τ? We contrast this with the alternative
design of a single radio (Single). In this single radio setup, the only radio will
measure the loss property at location l, time t, and use this estimate to predict
the channel condition at location l+ ∆l, time t+ δ.



57

Metric: We used the packet loss rate as an indicator of channel quality for
a given location and at a given time. Each loss rate was calculated for 10
contiguous packets at a fixed PHY rate. We then measured the magnitude of
difference in loss rates under different time separations to classify whether
channel condition has changed with varying location or time (or both). We
denote this time separation as a lag.
Evaluation: To understand the stability of channel loss properties as only a

function of time, we present the variation of loss rates at same locations with
different lags. We measured this by placing a single radio mounted atop a car
at 12 equally spaced locations on the road segment A. We then averaged the
absolute differences for pairs of loss rates separated by each time lag at all these
locations. Figure 3.5 (Single static) shows that the variation of loss rates remains
small with a lag below 300 milliseconds for all the measured locations.

We next determine the stability of loss measurements done by the same
single radio as a function of both time and location. The speed of the vehicle
in these experiments was between 5m/s (18 km/hr) and 10m/s (35 km/hr),
which is typical for urban area due to the 40km/hr speed limit. As can be seen
from Figure 3.5 (Single 10m/s and 5m/s), the difference in loss rates increased
drastically with increasing lags. The degree of variation is expected as the single
radio system was measuring the loss rates at different locations and different
time. When using the stale channel observation to predict the loss rate, Single
would make an estimation error of over 30% under the typical delay of a 3G
uplink (100 to 150 milliseconds), and over 20% under the delay of a 4G link
(25 to 50 milliseconds). Note that these delay values were obtained from our
testbed measurement as mentioned before.

We finally benchmark the mismatch in the loss rates under Scout setup
with two radios (front and rear) aligned at the same locations under various lags
introduced by different vehicle speeds. The result is again shown in Figure 3.5
(Scout variable speed). For a lag of 300 milliseconds, we note that the difference
in loss rates between two radios at the same location remained a fifth of a
single radio traveling at 10 m/s speed for a 3G uplink, and within a third for
a 4G uplink. This demonstrates that Scout can indeed improve the channel
estimation for the rear radio.
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packets. A lag is the elapsed time between two measurements. Single denotes
one radio and Scout is the two radio setup.

While our vehicle was driving at a city speed of 18 – 50 km/hr for the
experiments reported in this paper, we note much higher speed (up to 120
km/hr) can be supported by Scout. In particular, the average length of a car
in the US is 5 meter, which sets the maximum limit for the separation of two
radios at the client. Assuming this 5 meter separation and a highest vehicular
speed of 120 km/hr (33 m/s), it takes at least 150 milliseconds for the rear
radio to reach the front radio’s location. This delay is typically higher than
the observed latency in the cellular links (3G and 4G), thus allowing the base
station to receive the front radio’s feedback usually before the rear radio reaches
the front position. We can therefore use this more accurate feedback to improve
the robustness of vehicular connectivity by adapting multiple transmission
adaptation techniques at the link layer, and assigning appropriate base stations
at the network layer. We will describe these techniques in the next section.

3.3 scout: a heterogeneous design

Scout leverages a heterogeneous network architecture to deal with the power
asymmetry issue for maximizing the base station coverage. Figure 3.6 illustrates
the two-tier architecture of Scout. At the top tier, a central controller connects
all the base stations to the Internet. For downlink communication, it forwards
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Figure 3.6: Scout network architecture. A central controller forwards downlink
traffic from Internet to base stations, which use TV whitespaces to send traffic to
vehicular clients. Each client sends uplink traffic over the cellular path directly
to the controller, which forwards it to Internet.

a client’s traffic to a selected base station for sending over whitespaces. For
uplink traffic, the client sends it over a cellular path to the controller, which
relays it to the Internet. At the bottom layer, each base station uses a whitespace
radio to transmit at the maximum transmit power (4W), thereby extending the
downlink coverage to its clients. It further duplicates a fraction of downlink
traffic intelligently when the whitespace link is experiencing an outage. Each
client is equipped with two radios to receive the downlink traffic for channel
estimation and reception diversity. Based on the received downlink packets, the
client sends acknowledgment packets (ACKs) along with its GPS information
over the cellular path to each corresponding base station, which leverages this
feedback for transmission adaptation and link capacity estimation (§ 3.3). We
now explain each layer of Scout.

Heterogeneous architecture for extending coverage

Scout uses a heterogeneous architecture with multiple aggressive transmission
techniques to extend the coverage of each base station. These techniques include



60

Traffic 
Duplication

FEC
Decoding

Diversity
Combining

FEC 
Encoding

Channel
Estimation

Packet
Buffer

Packet
Buffer

Rate
Selection

Front & Back 
loss

Probing
rate

Data
rate

n+1 coded 
packets

k data 
packets

k coded
packets

Data
NACK

Back
coded ACK

Front
coded ACK

Duplicated 
data packets

Cellular
TV Whitespaces

k decoded 
packets

Base station Client

Layer 4

Uplink data
packets

Layer 4

Figure 3.7: Operation flow of downlink communications

an efficient way of estimating channel properties (of the rear radio, using a
forward radio) and several transmission techniques based on the obtained
channel estimates, i.e., rate adaptation, forward error correction (FEC), and
intelligent traffic duplication over cellular links. For uplink communications,
we choose to provide best-effort delivery because the loss rates and packet
reordering are observed to be very low in the cellular path. Figure 3.7 illustrates
the operation flow of downlink communications.

To send downlink traffic, the base station first obtains channel quality
estimates based on the feedback generated for both radios by the client (§ 3.3).
It then chooses an appropriate link-layer data rate using the obtained channel
estimates (§ 3.3). Based on the error performance of the chosen data rate,
it constructs coded packets for each batch of data packets for forward error
correction (§ 3.3), then transmitting them over TV whitespaces at the selected
rate. Upon detecting connection blackouts in the whitespace link, the base
station also sends the data packets in duplicate over the cellular path (§ 3.3).
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At the client (vehicular gateway), we leverage the dual-radio diversity by
combining the coded packets from both radios (§ 3.3). The client then decodes
these packets to obtain data packets. If duplicated packets are received on the
cellular path, the client also merges them with the data packets, then passing
all the packets received in order to the application. To provide the base station
with channel estimates and information about lost packets for retransmission,
the client sends feedback for both coded packets and data packets over the
cellular link. In addition, the client reports its GPS information periodically to
the base station for obtaining relevant feedback to the rear radio’s reception
location. The pseudocode of major signal processing functions is presented in
Appendix B. We now explain each of these components in detail.

Scouting radio based channel estimation

The first and the most important step in the transmission process is for the base
station to obtain accurate channel estimates for making various transmission
decisions. This is performed by the ScoutEstimate procedure in Appendix B.

Channel estimation: We use the loss rates of coded packets as the estimator
of channel quality because such information is readily accessible from the
commercial WiFi cards used in our implementation. Note that our proposed
technique can be used to collect other types of channel statistics such as channel
state information (CSI) and bit error rates in a similar way. To estimate the
packet loss rates, the base station first collects feedback generated for the coded
packets received by both radios at the client. For each PHY rate r, the base
station calculates the loss rate Lf(r) for the front radio based on the packets
most recently ACKed for the front radio. It also calculates the loss rate Lr(r) for
the rear radio based on the packets previously received by the front radio at the
current location l of the rear radio. If no coded packets are sent when the front
radio was at l, the base station will use the delayed ACKs for the rear radio to
calculate Lr(r). To obtain sufficient, yet relevant channel estimates, we choose a
time window of 25ms for calculating both loss rates. As a safeguard against
random channel fluctuations, we apply exponential averaging with a heavy
weight (0.85) on the current estimates to compute the final channel estimates.
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Feedback alignment: To accurately estimate the channel quality at a given
location l, it is critical to identify a relevant set of coded packets that are sent to
the front radio at l. As shown in Figure 3.5, the loss rate estimation can be off
by about 40% due to a 3 meter location error (300 milliseconds lag at 10 m/s
speed). Unfortunately, our low priced GPS modules used at the clients have a
positioning inaccuracy up to 10 meter.

To circumvent this problem, we use the speed reading v instead of the
location coordinates reported by the GPS, since it has much lower error (0.1
m/s). Using this speed reading, the base station obtains the radio alignment
period τ, which is the time elapsed for the rear radio to reach the location l
since the front radio was previously at l (Figure 3.2). This period is calculated
by τ = λ/vwhere λ is the antenna separation of two radios, which is set to be
1.5 m in our implementation. Note that v remains constant because the GPS
reading is updated at short intervals (1 second). The base station then obtains
coded packets that are received by the front radio τ time ago for estimating
Lr(r) at location l. Since τ is usually below 300 milliseconds (1.5m / 5m/s),
the feedback alignment error in Scout is less than 0.03 meters (0.1 m/s × 300
milliseconds).

Finally, for the occasional cases when the vehicle stops (v = 0), the base
station uses the delayed ACKs for the rear radio to calculate Lr(r) because they
remain relevant to this radio’s reception location. The base station will switch
back to use the scouting feedback upon detecting the vehicle to move again.
The change of vehicle mobility can be determined by the GPS reading that is
updated by the client frequently (every second). We next describe how to use
the obtained channel quality estimates from the scouting radio to adapt three
major transmission decisions, i.e., rate adaptation, forward error correction,
and intelligent traffic duplication.

PHY rate selection

We start by describing how to use the channel estimates from the scouting radio
to choose the first transmission parameter – PHY rates at the base station. Our
algorithm – ScoutRate proceeds in three steps (Appendix B). The first step is to
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identify a candidate set of reliable rates C for the rear radio. To this end, we
examine the loss rate at both radios – Lf(r) and Lr(r) for each PHY rate r. We
only include those PHY rates with both loss rates below a threshold (0.65) into
C. This is because our testbed measurements show that higher loss rates usually
have large variation, which makes accurately estimating loss properties difficult.
In the second step, we calculate the achievable throughput at the rear radio
T = r× (1 − Lr(r)) for each data rate in the candidate set C. We select the rate
rdata with the highest throughput, and assign it to a batch of coded packets as
will be described in § 3.3. Finally, we append an additional coded packet at each
batch of packets to randomly probe a different rate rprobe. The probed rate
should be higher than the throughput of the current data rate, but not necessarily
in C. Thus, Scout can quickly adapt to the improved channel condition through
random probing, while promptly adapting to channel degradation via either
probing or identifying the change of the candidate rate set.

Inter-packet forward error correction

We now explain the next step of the transmission process that inserts redundant
packets into each batch of data packets for forward error correction. All the
coded packets are transmitted using the same selected rate rdata over TV
whitespaces. This process is shown by ScoutFEC in Appendix B.
Inter-packet FEC: To circumvent the high retransmission inefficiency caused

by a slow cellular uplink as mentioned in § 3.2, we leverage inter-packet forward
error correction as the primary mean of error recovery. The base station first
groups data packets to be transmitted into batches. It then encodes each batch
of k data packets into n coded packets for transmission. Upon receiving any k
coded packets, the client can decode the original k data packets.

Our motivation of performing encoding across packets comes from the
empirical analysis of loss characteristics in the vehicular testbed. In particular,
we find that most of packet losses (>80%) result from the failure of detecting
packets at the receiver, rather than bits corruption. Two factors might contribute
to this fact. First, our vehicular network operates in an urban area with many
tall buildings that completely blocks off the whitespaces transmission in certain
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road segments. Second, the intra-packet FEC used in the 802.11 baseband
technology is effective in correcting bit errors within a packet. Thus, we use the
inter-packet FEC to complement the intra-packet FEC in the 802.11 technology.
We will show in § 3.3 that the above choice leads to significant performance
gain.

We choose a type of erasure codes based on Vandermode encoding
matrices [78] in our implementation, which incurs low computational latency
(order of microseconds). The specific erasure codes provide an unique
advantage by having data packets as their first k coded packets, denoted as
D. Upon successfully receiving all the packets in D, the receiver can directly
pass them to the higher layer without incurring any decoding delay. More
importantly, when less than k coded packets are received, the receiver can
scavenge whatever packets received in D to reduce the penalty of decoding
failure.
Redundancy estimation: To determine the number of data packets k and

that of coded packets n to be included in a given batch, we calculate the
effective loss rates L after the diversity combining at the client. Assuming
independent channel losses at both radios, L should be calculated by L =

Lf(rdata) × Lr(rdata), where Lf(rdata) and Lr(rdata) are the loss rates of
the selected PHY rate rdata estimated for both radios. We then determine
the redundancy ratio rr, which are defined as rr = (n − k)/n. rr should
be no less than the loss rate L for successful decoding the entire batch. In
our implementation, we insert 5% extra redundancy to be conservative, thus
rr = L× (1 + 0.05).

Using the calculated rr, we now determine k andn. n is chosen such that the
transmission duration of all the coded packets are within the channel coherence
time c (25ms based on our measurements). This is due to our design assumption
that all the packets within a batch should experience similar degree of channel
losses, thus sharing the same data rate and redundancy. We calculate n by
n = c× rdata/s, where s is the size of each encoded packet. After determining
n, we calculate k by k = n× (1 − rr). Finally, we append one additional coded
packet at the end of each batch for probing a different data rate as mentioned
in § 3.3.
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Intelligent traffic duplication over cellular path

We now present the third transmission technique in Scout that intelligently
duplicates some downlink packets over the cellular link when necessary to
bridge coverage holes. This is shown in the ScoutDUP procedure in Appendix B.

Our decision of traffic duplication is motivated by non-negligible frequency
of connection blackouts (11% for road segment A) observed at the mobile
client. Some of the connectivity losses can last for long periods of time (up
to 5 seconds), causing a TCP connection to timeout before all the recovery
mechanisms over whitespaces to take effect. To effectively handle connection
blackouts, the base station duplicates traffic on both the whitespace and cellular
paths upon detecting intermittent connectivity over TV whitespaces. The reason
we duplicate the downlink traffic, instead of sending it solely on the cellular path,
is to accurately determine when the connectivity is recovered over whitespace,
and stop sending on the cellular path from that point. Furthermore, we only
duplicate the k data packets in each batch to reduce the cellular usage, since the
loss rates in the cellular path are observed to be very low as mentioned before.

The intelligent duplication is triggered when either of the following criterion
is met. Criteria I: the current data rate rdata selected by the base station is the
lowest rate (1Mbps) and the corresponding loss reported by the scouting radio
is greater than a duplication threshold (0.75). This is to minimize the cellular
usage by having the rate adaptation algorithm to decrease the PHY rate first.
Criteria II: the downlink packet is a retransmission packet. This attempts to
minimize further retransmissions, thereby alleviating the effect of head-of-line
blocking at the client.

Additional techniques to enhance link robustness

We describe two additional techniques used in Scout, i.e., dual-radio diversity
combining and NACK based retransmissions. These two techniques, albeit
simple, are useful in combating end-to-end packet losses.
Dual-radio diversity combining: Apart from channel estimation, we leverage
the additional scouting radio to enhance reception diversity. To this end, we
combine the coded packets received at both radios, passing those unique packets
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for FEC decoding. Since two radios are likely to capture a different set of packets,
a phenomenon widely known as reception diversity [52], combining packets
between them can effectively enhance the reception performance.
NACK based retransmission: In Scout, the base station and the client follow

a sliding-window protocol to provide in-order and optionally reliable delivery
in downlink communication. For uplink, Scout provides best-effort delivery
due to the trivial loss rates observed in the cellular links as discussed. To avoid
saturating the cellular path, the client sends a NACK packet for a block of
downlink data packets periodically (every 50ms). The base station retransmits
each lost packet for a maximum retry count before discarding it. The retry limit
is tunable to accommodate various application requirements.

Central controller for efficient packet forwarding

At the top tier, the central controller assigns a best base station to send downlink
traffic to each client, while scheduling packet forwarding to enforce any given
contention policy. It also relays uplink traffic from clients to the Internet.
Figure 3.8 shows the controller’s architecture, which is partitioned into a control
plane and a data plane. The control plane performs base station assignment
periodically (in every second), and outputs a routing table to the data plane. The
data plane schedules downlink packets for simultaneous forwarding among
all the contention domain. It relays packets to the corresponding base stations
based on the routing table. Through the partition of the control and data
planes and parallelization of the data plane across contention domains, the
controller can achieve high efficiency and scalability in packet forwarding. We
next describe the control plane and data plane respectively.

Control Plane

In the control plane, the router finder selects a base station for sending downlink
packets to each client in real-time. It computes routes based on the conflict
graph of base stations (possibly obtained through RF survey), the policy to
coordinate transmission for each contention domain (optionally given by a
network operator), and the link capacity reported by each base station for all
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Figure 3.8: Architecture of the central controller.

its clients. The output is a routing table as illustrated in Figure 3.8. Each entry
contains the selected base station, its link capacity, and contention domain
for a client. The route finder leverages a real-time optimization algorithm for
assigning base stations in every second. Such algorithm takes the link capacity
estimate θi,j reported by each base station j for each client i, in which i = 1, ..., I
and j = 1, ..., J. It outputs a I-by-Jmatrix B for the assignment of base stations,
such that βi,j = 1 if a client i is assigned to a base station j and βi,j = 0
otherwise.

The goal of the base station assignment task is to maximize the aggregate
link capacity of all the clients. We note a popular greedy algorithm from existing
systems [6, 36, 57, 58, 61] is inefficient for assigning base stations from multiple
contention domains. To illustrate this, Table 3.1 shows the capacity estimates
θi,j between 2 base stations and 2 clients. The greedy algorithm selects a base
station with the maximum link capacity, and would thus assign both clients to
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Base station 1 Base station 2
Client 1 12Mbps 6Mbps
Client 2 12Mbps 11Mbps

Table 3.1: Example of link capacity estimates.

base station 1. Nevertheless, a better algorithm could assign the two clients to
different base stations, almost doubling the aggregate network throughput.

To identify the optimal assignment, one may design a native approach
to enumerate all the base station assignments, with the goal of maximizing
C =

∑
j

∑
i βi,jθi,jρi,j, under the constraint of

∑
j βi,j = 1 for any i. The

ρi,j indicates the fraction of transmission time that base station j allocates to
client i, which is set to 0 if i is not assigned to j. Thus, ρi,j depends on the
base station assignment βi,j, and a given channel contention policy (as an
input to the controller). Take the policies of equal-time, equal-throughput, and
proportional throughput for example. The transmission time ρi,j allocated by a

base station j to each client i are 1∑
iβi,j

,
1
θi,j∑

i:βi,j=1
1
θi,j

, and θi,j∑
i:βi,j=1 θi,j

respectively.

The exhaustive search based algorithm would need to explore all the JI base
station assignments at an exponential complexity. Even for a small network
of 6 base stations and 6 clients, such an algorithm would enumerate 46656
combinations, incurring a prohibitive delay for real-time implementation. Note
that a conventional linear programming approach is not applicable to solving
this optimization problem because the transmission time ρi,j depends on the
base station assignment βi,j.
Base station assignment algorithm: To reduce the computational latency, we
have developed an optimization technique that strategically reduces the search
space through a L-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [9].
We choose the L-BFGS-B extension of this algorithm that allows box constraints
between 0 and 1 for solving the (J − 1) ∗ I assignment parameters {βi,j :

i = 1, ...I, j = 1, ..., J − 1}. βi,J can then be calculated from 1 −
∑
j:j<J βi,j.

Such an algorithm can significantly reduce the computational complexity from
exponential JI to polynomialM2 ∗(J−1)I [23], while yielding a close-to-optimal
solution as shown in § 3.5. Here M is the number of the past assignment
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results used for the current iteration, which is set to be 5 in our implementation.
After solving the assignment matrix B, the algorithm selects the base station as
bi = {j : βi,j = 1} for each client i, and its link capacity as ci = {θi,j : βi,j = 1}.
The selected base station bi, its link capacity ci, and contention domain are
populated in a routing table, which will be used by the data plane for packet
forwarding as described next.

Data Plane

As illustrated in Figure 3.8, the data plane consists of a few uplink multiplexers,
downlink multiplexers, per-client packet queues, and forwarding engines (FEs)
for individual contention domains. All of these modules can be distributed for
scalability. The multiplexers forwards uplink traffic from clients to the Internet.
In contrast, a few demultiplexers disentangle downlink packets from Internet,
storing them into the corresponding packet queues based on the destined
clients (Figure 3.8). These queues are then divided based on the contention
domain of their clients as indicated in the routing table. For each contention
domain, a forwarding engine (FE) schedules packets from all the associated
queues, while relaying them to the assigned base stations. For example, the
FE1 in Figure 3.8 forwards packets from client 1’s queue in contention domain
A, whereas FE2 forwards packets of client 2 and 3 in domain B. The packet
forwarding is conducted in parallel among FEs, whose receiving base stations
do not interfere with each other across contention domains. In contrast, each
FE serializes forwarding packets from its queues, since only one base station can
transmit within a contention domain. We next describe how a FE schedules
packets for clients in a single contention domain.

Downlink traffic scheduling algorithm: The forwarding engine uses a
variant of deficit round robin (DRR) scheduling [87] to forward packets for
contending clients. To demonstrate its flexibility, we have implemented three
contention policies, i.e., equal time, equal throughput, and proportional
throughput. To enforce these policies, the FE maintains a deficit counter DCi
for each of the associated client i. Unlike the traditional DRR algorithm that
uses this counter to track the maximum traffic size allowed to send [87], our
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counter captures the maximum transmission time allocated to each client. This
definition effectively captures both the traffic volume and link capacity. The FE
iterates on a list of non-empty queues. It adds a fix mount of transmission time
qi, called quantum, to the deficit counter of the current client. It then estimates
the transmission time ti of the first packet in the client’s queue as ti = L/ci. L is
the length of the packet and ci is the estimated link capacity from the assigned
base station. If ti is less than the deficit counter DCi, the FE forwards that
packet to the base station and decrements DCi by ti. It then waits for ti time
to let the base station finish sending that packet, and continues to forward the
next packet. This dequeue operation stops when either ti is greater than DCi
or the queue becomes empty, which makes the FE to move on to the next active
client.

The key of this algorithm lies in setting an appropriate quantum for each
client. Specifically, qi is calculated as qi = D × fi, in which D is the time
duration for sending all the clients’ packets in a scheduling round, called round
interval, and fi is the fraction of time allocated to each active client i. fi is
computed based on the link capacity estimate ci and the given contention

policy. Specifically, we compute fi as
1
ci∑N
i=1

1
ci

for the equal throughput policy,
ci∑N
i=1 ci

for the proportional throughput policy, and finally, 1
N for the equal time

policy. Here N indicates number of clients assigned to this base station. To
determine the round intervalD, we observe a clear tradeoff between the network
throughput and accuracy of policy enforcement. A smaller D ensures a precise
allocation of transmission time among clients, but causes larger overhead in
synchronizing concurrent access to the packet queues among demultiplexers
and FEs. The opposite holds for a largerD. In our implementation, we selectD
to be 10 microseconds, which strikes a good balance of this tradeoff as will be
shown in § 3.5.

3.4 implementation

We describe the hardware platform and the software architecture to implement
Scout.
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Figure 3.9: TV whitespace radios in an OpenWrt based router.

Hardware platform

We used broadband transceivers from the Doodle Labs Inc [20] for TV
whitespace communications. Figure 3.9 shows these radios mounted in an
OpenWrt based router [28] deployed at our base stations and clients. Each
router can drive up to 4 radios through its Mini PCI interfaces. The radio is
based on a frequency translator integrated with a 802.11 baseband chipset that is
capable of transmitting at a data rate up to 54Mbps. Due to the fixed RF filtering,
it can only operate at a pre-defined center frequency of 563MHz, 596MHz or
638MHz, and with a tunable bandwidth of 5, 10, 20MHz. The transmission
power of these radios is up to 1W, which is configurable through the Ath5k
driver [93].

Software architecture

Our software framework runs at the layer 3.5 based on encapsulation tunnels.
It is implemented in an user-space program at the controller, base stations and
clients respectively. All the programs are written in 15000 lines of C++ code. We
also added about 50 lines of C code in the WiFi driver to control the transmission
data rate of base stations. Figure 3.10 shows the software framework of Scout
based on an example network setup of two base stations and a client.
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Figure 3.10: Software architecture of Scout.

Single-link abstraction: To let existing applications run over heterogeneous
links, we expose a single-link abstraction using a Linux virtual network device
called TUN [3]. All the application traffic is sent through this fake device, which
is then intercepted by our user-space program, and redirected through UDP
tunneling over the underlying physical links (i.e., whitespaces and cellular).

For downlink communications, the controller receives application traffic
from the Tun interface, and forwards them through its Ethernet interface to
the base stations. Each base station performs all the signal processing on the
downlink packets as described in § 3.3, while sending the encoded packets
through the whitespaces interface. It also sends the original data packets via the
Ethernet interface upon detecting the outage of the whitespace link. The client
receives the downlink packets from its whitespace interfaces, and occasionally
from the cellular interface. It decapsulates these packets and performs various
decoding steps as mentioned in § 3.3. After decoding, the client collates all
the unique data packets into the packet buffer, passing those received in-order
through the Tun interface to the application layer. It also sends the uplink
traffic and ACK packets through its cellular interface to the controller. The
controller relays uplink packets to the Internet, while forwarding ACKs to the



73

corresponding base stations 1. By leveraging the virtual networking interface,
the end-user applications are agnostic to the underlying heterogeneous links
and their dynamic changes during handoff.

Protocols for fast handoff: To minimize the overhead in switching routes
during handoff, we carefully select protocols across the stack. At the MAC
layer, we choose to use the ad-hoc mode for our network. It obviates various
association handshakes that are otherwise needed in the infrastructure mode
leading to tens of seconds of delay [6, 22]. At the network layer, we use
UDP tunnels to make all the connections stateless, while performing both
loss recovery and flow control at the layer 3.5.

Broadcast-based downlink communication: We configure a base station
to broadcast downlink traffic to all the clients. The client program is responsible
for discarding those packets destined to a different client based on their IP
address after decapsulation. There are three reasons for this decision. First,
the 802.11 protocol disables the link-layer retransmissions in the broadcast
mode. Thus, Scout can make its own retransmission decisions based on the
NACK packets sent over the cellular link 2. Second, the broadcast packets
can be received by both radios at a client for channel estimation and multi-
radio diversity combining. Third, each client can even overhear other clients’
downlink traffic for channel estimation. Here we assume that the security is
assured by higher layer protocols, e.g., https. We modify the WiFi driver so that
the server program can use a specific header field to control the PHY rate of
each broadcast packet.

Multiple sequence number spaces: To support in-order and reliably
delivery, Scout uses three sets of sequence numbers to index downlink packets
destined to each client. The end-to-end sequence numbers are included by the
controller for clients to reorder packets sent from multiple base stations. The data
sequence numbers are added by each base station for link-layer retransmission.

1The decision of forwarding cellular traffic through the controller is because only its Ethernet
interface has a public IP address in our implementation, and traffic destined to a private IP can
be sometimes blocked by cellular networks.

2If the unicast communication is used otherwise, the WiFi-based radio at the base station
would perform unnecessary link-layer retransmission up to the maximum retry limit, since it
cannot receive any link-layer ACKs over the weak whitespace uplink.
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Figure 3.11: Two example road segments in experiments with a single base
station.

The raw sequence numbers are used by the base station to index coded packets
for estimating packet loss rates. A client sends NACK packets for each sequence
number space to the controller in every 50 milliseconds.

3.5 experimental results

In this section, we first evaluate the performance of Scout in a single base station
setup to quantify the efficacy of its link layer techniques guided by the scouting
radio. We then evaluate Scout with multiple base stations to understand its
benefits for base station coordination.

Single base station setup

We evaluate the performance gain of Scout by exploiting the scouting feedback
to optimize multiple protocol decisions in a single base station scenario.
These techniques include rate adaptation, inter-packet FEC, and intelligent
traffic duplication implemented in our prototype system as described in § 3.3.
For the experiments, we have driven about 500 miles in the neighborhood
of the whitespaces base station across various road segments. We present
results primarily from two road segments as shown in Figure 3.11. Table 3.2
summarizes our main results.
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Experiment Setup Compared Algorithms Scout Gains

Overall Performance
Whitespace + cellular, road A Scout v.s. A1 – A4 23 – 120× over single radio, 3 – 8×

over dual radios
WiFi + cellular, road A Scout v.s. MIMO Scout(2-SISO-Radios): 4×, Scout(2-

MIMO-Radios): 7×
Whitespace + cellular, road A
(video streaming)

Scout v.s. A4 90% reduction in buffering delay

Whitespace + cellular, road B Scout v.s. A3 – A4 9× at 75th quartile
Microbenchmarks

Whitespace + cellular, road A ScoutRate v.s. RRAA and Minstrel 3.6× and 1.3× (with diversity)
Whitespace + cellular, road A FEC-w-Scouting v.s. No-FEC, FEC-

w/o-Scouting
1.5× over No-FEC, 1.3× over FEC-
w/o-Scouting

Whitespace + cellular, road A Scout v.s. No-DUP, DUP-w/o-
Scouting

1.6× over No-DUP, 1.3× over DUP-
w/o-Scouting

WiFi + cellular, indoor Scout v.s. A3 – A4 0.8× (under-perform)

Table 3.2: Summary of results in a single base station setup.

Evaluation metrics: We use a variety of metrics to evaluate the link performance
such as TCP throughput, end-to-end packet loss rates, buffering delay of video
streaming.
Compared systems: We use RRAA and Minstrel as representative algorithms
that use packet error rates at the receiver to select PHY rates. Table 3.3 describes
four alternative systems implemented upon these algorithms and using SISO
radios for downlink communication. A-1 and A-2 use RRAA and Minstrel
respectively. A-3 and A-4 are dual-radio variants of A-1 and A-2, which also
instantiate the prior concept of multi-radio diversity (MRD [52]) as done in
Scout. We further implement a MIMO version of A-2 based on Minstrel-HT to
select MIMO PHY rates. All the above systems use link-layer retransmission
with a retry limit of 4.
Data collection: We collected measurements from 5 drives for each algorithm
along these road segments in all the experiments unless mentioned otherwise.
The two routes in Figure 3.11 have very different coverage characteristics —
segment A is part of one major bus route we intend to cover. It has good
connectivity to the whitespaces base station with more than 70% of the path in
line-of-sight to the base station’s antenna. In contrast, the segment B represents
a worse coverage scenario, with more than 60% of the path blocked by several
tall buildings. The mobile client drove around this area at speeds between 18
and 35 km/hr (governed by city speed limits).
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Alternative Rate Dual-radio
Systems Adaptation Combining

A-1 RRAA No
A-2 Minstrel No
A-3 RRAA Yes
A-4 Minstrel Yes

Table 3.3: Alternative systems to be compared against Scout.

Overall performance

We evaluate the overall downlink performance of Scout in supporting TCP
downloading and video streaming on the two representative road segments.
We quantify the performance gain of Scout over the alternative systems using
SISO and MIMO radios, respectively.
TCP throughput (road segment A): We measured the downlink TCP per-

formance of experiments conducted on road segment A, which has a better
coverage from our whitespaces base station. The duration of each drive was 60
seconds approximately, and the results were averaged over 1 second bins for
each system.

The first panel of Figure 3.12 shows that Scout achieved 8× and 3×
improvement in TCP throughput over A-3 and A-4, both of which used dual-
radio diversity combining in the downlink path. These dual-radio systems
outperformed their single-radio counterparts by 15× and 8×, and hence
it is sufficient to focus on the dual-radio versions alone. We also provide
the TCP throughput of an existing 3G cellular link just for reference. Note
that a direct comparison between Scout and the cellular link is not useful
since the quality of hardware platforms and the load at the base station are
different. We envision much higher throughput to be possible in a commercially
designed whitespace system with improved antennas, sophisticated placement,
and a radio incorporating higher PHY rates and various signal processing
optimizations.

To gain some insights behind the throughput performance, we analyzed the
end-to-end loss rate and the congestion window size of each TCP connection.
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Figure 3.12: Average downlink TCP performance on road segment A. The error
bar shows standard deviation.

The second panel of Figure 3.12 shows that Scout can completely eliminate the
end-to-end loss, whereas A-3 and A-4 suffered from 1.69% and 0.72% loss. Thus,
we find that the average congestion window in Scout was 6× and 3× larger than
that in A-3 and A-4. This in turn enables Scout to fully utilize the available link
capacity leading to the dramatic improvement in TCP throughput.
Scout or MIMO? (road segment A): One natural question we need to address
is how does Scout compare to a 2×2 MIMO system, considering both using
two radio chains at the client. A commercial 2×2 MIMO system based on
the 802.11n standard [97] leverages path diversity by simultaneously sending
different data streams from the two radios at the transmitter (multiplexing
mode) to boost throughput under good channel condition, or by duplicating a
single data stream across these radios (diversity mode) to enhance reception
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Figure 3.13: TCP performance of Scout and MIMO systems on road segment A.
(a) CDF of downlink TCP throughput. (b) Distribution of end-to-end packets
received and lost at different PHY rates.

under a harsh channel. In order to be effective, a MIMO transmitter needs to
select an appropriate operation mode and modulation based on a given channel
condition, which is fast varying under vehicular context and can hardly be
captured with the delayed feedback. Hence, we find that the use of a scouting
radio can be particularly beneficial to a MIMO system in a heterogeneous
network.

We compare three multi-radio systems using the cellular uplink to send
feedback. (i) Single-MIMO-Radio uses one 2×2 MIMO transceiver at the client
for receiving downlink traffic. (ii) Scout (2-SISO-Radios) is the Scout design
using two SISO radios at the client, thus having a comparable number of
radio chains at the client. (iii) Scout (2-MIMO-Radios) is the Scout version
of MIMO that is enhanced by one extra scouting MIMO radio at the client.
We used commercial WiFi radios operating in the 2.4GHz band for downlink
communications in all the systems 3, because the dual radio chains in WDR are
not sufficiently synchronized for MIMO signal processing. The base station was
transmitting at a power of 1.4 W. We measured the downlink TCP performance
of each system on road segment A, but with shorter drives due to the limited
WiFi range. The experiment was conducted at late nights to avoid external
interference.

3This is the only outdoor experiment not done in TV whitespaces.
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The first panel of Figure 3.13 shows the CDF of TCP throughputs averaged
over 1 second bins of each system. We observe that Single-MIMO-Radio
achieved a TCP throughput of less than 2Mbps at 75th quartile due to
inappropriate rate decisions caused by delayed feedback. Scout (2-SISO-Radios)
had 4× higher throughput compared to Single-MIMO-Radio owing to better
channel estimation and aggressive error recovery. Finally, Scout (2-MIMO-
Radios) can outperform Scout (2-SISO-Radios) by 1.8× at the 75th quartile
by fulfilling the PHY layer diversity gain in MIMO with improved protocol
decisions enabled by the scouting radio.

To understand the reason for the performance difference between the two
MIMO systems, the second panel of Figure 3.13 shows the distribution of end-
to-end packets that were received and lost at each modulation and coding index
(MCS). A MCS indicates a combination of the operation mode and modulation
to be selected by a rate adaptation algorithm; the upper 8 indices select different
modulations in the multiplexing mode, whereas the lower 8 choose those in
diversity mode. We find that Single-MIMO-Radio based on delayed feedback
over-selected MCS, incurring up to 42% loss rates at different MCS. This caused
frequent TCP timeout and a small TCP window size (inferred by total packet
counts). After enhanced by the scouting MIMO receiver, Scout (2-MIMO-
Radios) has reduced loss rates to be less than 0.1%, thus being able to maintain
a TCP window 5× larger than that of Single-MIMO-Radio.
Video streaming over TCP (road segment A): We next evaluate the quality

of video streaming in different systems. Video streaming is an application
of growing popularity. A lot of emerging streaming services (Netflix, Hulu,
YouTube, etc.) are implemented on top of TCP. For these applications, one
performance metric is the playing outages due to buffering delays, which have
a large impact on the user experience.

We streamed a high definition (1280 × 720) video clip from YouTube when
the client was driving on road segment A. The duration of this video was 60s.
We compared the video performance between Scout and A-4. Note that A-4
performed the best among all the alternative systems. Figure 3.14 shows the
time series plot of the video played in both systems based on our captured
traces. We observe that the video played in A-4 stopped frequently for buffering,
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Figure 3.14: Time series plot of a 60s video played in different systems along
road segment A. The dark color shows the playing time and the light color
shows the buffering delay.

whereas the same video played in Scout only stopped for a few times (4), with
each lasting for less than 3 seconds. This leads to an overall buffering delay to
be 90% lower than that of A-4, indicating better user experience in Scout.
TCP throughput (road segment B): We measured the downlink TCP through-

put along road segment B to study the performance of different systems on
a road with poor coverage from the TV whitespaces base station. Each drive
lasted about 120 second, corresponding to the time for the vehicle to finish the
entire route. Figure 3.15(a) presents the CDF of TCP throughputs averaged
over 1 second bins from all the drives of each system. We observe that Scout
achieved 9× gain over A-3 and A-4 at the 75th percentile. Apart from higher
throughput, Scout reduced the “black-out“ period (0 Mbps throughput) in both
alternative systems by 25% and 20% due to the intelligent traffic duplication.

Figure 3.15(b) presents the throughput measurements over time in one of 5
drives for each system. We observe that Scout strived to maintain a vehicular
connectivity for more than 75% of the time, whereas A-3 and A-4 were able
to support connectivity for about 15% of the time. During the first 20 seconds
of driving, Scout accurately detected the connection outage with the scouting
radio, activating the cellular duplication to ensure a minimum connectivity.
In contrast, A-3 and A-4 suffered from the link outage with zero throughput.
During the period between 20 to 80 seconds, Scout detected the recovery of
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the whitespaces connectivity, thus stopped using the cellular link for traffic
duplication. It boosted the throughput performance by selecting aggressive
PHY rates while using FEC to guard against channel losses in whitespaces.
Finally, all systems failed to provide connectivity at the end of the drive
(approximately after 90 second) because both the cellular and whitespace links
were severely blocked by the surrounding buildings.

To illustrate how the scouting radio can improve performance, we present
a 4 second packet trace for each system along the same road segment in
Figure 3.15(c). We observe that all three systems experienced the loss
of connectivity over whitespaces during a time period between 500 and
2500 milliseconds. Scout immediately detected this channel degradation by
observing the packet failures at the front radio. It then enabled the base station
to duplicate packets over the cellular link until the connectivity was fully
recovered at 3000 milliseconds. In contrast, A-3 and A-4 incurred the delay of
225 milliseconds and 97 milliseconds in adapting to the deteriorating channel.
Subsequently, both A-3 and A-4 suffered from a connection “black-out“ for
about 2 seconds where all packets were lost over the whitespaces. This leads to
significant throughput degradation due to TCP timeout, which was avoided by
Scout with traffic duplication.

Microbenchmarks of Scout

We benchmark the performance improvement due to individual components
in Scout, which are rate adaptation, dual-radio diversity, inter-packet FEC, and
intelligent traffic duplication. We applied these techniques incrementally to
our system while carefully measuring the change in performance before and
after adopting each scheme. We further quantified the benefits of the scouting
radio in enhancing each transmission decision. The link-layer retransmission
was enabled with a retry limit of 4 along with these techniques. All the results
were downlink TCP throughputs averaged over 1 second bins from 5 drives on
road segment A.
Rate adaptation: To understand the contribution of the scouting based channel
estimation to rate selection, we evaluated the rate adaptation algorithm used
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Figure 3.16: Performance improvement of rate adaptation (microbenchmark).

in Scout alone, denoted as ScoutRate. We compared ScoutRate against RRAA
and Minstrel under the two cases where the dual-radio diversity combining
was used or not. Figure 3.16 shows that ScoutRate has achieved 13× and 2.5×
throughput improvement over RRAA and Minstrel without reception diversity,
as well as 3.6× and 1.3× over the two algorithms with reception diversity. We
also note that diversity combining can effectively improve the performance of
RRAA, Minstrel and ScoutRate by 15×, 8× and 4×.
Inter-packet Forward Error Correction: To study the efficacy of inter-packet
FEC, we compared three systems, which are No-FEC, FEC-w/o-Scouting,
and FEC-w-Scouting. No-FEC uses ScoutRate to select PHY rates. FEC-w/o-
Scouting uses ScoutRate and FEC, but estimates redundancy based on the
delayed feedback for both radios. FEC-w-Scouting uses ScoutRate and FEC
based on the channel estimates provided by the scouting radio. All the systems
leverage diversity combining and have taken account its multiplicative effect in
loss reduction as described in § 3.3.

Figure 3.17(a) shows that FEC-w-Scouting outperformed No-FEC by 45%
due to the use of inter-packet FEC. Our further analysis shows that the inter-
packet FEC reduced the number of retransmissions by 62%, thus significantly
reducing the bandwidth inefficiency caused by slow retransmission. While
both using FEC, FEC-w-Scouting outperformed FEC-w/o-Scouting by 28% due
to the improved channel estimates enabled by the scouting radio.
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Figure 3.17: Performance improvement of inter-packet FEC (microbenchmark).

To understand the advantage of the scouting based channel estimation, we
compare the accuracy of redundancy estimation in FEC-w-Scouting and FEC-
w/o-Scouting. To this end, we calculated the difference between the number of
coded packets received for each batch and the minimum number of packets
needed to decode the entire batch. This minimum decodable count is equal to
the number of data packets included in the batch – k (§ 3.3). A positive result
indicates over-estimation of redundancy, leading to wastage in bandwidth. A
negative result means under-estimation of redundancy, resulting in failure of
decoding. Figure 3.17(b) shows the CDF of this metric for different batches.
We note the gain of FEC-w-Scouting mainly came from fewer over-estimations of
redundancy, which allowed better utilization of channel capacity.
Intelligent traffic duplication over cellular links: We benchmark the efficacy

of the intelligent traffic duplication in Scout. We compared the following three
systems: (i) No-DUP that is FEC-w-Scouting without the use of duplication,
(ii) DUP-w/o-Scouting that additionally performs necessary traffic duplication
but based on the delayed feedback, and (iii) Scout – the complete version of
our system. Again, all the systems use the loss rates at both radios for making
transmission decisions.

Figure 3.18 shows that the intelligent traffic duplication in Scout improved
the overall TCP throughput by 55% over No-DUP, because whitespace links (like
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Figure 3.18: Performance improvement of intelligent traffic duplication over
cellular path when needed (microbenchmark). No-DUP is the same as FEC-w-
Scouting.

all other links) can experience occasional outages and the ability to divert traffic
to alternate paths should always improve performance. Scout outperformed
DUP-w/o-Scouting by 31% due to the timely duplication based on the scouting
radio. Finally, since the duplication in Scout was done on demand, i.e., when
the whitespace link is considered unresponsive, we find only 7% duplicated
data to be unnecessary.

Scout v.s. whitespace-only networks

We now evaluate the efficacy of scouting based channel estimation. We compare
Scout based on a heterogeneous architecture with alternative systems (in
Table 3.3) that use a conventional, whitespace-only architecture as discussed in
§ 3.1. To eliminate the effect of channel estimation, we have restricted the
base station and client to use 100 mW for all the systems, which leads to
about a 4× reduction in the transmission range compared to the 4 W power.
We then measured the average downlink TCP throughput when driving in a
fraction of road segment A for about 200m (due to the restricted base station
coverage). Figure 3.19 shows the average downlink TCP throughput of each
system measured from multiple drives.

We first observe that Scout achieves a similar throughput compared to A3
and A4 that use symmetric whitespace links with negligible feedback delay.
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Figure 3.19: Downlink TCP performance of Scout and alternative systems using
a symmetric, whitespace-only architecture.
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Figure 3.20: Performance of Scout in static scenarios.

This demonstrates that our scouting radio can mask most of the effect on channel
estimation imposed by high feedback delay in the cellular path. Scout also
achieves 19% and 17% higher throughput than A1 and A2, owing to the dual-
radio combining technique. We also note the throughput of Scout based on a
100 mW transmission power is only a third of that with a 4 W power (Figure 3.12),
which demonstrates the coverage advantage of our heterogeneous architecture.

Scout in static scenarios

As discussed in § 3.3, when a client is static, our base station loses its advantage
in channel estimation by reverting to the delayed feedback of the rear radio. To
study the performance of Scout in these static environments, we measured the
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Setup Algorithms Scout Gains

Overall Performance
Different channels; equal-throughput Scout, Greedy, Round-robin, Dupli-

cation
73% over Greedy and Duplication,
1.9× over Round-robin

Different channels; equal-time &
proportional-throughput

Scout, Greedy, Round-robin, Dupli-
cation

90 – 96% over Greedy and Duplica-
tion, 96 – 374% over Round-robin

Different, hybrid, same channels;
equal-time

Scout, Greedy 90 – 104% over Greedy in hybrid
and different channels

Microbenchmarks
Different channels; all policies Scout, Greedy 2× over Greedy in average through-

put
Simulation

Different channels; all policies; varying
number of bs and clients

Scout, Greedy, Exhaustive search 400× lower than Exhaustive in la-
tency

Different channels; all policies; 5 and 15
bs with varying number of clients

Scout, Greedy, Exhaustive search 11 – 77% gain over Greedy, 11% –
20% loss to Exhaustive

Table 3.4: Summary of results in a multi-base station setup. Performance gain
is for median throughput unless mentioned otherwise.

downlink TCP throughput in a lab environment where the loss rate was quite
low. All the systems used SISO based WiFi radios for downlink communication
and a cellular path for uplink. Each experiment was run for 60 seconds.
Figure 3.20 shows the average TCP throughput of different systems. We observe
that Scout had 21% and 17% lower throughput compared to A-3 and A-4 since
the scouting radio no longer provided any useful feedback to the system.
Further, some of the error recovery mechanisms such as FEC were not necessary
in this setup, but introducing overheads. Hence, the scouting related functions,
while particularly suited for highly mobile scenarios, should be disabled in
static situations by the base station, which can detect such cases using GPS
updates from clients.

Multiple base station setup

We now evaluate the performance of Scout using three base stations and three
vehicular clients driving around our testbed area simultaneously for about
200 miles. We start by presenting the overall performance of Scout. We then
benchmark its various scheduling functions. Finally, we conduct a trace-driven
simulation of Scout at various network scales. Table 3.4 summarizes our main
experiment results in the multi-base station setup.



88

Figure 3.21: Routes taken by three vehicular clients for experiments with
multiple base stations. Also marked is the location of each base station.

Compared systems: We compare Scout with three systems that leverage
alternative scheduling algorithms at the controller. Greedy assigns base
stations based solely on the link capacity, which is used by several existing
systems [6, 36, 57, 58, 61]. Round-robin stripes traffic evenly across base stations
as done in the MAR system [80]. Duplication exploits the multi-radio diversity
like MRD [52] by redundantly sending each packet through all the base stations
to a client. These systems are based on the heterogeneous architecture of Scout,
and leverage all the transmission techniques described in § 3.3.
Channel contention policies: We consider the following three policies for
downlink communications. The equal-throughput policy is the 802.11 proto-
col [38], where all the contending clients receive a similar throughput. The equal-
time policy ensures equal transmission time among contending clients, whereas
proportional-throughput allocates transmission time proportional to their link
capacity. These two policies are frequently used in cellular networks [24, 86, 91].
Metrics: We use various performance metrics for this evaluation, e.g., downlink
throughput, handoff frequency, distribution of base station assignments, and
scheduling latency.

Overall performance

We evaluate the downlink performance of Scout and baseline systems under
various channel contention policies. For our experiment setup, we use three base
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stations and three vehicles driving in different road segments simultaneously.
Figure 3.21 shows the routes taken by these vehicular clients ranging from 0.5 to
1 mile, and the location of each base station. While driving, we start parallel UDP
downloads from the controller to individual clients, and record their downlink
throughput averaged in 1 second intervals. We then align their throughput
measurements based on the time stamps to compute the aggregate network
throughputs. All the results are collected from 3 drives for each algorithm.
Performance under equal-throughput policy: We first evaluate the downlink
performance of all the systems under the equal-throughput policy. Each base
station is configured to transmit in a non-overlapping channel for maximizing
aggregate throughput. Figure 3.22 shows the CDF of the aggregate throughput
for each system. We observe that Scout achieves 73% median gain and 78% at the
75th quartile over Greedy, owing to its optimization algorithm that efficiently
leverages simultaneous transmission from multiple base stations 4. Greedy

4The relatively lower end-to-end throughput is due to a 618Mbps PHY rate often suitable
for vehicular clients, coupled with various link-layer overhead such as carrier sensing and our
own FEC.
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outperforms Round-robin by 65% in the median throughput because it assigns
base stations in a throughput-aware fashion. Interestingly, Duplication has a
similar performance to Greedy especially in worse channel condition. This
might because Duplication utilizes all the base stations for redundancy, whereas
Greedy leaves some of them idle.

We next quantify the accuracy of Scout in enforcing any given contention
policy. Figure 3.23 shows the CDF of maximum throughput difference
among contending clients for Scout. This result is based on 79% throughput
measurements with at least 2 clients falling in a single contention domain.
We observe a median difference of 0.2Mbps and a 90-quartile of 0.9Mbps,
demonstrating its ability to faithfully execute the equal throughput policy.
We have observed a similar performance of Scout in enforcing other policies,
and omit the result for the sake of brevity.
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To better understand the performance of Scout, we compute various statistics
about its base station assignments in a single drive. Figure 3.24 shows the
distribution of packets sent by individual base stations. We can see the base
station 3 has sent least number of packets because it is deployed in a building
with a relatively small coverage. In addition, the client 1 and 2 have a similar
distribution of packets sent from base station 1 and 2, which is opposite to that
of client 3. This is because client 1 and 2 were driving in the same direction
(albeit for different distances), which aligns well with the coverage of base
station 1 based on our testbed measurements. In contrast, client 3 is driving in
the opposite direction primarily covered by base station 2. These meaningful
results demonstrate that Scout is accurate in assigning appropriate base stations
for each client.

To validate the need for a fast assignment algorithm, Figure 3.25 shows the
duration of switching base station assignments for each client. We observe
that about 80% of such durations are quite short – within 5 seconds, thus
necessitating a real-time assignment algorithm. Nevertheless, only about 5%
of durations falling below 2 seconds, which suggest our assignment algorithm
running at a 1 second interval to be adaptive enough to channel variation.
Figure 3.26 shows the ids of base stations serving each client. We note frequent
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Figure 3.27: Downlink throughput under two other policies with base stations
operating in different channels.

changes of base station assignments. Despite that, each client has maintained a
continuous traffic flow owing to the seamless handoff feature of Scout.
Performance under two other policies: We now evaluate the downlink
performance of these systems under two other policies, i.e., equal-time
and proportional-throughput. Figure 3.27 shows the CDF of the aggregate
network throughput for each policy. Similar to equal-throughput policy, Scout
outperforms Greedy by 90% and 96% in median throughput under the equal-
time and proportional-throughput policy, respectively. It further outperforms
Round-robin by 96% and 374% for each policy.
Different channel configurations: We now evaluate the performance of Scout
under a varying number of unique channels used by base stations as follows.
The 3-channel setup configures all the base stations to use a different, non-
overlapping channel, which is the same setup in the previous evaluation. The
2-channel setup lets two of the base stations to operate in a same channel
(centered at 602MHz), and the third one in another channel (638MHz). The
1-channel case makes all three base stations to use a single channel (602MHz).
In this setup, Scout degenerates to Greedy since there is no channel diversity
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Figure 3.28: Downlink throughput under different channel settings at base
stations. The number appended to each algorithm marks how many unique
channels are used by the base stations.

to exploit. Figure 3.28 shows the CDF of aggregate throughput of Scout and
Greedy under the equal-time policy, with the number of unique channels
appended to each algorithm. We observe a similar performance achieved by
Greedy across different channel settings. This is because Greedy selects base
stations based solely on their link capacity without considering their contention
effect (§ 3.3). In contrast, Scout achieves a higher throughput with additional
channel diversity, outperforming Greedy by 90% and 104% in the cases of two
channels and three channels respectively. This demonstrates its advantage in
scheduling concurrent transmissions across contention domains.

Controller microbenchmarks

We first quantify the dual-efficacy of our controller for the base station
assignment and contention policy enforcement. We then validate our selection
of the round interval parameter for packet scheduling. All the results were
measured in a lab environment using the same heterogeneous architecture.
Performance of traffic scheduling: We compare Scout and Greedy for schedul-
ing downlink traffic from 2 base stations to 3 clients under different channel
contention policies. Each base station is configured to transmit in a different
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Figure 3.29: Average downlink throughput measured by individual clients
under different channel contention policies.

Client 1 Client 2 Client 3
Base station 1 1Mbps 9Mbps 6Mbps
Base station 2 18Mbps 12Mbps 9Mbps

Table 3.5: PHY-layer data rates used by base stations to send downlink packets
to different clients.

channel, and at a fixed data rate for each client as shown in Table 3.5. The
first panel of Figure 3.29 shows the downlink TCP throughput of each client
under the equal-time policy. We can see that Scout achieves a 2× aggregate
throughput compared to Greedy. This is because Greedy assigns all the clients
to base station 2 due to its higher link capacity, incurring wasted transmission
opportunities at base station 1. In contrast, Scout fully exploits the concurrent
transmission opportunity of the two base stations, by assigning client 1 to
base station 2 and the other two clients to base station 1. We also observe that
those clients in a single contention domain has a throughput proportional to
their link capacity. This suggests that each contending client has received a
similar amount of transmission time, demonstrating the efficacy of Scout for
executing the equal-time policy. For the other two policies, The second and
third panel of Figure 3.29 show that Scout regulates the throughput distribution
of clients equally well to match each policy. We have experimented with various
other setups and link configurations, and observed a similar traffic scheduling
performance of Scout.
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Figure 3.30: Average downlink throughput of individual clients at different
scheduling round intervals in Scout.

Impact of round interval: We use the same setup in the previous benchmark
experiment, but vary the round interval in our DRR algorithm to study its
tradeoff between throughput efficiency and policy enforcement. The first panel
of Figure 3.30 shows the average throughput of individual clients in Scout under
the equal-time policy. Based on our previous setup, we expect a 3:2 throughput
ratio between client 2 and client 3 as both of them are assigned to base station
1. Nevertheless, such a ratio can only be achieved accurately at a small round
interval of 610 microseconds. Above this threshold, the throughput ratio tends
to become 1 since our whitespace radios use a 802.11 MAC protocol that by
default leads to a similar throughput among clients [100]. On the other hand,
we note a slight throughput decrease at a lower interval, with a noticeable
degradation of 7 – 17% at the 5 microsecond interval. This is because such a
small interval leads to frequent concurrent access by the packet demultiplexers
and forwarding engines, which brings significant synchronization overhead
(locking) as discussed in § 3.3. The second panel of Figure 3.30 shows a
similar trend under the proportional-throughput policy. Hence, we select
the round interval to be 10 microseconds for accurate policy enforcement, yet
low throughput overhead.
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Trace-driven simulation

To evaluate the performance of Scout at various network scales, we conduct trace-
driven simulation to quantify its base station assignment latency and aggregate
network capacity. We compare Scout with Greedy and the exhaustive search
algorithm as described in § 3.3. The traces consist of packet loss measurements
that are collected from the vehicles in the outdoor experiments (§ 3.5). We
segment the loss rate measurements into 50 meter road segments based on
their GPS reading, and synthesize them in a random order. We then replay
this synthetic trace to determine the current loss rate between a base station
and a client. To emulate the feedback delay in cellular uplink, we use the loss
rate collected at 100ms ago as the feedback to these systems, while computing
the downlink throughput based on the current loss rate and their transmission
decisions. Using this strategy, we generate traces for 15 candidate base stations
and 20 candidate clients. To simulate different network sizes, we randomly
pick I clients and J base stations for each simulation, with I varying from 2 to
20 and J from 2 to 15. Each base station is assumed to use a different channel
given the abundant spectral resource in whitespaces. There are 266 simulations
performed in total.
Latency of base station assignment: We start by analyzing the latency of base
station assignment by different algorithms. Figure 3.31 shows the number
of possible assignments in cases with a given number of base stations and
clients, all of which need to be explored by the exhaustive search. The numbers
are in a log10 scale, e.g., 4 indicates 10000. Figure 3.32 shows the latency of
the three algorithms for choosing an assignment decision from all possible
combinations, as a function of total number of combinations to choose from.
All three contention policies are evaluated. For a given algorithm, contention
policy and number of base station and client, the latency is averaged over 1
second intervals. The measurement is based on a desktop computer with a
8-core CPU and 32GB RAM, and only conducted for up to 106 combinations
due to the prohibitive latency of exhaustive search. This corresponds to a
moderate network size of 7 base stations and 7 clients as shown in the top x
axis, and several other setups can be found in Figure 3.31. We observe that the
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Figure 3.31: Number of possible
combinations in log10 scale. The
cases measured in Figure 3.32 are
marked in blue.
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Figure 3.32: Latency for a varying
number of combinations. The top x
axis marks example network setups
based on Figure 3.31.

latency of the exhaustive search increases exponentially. For 106 combinations,
it reaches about 400 seconds rendering the system completely unresponsive. In
contrast, Scout achieves a sub-second latency by filtering out a large number of
unpromising assignments. Such a latency is low enough for the 1 second period
used by Scout to assign base stations (§ 3.3). Greedy has the lowest latency of
about 1 milliseconds due to its linear algorithm by selecting a base station with
the maximum capacity. Nevertheless, it incurs a significant throughput penalty
as will be shown next.
Aggregate network throughput: We simulate the aggregate network through-
put achieved by different algorithms in a network of 5 base stations and 2 to
5 clients. Figure 3.33 shows the throughput results averaged over 1 second
intervals. We observe that the throughput increases with more clients as
expected. Scout achieves a 20% – 77% gain over Greedy by efficiently exploiting
the concurrent transmissions among base stations. Furthermore, it only under-
performs the exhaustive search by 11% - 20%, but achieving orders of magnitude
lower latency. Figure 3.34 shows the throughput results at a larger network of
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Figure 3.33: Aggregate throughput achieved by 5 base stations and a varying
number of clients.

2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (M

bp
s)

0
50

10
0

15
0 Greedy

Scout

Figure 3.34: Aggregate throughput achieved by 15 base stations under the
equal-throughput policy.

15 base stations and 2 to 20 clients. We omit the result of the exhaustive search
due to its substantial latency. We observe that Scout achieves a similar gain of
11% – 64% over Greedy, demonstrating its advantage in base station assignment
at various network scales.

3.6 issues and discussion

We outline several possible enhancements of Scout in efficiency, scalability and
applicability.
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• Leveraging whitespace uplink for opportunistic communications. Scout
currently sends all the uplink traffic over the cellular path. One possible
enhancement is to allow opportunistic communication in whitespaces
uplink when a vehicle is within its transmission range to a whitespace base
station. Such a design brings additional challenges to coordinate channel
contention among base stations and clients, since conventional carrier
sensing is hard to detect transmission from weak clients. Explicit syn-
chronization protocols might be employed to coordinate such contention,
perhaps using TDMA protocols similar to those in long-distance WiFi
networks [67, 73]. In addition, dynamically switching between whitespace
links and cellular technologies lead to complicate effects on TCP protocols.
When switching from a fast whitespace uplink to a slow cellular path,
spurious TCP timeout might occur due to the abrupt increase in link
latency, leading to redundant retransmission and unnecessary congestion
avoidance [10]. In contrast, when switching from the slow cellular link to
fast whitespaces, the frequent arrival of Acks causes bursty transmission
at the sender leading to packet losses [5]. To address these TCP anomalies,
some Ack pacing techniques [5, 10, 43, 60] might be employed at the link
layer to regulate the Ack arrival time at the base station to smooth out
RTT variation. Additional TCP enhancements such as Ack congestion
control [5] and Ack regulation [10] might be used to mitigate source
burstness by manipulating the frequency of Ack generation.

• Estimating background traffic. Our current design does not take account
the impact of background interference generated by other whitespace
networks. In future work, we intend to estimate its impact on the link
capacity estimation, which can be achieved through a passive channel
measurement technique based on an additional monitoring radio as
proposed in WhiteFi [4], or an in-band probing technique based on the
arriving interval of downlink packets similar to DenseAP [57]. Intelligent
sensor placement strategies might be further used to reduce the hardware
cost and energy consumption, by activating a subset of monitoring devices
based on their location proximity and operation environment. Efficient



100

scheduling techniques are also needed to coordinate these sensors based
on their channel condition information and the power budget. In addition,
accurately translating the impact of the measured channel noise into link
capacity awaits further exploration.

• Collecting channel contention information. Scout relies on the con-
tention domain of base stations to perform various scheduling tasks.
Collecting this channel conflict data is greatly simplified in our hetero-
geneous network, since only a few static base stations are transmitting
at a fixed power. Hence, it is quite possible to use a standard RF survey
employed in indoor WiFi networks for this. Of course, one may leverage a
dynamic channel conflict measurement technique in prior work [44, 76, 77]
to improve accuracy.

3.7 summary of scout

In this chapter, we have presented Scout, a heterogeneous network to provide
wide-area Internet connectivity to vehicles. Our system leverages the use of new
and additional spectrum available in TV whitespaces, and combines it with the
already pervasive cellular networks. The proposed architecture significantly
enhances the network coverage compared to a symmetric whitespace-only
architecture, thereby reducing the deployment cost.

We have also introduced the notion and demonstrate the benefits of a
scouting radio to address the feedback delay in the proposed architecture.
In a vehicular setting, since it is natural for a rear radio to follow a front radio
along a given path, the scouting radio placed at the head of a vehicle is able
to provide accurate channel estimates for the main receiving radio at the rear.
This accurate feedback in turn leads to better protocol decisions that ultimately
translate to substantial performance improvement (3 – 8×).

We further developed a central controller to coordinate multiple whitespace
base stations to enhance the network coverage and throughput. The controller
leverages an efficient base station selection algorithm and a flexible packet
scheduling framework to improve the overall network capacity (73 – 374% gain),



101

enforce given channel contention policies (0.2Mbps median throughput error),
and support seamless client handoff. We believe that the proposed network
architecture and our specific techniques, can have a broader application to
dynamic spectrum access networks beyond TV whitespaces.
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4 an edge computing architecture to improve
bandwidth efficiency

4.1 motivation

In previous chapters, we presented network architectures and communication
protocols to enhance the coverage of whitespace networks. We now focus on
techniques to improve the bandwidth utilization of whitespace networks. Such
a solution can be particularly valuable for long-distance networks suffering from
sporadic losses and low data rates, or some urban deployments with scarce
spectrum resource. We have explored the solution space to support a specific
class of bandwidth-hungry and delay-sensitive applications — intelligent video
surveillance. Video surveillance has become pervasive with many applications
such as retail store analytics, corporate security, and traffic monitoring. While
cities such as London and Beijing have nearly a million cameras deployed today,
the vast majority of them are connected to wired network infrastructures, which
leads to substantial deployment cost and limited coverage.

To overcomes the limitations of wired connection, we intend to design
a wireless video surveillance system that leverages TV whitespaces (and
other unlicensed spectrum) to upload real-time video feeds to the cloud
for intelligent vision analysis — a function commonly provided by wired
surveillance systems today (e.g., DropCam [21]). A key challenge in realizing
such a system comes from the limited wireless capacity, which is far from
sufficient to support simultaneous uploading of high-definition video feeds
from distributed cameras. Moreover, wireless networks need to overcome
channel losses with error correction coding and retransmission techniques, both
introducing protocol overhead that erodes the effective network capacity. When
the wireless capacity lags behind the traffic demand of surveillance cameras, a
significant backlog of video traffic coupled with frame losses can occur, largely
degrading the responsiveness and accuracy of surveillance applications.

We present Vigil, a real-time wireless video surveillance system that
leverages the edge computing technology [82] to support many cameras over a
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large area. Vigil starts its processing flow with an user query, such as locating
people or objects with certain features. Such a query is distributed among edge
compute nodes (ECNs) that are collocated with camera sensors. Each ECN
uses some light-weight vision algorithms such as face detection, to process
the video feed locally. It produces a stream of utility values for individual
video frames, which are uploaded to a cloud-based controller over whitespaces.
Upon receiving these analytics, the controller only requests those relevant
video frames from ECNs for more sophisticated analysis (e.g., face recognition).
Hence, by pruning irrelevant video frames at the network edge, Vigil can
conserve a substantial amount of wireless capacity, which is further scavenged
to provide WiFi access to recoup the deployment cost.

Vigil leverages a novel frame scheduling technique to further maximize
the bandwidth utilization for video surveillance applications. Such algorithm
prioritizes the uploading of video frames based on their significance, thereby
maximizing their utility for video surveillance under varying wireless capacity
limits. To quantify the relative importance of video frames, we propose new
metric called ops (objects per second), which can capture both the utility of a
video frame (in number of objects), as well as its bandwidth cost for uploading
such frame to the cloud. Our algorithm then greedily prioritizes the video
frames with a higher ops to improve the wireless bandwidth efficiency.

We also introduce a camera collaboration technique to deal with the inherent
inaccuracy of vision algorithms. These algorithms are often sensitive to various
environmental factors such as capturing angle, lighting, and camera focus. Our
proposed technique enhances their robustness by leveraging multiple cameras
to monitor a common area simultaneously. It then uploads a minimum set
of frames captured by these cameras to comprehensively capture the unique
objects specific to an user’s query.

We have deployed Vigil at three sites in two countries under vastly different
conditions. Experimental results show that Vigil can enable a 5 – 200 × larger
surveillance coverage compared to a conventional approach that streams all the
camera feed over the whitespace network. For a fixed region of coverage and
bandwidth, Vigil outperforms the baseline systems by delivering up to 25%
more query-specific objects.
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Object of interest. Line of people.

Figure 4.1: The two Vigil use-cases targeted in this paper.

4.2 vigil’s use cases

In this section, we motivate Vigil by describing various vision application
domains it can possibly support in security, public safety, and business
management.

• Security and counter-terrorism. Across our cities, CCTV cameras are
installed in underground transport networks, on buses, and in airports
and other public areas. We envisage online, real-time processing of the
wireless video feed so that law enforcement and counter-terrorism can
track public threats in real-time. For example, in the event of multiple
co-ordinated attacks on public transport, the video surveillance network
can pick out the face of one perpetrator, scan the database of cloud-stored
video for other people the perpetrator was spotted with, and then search
for those associated persons in real-time as the attack progresses, directing
law-enforcement to the locations of the perpetrator’s accomplices for
intervention.

• Locating people or objects of interest. In many situations, people are
interested in locating objects or people of interest, such as an “Amber
Alert” in the United States, or an unattended bag of a certain color (the
first panel of Figure 4.1). An airport might choose to continuously run a
query on CCTV footage looking for bags that are not held by any person
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nearby, flagging up unattended baggage to airport authorities. Traffic
monitoring systems use vision-based algorithms to detect and count the
number of cars on the highways [14, 70].

• Customer queue analytics. In places where customers line up for service,
such as coffee shops, supermarkets, or amusement parks, shopkeepers
might have an interest in knowing numbers of people waiting in line
and the dynamics thereof over the course of a day (the second panel
of Figure 4.1). Cameras are used to track line length, but face or body
counting is challenging, as people strike different poses and turn at
different angles to the camera. Consequently, a better design is to deploy
an array of cameras surrounding the queuing area. The system then fuses
their data together to form a more accurate count of the people in line.

4.3 vigil design

Vigil proposes a novel architecture that leverages the computing elements at
the edge of the network to minimize bandwidth consumption of a wireless
video surveillance network without sacrificing surveillance accuracy. Vigil
consists of the two major components shown in 4.2. The controller is located
in the cloud and receives users’ queries, coordinating all the other parts of the
system to answer the query. An edge compute node (ECN) is a small computing
platform (e.g., a laptop or embedded system) that is attached to a camera to
bring cloud resources close to the edge of the network.1 2 Each ECN receives
the video feed from its connected camera, and executes the first, stateless,
stages of computation such as face detection or object recognition. It then
periodically uploads analytic results to the controller. The ECNs also perform
video compression, indexing and maintaining a short-term store of the video
frames they capture. ECNs connect to the controller via wireless links operating
over TV whitespace or WiFi bands. The controller runs a frame scheduling

1Note that we use the terms ECN and camera interchangeably in the remainder of the paper.
2We discuss the case of connecting multiple cameras to a single ECN in § 4.6.
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Cluster
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ECN ECN

Edge Compute 
Node (ECN)

Figure 4.2: Vigil architecture, in which Edge computing nodes (ECN) are
connected to camera devices to perform simple vision analytic functions, while
uploading a relevant portion of video feed to a Controller in the Internet.
Cameras monitoring the same areas form a cluster.

algorithm, requesting ECNs to only upload a fraction of relevant video frames
to conserve wireless bandwidth.

Vigil further utilizes saved wireless bandwidth to provide public network
access, by augmenting each ECN with a WiFi access point. The AP forwards
users’ traffic over the controller to the Internet, thus providing Internet hotspot
functionality for nearby users.

To improve the accuracy of vision analytic functions, we introduce the notion
of a cluster: a group of camera nodes monitoring a single geographical area
with substantially overlapping views, as illustrated in Figure 4.2. Leveraging a
cluster of cameras allows us to capture multiple views of objects from different
angles and overcome the limitations of the state-of-the-art visions algorithms
(Figure 4.3). These clusters are constructed during a calibration phase based
on the covered area of each camera. Vigil effectively fuses the observations
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Camera 1 Camera 2 Camera 3

Figure 4.3: Different views on the same scene can reveal more people at favorable
angles to the camera, as captured by Camera 1’s view of this scene with three
people.

from cameras in a cluster to improve surveillance accuracy without significant
wireless bandwidth overhead while existing surveillance systems upload video
from each camera to the cloud before executing vision analytic functions.

Design goals and scope. The primary goal of our design is to maximize the
number of query-specified objects the system returns while minimizing the
bandwidth required to upload the images containing these objects. We also
limit the scope of our design, noting the following non-goals:

1. Each vision algorithm has a certain accuracy and degree of confidence
in the results it returns. Improving the accuracy of vision algorithms is
outside this paper’s scope.

2. Enough cameras are present and use a high enough resolution and frame
rate so that with high probability, the resulting raw video streams capture
objects of interest.

3. In a Vigil deployment, cameras are line-powered, so there are no battery-
conservation issues.

The next section describes the ECN in detail, followed by a description of how
Vigil ’s controller prioritizes frames to upload within a cluster of ECNs (§4.3,
shape Intra-cluster processing), and arbitrates demand across multiple clusters
(§4.3, shape Inter-cluster traffic shaping).
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Edge compute node

We begin by describing the stateless image processing functions performed by
each ECN. Each Vigil application implements a callback API frameUtility, which
returns an integer value evaluating the importance of a video frame to that
application. Referring to our two use-cases, queue counting application at a
coffee shop defines frameUtility to be the number of people visible in the frame.
The application that locates people or objects of interest defines frameUtility to
be one if the object of interest is found in the frame, and zero otherwise. When
Vigil receives a new query, the query contains a definition of the frameUtility
function, which is disseminated to all ECNs. Each ECN calls frameUtility on
every received frame to generate an array of analytic data we denote as utils. It
then uploads these analytic data to the controller.3 While we focus on person-
counting applications to define frameUtility in this paper, Vigil can process
any queries that can process a vision analytic function at ECN and output a
frameUtility (for example, an object or a license plate number is present or not).

We note here that camera placement, focus, environmental conditions,
motion and many other factors can blur objects and faces of interest to the system.
Indeed, based on our experience, vision algorithms such as face detection are
more likely to fail on blurred images, and so frameUtility implicitly factors the
image quality into the number of detected objects.4 We elaborate further on
this design choice in Section 4.6.

Video storage. Each ECN is equipped with some persistent storage devices
to retain all the video frames captured close to the time of detected events.
This allows Vigil to support “drill-down” queries, which can be answered by
uploading additional video data from ECNs to the cloud for more detailed
analysis. Consequently, Vigil provides a time window, such as one or two weeks,
within which the system retains important video information, as existing wired
surveillance systems do.

3As discussed below in Section 4.3, an advanced intra-cluster scheduling algorithm also
requires ECNs to upload the location of each detected object.

4Blurry frames will result in fewer objects being detected, thus the frameUtility metric will
characterize blurry frames as less useful. Furthermore, the minimum size required in terms of
face pixels is encoded in the face or person detector.
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Figure 4.4: The intra-cluster frame selection algorithm processes on counts
representing the number of objects from each ECN camera in a cluster. This
example shows object counts over a certain time epoch from two ECNs.

Intra-cluster processing

The Vigil controller runs an intra-cluster algorithm to determine the most
valuable frames from cameras within a cluster to upload. The key challenge
is to eliminate redundant observations of multiple cameras within a cluster,
capturing the same objects, to minimize communication bandwidth without
actually exchanging the redundant frames. This section describes our intra-
cluster scheduling algorithm in two iterations: a straw-man version described
next, and its generalization in Section 4.3, which proposes a re-identification
approach to check if the same objects are captured by cameras in a cluster.

Basic frame-selection algorithm

The basic algorithm selects frames to upload by examining the frame utility
array utils[c] that each ECN c reports to the controller. We show an example
of the controller’s view of the frame utility arrays for a cluster containing two
ECNs in Figure 4.4: each element of util is an object count captured by a ECN
during consecutive time slots. The maximum object count is based on the vision
analytic function ECN is running (i.e., practically, the vision analytic algorithm
will only detect a limited number of faces in a frame, for example). To reduce
protocol overhead, our intra-cluster algorithm operates over a certain number
of Le time slots, referred to as an epoch in this section. The controller selects
a single ECN in each epoch—the selected ECN then uploads a fraction of its
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(2,3)sis: (7,1) (0,1)

0 1 2

Figure 4.5: Step 2 of the Vigil intra-cluster frame selection algorithm aggregates
one camera’s beginning frame index and utility into a selected image sequence (
sis) array containing a sequence of (frame index, utility) pairs.

frames to the controller determined by inter-cluster traffic shaping (§4.3 on p. 5).
The basic version of our scheduling algorithm proceeds in three steps:

shape Step 1: The controller sums the Le object counts from each camera across
the epoch, selecting the camera c∗ with the highest average counts (most
information about the scene) in the epoch. In the running example of Figure 4.4,
the algorithm selects Camera 1 for further processing.

shape Step 2: The second step of the algorithm processes Camera c∗’s counts,
finding the frames that begin changes to the scene, and collecting them into a
selected image sequence array sis, as shown in Figure 4.5. The sis array contains
pairs of (frame index, utility), sorted by utility, breaking ties in utility by
favoring the sis element with the longer duration sequence of images.

The frames can only be uploaded at a rate lower than the capacity of the
wireless link from the ECN to avoid network congestion and frames from being
dropped. To avoid congestion, the controller estimates the link capacity (in bits
per second) C available from each ECN by examining the near-term sending
rates and the loss rates. The ECN measures a time-averaged packet loss rate L at
its wireless link layer, and the physical-layer bit rate R. The ECN then estimates
the link capacity as:

C = R · (1 − L). (4.1)

shape Step 3: The final step of the algorithm takes as input the estimated available

wireless capacity C, and estimates the number of bits that ECN c∗ can upload.
We make a simplifying assumption that ECNs within a cluster have similar
wireless links to controller because they cover same geographical area of interest.
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Suppose the size (in bits) of the frames in the sis is Nsis and the length of the
epoch in seconds is Te. At the end of the epoch, the controller sends a control
message to ECN c∗ soliciting an upload. If Nsis 6 C · Te, the ECN uploads sis,
along with all the changing frames as indicated in the sis after compression.
Otherwise, the ECN uploads a fraction of the compressed images in sis in the
decreasing order of utility. In the example of Figure 4.5, sis[0] has utility of 3,
so frame 2 is uploaded first, followed by frame 7 and 0.

We note that this algorithm is an approximation that will lose information
when more than one camera in the cluster sees objects that other cameras in the
cluster miss. So, we describe a sophisticated intra-cluster algorithm to select
the most valuable frames within a cluster.

Sophisticated frame-selection algorithm

Vigil ’s sophisticated intra-cluster frame-selection algorithm specifically targets
cases where one camera in a cluster sees objects that other cameras miss to
select more than one ECN to upload images during a time epoch.

This algorithm relies on geometry and known locations of the ECNs to detect
redundant viewpoints without actually exchanging the redundant frames. The
algorithm first identifies duplicates of the same objects from multiple ECNs
in overlapping camera views using object re-identification. It then prioritizes
video frames from the cluster, factoring the count of “re-identified” objects into
the frame utility metric.

Object re-identification. Object re-identification determines redundant objects
reported by multiple ECNs in a cluster with overlapping camera views. By
selecting the smallest subset of camera views to cover the overlapping views,
we identify the unique objects across cameras within a cluster. To achieve this,
Vigil uses the following lightweight approach [116] called re-identification.

Figure 4.6 shows an example where two cameras simultaneously detect the
faces of two people in their overlapping views. The re-identification algorithm
identifies if the detected face instances belong to the same person or not. It
first selects common reference points between the camera views, for e.g., the
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e
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Figure 4.6: Two cameras simultaneously capture a scene containing the same
two faces. To avoid redundant counting, Vigil projects faces from Camera 1
to Camera 2 based on common reference points denoted by the two blue lines
labeled “Reference” in Camera 1’s view. If projection error does not exceed the
distance between the detected faces, re-identification correctly identifies the
two views of each face.

two blue lines in Figure 4.6.5 The reference points are then used to project any
pixel in Camera 1’s view onto the plane of Camera 2’s view. The detected face
instances are identified as the same person when the distance between projected
face and the detected face is below a threshold. For e.g., the error e between
the projection and the detected face in the second panel of Figure 4.6 is much
smaller than the distance between the two different faces. We set an empirical
value to determine the threshold for this projection error e that accounts for
any inaccuracy in marking reference points as benchmarked in Section 4.5. The
threshold value is set during a calibration stage and can remain useful for a
long period of time for static cameras. This re-identification approach has linear
complexity in number of cameras because it projects all of the captured scenes
to a common plane to calculate inter-object distance.

To integrate the re-identification technique on top of the basic algorithm
Section 4.3, each ECN reports the center coordinates of detected faces and
the frame utility in the modified utils to the controller. The controller then

5The reference points are manually determined in a camera calibration phase or extracted
using algorithms that extract SIFT image features [48].
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Figure 4.7: The advanced intra-cluster frame selection algorithm operating on
unique objects after applying the object re-identification algorithm. Each letter
denotes an unique object identified by re-identification. The algorithm chooses
ECN 1’s camera to be the primary camera view, while debiting the object counts
reported by ECN 2 by the number of duplicate objects re-identified (in bold).

performs re-identification using the analytic data in utils. Based on the results of
object reidentification, The controller then executes the following sophisticated
scheduling algorithm:

shape Step 1: The controller determines an ECN that has maximal average object
counts (thus capturing the most information about the scene) to be the primary
ECN. It then projects the detected objects from other ( complementary) camera
views onto the primary camera view. For each re-identified object, the controller
debits the object count of all the complementary ECNs by one. This produces
an updated utility array for each ECN. For example, Figure 4.7 shows unique
object counts captured by two ECNs after applying object re-identification,
along with their utility arrays. We choose ECN 1 as the primary camera view,
while debiting object counts for ECN 2 by the number of duplicate objects
re-identified (marked in bold).

shape Step 2: The controller determines a selected sequence of frames in the sis
array for each ECN, which comprises tuples of (ECN identifier, frame index,
utility). As illustrated in Figure 4.8, the modified sis array includes the frames
captured by the primary ECN with changes in its object count (i.e., frames four,
zero, two). It also contains frames captured by the complimentary ECNs when
a frame captured by the primary ECN fails to cover all the unique objects. For
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(2, 2, 1)(2, 4, 2)(1, 2, 2)(1, 0, 3)(1, 4, 4)sis:

0 1 2 3 4index:

Primary ECN Complementary  ECN

Figure 4.8: Step 2 of the advanced intra-cluster algorithm generates a selected
image sequence (sis) array comprising camera identifier, frame index, utility.

example, frames four and two of the (complementary) ECN 2 are appended to
the sis array because they include additional unique objects, i.e., objects h and i
in frame four and object e in frame two.

shape Step 3: The controller consults the estimated wireless capacity C to
determine whether all the selected frames in sis can be uploaded. If not, it
prioritizes the selected images from the primary ECN, in decreasing order of
their utility value. It then polls the selected images from all the complementary
ECNs, in the order of their debited utility value.

Vigil can handle a large number of objects in a single frame as long as the
vision analytic function is capable of doing so. The intra-cluster frame selection
falls back to uploading each frame when the number of objects per frame are
very large for each camera in the scene.

Inter-cluster traffic shaping

After determining the priority of frames to be uploaded within a cluster, the
Vigil controller needs to coordinate upload bandwidth demand across the
clusters that are within a wireless contention domain (i.e. served by a single
access point). To do so, Vigil uses a novel inter-cluster traffic scheduling
algorithm that attempts to allocate upload rates to each cluster that maximizing
the number of useful objects per second delivered to the application.

We describe our algorithm in the context of two application scenarios, i.e.,
counting applications such as customer queue analytics, and security based
applications such as tracking a person or finding a suspicious object. These
scenarios are monitored by two clusters of ECNs, which can contend with each
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other for uploading images. For the application scenarios related to analyzing
a queue of customers or locating an object of interest, Vigil allocates rates
proportional to the objects detected per second at each camera cluster. In these
scenarios, the application can manually intervene when it detects large number
of people or objects. For e.g., in a Starbucks coffee shop, the queues with higher
person count could be served faster, and at the airport security checkpoints,
the queue with highest person count would use more personnel to manage the
queue. Following the notation of Section 4.3, we denote wireless capacity from
cluster c as Cc. Since different video frames compress at different ratios, ECNs
may also upload unequal frame sizes: we denote the size of the compressed
frame in ith index of the selected image sequence from cluster c as Lci . Based
on the these quantities, we calculate the number of useful objects per second (
shape ops) for ith index of the selected image sequence of cluster c:

ops[c][i] =
sis[c][i].utility

Lci/Cc
. (4.2)

The numerator of the ops metric is a count of objects, while the denominator has
units of seconds (bits divided by bits per second). The ops thus captures how
many useful objects per second the frame at ith index of the selected image
sequence from cluster cwill deliver if it is scheduled for transmission.

shape Step 1: Every time epoch, each cluster c uploads its selected image
sequence sis, to the controller, which the controller stores in array element
sis[c], an array of selected image sequences indexed by cluster number c.

shape Step 2: For each cluster c and frame group index i, the controller computes
ops[c][i] using Equation 4.2. The controller’s state now appears as in Figure 4.9:
a per-cluster queue of image sequences’ ops values.

shape Step 3: The controller schedules service to different clusters using a variant
of deficit round robin (DRR) scheduling [87] to approximate fair queuing [19].
To define terminology and provide context, we now briefly recall the DRR
algorithm, in the context of serving Vigil clusters. Each cluster has a deficit
counter, which represents the amount of information it is allowed to transmit
when it is its turn. Vigil -DRR works by considering clusters in round-robin
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Figure 4.9: The per-cluster ops queues at the controller capture the utility of
respective image sequences uploaded from each cluster in objects per second.

order. The controller adds a fixed amount of credit, called the quantum, to each
cluster’s deficit counter.6 If the cluster’s deficit counter exceeds the size of the
packet, then the cluster transmits the packet and the controller decrements the
cluster’s deficit counter by the size of the transmitted packet.

Our DRR variant uses the reciprocal of ops in place of the packet length, for
queue weights

q[c][i] =
1

ops[c][i]
, (4.3)

in the case that ops is non-zero, and drop the upload in the case that ops is zero.
Vigil -DRR provides fair air-time to different clusters, each of which may have
different wireless throughputs possible to the base station. Vigil -DRR also
provides fairness between clusters in terms of the number of seconds per object
change (utility). Thus a cluster that can upload a frame containing two object
changes compared to a cluster that can upload a frame containing one object
change.

Vigil -DRR also maximizes the number of objects per second delivered to
the controller. To see this, consider the example of Figure 4.9 where there are
three clusters, with frames at their respective queue heads having ops of two,
one, and four respectively. If we service the clusters at rates r1, r2, and r3 (bits
per second), the number of objects per second uploaded to the controller will
be the inner product of the preceding rate vector with the ops vector (2, 1, 4):
〈(r1, r2, r3), (2, 1, 4)〉 = 2 · r1 + 1 · r2 + 4 · r3. The Cauchy-Schwartz inequality
states that we can maximize this inner product (i.e., the number of objects per

6We describe our setting of quantum in Section 4.4.
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Figure 4.10: The Vigil-DRR algorithm operating over three camera clusters with
a quantum of 1

2 .

second uploaded) by choosing (r1, r2, r3) proportional to the ops vector. Setting
packet length inversely proportional to ops in the DRR algorithm accomplishes
this, as DRR will schedule packets at rates inversely proportional to the packet
length normalized by the wireless throughput.

Figure 4.10 shows an example of Vigil -DRR in operation over three clusters,
with a quantum value of 1

2 . The first panel of Figure 4.10 shows the initial
state of all queues. At the first time-step, the algorithm increments the deficit
counter of the first queue by quantum ( 1

2 in this example) and then checks the
q[] value of the change at the head of the queue. Since it is 1

2 , Vigil -DRR
transmits the change and decrements the deficit counter by 1

2 , leaving zero in
the deficit counter, as shown in the second panel of Figure 4.10. At the next
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time-step, the algorithm increments the deficit counter of the second queue by
1
2 , but the q[] value at the head of the second queue is greater than 1

2 , and no
transmission occurs, as shown in the third panel of Figure 4.10. At the final
time-step, the algorithm increments deficit[3] by 1

2 and transmits, leaving 1
4 in

the deficit counter. The algorithm then proceeds similarly in a round-robin
fashion.

For certain security-based applications such as intruder detection and
tracking a person, the ECN nodes may assign high-priority to the captured
frames. We modify the design of Vigil-DRR algorithm similar to MDRR
algorithm to allow a high priority queue that allows the frames requesting
priority access on the channel to be uploaded immediately overriding the ops
metric.

4.4 implementation

In this section, we describe our implementation of Vigil . With the goal of
understanding system performance in situ, we have deployed Vigil at three
sites. We describe these deployments in the next section, and hardware and
software details in Section 4.4 and Section 4.4, respectively.

Testbed deployments

We deploy a single cluster of Vigil cameras at three sites under vastly different
operational conditions.7 Firstly, we study an outdoor surveillance scenario
by deploying a cluster of camera ECN nodes at a shuttle bus stop at Site #1’s
outdoor campus (the third panel of Figure 4.11), where we monitor real-time
vision analytic functions such as counting passengers. The ECN nodes in this
deployment connect to a controller by long-distance backhaul links over TV
whitespaces. Secondly, we study an indoor surveillance scenario in a busy
office hallway by deploying a cluster of camera ECN nodes at Site #1, where
we monitor the frequency of passers-by. The ECN nodes in this deployment

7Privacy of the monitored users is preserved by ensuring that the cameras only capture users
who had given prior permission to take part in the study.
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Site #1 lounge. Site #2 office. Site #3 lab.

Site #1 outdoor bus stop pilot.

Figure 4.11: Vigil deployment at three sites.

use unlicensed 2.4 GHz WiFi to connect to the controller. Finally, we monitor
an open-plan office at Site #2 (the first panel of Figure 4.11) and an indoor lab
environment at Site #3 (the second panel of Figure 4.11), where we monitor
working hours and office occupancy. The ECN nodes in these deployments
use unlicensed 2.4 GHz WiFi at Site #2 and TV whitespace radios at Site #3 to
connect to the controller. The indoor deployments in the three sites have been
operational for the last two months, giving us valuable information on traffic
patterns.
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Hardware

We describe the hardware platform used to implement the controller and the
ECNs. For the ECN nodes, we use laptops running a user-space program to
perform image analysis functions on video feeds from the connected cameras.
We have used laptops and the Intel Next Unit of Computing (NUC) to prototype
our system, but embedded devices (e.g. Gatework routers or NUC) with
500 MHz–1 GHz CPU have enough processing power to run image analysis
functions for ECNs. Recent trends in vision are moving toward smart cameras,
thereby enabling face recognition, motion detection, and other image analysis
tools to be implemented to an increasing extent in hardware [32].

Each laptop is also attached to a WiFi based router to provide public
Internet access. WiFi traffic along with vision analytic data are sent over the
connected routers to a central controller. Linux-based routers running the
OpenWRT operating system upload vision analytic traffic from the ECN nodes
to the controller. These router boards control two different types of wireless
interface cards for communication in TV whitespaces and the 2.4 GHz ISM
band, respectively. In our outdoor deployment, we use TV-band transmitters
from Doodle Labs [20] for TV whitespace communications. The radios are
configured in a single vacant TV channel at a center frequency of 580 MHz,
with a 5 MHz bandwidth.8 In our indoor deployment, we use off-the-shelf
802.11a/b/g radios operating in the 2.4 GHz band.

We implemented the central controller on a workstation hosting a user-
space program that collects ECN traffic for further processing. Both ECN and
controller run code implemented in Microsoft Visual Studio on Windows 8.1.

Software architecture

This section describes the software architecture of the controller and ECNs. The
entire software codebase consists of 6,000 lines of C Sharpcode that implements

8Before each experiment, we query a commercial spectrum occupancy database [92] to
ensure this channel is vacant.
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vision analytic algorithms and end-to-end protocols, along with approximately
100 lines of C code for ath5k driver modifications.

Virtual networking device: We use the tun virtual networking device in
OpenVPN [66] software at each camera node. All traffic from WiFi users
is directed through this virtual device, which is subsequently captured by
our application for traffic shaping before sending through the underlying
whitespace interface.

MAC layer modifications: We disable the rate adaptation function in the ath5k
driver, and allow the ECN nodes to control the physical-layer data rate used to
send each packet by appending a special bit-rate in the header of each packet
to be transmitted. This allows the controller to accurately estimate the wireless
capacity C of the link from the ECN node to the controller (equation 4.1). In
our evaluation, we fixed C to isolate the effect of our frame selection algorithms.
However, any rate adaptation algorithm can be easily adopted in ECNs to
further improve performance.

4.5 experimental results

In this section we evaluate Vigil ’s performance gains over conventional
approaches. Sections 4.5 and 4.5 evaluate the accuracy improvement of Vigil
’s intra-cluster frame selection (§4.3) and inter-cluster traffic shaping (§4.3)
components. Section 4.5 presents microbenchmarks that stress-test Vigil ’s
vision and advanced scheduling algorithms (§4.3).

For object-counting applications, we measure the accuracy of Vigil as
the accuracy of object counts relative to baseline data from running vision
algorithms on all frames of the raw video streams of all available cameras. If the
system uploads all the frames where the object count changed (i.e. the zeroth,
second, sixth, and eighth frames, as shown in Figure 4.12) the system will make
no errors relative to baseline and has 100% accuracy. Otherwise the accuracy
is the percentage of frames that the system uploads where the object count
changed.
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Figure 4.12: Frame utilities and indices where utility changes. Uploading all
the frames where utility changes leads to a 100% accuracy.

Intra-cluster frame selection

In this section, we evaluate the accuracy of Vigil in a cluster of cameras using
intra-cluster frame selection (§4.3).

Methodology. In this experiment, we use video traces collected from a cluster
of three cameras at Site #3 in a lab environment. The three cameras log video
traces synchronously for a duration of 180 seconds, with about 2,000 image
frames. The ECN connected to the camera uploads detected face counts and
the controller selects which frames are uploaded from ECNs based on the
intra-cluster frame selection algorithm.

We choose the ECN’s slot time (§4.3, p. 3) to be 100 milliseconds: this
strikes a good tradeoff between the detection errors of vision algorithm and
responsiveness in detecting people. We configure the epoch time Le to be five
slots: this choice of epoch length reduces the protocol overhead of sending
control messages, while enabling use of the best available camera in detecting
people. We experimented with other choices of Le and found end-to-end
performance was not sensitive to this parameter.

We compare the accuracy of intra-cluster frame selection in Vigil to two
approaches: a Round-Robin approach that cycles through all cameras within
a cluster in a round-robin manner to upload frames and a Single-Camera
approach that arbitrarily selects a single camera to upload frames. Note that all
approaches only upload the frames where the count of detected faces changes.
We constrain the capacity of wireless link from each ECN to the controller and
repeat the experiment five times.
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Figure 4.13: Accuracy of intra-cluster frame-selection in Vigil relative to a single-
camera system and a multi-camera system with round-robin scheduling. Error
bars show standard deviation of the experiment in varying wireless conditions.

Level # people Change interval(s) Bandwidth(Kbps)

Low 1 5–15 4–16
Medium 4 1–2 32–80
High 7 0.2–1 100–400

Table 4.1: Summary of video traces used to benchmark intra-cluster algorithms
in terms of the number of participants, the frequency of change in object counts,
and required bandwidth to upload the frames where object count changes.

Results. Figure 4.13 shows the performance gains of Vigil as we increase
the per-camera available wireless capacity for video traces collected at low,
medium and high activity levels. The bandwidth required at each activity level
is summarized in Table 4.1. In Figure 4.13, the bandwidth required at low
activity level (at most 16 Kbit/s) is lower than the available per-camera wireless
capacity and therefore, both Vigil and Round-Robin achieve more than 90%
accuracy, while the single camera suffers because of lack of sufficient coverage.
Similar results are observed for medium activity level, except Vigil outperforms
other approaches when the available per-camera wireless capacity 50 kbps is
lower than the bandwidth required for medium activity level (at most 80 kbps).
Finally at high activity level, the bandwidth required is much higher than the
available per-camera wireless capacity and we observe 23-30% gains for Vigil
compared to Round-Robin because Vigil prioritizes those frames across cameras
that maximize the accuracy.
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Figure 4.14: Vigil ’s accuracy in a single-cluster surveillance network with
different number of cameras.

We gather more insight in to why Vigil results in higher accuracy compared
to a round-robin or a single camera approach. Figure 4.14 shows that Vigil ’s
accuracy increases with the number of cameras up to the point where no blind
spots are left uncovered. In this example, two cameras provide a significant
gain over a single camera approach, but subsequently adding more cameras
does not improve performance, because Vigil already prioritizes those frames
which maximize accuracy.

Inter-cluster scheduling

In this section, we evaluate the accuracy of Vigil across multiple clusters of
cameras by using the inter-cluster traffic scheduling algorithm (§4.3), examining
to what extent the system can maintain accuracy as wireless capacity becomes
more and more scarce, and more camera clusters contend on the same wireless
bandwidth. We compare the accuracy of Vigil ’s inter-cluster traffic scheduling
algorithm to two approaches: an equal throughput allocation which is a
throughput-based fairness policy that gives equal throughput to all the camera
clusters such as in the case of WiFi and an equal time based allocation which is
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a time-based fairness policy. Note that all approaches only upload the frames
from the selected image sequence sis of each ECN.

Methodology. We simulate a network of clusters of cameras that contend over
a shared wireless channel. We vary the wireless capacity of this shared channel
from 1 Mbps to 20 Mbps to quantify the ability of inter-cluster frame selection
to alleviate congestion on the shared wireless medium. We emulate different
activity levels by modeling the arrivals at each camera cluster by a Poisson
arrival process to emulate the traffic patterns from our real-world deployments,
where an increasing rate λ corresponds to higher activity levels. We assume
that each arriving person departs after a constant dwell time. A single image
in our experiments is 30 Kbytes, which takes approximately 240 ms to upload
at one Mbit/s. We choose a Vigil -DRR quantum of 100 (seconds/object) so
that Vigil -DRR would transmit a three-object frame without cycling round the
clusters. We found that Vigil -DRR is not sensitive to our choice of quantum.
We simulate the system over a time period of approximately one hour.

We evaluate the accuracy of Vigil -DRR algorithm across multiple clusters
of cameras. In these experiments, we simulate a network of ten clusters of
cameras that contend over a shared wireless bandwidth where each cluster
has two cameras. The number of faces detected at each cluster is modeled by a
Poisson arrival process, where the rate of the Poisson arrival process λ is set
to 2.5 (objects/second) for low activity level, 5 (objects/second) for medium
activity level, and 12.5 (objects/second) for high activity level. Note that while
Vigil selects the most relevant frames from two cameras in each cluster based on
intra-cluster frame selection, but the equal throughput and equal time approach
assume one camera per cluster for fair comparison of traffic scheduling.

Equal wireless capacity

We first consider the scenario where the available wireless capacity is same
from each ECN to the controller in ten camera cluster. Figure 4.15 shows the
performance gains of Vigil -DRR as we increase the shared wireless capacity
at low, medium and high activity levels. We observe that Vigil -DRR requires
more wireless bandwidth to achieve 100% accuracy at higher activity levels. In
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Figure 4.15: Accuracy of a multi-cluster system as the wireless capacity varies
as shown on the x-axis. We compare Vigil with time-based fairness and equal
throughput allocation for ten cluster of cameras. Vigil uses two cameras per
cluster to select the most relevant frames, but equal throughput and equal time
approach assume one camera per cluster for fair comparison.

this example, Vigil -DRR utilizes only 10 Mbit/s at low activity level to achieve
100% accuracy for ten camera clusters, but at high activity level, it achieves only
80% accuracy at bandwidths as high as 20 Mbps. Further, we note that Vigil
-DRR significantly outperforms the equal throughput allocation and equal time
allocation approach when the shared wireless capacity is not sufficient because
it prioritizes the frames with maximum object count, using the ops metric. In this
example, Vigil -DRR achieves gains of 20-25% over the other two approaches at
5 Mbit/s in low activity level and 10 Mbit/s in medium activity level. Finally,
we note that the equal throughput and equal time allocation approaches achieve
similar accuracy gains because the available wireless capacity is same from
each ECN to the controller.

Unequal wireless capacity

Now we consider a scenario where the available wireless capacity from each
ECN to the controller varies across ECNs. Figure 4.16 shows the performance
gains of Vigil -DRR when the available wireless capacity from five clusters to
ECN is C1 and from the other five clusters to ECN is C2 in a network with ten
clusters of cameras. We first note that equal throughput allocation approach
penalizes the clusters with high wireless capacity C2 to sacrifice accuracy to
ensure all clusters get equal throughputs. On the other hand, equal time
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Figure 4.16: Accuracy of a multi-cluster system with 10 clusters where the
wireless capacity of 5 clusters is C1 and other 5 clusters C2. Vigil outperforms
both equal time-based fairness (Eq-Time) and equal throughput allocation
(Eq-Thrpt).

allocation approach ensures time-based fairness allowing the clusters with high
wireless capacity C2 to upload more frames than clusters with low capacity
C1. But Vigil -DRR outperforms both these approaches in terms of accuracy
for both the clusters with low wireless capacity C1 and high wireless capacity
C2. Further, the gap in accuracy between the high-capacity and low-capacity
clusters is much smaller for Vigil -DRR compared to equal time allocation
approach because of maximizing the ops metric.

Vision algorithm microbenchmarks

In this section, we evaluate the two vision algorithms Vigil uses: face detection
and a re-identification algorithm to associate faces detected in overlapping
camera views.

Face detection

This evaluation answers two questions: first, how accurate is the Haar-cascade-
classifier-based face detection algorithm used in our system? Second, in terms
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Figure 4.17: Bandwidth required versus accuracy of the face detection vision
algorithm on videos compressed with different video compression algorithms,
including our algorithm Vigil -crop that performs M-JPEG on the cropped
objects. Only the selected frames in the sis array are compressed for this
bandwidth calculation.

of that accuracy, what is the impact of various video compression schemes on
system bandwidth savings? We compare two state-of-the-art video compression
algorithms, M-JPEG and MPEG-4, to determine which fits the design of Vigil
best.

Methodology. We use a single camera to record five-minute video traces at
two different resolutions. Each trace contains about 7,000 images. Two people
arrive and departed randomly in the scene, facing the camera. The distance of
the subjects to the camera ranges from two to eight meters. The ground-truth
person count is established by visual confirmation. We compress the frames
with different state-of-the-art compression algorithms at different levels, and
then apply a face detection algorithm on the compressed images to understand
the tradeoff of accuracy and bandwidth required.

Results. Figure 4.17 shows a scatter plot of bandwidth required as the accuracy
of the face detection vision algorithm increases. For each video compression
algorithm, the accuracy of the face detection increases when it is compressed less
because of low information loss. Here Vigil -crop applies M-JPEG compression
only on the cropped faces in an image (by replacing the image background
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with a single RGB color). We observe that Vigil -crop outperforms M-JPEG
compression without object cropping by 2–5× in bandwidth savings. It
even outperforms the state-of-the-art MPEG-4 algorithm by a factor of two
in bandwidth savings for the same accuracy. We therefore choose M-JPEG
algorithm with object cropping in Vigil . Further, we note that Vigil allows a
wide accuracy and bandwidth tradeoff compared to MPEG-4. This is because
MPEG-4 applies delta-based frame compression, which either removes all
the details in intermediate frames, or have to keep most of the redundant
information.

Object re-identification

We evaluate the accuracy of the re-identification algorithm described in
Section 4.3. This section addresses the question of how well Vigil can tag
faces in overlapping camera views as to the same person.

Methodology. In this experiment, two cameras synchronously log video traces
at four indoor locations, where each trace consists of 300 images with the faces
of same two people detected at different locations. The two cameras have a
partially overlapping view as illustrated in Figure 4.6. The re-identification
algorithm projects the faces detected at the first camera onto the corresponding
images captured by the second camera. It then calculates the distance between
the projection and the faces detected at the second camera, which is the
projection error e in the second panel of Figure 4.6. This projection error is then
compared to the distance l between the two people’s faces detected in the same
camera view.

Results. Figure 4.18 shows the CDF of the projection error e and the distance l
between different faces of all the images at each captured location. We observe
that the maximum projection error e is 89 pixels at these locations, and is
much lower than l for most of the cases. Thus, we use this maximum e as the
threshold of associating projected faces in our implementation. (§ 4.3), which
can lead to >98.1% re-identification accuracy at all the measured locations. The
maximum projection error can be obtained by running this experiment as part
of the camera calibration process. The threshold value, set during calibration
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Figure 4.18: CDF of the distance l between two people’s faces and the projection
errors e when mapped from one camera view to another (illustrated in
Figure 4.6).

Resolution Face detection Re-identification Compression

320 × 240 32ms 2ms 13ms
640 × 480 80ms 2ms 15ms

Table 4.2: Average processing delay of different vision analytic functions in
Vigil using a laptop with a 2.4GHz dual-core CPU.

process, is useful for a long period of time for static cameras. Finally, our current
algorithm can fail to distinguish unique objects that are densely located (e.g.,
within <89 pixel). In such a scenario, we may revert back to the basic intra-
cluster scheduling by picking the maximum object counts from all the ECNs.
Enabling Vigil to dynamically switch between different scheduling algorithms
remains as our future work.

Finally, Table 4.2 summarizes the processing delay of running different
vision analytic functions of Vigil on a standard laptop. The latency is measured
based on our video traces at two different resolutions. We observe a low latency
of <80ms for all the processing functions, which enables Vigil to promptly
capture objects in highly dynamic scenes.
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Area coverage

The following back-of-the-envelope calculation shows that Vigil can achieve
significant area coverage gains over systems that stream MPEG-4 video.
Assuming that we cluster cameras in groups of four covering a 100 sq. ft.
area per cluster, each camera covers an amortized 25 sq. ft. area. Assuming
an available capacity of 20 Mbit/s, the status quo approach of deploying a
camera stream 1 Mbit/s video (a typical MPEG-4 rate) will support 20 cameras,
for a total coverage area of 500 sq. ft. But referring to Table 4.1, we see that
the bandwidth a low activity scene actually requires is only on the order of
10 Kbit/s, while a high activity scene requires approximately 200 Kbit/s. So
Vigil can function at data rates ranging from 40–800 Kbit/s per cluster, resulting
in 500 clusters for low activity and 25 clusters for high activity. Consequently,
Vigil covers between 2,500 sq. ft. and 50,000 sq. ft, resulting in a coverage gain
of between 5× and 200× over status quo video streaming.

4.6 issues and discussion

We comment on various design points of Vigil with the full hindsight of the
previous sections.

• Required compute resources at edge compute node. Recent trends
in vision are moving toward smart cameras, thereby enabling face
recognition, motion detection, and other vision tools to be implemented
to an increasing extent in hardware [32, 55, 95]. Consequently, simple em-
bedded platforms with 500 MHz–1 GHz CPU are sufficient to implement
the vision analytic functions at ECNs.

• Amount of ECN-local storage. The local storage at ECN retains video
frames captured close in time to significant events in the video stream.
MPEG-4 video at sufficient resolution for our application (320× 200 or
above) consumes a maximum bit-rate of between 384 and 8,000 Kbit/sec-
ond (172 to 3,600 Mbytes/hour), depending on the encoding rate. The
price of hard drive storage has been rapidly falling over the years, reaching
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USD 0.03/gigabyte in recent months [53], pricing the local storage between
1
2 and five US cents per hour for MPEG-4 video. Based on these figures, we
expect the incremental cost for including storage for most queries requires
less than USD 1.00 per ECN, adding a negligible cost to the overall bill.

• Cost of distributed processing. Deploying ECNs together with cameras
can inevitably increase the infrastructure cost. However, when wireless
capacity is limited, the saved bandwidth by Vigil can be used to forward
users’ traffic, thereby recouping the cost of ECNs. To further reduce the
cost, we envision that multiple cameras can connect to a single ECN to
upload vision analytic functions of each connected camera to the controller.
But this leads higher contention on the wireless medium between camera
nodes, and hence, a more complex design of scheduling algorithms that
we plan to address in future work.

• Hybrid hotspot functionality. The hybrid camera-hotspot functionality
can subsidize the cost of a droplet. With the cost of a camera in the range
of USD 5–10, ECNs can become ubiquitous.

• Choice of an object count-based metric. In Section 4.3 we motivated the
use of an object count-based metric (frameUtility) for Vigil . We choose
an object count-based metric in our design because it is a good first
order approximation to frame value in a vast number of surveillance
applications such as object identification and tracking. Also, our design
is general enough to support any utility function by letting the controller
push the utility function to the edge compute node. Therefore, the
definition of utility can be modified based on the specific surveillance
function performed by the system.

4.7 summary of vigil

In this chapter, we presented Vigil, a wireless video surveillance system that
leverages distributed camera sensors connected over a TV whitespace network
to support pervasive surveillance functions. Vigil leverages edge computing
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nodes co-located with camera sensors to pre-process video feeds, while only
uploading those relevant frames to the cloud for deeper analysis. Such a
context-aware uploading technique can significantly conserve bandwidth of
the underlying whitespace network. The saved capacity is dedicated to WiFi
hotspots to recoup the deployment cost. Vigil further leverages a novel frame
scheduling technique that accounts for both the significance of individual
frames and the redundancy across multiple cameras to optimize bandwidth
utilization. Through deployments at three sites across two countries, we
demonstrated that Vigil can significantly improve the bandwidth efficiency of
wireless networks by enabling a 5 – 200 × larger coverage than a conventional
approach that simply streams the entire video to the cloud. We believe the
proposed edge computing architecture has the potential of driving many vision
analytic domains such as smart-city, public safety, and augmented reality.
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5 related work

In this chapter, we discuss various prior research efforts and ongoing projects
that are related to this thesis. We start by discussing research in TV whitespace
network designs. Then, we discuss prior approaches for whitespace determina-
tion and proposals to enhance spectrum databases. Next, we focus on wireless
networks to provide vehicular Internet access. Specifically, we discuss research
prototypes and commercial solutions that provide vehicular connectivity using
existing wireless technologies. We then discuss centralized architectures used
in cellular networks and enterprise WLANs to improve wireless performance.
We close this chapter by discussing ongoing research in vision analytic systems
and applications.

5.1 whitespace network designs

We compare our heterogeneous architecture with prior designs based on TV
whitespaces alone, and those enhanced with other communication technologies.

Using only whitespaces. There are two standards initially proposed for
wireless networks operating in TV whitespaces. IEEE 802.22 standard [39]
describes a WiMax-like, OFDMA based communication technology for wireless
regional area networks, whereas IEEE 802.11af standard [40] is an extension of
WiFi based 802.11 protocols for local area networks. Both standards assume
a symmetric network in which both uplink and downlink communications
are conducted over TV whitespaces. Coupled with these standards are some
early network prototypes demonstrating these concepts. WhiteFi [4] is perhaps
the first whitespace network that uses a WiFi-like protocol similar to IEEE
802.11af. A campus-wide network based on such design for supporting
vehicular connectivity has been subsequently reported in [11]. Following these
research prototypes, various commercial whitespace deployments [65] are
available for emerging applications, such as rural broadband access and smart-
grid monitoring. All these systems use a symmetric design based solely on
whitespace links, hence suffering from the problem of power asymmetry in TV
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whitespaces. Our heterogeneous design can improve their coverage by using
the ubiquitous cellular connectivity to circumvent the weak whitespace uplink.

Enhancing with cellular technologies. A recent system WhiteCell [84]
has also explored the use of cellular technology to enhance whitespace
connectivity. Nevertheless, it is based on a very different scenario of femto-cell
communications, focusing on offloading cellular traffic to the most efficient part
of unlicensed whitespaces. To this end, WhiteCell uses a symmetric network
design that uses whitespaces to offload most of the bi-directional network traffic
over TV whitespaces, while bridging its outages due to collaborative sensing
with cellular connectivity to provide minimum performance guarantee. In
contrast, Scout aims to improve the network coverage by using the cellular path
to only send the uplink traffic (while duplicating a small fraction of downlink
traffic). Further, the two designs can complement each other by leveraging
the heterogeneous architecture to extend coverage, while using collaborative
sensing to select a best whitespace channel for downlink communications.

5.2 whitespace determination and management approaches

We now discuss prior work in the areas of designing spectrum occupancy
databases, improving its underlying propagation models, localizing wireless
transmitters, and detecting primary signals.

Whitespace spectrum databases. Spectrum occupancy databases play a
key role in determining the available spectrum for whitespace networks. In
their recent ruling, various regulatory bodies [25, 94] have mandated the use
of empirical propagation models [16] for commercial databases to predict the
coverage of primary incumbents. We have found non-negligible spectrum
wastage caused by these databases, possibly due to their underlying models
that are not able to capture the shadowing and fading effects in an urban
environment. To enhance the database performance, Senseless [56] proposes
the use of terrain data to augment the Longley-Rice propagation model. This
terrain-enhanced model is, however, insufficient to capture diverse effects in
a propagation environment such as the shadowing of buildings and other
surrounding objects. In addition, Senseless is not designed to predict the
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quality of whitespace channels, as it does not have the necessary transmission
information (e.g., power) of secondary devices. To overcome Senseless’s
limitations, V-Scope tunes any given propagation model to local environment
using wide-area measurements. Such a measurement-driven model is able
to capture those environmental effects along with transmission impact of TV-
band devices, allowing the databases to better predict whitespace channels and
estimate their individual quality.

V-Scope is also motivated by a spectrum database (WISER [105]) to improve
whitespace determination in the indoor environment. It is based solely on
measurements collected by spectrum sensors at strategic indoor locations.
Targeting at a different scenario, V-Scope combines vehicular measurements
with propagation models to enhance the database’s performance over the vast
outdoor area.

Propagation model enhancement. Prior work has also explored using
disparate measurements in signal strength to enhance an empirical propagation
model. Caleb et.al [68] has proposed a least-square regression technique to
construct an adaptive path loss model for estimating the coverage of a WiMax
network. With a similar goal, a geostatistical approach has been later proposed
in [69], which applies systematic interpolation on the measurements to build
radio coverage maps. Recently, the authors in [79] have proposed a technique
to capture a transmitter’s distinct characteristics for different radiation sectors.
The fitted model is used to predict the coverage of a WiFi mesh network at
high accuracy. Regardless of the specific model fitting technique, most of these
proposals have a stringent requirement on the measurement locations, which
can hardly be guaranteed in vehicular sensing like V-Scope. The unstructured
measurement distribution can in turn bias a propagation model fitted by
these existing techniques to have large errors at certain locations. To address
this challenge, V-Scope uses a robust weighted regression technique that can
compensate the variation of measurement density to improve model accuracy.

Device localization. V-Scope leverages a RSSI modeling localization
technique to enable existing databases to validate the location of primary
and secondary devices when needed. Similar techniques have been used
in existing WiFi based systems (e.g., EZ [12] and WiFiNet [75]) for indoor
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scenarios, achieving an accuracy of a few meters for pinpointing the location of
WiFi transmitters. When applied to localize TV band devices in the outdoor
scenarios, such a technique tends to be biased by environment-induced variation
(e.g., terrain elevation) that is present in the wide-area measurements. This
leads to inaccurate modeling of the large-scale path loss trend, which results
in large location errors (up to 100m). V-Scope enhanced the robustness
of these approaches for the outdoor scenarios, by selecting measurements
in certain radiation sectors that present a good propagation trend, while
constructing a sector-specific model to account for both environmental variation
and directional antennas used by wireless transmitters.

Recent AoA based localization systems [42, 85, 104] are reported to achieve
an even higher accuracy (< 1m) for indoor scenarios. These systems leverage
multiple wireless sniffers at different locations, and triangulate a wireless
device by measuring the arrival angle of its signals using an antenna array
at each sniffer. As a result, these techniques incur the cost for deploying
additional wireless sniffers, the protocol overhead for coordinating them, and
the performance penalty due to the location uncertainty when deploying these
sensors on moving vehicles. In contrast, our RSSI based technique can be
performed by individual vehicular sensors without any coordination, thus
achieving a much lower protocol overhead and higher robustness. Further, the
concept of our sector-specific model fitting technique is beneficial to the AoA
approaches as well, by only using measurements at a decent signal strength for
localization.

Spectrum sensing and primary signal detection. One alternative approach
to determining TV whitespaces is to let whitespace devices to detect primary
signals from local spectrum sensing [4], and optionally exchange the detection
results with other devices to improve accuracy [45, 84]. Nevertheless, such a
technique has rarely been adopted in practice, due to the significant hardware
cost and protocol overhead to meet the stringent detection threshold (-114dBm)
imposed by regulatory agencies [25]. Such a low detection threshold is to
account for the hidden-terminal problem and fading-induced inaccuracy for
detecting primary signals, which can hardly be satisfied without high-end
spectrum analyzers [4, 56].
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Despite its rare use in whitespace networks, spectrum sensing remains as
an important function to evaluate the efficacy of spectrum occupancy databases.
At its core is a signal detection algorithm to identify primary signals from
spectrum measurements. Energy detection is perhaps the oldest and most
straightforward algorithm. However, it fails to detect primary signals at the
required detection threshold, due to the thermal noise of a spectrum analyzer
that can overwhelm a weak primary signal [45]. Subsequent work [45, 59]
proposes to use the spectral features of primary signals to improve accuracy,
which are more resilient to noise. V-Scope further enhance feature detection
with a zoom-in technique to meet the sensing threshold. Such a technique
can effectively reduce the noise floor by capturing narrower spectrum snippets
around the primary features. It can also estimate the power of these signals
based on their zoom-in features, which is needed to refine propagation models.

5.3 providing vehicular internet connectivity

We now discuss prior work in providing vehicular Internet access using cellular
technologies, WiFi access, and directional antennas.

Using cellular technology. Existing systems such as MAR [80] and
WiRover [36] have explored the use of existing cellular connectivity to relay
Internet traffic to moving vehicles. These designs leverage an aggregation proxy,
which routes traffic across one or multiple cellular paths to a gateway node
on each vehicle. A recent work (PluriBus [50]) has further enhanced vehicular
connectivity over WiMax links by performing erasure coding and delay-aware
traffic striping at the proxy. Despite a similar use of the traffic aggregation proxy,
this dissertation focuses on utilizing the new and additional TV whitespace
spectrum for this application. Our proposed heterogeneous architecture can
effectively combine TV whitespaces with cellular technologies to overcome the
power asymmetry challenge in TV whitespaces. The coordination framework
in Scout is also unique in providing adaptive base station assignment, seamless
client handoff, and flexible channel contention policy.

Using WiFi access. To avoid the spectrum cost, numerous research
efforts [6, 7, 22, 61] have explored the use of WiFi access points to provide
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vehicular connectivity. CaberNet [22] is an early system leveraging public WiFi
APs with streamlined protocols to connect a taxi fleet. A subsequent work
(ViFi [7]) improves the vehicular connectivity by enabling each vehicular client
to connect to multiple APs using a single radio. Wiffler [6] further leverages
cellular connections to bridge the coverage holes in WiFi access, whereas
MobiSteer [61] proposes the use of directional antennas to extend the AP’s
transmission range. Despite numerous optimizations on wireless protocols and
transmission hardware, these systems suffer from an inherent bottleneck in
the communication range of the ISM band (< 200m). The limited AP coverage
causes frequent connectivity losses and client handoffs, degrading the link
performance (e.g., averaged 86kbps in [22]).

To circumvent the limitation of WiFi access, this thesis attempts to harness
the excellent propagation property in TV whitespaces to match the needs of
vehicular connectivity. Further, instead of relying on clients to individually
make protocol decisions (e.g., AP association), Scout uses a controller to perform
centralized routing and contention resolution. This centralized design is
particularly efficient for utilizing the scarce network resources for providing
vehicular connectivity. But it can hardly be supported by these WiFi based
systems, due to the lack of control on wired infrastructure.

5.4 centralized wireless architecture

We now discuss related work in centralized wireless architectures used in
cellular networks and enterprise WLANs respectively.

Cellular networks. The cellular networks [86, 91] today employ a central-
ized design of the packet forwarding infrastructure (aka., packet core). In a
wired backbone, a few gateways are deployed as aggregation proxies to the
external network. They relay Internet traffic via encapsulation tunnels to base
stations (called eNodeBs in 4G [86]), which in turn send them to each client
(UE). The client handoff is achieved seamlessly by switching encapsulation
tunnels between gateways and base stations without interrupting the end
applications. While Scout uses a similar wired backplane proxied by a central
controller, it needs to deal specifically with uplink and downlink traffic through
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heterogeneous links, which are used to address the power asymmetry issue in
TV whitespaces. Furthermore, unlike cellular networks performing resource
scheduling at individual base stations, such a function is performed by our
controller that regulates the traffic forwarding rate for each base station. Hence,
it can leverage a global view of network condition to maximize network
capacity, while supporting customized channel contention policies. Note that
the latter feature is especially hard to implement by existing cellular networks
for coordinating channel contention among distributed base stations.

Enterprise WLANs. The centralized architecture has been frequently
explored in enterprise WLANs [57, 58, 88]. Most of prior research such as
Dyson [58] and DenseAP [57], along with commercial endeavors from major
WLAN vendors like Aruba and Meru, only focused on centralizing the control
and management functions. Example functions include client-AP association,
access control, channel allocation, transmit power management, etc. A recent
system Centaur [88] further explored a centralized data plane to address the
problem of hidden terminals and exposed terminals. Centaur achieves this
with a central controller that imposes appropriate delay for packets forwarded
to WiFi APs. Built on all the prior work, Scout centralizes both the control
plane and data plane, with each performing base station assignment and traffic
scheduling respectively. This centralized combo is able to achieve a broader
set of performance goals — to maximize network capacity, enforce flexible
contention policy, and support seamless handoff. Further, most of existing
systems are complementary to Scout by enhancing other design aspects, such
as enforcing access control and mitigating hidden terminals.

5.5 vision analytic systems

We compare Vigil with prior work in intelligent video surveillance systems,
edge computing architectures for mobile vision analytics, and their underlying
vision algorithms.

Intelligent video surveillance systems. Many of “smart” video surveil-
lance products today such as Dropcam [21] and Simplicam [89], rely on a wired
network to upload camera feed to the cloud for diverse vision analysis and
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persistent storage. A similar architecture has been explored in early research
prototypes like IrisNet [30], Bolt [33], and S3 [98] to coordinate a large number
of camera sensors. While these systems have addressed various scalability
challenges in computation and storage, the wired backhauls ultimately limit
their applicability to pervasive surveillance applications, while increasing the
deployment cost. To address this limitation, Vigil uses a TV whitespace network
to provide ubiquitous surveillance functions, and leverages an edge computing
architecture combined with cross-layer scheduling techniques to conserve
wireless bandwidth.

Edge computing based analytic frameworks. Edge computing architec-
tures have been increasingly used in vision analytic applications for computa-
tion offloading and bandwidth efficiency. For example, Odessa [72] supports
interactive perception applications by dynamically offloading certain computa-
tion tasks from mobile devices to the cloud. A recent system Gabriel [34] targets
a similar class of augmented reality applications with a cloudlet architecture,
which adaptively partitions the computation between the network edge and the
cloud to achieve low latency and high availability. In contrast to these systems,
Vigil focuses on an orthogonal problem of conserving wireless bandwidth,
and addresses such challenge through scheduling algorithms based on vision
analytics and link capacity estimates reported by edge computing nodes.

Several recent systems [17, 37] have explored the use of edge computing to
filter video traffic uploaded to the cloud. Dao et al. [17] proposes a framework
that can suppress redundant images uploaded from smartphones by running
feature matching algorithms on thumbnails of captured images. Hu et al. [37]
proposes a more general technique for traffic filtering, using various metrics
such as camera focus, blur effect, and the similarity across successive frames.
These systems differ from Vigil in their uploading decisions, which are based
solely on the quality and similarity of images, instead of the objects pertaining
to a user’s query. Vigil further advances the edge computing technology by
running object re-identification algorithms to eliminate redundant images
captured by multiple cameras, while prioritizing video frames uploaded to the
cloud for maximizing their utility under a varying bandwidth constraint.
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Vision analytic algorithms. A large body of prior work has leveraged
diverse vision algorithms for many applications. For example, Gabriel [34] and
Glimpse [35] use a Harr Cascade classifier for face detection. CarSafe [106] and
WalkSafe [102] leverage SIFT based object detection algorithms to detect cars
and traffic lanes for road safety. In addition, InSight [101] recognizes people
based on their clothing patterns, by performing Wavelets transformation on
the distribution of color pixels. Vigil is agnostic to the specific vision algorithm,
and can complement these systems with efficient frame scheduling decisions,
when deployed over wireless networks.

Object re-identification is a popular vision research field for identifying
unique objects from different camera views. Prior work [46, 54] has leveraged
perceptual hashing techniques to quantify the similarity of images based on their
hashed properties. A recent system (sTrack [13]) has leveraged an encryption
algorithm to securely construct and match 3D facial models for people
re-identification. Most of these techniques have significant computational
complexity, resulting in a high processing delay at the cheap edge computing
nodes (e.g., several seconds per frame). To reduce the computation latency, Vigil
uses a light-weight algorithm [116] that projects all the objects detected from
multiple camera views on a common plane, where distinct objects are identified
based on a distance threshold. Such a technique has a linear complexity, which
is simple enough to be executed by ECN nodes.
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6 conclusions and future work

In this thesis, we have shown how to design and implement measurement
infrastructures and wireless networks to improve the network connectivity
through dynamic spectrum access. We have attempted to optimize three key
aspects of this opportunistic access model, i.e., spectrum efficiency, network
coverage, and bandwidth utilization. Specifically, we have developed an
opportunistic measurement system based on public vehicles to augment the
spectrum occupancy databases. We show how the vehicular measurements
can be combined with propagation model to enable existing databases to better
predict whitespace channels, estimate their individual quality, and validate
the location of primary and secondary devices. We have also explored a
heterogeneous network architecture and a centralized coordination framework
to extend the coverage of whitespace networks for vehicles. Finally, we have
developed an edge computing architecture along with cross-layer techniques,
which can improve the bandwidth utilization of whitespace networks for
pervasive video surveillance functions.

We highlight the main contributions of this thesis in the next section, and
then outline future research endeavors.

6.1 contributions

We summarize the main contributions of this thesis as follows:

A measurement infrastructure to augment spectrum occupancy databases.
We have presented V-Scope, an opportunistic measurement system that
leverages spectrum sensors mounted on public vehicles to collect wide-area
measurements at low-cost. We have deployed V-Scope on a single metro bus
traveling in and around Madison, WI for a 6-week period. Since the bus operator
tends to rotate their buses through multiple routes in the course of each day,
we have been able to collect spectrum measurements at more than one million
distinct locations over a 120 sq. km. area. Using these measurements, we first
show that existing spectrum databases based solely on empirical propagation
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models can be quite inaccurate in whitespace determination, causing under-
utilization of some whitespace channels over a large area (up to 71% measured
locations). We also observe large differences in whitespace channel quality (up
to 40dB) at many locations, which are not captured by existing databases, but
can significantly impact the performance of whitespace networks. Motivated
by these limitations of existing databases, we have developed various model
fitting techniques based on an enhanced signal detection algorithm, which can
refine various propagation models to accurately predict the signal strength
of primary and secondary devices. These models can be used by databases
to better determine whitespace channels, estimate their channel quality, and
localize primary and secondary devices.

Using a cross-validation approach based on these substantial measurements,
we show that V-Scope can help reduce the spectrum wastage for protecting
primary incumbents by up to 59% locations. It can also identify all the suitable
whitespace channels at 72 – 83% locations under different channel quality
constraints. In addition, V-Scope achieves a low error of 16 – 27m in localizing
various types of TV-band transmitters in vast outdoor areas (of several sq. km.),
improving state-of-the-art localization techniques by 1.2 – 3.5×.
A heterogeneous architecture to extend network coverage. We have explored
a heterogeneous network architecture to tackle the unique challenge of power
asymmetry in whitespaces for providing robust vehicular connectivity. Our
system - Scout uses the TV whitespace spectrum to send downlink traffic to
vehicles, while leveraging the already pervasive cellular connectivity for the
uplink communications. Such a design can circumvent the bottleneck in the
weak whitespace uplink, thereby allowing each whitespace base station to
maximize its downlink coverage. Based on our testbed measurements, Scout is
able to achieve a 4 × longer operating range of each base station compared to
traditional symmetric networks. The significant improvement in operating
range indicates much few base stations to be used by Scout for a similar
network coverage, allowing a substantial reduction in the infrastructure and
management cost.

We further developed a channel estimation technique based on a scouting
radio to deal with the high feedback delay in the cellular uplink. The scouting
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radio can look ahead and collect accurate channel parameters for the rear
receiving radio when it eventually reaches the forward post. This technique
is shown to significantly improve the accuracy of channel estimation based
on the delayed feedback (e.g., 5 × error reduction in estimating packet loss
rates). Built on this channel scouting technique, we have developed a number of
transmission mechanisms — rate adaptation, inter-packet FEC, and intelligent
traffic duplication – to enhance the robustness of individual vehicular links.
We further built a central controller for coordinating multiple base stations
to collaboratively maximize the network capacity, enforce flexible channel
contention polices, and support seamless client handoff.

Based on experiments conducted by driving multiple vehicles for hundreds
of miles around our outdoor testbed, we find that Scout can enhance the TCP
throughput of individual links by 3 – 8× over alternative SISO and MIMO
systems. It can further achieve 73 – 374% gains in the median aggregate network
throughput over alternative systems for coordinating multiple base stations. In
addition, Scout can faithfully enforce various channel contention policies with
a median throughput error of 0.2Mbps.
An edge computing architecture to improve bandwidth efficiency. We de-
signed and implemented Vigil, a wireless video surveillance system connected
by whitespace networks. Vigil intelligently partitions video processing between
edge computing nodes (ECNs) attached to cameras and the cloud to conserve
wireless bandwidth. Base on an user query, each ECN selects light-weight
algorithms to process the video feed locally. It then reports the analytic results
to a cloud-based controller over whitespace links, which pulls a fraction of
relevant video frames for deeper analysis. By pre-processing video feed at the
network edge, Vigil can avoid the bandwidth usage of uploading irrelevant
video frames. The saved capacity is utilized to provide WiFi access to recoup
the deployment cost.

To improve the bandwidth efficiency, we have designed the ops metric
(objects per second) to quantify the significance of a video frame along with its
associated bandwidth cost. We then designed a frame scheduling algorithm
that leverages this metric to greedily prioritizes video frames, with an attempt
to maximize the number of query-specific objects delivered to the cloud, while
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minimizing their bandwidth consumption. We also developed a distributed
camera collaboration technique to address the inherent inaccuracy of vision
analytic algorithms. Such a technique leverages multiple cameras to monitor a
common area from different locations, and selects a best subset of frames for
uploading to the cloud.

Through our deployments at three sites across two countries, we find that
Vigil can support a 5 – 200× larger surveillance area than a traditional approach
that stream the entire video over the whitespace network. For a fixed region of
coverage and bandwidth constraint, Vigil is able to deliver 25% more objects
of interest to the cloud, compared to a baseline system that is agnostic to the
relative significance of video frames.

6.2 future work

We believe that this dissertation is successful in developing some important
building blocks of measurement systems and network architectures to enhance
the wireless connectivity based on dynamic spectrum access. We now discuss
potential future research directions in this space.
Leveraging mobile devices to crowdsource spectrum measurements. While
V-Scope has some unique advantages to collect measurements in the vast
outdoor area (Chapter 2), such an opportunistic wardriving technique has some
inherent limitations in the indoor scenarios. To further improve the coverage of
V-Scope, we envision an alternative measurement approach of crowdsourcing
spectrum analytics from smartphones, tablets and other mobile devices. As
the number of these devices exceeds the world population, a crowdsourcing
service enabled by them can truly achieve a global reach. Such an approach
seems indeed feasible, given that many mobile devices already have a spectral
scan functionality built into their WiFi NICs, e.g., the Atheros 9280 family of
chipsets. It can provide a unique lens of subcarrier energy samples towards the
WiFi spectrum (2.4GHz), and has thus been leveraged in recent work [74, 75] to
provide various interesting WLAN management functions, such as detecting
non-WiFi interference. By attaching some frequency translation hardware in
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front, this WiFi spectrum view can be flexibly shifted to other frequency bands,
thereby realizing mobile wide-band spectrum sensing.

In fact, we have made an initial attempt by building a crude spectrum sensing
platform [112]. It leverages a frequency translator attached to a commercial
WiFi radio, and is able to provide a reasonable spectral view across different
frequency bands. The major hurdle of this approach is the coarse-grained
spectrum data provided by the WiFi cards, which has orders of magnitude lower
resolution than commercial spectrum analyzers, largely degrading the accuracy
of signal detection results that V-Scope models hinge upon. Developing robust
signal detection algorithms tailored to this coarse-grained spectrum is a major
topic of our future work. Additional research also needs to be done in the
crowdsourcing architecture and measurement protocols to account for both
resource constraints at mobile devices and the usefulness of their measurements.
Regulating dynamic spectrum access in other frequency bands. The mea-
surement architecture and model fitting techniques in V-Scope (Chapter 2)
can be extended to predict whitespaces in other frequency bands. Examples
include the 5 GHz UNII band [26] and the 3.5 GHz radar band [27]. Unlike the
stable TV broadcasts, primary devices in these bands such as radar systems and
satellite broadcasts, are highly dynamic in transmission patterns and usually
use a substantial power. For example, radar systems can send narrow beams
at megawatts power, while constantly rotating their transmission direction
to detect movement at a wide angle. Many of such systems are conducting
critical military functions such as weapon control and missile guidance, which
impose a much stricter protection requirement compared to TV whitespaces.
This presents a host of new challenges for managing dynamic spectrum access
in these bands. First of all, even detecting these primary signals is very hard
due to the large dynamic power range (200 dB) produced by these high-power
devices. Adaptive attenuation techniques need to be used to enhance the signal
detection technique for preventing strong signals from damaging spectrum
analyzers, while ensuring sufficient accuracy for detecting weak signals. The
model fitting techniques need to use statistically significant measurements
aggregated over sufficient time to tolerate the temporal variation in primary
signal strength. Addition protection techniques and registration protocols
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are required to detect and tolerate the potential roaming of these devices like
mobile radar units. In addition, static measurement nodes need to be deployed
at strategical locations, and intelligently combined with opportunistic sensors in
V-Scope to collect temporal and spatial characteristics of these highly dynamic
devices. Building such a scalable measurement infrastructure to efficiently
coordinate static and mobile sensors, is a topic for future research.
Building a hybrid network architecture to enhance throughput and coverage.
The heterogeneous architecture in Scout (Chapter 3) is effective in extending
network coverage using a limited number of base stations. Nevertheless,
its symmetric counterpart has the inherent advantage of boosting network
throughput with better spatial reuse and streamlined protocols, albeit with
many more base stations. Hence, the tradeoff between the two architectures
lies in the deployment cost and network performance. To exploit this tradeoff,
we can envision a hybrid network that marries both architectures to optimize
the coverage and throughput — a homogeneous architecture is used to cover
crowded places with many base stations to enhance throughput, whereas a
heterogeneous architecture used to provide wide-area coverage with fewer base
stations, in a way similar to the concept of macrocell and femtocell used in
today’s cellular networks. Such a hybrid network can further adapt the amount
of “heterogeneity” on the fly, based on various network factors such as real-
time link condition, degree of network contention, device mobility, and the
characteristics of end applications. Exploring such a hybrid, reconfigurable
whitespace network to support a wide range of applications and usage scenarios,
remain as a main topic of our future work.
Building a scalable network coordination framework. Scout leverages a
central controller to coordinate all the base stations and clients in a whitespace
network, which presents a potential challenge for scalability and reliability. To
address this challenge, we may distribute certain coordination functions among
network nodes. For example, base stations might determine their associated
clients by exchanging information with nearby peers. The client handoff might
be achieved seamlessly by tunneling network traffic across base stations, instead
of forwarding through the controller. In addition, a channel contention policy
can be possibly enforced in a distributed fashion by adapting the amount of
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random backoff at individual network nodes. All the distributed functions
require robust protocols to tolerate network dynamics such as connectivity
losses, device failures, and wired congestions. One possible solution might be
to use a controller as both a backup for network management and an authority
to reconcile inconsistent decisions made by individual base stations.

Apart from reducing the degree of network centralization, we may scale up
the central controller using state-of-the-art techniques in distributed systems.
For example, many management functions such as base station assignment
involves iterative matrix computations, which might be suited for those
streaming based big data systems, such as Spark [107] and Heron [47]. It
is also desirable to dynamically select appropriate algorithms based on the
computing infrastructure, available computing resources, network scales and
topologies. One may further scale up the packet forwarding plane by deploying
multiple controller instances and performing dynamic load balancing. Such
a decision depends on many factors, such as the traffic intensity, the available
wired capacity and queuing delay of each controller instance, the priority of
end-user applications. Hence, an efficient multivariate load balancing technique
is desired to prevent chokepoints at these controller instances. To alleviate the
bottleneck of wired connections, a scalable packet forwarding infrastructure
might be used, perhaps similar to the software-defined architecture in large
data center networks [41, 90].
Extending edge computing to other application domains. Apart from vision
analytics, it is possible to extend the edge computing architecture in Vigil
(Chapter 4) to many other application domains such as health monitoring,
transportation management, speech analysis, and diverse analytic applications
of Internet of Things (IoTs). For example, in heart rate monitoring, perhaps
the average heart rate is more useful than the instant readings to derive
health-related information such as daily calorie consumption and abnormal
health condition. Similarly, the average gas consumption and driving speed
is more interesting to auto manufacturers than the raw reading reported
from vehicular sensors. In many such applications, there exist a capacity gap
between the raw data generated at the network edge, and analytics consumed
by end applications, which can thus be benefited by pre-processing data at
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the network edge. A key challenge in realizing a general analytic architecture
is to select appropriate analytic functions for edge computing nodes. Such a
decision depends on various factors such as the data characteristics, processing
capabilities of edge computing nodes, available uploading bandwidth, and
application requirements. These constraints might also change during the
course of analysis. Hence, it would be valuable to automatically generate these
analytic functions based on application semantics and available computing
and network resources. Machine learning techniques can be further used
to learn the efficacy of multiple candidate analytic functions by sampling
real data, while adaptively choosing the best algorithm in real-time. Care
also needs to be taken to balance the tradeoff between the analytic accuracy
and bandwidth consumption in making such decision. In addition, many
wireless devices such as home routers and mobile devices today have general
processing capabilities, and can thus serve as edge computing nodes to support
many exciting applications, e.g., virtual reality for home entertainment, rich
interaction and content sharing among wireless devices, and continuous sensing
from wearables. Extending our edge computing architecture to incorporate
these heterogeneous computing devices for diverse applications is an interesting
area for future research.
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a impact of this dissertation

We briefly summarize the publications and the broader impact of this thesis
below.

• V-Scope: We have deployed V-Scope on a public bus operated by Madison
Metro Transit for 6 weeks. Such a deployment has strived to collect
measurements at more than one million distinct locations, over a 120
sq. km. area at Madison, WI, USA. Using this large data set comprising
both spectrum measurements and the corresponding predictions of a
commercial-grade database [92], we have conducted a first-of-its-kind
academic study on the efficacy of existing databases for protecting primary
incumbents over wide-area. We have also identified significant variation
in whitespace channel quality due to various interference sources, which
have neither been reported by prior studies, nor been taken account by
existing databases. We further used these measurements to refine various
signal strength models, which can enable the databases to better predict
whitespace channels, estimate their channel quality, and localize primary
and secondary devices.

V-Scope was initially published at the HotNets workshop 2013 [108],
and the full paper was published at MobiCom 2014 [111], with a best
presentation award. The work has also won the first place in the ACM
Student Research Competition at MobiCom 2013 [109]. In addition, a
variant of this system based on crowd-sourcing mobile spectrum analytics
was published at the HotMobile workshop 2014 [112]. After the final
publication, we have released our data set to the research community. Our
measurement infrastructure has been further leveraged in the Spectrum
Observatory Project [51] led by Microsoft Inc to study spectrum utilization
in a much broader band (4GHz) beyond TV whitespaces.

• Scout: We have proposed a heterogeneous network architecture in Scout
to address the specific challenge in power asymmetry. Our system
leverages the use of additional spectrum available in TV whitespaces
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and combines it with the already pervasive cellular networks to pro-
vide extensive network coverage for vehicles. It further leverages a
scouting radio that is suited specifically for moving vehicles to improve
channel estimation under the high feedback delay in the cellular up-
link. The ideas have been instantiated in a functional system, and
extensively evaluated on a vehicular testbed with more than 500 miles
of driving experiments. Scout was initially reported at HotMobile
workshop 2013 [113], and the full paper was published at MobiSys
2014 [115]. A version of this system was also showcased in a demo
session at MobiSys 2013 [114], and the video of this demo is available at
http://www.youtube.com/watch?v=_rnzH7owtBw.

• Vigil: Vigil has demonstrated the efficacy of an edge computing archi-
tecture to improve the bandwidth efficiency of whitespace networks. It
strived to provide pervasive video surveillance functions in real-time,
using distributed camera sensors connected by whitespace links with
limited capacity. To conserve wireless bandwidth, it leverages the edge
computing nodes co-located with camera sensors to pre-process their
video feeds, while using various algorithms to select and prioritize video
frames for uploading to the cloud based on their significance. It also
employs a hybrid access network architecture to recoup the deployment
cost, by scavenging the saved wireless capacity to provide WiFi access.

Vigil has been deployed in three states across two countries (i.e., WA
and WI in USA, and London in UK), and demonstrated significant
improvement in bandwidth efficiency under vastly different operational
conditions. In particular, one deployment at the Microsoft campus has
been up and running over the past 2 years. It is based on a long-distance
TV whitespace network [11] with wireless links spanning over 2km,
connecting camera nodes at bus stops to assist shuttle scheduling services
with various vision analytic functions, such as counting passengers. The
work was published at MobiCom 2015 [110], and later covered by several
media reports (e.g., New Scientist [62], GeekWire [29]). A video demo of
Vigil is available at https://youtu.be/2e6UHeW_xmE.



153

b pseudocode of signal processing functions in scout

We present the pseudocode of individual transmission functions in Scout
(Chapter 3), which include scouting based channel estimation (ScoutEstimate),
rate adaptation (ScoutRate), cross-packet FEC (ScoutFEC), and intelligent traffic
duplication over the cellular path (ScoutDUP).

Algorithm 1 : Scout

Input: t: Current time, λ: Antenna separation, v: Vehicle speed,
D: Batch of data packets to be transmitted, R: PHY rates for selection,
Af: Set of packets ACKed for the front radio,
Ar: Set of packets ACKed for the rear radio.
Output: Pwspace: Coded packets sent over TV whitespaces,
Pcell: Data packets duplicated over cellular links.

Lf,Lr = ScoutEstimate(R,Af,Ar, t,λ,v)
Rdata,Rprobe = ScoutRate(R,Lf,Lr)
Pwspace = ScoutFEC(D,Lf,Lr,Rdata,Rprobe)
Pcell = ScoutDUP(Pwspace,Lr)
return (Pwspace,Pcell)

1: procedure ScoutEstimate(R, Af, Ar, t, λ, v)
2: τ← λ/v
3: Ef← {Pi.rate : Pi ∈Af, t− i 6W} .W is a time window
4: Er← {Pi.rate : Pi ∈Af, |(t− τ) − i| 6W/2}
5: if Er = φ then
6: Er← {Pi.rate : Pi ∈Ar, t− i 6W}
7: end if
8: Lf← calculate_loss_rates(Ef,R)
9: Lr← calculate_loss_rates(Er,R)

10: return (Lf,Lr)
11: end procedure

12: procedure ScoutRate(R, Lf, Lr)
13: for Ri ∈ R do
14: if Lf(Ri) 6 Lthresh and Lr(Ri) 6 Lthresh then
15: throughput(Ri)← Ri × (1 − Lr(Ri))
16: end if
17: end for
18: Rdata← Ri with maximum throughput
19: probing_set← {Ri : Ri ∈ R,Ri > throughput(Rdata)}
20: Rprobe← a random R ∈ probing_set
21: return (Rdata,Rprobe)
22: end procedure



154

1: procedure ScoutFEC(D, Lf, Lr, Rdata, Rprobe)
2: L← Lf(Rdata)×Lr(Rdata)
3: rr← L× (1 + extra_redundancy)
4: N← coherence_time×Rdata/packet_size
5: K←N× (1 − rr)
6: Pwspace← encode(D,K,N+ 1)
7: for Pi ∈ Pwspace do
8: if i =N+ 1 then
9: Pi.rate← Rprobe

10: else
11: Pi.rate← Rdata

12: end if
13: end for
14: return Pwspace

15: end procedure

16: procedure ScoutDUP(Pwspace, Lr)
17: Pcell← φ
18: for Pi ∈ Pwspace and i <= K do
19: if Pi.rate = lowest and Lr(Pi.rate)> Ldup_thresh then
20: Pcell← Pcell ∪ Pi

21: end if
22: if Pi.retransmission = true then
23: Pcell← Pcell ∪ Pi

24: end if
25: end for
26: return Pcell

27: end procedure
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