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ABSTRACT

The present TV whitespace networks rely on spectrum occupancy
databases to determine their operating channels. In this paper, we
show that such databases cause non-negligible wastage of whites-
pace spectrum. We also report that whitespace channels can have
very different quality due to interference from secondary devices
and the leakage from TV broadcasts. Such disparity in channel
quality is not captured by existing databases. We propose the use
of spectrum measurements to overcome the above limitations of
databases. In particular, we describe a system called V-Scope that
leverages spectrum sensors on public vehicles to collect and re-
port measurements from the road. These measurements are used
as “anchor points” to construct various models to better determine
whitespace spectrum, estimate its channel quality, and validate lo-
cations of primary and secondary devices.

We have deployed our system on a single metro bus traveling
across a mid-sized US city. Based on measurements collected at
above 1 million locations over 120 square-km area, we find that a
commercial database causes under-utilization of certain whitespace
channels over a large area (up to 71% measured locations). Our
system can reclaim this spectrum wastage at up to 59% locations,
correctly selecting all the suitable whitespace channels at 72 — 83%
locations, and achieving a localization accuracy between 16 — 27m.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies, Measurement tech-
niques

Keywords

TV Whitespaces; Spectrum Database; Vehicular Sensing; Propaga-
tion Model; Channel Quality; Localization

1. INTRODUCTION

Through recent rulings, various spectrum regulatory agencies
across the world have opened up a wide swath of spectrum in the
UHF television band (512 MHz - 698 MHz), commonly referred
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to as TV whitespaces, for unlicensed use. As demand for mo-
bile and wireless connectivity continues to grow, such spectrum
is going to be particularly attractive to address continued spectrum
crunch. One of the fundamental issues in utilizing TV whitespace
spectrum is to accurately determine vacant and high-quality chan-
nels. As per FCC’s ruling [5], the secondary, whitespace devices
must not interfere with licensed transmissions from primary spec-
trum incumbents, i.e., TV broadcasts and licensed wireless micro-
phones. A current FCC-preferred mechanism for determining va-
cant channels is to have secondary devices to query spectrum oc-
cupancy databases. These databases are operated by some third-
party companies following the FCC’s guideline. They rely on a
same, widely-used propagation model (R6602 [3]) to predict the
coverage contour of TV broadcasts. In addition, they set up a fixed
(2km) protection contour around licensed microphones and reserve
two channels nationwide for their exclusive usage. A channel is
concluded to be whitespace if a secondary device is outside the
predicted contours of all the primary devices.

Being based solely on a propagation model, such databases are
likely to have errors in predicting the availability of whitespace
spectrum. Further, the databases have no attempt to distinguish the
quality of whitespace channels, nor are they responsible for vali-
dating the operating locations of primary and secondary devices. In
this work, we explore the use of spectrum measurements combined
with propagation models for augmenting databases to i) better de-
termine whitespace spectrum, ii) estimate the quality of whitespace
channels, and iii) localize primary and secondary devices.

In particular, we present V-Scope (Vehicular Spectrum Scope),
a measurement system that leverages public transit buses to carry
spectrum sensors and collect measurements opportunistically as
they travel !. The unique advantage of this approach is that each
mobile sensor can add a proportional volume of useful measure-
ments over a relatively large area. In addition, these measurements
are likely to remain useful for some time, especially for TV broad-
casts with a stable signal strength (e.g., < 5dB variation across a
6-week period). We therefore utilize these opportunistic measure-
ments to refine various signal strength models, which can be used
by existing databases to efficiently manage outdoor whitespaces.

Whitespace database limitations and V-Scope approach: Ex-
isting databases have inevitable inaccuracy in predicting the signal
strength of primary devices. This is because the underlying prop-
agation model is unable to capture the environment-induced vari-
ation, e.g., shadowing and multipath fading of specific contours,
objects, and topologies. Since protecting primary users is at the top

'Of course, public transit buses are just one of many possibilities
for vehicles that can carry spectrum sensors; other potential exam-
ples are mail delivery trucks, taxicabs, and many other third party
services that scour different city roads.



priority, the databases have to use a very conservative model con-
figuration for predicting the coverage of primary devices, which
causes under-utilization of some whitespace channels over large
area (up to 71%). V-Scope uses two related techniques to improve
the accuracy of databases with spectrum measurements. (i) It uses
an enhanced version of feature detection to accurately detect pri-
mary signals while measuring their power up to the FCC-mandated
sensing threshold (-114dBm [5]). (ii) Based on the measured power
of primary devices, V-Scope refines the parameters of a propaga-
tion model, which can be used by databases to better predict the
signal strength of primary devices. In our design, we have devel-
oped a region specific model fitting procedure to construct a fine-
tuned propagation model for each local environment, and adopted
a weighted regression algorithm to tolerate the non-uniform distri-
bution of vehicular measurements in model fitting.

Additional enhancements to databases: V-Scope can provide
databases with two additional functions enabled by these measure-
ments. First, it allows databases to estimate the quality of whites-
pace channels. Our measurements show that the noise power in
whitespace channels can differ by 40dB at a given location, which
can significantly affect the performance of a whitespace link. The
large variation in channel quality is contributed by the co-channel
interference from unlicensed devices (whitespace devices and unli-
censed microphones), and adjacent-channel leakage from TV broad-
casts. Existing databases can not predict this co-channel interfer-
ence because the precise power information of unlicensed devices
is not available. Similarly, they are not able to estimate the leak-
age of TV broadcasts that depends on specific hardware attributes
of a TV transmitter, e.g., sharpness of the front-end filter. To pre-
dict co-channel interference, V-Scope uses the same model fitting
procedure described above to construct signal strength models for
each unlicensed device. For adjacent-channel leakage, V-Scope
constructs a leakage model based on an inherent power relationship
between a TV signal and its leakage, which is identified by mea-
surements. This model takes the predicted power of a TV broadcast
to accurately estimate its leakage power at a same location.

The second function offered by V-Scope is to localize primary
and secondary devices. This location information is necessary for
constructing propagation models to predict the availability and qual-
ity of whitespace channels. However, existing databases do not
store such information for most of unlicensed devices 2. It may
also have inaccurate information for primary devices due to vari-
ous reasons such as incorrect entries to databases and transmitter
reallocation. V-Scope utilizes the measured signal strength of these
devices to pinpoint their location, thereby providing database op-
erators additional means to obtain and validate such information.
We leverage a RSSI modeling technique commonly used in indoor
localization systems [1, 16]. An unique challenge in applying this
technique to our outdoor scenario is to correctly capture the large-
scale path loss in front of environment-induced variation, e.g., ter-
rain elevation, shadowing (§ 3.4). Existing model based techniques
use all the measurements indiscriminately to construct a propaga-
tion model. This model is consequently biased by a noisy propaga-
tion trend leading to large error (up to 100m). We have enhanced
the standard approach by carefully selecting measurements from
certain radiation sectors and constructing a sector-specific model
based on the chosen sectors to improve localization accuracy.

While our opportunistic wardriving approach has some unique
advantages in collecting wide area measurements, a similar goal
can certainly be achieved by other approaches such as local spec-
trum sensing and crowd-sourcing mobile whitespace devices. Re-

Only those fixed, high-power whitespace devices can register their
operating locations in the databases [5].

gardless of how measurements are collected, most of our proposed
techniques remain useful for enhancing databases based on these
measurements. In addition, our techniques can be beneficial to in-
door whitespace determination systems like WISER [23].

Key contributions: We have deployed V-Scope on a single pub-
lic transit bus traveling in a mid-sized US city for a 6-week period.
Since our bus operator tends to rotate their buses through multi-
ple routes in the course of each day, we have been able to collect
spectrum measurements at more than one million distinct locations
(with different pairs of latitude and longitude reported by a GPS
device) over a 120 sq. km. area in and around our city.

Based on these measurements and the combination of our pro-
posed techniques, we make the following contributions: (i) we
show that commercial databases that are based solely on propa-
gation models cause under-utilization of whitespace spectrum over
a wide area (up to 71% measured locations for protecting TV and
70% locations for protecting microphones); (ii) V-Scope can re-
duce spectrum waste in protecting TV broadcasts by up to 59%
locations; (iii) It can identify all the suitable whitespace channels
at 72 — 83% locations under different channel quality constraints;
and (iv) V-Scope can pinpoint TV-band devices at various locations
with low error (16 — 27m), improving state-of-the-art localization
techniques by 1.2 — 3.5% in outdoor scenario.

2. LIMITATION OF EXISTING SPECTRUM
OCCUPANCY DATABASES

In this section, we motivate the design of V-Scope by demon-
strating the two major limitations in existing spectrum databases.
First, to tolerate the inaccuracy of propagation models, the databases
assign very conservative protection contours for primary devices,
which cause non-negligible wastage in whitespace utilization. Sec-
ond, they are agnostic to the quality of whitespace channels, which
can differ significantly at a given location, and thus can have a large
impact on the performance of a whitespace network. We start by
describing our measurement setup and datasets.

2.1 Measurement setup

Our current deployment consists of a server and a client as shown
in Figure 1. The client has been deployed on a metro bus traveling
in and around a mid-sized US city for a 6-week period. It uses a
laptop to configure a portable spectrum analyzer (WSA4000 [20])
for collecting spectrum samples (FFTs) in all the UHF channels.
An omni-directional TV antenna with OdB gain is used to capture
signals from all the directions. Based on these spectrum samples
of a channel, the laptop performs some real-time analysis (§ 3.1),
i.e., primary detection and power estimation, while obtaining the
measured location from a GPS module. It uploads the GPS read-
ing and measurement results to our server over cellular networks.
The server is situated in our laboratory, with an Ethernet to receive
the measurement results. It queries a commercial database [19] at
measured locations to evaluate the database’s accuracy.

Datasets: Using this measurement setup, we have collected three
datasets from different vehicles. Table 1 summarizes their salient
features. Dataset A is our main dataset collected from the metro
bus, and covers about one million distinct locations over a 120
sq. km. area. The data consists of signal type, power and the
database’s prediction for all (30) UHF channels at each measured
location. We will use this dataset to evaluate the performance of
the database and V-Scope as well as studying whitespace channel
quality. Dataset B contains measurements in a whitespace channel
where our whitespace radio was transmitting 12Mbps UDP pack-
ets using the 802.11 baseband technology. This whitespace device



Dataset Measured Locations Coverage (sq. km.) Channels Vehicle Target Device
A 1 million 120 30 UHF channels A metro bus All TV-band devices
B 3.5K 3 Channel 42 A personal vehicle A 3.8W whitespace transmitter atop a 8-floor building
C 2.5K 2 Channel 28 A personal vehicle A 100mW microphone in 5 buildings
Table 1: Summary of datasets.
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Figure 1: System architecture of V-Scope.

was mounted atop a 8-floor building with a transmit power of 3.8W.
Dataset C contains measurements in a whitespace channel for a mi-
crophone device transmitting at 100mW in 5 different buildings at
a downtown area. Dataset B and C were collected from a personal
vehicle driving along multiple road stretches, and comprise the sig-
nal type and channel power at each measured location. We will use
them to benchmark our measurement clustering algorithm (§ 3.2)
and localization technique (§ 3.4).

2.2 Inefficiency in protecting primary users

We study the performance of a commercial database (Spectrum-
Bridge [19]) in predicting TV and licensed microphones respec-
tively. Note that other FCC-approved databases would produce the
same prediction results. Our focus is to understand its performance
tradeoff between the safety in primary protection and efficiency in
whitespace utilization. All the evaluation in this section is based on
dataset A unless otherwise mentioned.

Performance in protecting TV broadcasts: Borrowing the def-
inition from prior work [10], we divide the errors in whitespace
determination into two types, i.e., false positive and false negative
as summarized in Table 2. A false positive is a location where the
database mis-predicts an occupied channel (with measured power
> -114dBm) as whitespaces, whereas the opposite being a false
negative. We find negligible false positives (<0.29%) of database
in predicting all the TV broadcasts, which is similar to a prior re-
port [10]. Thus, existing databases can reliably protect TV broad-
casts. However, Figure 2(a) shows a 13-71% false negative rate
in half of these channels, indicating these channels being unneces-
sarily blocked for unlicensed usage over a wide area. Figure 2(b)
shows a typical spatial distribution of false negatives in one such
channel, along with those locations with this channel correctly pre-
dicted to be whitespace (true negatives). We note most of these
false negatives are at the north-east side, which is at the closer side
to the TV tower. Thus, we believe these false negatives are caused
by over-provisioning the protection contour of TV broadcasts.

Performance in protecting licensed microphones: To quan-
tify false negatives in protecting licensed microphones, we cal-

Ground truth Prediction

Vacant
Occupied

False Positive
False Negative

Occupied
Vacant

Table 2: Two types of errors in whitespace determination.

culate the power of about 200k measurements collected in their
reserved channels. Figure 2(c) shows that about 70% measure-
ments have very low power, suggesting that microphone signals
are unlikely to be present in many reserved locations. While these
wardriving measurements might not capture every instance of mi-
crophone transmissions, they are statistically sufficient to suggest
that licensed microphones are not making efficient use of their re-
served channel, possibly due to coarse-grained reservation periods
(24 hours) and over-sized protection contours (2km). On the other
hand, we find no other type of signals in these channels, suggesting
the database to be sufficient in protecting licensed microphones.

2.3 Variation in whitespace channel quality

We now study the variation in whitespace channel quality, which
are caused by co-channel interference from secondary devices and
adjacent-channel leakage from TV broadcasts.

Magnitude of quality variation: Figure 3 shows the CDF of
absolute differences in noise power between the best channel and
the worst channel at each measured location. Overall, TV-adjacent,
and Non-adjacent choose the worst channel from all the whitespace
channels, adjacent channels to TV broadcasts, and non-adjacent
channels, respectively. All of them pick the best channel from
all the whitespace channels. We observe that the worst channel in
Overall has a 8dB higher power in median and 17dB higher power
in 90-quartile compared to the best channel. Such variation is cur-
rently contributed by unlicensed microphone transmission and TV
broadcast leakage. We also note the non-adjacent channels gener-
ally have better quality than adjacent channels due to the absence of
broadcast leakage. However, its worst channel still has 8dB higher
power than the best channel at 10% locations due to unlicensed
microphones. We envision this quality variation to become more
prominent with the future proliferation of whitespace devices.

Prevalence of quality variation: Figure 4 shows the CDF of
the amount of whitespace spectrum below different channel power
based on our measurements and the database. We observe that
for about 80% locations, the amount of whitespace spectrum iden-
tified by measurements is similar across different power thresh-
olds, which is about 18 — 24MHz more than that predicted by the
database 3. For the rest 20% locations, this measured amount dif-
fers by 12 — 48MHz (2 — 8 channels) between the highest and the
lowest power threshold (-65dBm and -80dBm). Thus, whitespace
devices are likely to operate in a low-quality channel at these loca-
tions, if they randomly pick a channel suggested by the database.

3Here we did not consider spectrum wastage in protecting licensed
microphones.
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Figure 2: Wastage of whitespace spectrum by existing databases for protecting primary incumbents. (a) False negative rates in predicting TV
broadcasts. (b) Spatial distribution of false negatives and true negatives in channel 43. (c) CDF of power measurements collected in reserved
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Figure 3: CDF of the maximum power differences of whitespace
channels at different measured locations.

3. V-SCOPE DESIGN

V-Scope is based on our measurement architecture described in
§ 2.1, and consists of following components to augment databases
with measurements — i) primary detection, ii) measurement clus-
tering, iii) propagation model refinement, iv) localization, and v)
leakage model construction. Figure 5 shows its operation flow.

Overview: Our proposed system leverages a few clients mounted
on public vehicles to detect primary and secondary devices based
on spectrum samples collected in different UHF channels (§ 3.1).
The detection results that include the device type and and power
of each channel are forwarded to our server. The server groups
these measurements according to different device types in each
UHF channel, and segregates each group for individual devices
(§ 3.2). It then localizes those (secondary) devices if their location
is not available in databases (§ 3.4). Using each device’s location
and its associated measurements, the server constructs a propaga-
tion model that is tailored to local environment to predict its signal
strength (§ 3.3). It also builds a model to predict the power of
adjacent-channel leakage from TV broadcasts (§ 3.5). To predict
whitespace channels in the vicinity of measurements, the databases
can use our refined propagation models to better estimate the cover-
age of TV broadcasts. Similarly, the databases may use our models
constructed for secondary users to predict their in-band interfer-
ence, while leveraging the leakage model to estimate the adjacent-
channel leakage from TV broadcasts. The sum of the predicted
power of these interference signals is the quality of a whitespace
channel. To predict for those locations far from measurements,
the databases may switch back to use its default model (R6602).
Finally, we envision the databases to use its current mechanism
for protecting licensed microphones due to the limitations of our
wardriving approach as will be discussed in § 3.1. We now explain
each of these components in detail.

Database -
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Figure 4: CDF of the available whitespace spectrum at different
locations based on measurements and database prediction.

3.1 Zoom-in pilot tracking algorithm for pri-
mary detection

Our measurement module aims to utilize spectrum samples for
detecting different types of primary transmitters and unlicensed de-
vices (i.e., whitespace devices and unlicensed microphones). We
accomplish this task by leveraging feature detection algorithms [8,
11] that identify different signals based on their spectral features.
While such a technique performs well for detecting unlicensed sig-
nals, we find non-trivial challenges in satisfying the FCC’s require-
ment for detecting primary signals at up to -114dBm in our mea-
surement setup. Such a stringent detection threshold is to tolerate
the sensing inaccuracy caused by fading and shadowing, and to take
account the transmission range of a whitespace device. We use TV
detection to illustrate this challenge and our specific solution.

Existing algorithms detect a TV signal by tracking its pilot in the
spectral domain. A pilot is a set of preambles in a TV packet, which
produces a predominant peak at a fixed frequency. Unfortunately,
for a TV signal close to the detection threshold, even this peak can
be overwhelmed by noise and thus unable to be captured. To illus-
trate this, we attenuated a TV signal to be about -114dBm, while
collecting its spectrum over a 6MHz TV channel with the largest
number of FFTs (32768) available in our high-end spectrum ana-
lyzer [20]. As shown in Figure 6(a), the pilot of this TV spectrum
is hard to be distinguished from the noise floor. This is because
the noise spectral density is -159dBm/Hz in our spectrum analyzer.
When using 32768 FFTs to represent a 6MHz band, the bandwidth
per FFT bin is 183Hz (6MHz/32768) and thus the noise power per
bin is about -135dBm. As will be discussed later, the pilot power is
usually about 10 - 15dB lower than the total power of a TV signal,
and thus can be as low as -129dBm. Comparing to the -135dBm
noise floor, the 6dB stronger pilot is not robust enough for toler-
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Figure 5: Flow of operations in V-Scope.

ating the signal strength fluctuation due to fading and shadowing.
Prior systems [11] have overcome this challenge by leveraging low-
noise amplifiers to amplify a weak signal by a fixed amount (e.g.,
20dB). But such an approach is observed to cause saturation of a
spectrum analyzer when capturing strong signals (>-35dBm), lead-
ing to distorted spectrum that can significantly degrade detection
performance. The alternative solution of using tunable amplifiers
would largely increase design complexity and hardware cost.

Zoom-in pilot tracking algorithm: Instead of resorting to sig-
nal amplification, V-Scope improves the sensitivity of feature de-
tection by capturing the most prominent portion of spectrum with
the available FFTs. To detect a TV signal, for example, we con-
figure a spectrum analyzer to capture at a narrow band (488KHz)
around its pilot frequency. This can effectively improve spectral
resolution while reducing the noise floor, thereby producing a clear
pilot peak as shown in Figure 6(b). Since this peak is well distin-
guishable at the detection threshold after zoom-in, V-Scope uses it
as an unique feature to detect TV signals.

The detected pilot is, however, insufficient to determine whether
the power of a TV signal to be above or below the -114dBm thresh-
old. We also need the precise power information of a primary signal
for constructing its signal strength models (§ 3.3). To achieve this
goal, V-Scope leverages the power of a TV pilot to estimate its to-
tal power. According to the digital and analog TV standards [2],
there is a fixed power offset between a TV signal and its pilot. For
example, the pilot of a digital TV is required to be 11.3dB lower
than its total power. Figure 7 shows this relationship indeed holds
for a DTV signal at a wide range of power, albeit with some varia-
tion (10 — 15dB). Thus, V-Scope computes the total power of a TV
signal by adding to its pilot power a constant offset n (20dB in our
implementation). The estimated power is then compared with the
-114dBm detection threshold to determine TV whitespaces.

Our proposed technique can be applied to microphone detec-
tion in a similar way. Briefly, we start by examining the 6MHz
wide spectrum of each TV channel for detecting potential micro-
phone tones that are narrow spikes carrying audio signals. Since
these spikes can also be a result of noise fluctuation, we perform
a narrow-band capture around each spike, extracting various fea-
tures from its zoom-in spectrum for further validation. Once a
microphone signal is confirmed, we use the power of its tones in
the zoom-in spectrum as its total power because these tones con-
tain most of the power (> 95%) of a microphone signal. Despite
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Figure 6: Different spectrum captures of a -114dBm digital TV
signal. (a) Full-channel capture; (b) Zoom-in capture at the first
488KHz band. Both captures consist of 32768 FFTs.

Detected Digital TV | Analog TV | Microphone
Ground truth
Digital TV 94.9% 0.7% 4.4%
Analog TV 0.5% 97.4% 2.1%
Microphone 1.2% 0.7% 98.1%

Table 3: Accuracy of primary detection algorithm.

the effectiveness of this detection technique, V-Scope might not be
able to sense all the intermittent microphone transmissions because
a client visits each location only for a short amount of time. To
guarantee sufficient protection, we envision the databases to pro-
tect licensed microphones as is. As our future work, we intend to
enhance our system with static sensors deployed in the proximity
of microphone devices to reliably capture their transmission.

To benchmark the accuracy of our detection algorithms, we col-
lected spectrum data from 30 UHF channels at multiple locations.
We established the ground truth results by using a TV receiver and
our microphone transmitters. The identified primary signals were
further attenuated for constructing spectrum traces at a wide range
of power (-40dBm to -114dBm). A standard cross validation was
then performed by randomly choosing 90% spectrum traces to de-
tect the rest 10%. Table 3 shows the accuracy of our detection algo-
rithm. We observe reasonably low error rates (<5%) in detecting
different types of signals.

Summarizing, our measurement procedure works as follows. (a)
A client captures spectrum fragments around pilot frequencies in
each UHF channel. (b) It extracts a potential pilot by searching for
the maximum FFT bin and including all the surrounding bins with
power above a threshold. (c¢) From the obtained FFT bins, sev-
eral features (e.g., power, center frequency) are extracted and fed
to a classifier for detecting TV pilots and broadcast type (analog
or digital). (d) If a pilot is detected, the client estimates its total
power by adding a specific power offset 1 to the pilot power. (e)
The estimated power is then compared with -114dBm threshold to
determine the presence of TV signals. (f) If no TV signal is de-
tected in a given channel, the client further captures a full-channel
spectrum to detect microphones and unlicensed devices while mea-
suring their in-band power. g) If the full-channel spectrum contain
potential microphone tones, a narrow-band capture is performed
around each spike for validation. The entire procedure takes less
than 1 second for processing all 30 UHF channels at a location,
and produces results of signal type and power in each channel.

3.2 Measurement clustering

Since a V-Scope client has classified measurements to different
device types (i.e., TV, microphone, whitespace devices), our clus-
tering module further segregates measurements among devices of a
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same type. We developed a preliminary algorithm that leverages k-
medoids clustering based on the power and inter-distance of mea-
surements. k-medoids clustering aims to minimize the sum of pair-
wise dissimilarities of measurements in each cluster. We define the
dissimilarity metric between pair of measurements using gower dis-
similarity score [6]. An unique feature of gower dissimilarity score
is its capability of assigning different weights to observations. By
assigning higher weights to stronger measurements, our algorithm
is robust to noise and outliers in choosing the center of clusters.
Specially, we take only measurements with power P,, > -90 dB to
reduce computational overhead. With N selected measurements,
we first calculate distance between each pair of measures. This
gives us a N-by-N symmetric matrix, in which the (¢, n)th entry
d;n indicates physical distance between measure ¢ and n. We call
columns of this matrix as variables, gower dissimilarity score be-
tween the ¢th and jth measure (row) is defined as a weighted sum
Zocteen DYy which Dy
Wn

is defined as |d;», — djn| and the weight of variable n is defined as
wrn = log(Pn + 90). We iteratively apply this algorithm with dif-
ferent number of clusters k between 1 — k42, and determine the
optimal k that can maximize the silhouette distance [17]. kmas 1S
set to be 100 in our implementation and a R package [9] is used to
perform clustering. To evaluate this algorithm, we merged groups
of measurements corresponding to different transmission locations
of our microphone device in dataset C. We applied our algorithm on
the aggregated measurements, and found only 6% measurements
mis-classified to a different location. One limitation of our cur-
rent approach is that mis-classification may happen when devices
are close to each other. However, the mis-classified measurements
are generally far from a device location and have relatively lower
power, thus imposing limited impact on the overall prediction ac-
curacy of V-Scope.

of dissimilarities for each variable

3.3 Region model for predicting signal strength

of different devices

Using the clustered measurements of each device, V-Scope re-
fines the parameters of a propagation model that can be used to
better predict its signal strength in the vicinity of measurements.
To choose an appropriate model, we note that most of the UHF-
band models can be generalized in a form of P = alog;o(d) + e,
where P is the power of a device at a reception location, d is the
distance between this location to the device, « is the rate at which
the signal power attenuates over an increasing distance, and € cap-
tures both the transmission power of a device and the fixed attenu-
ation of environmental shadowing. The difference of these models
lies in how the parameters «, € are determined, e.g., based on an-

Absolute Prediction Error (dB)

Figure 8: Accuracy of a fitted region
model and a global model in predicting the

Distance to TV Tower (km)

Figure 9: Region models fitted by linear
regression and weighted regression in pre-
dicting a TV broadcast.

Figure 10: Illustration of region models in V-Scope.

tenna height (in Egli, Hata) and various environmental factors (in
Longley-Rice, R6602). Since the measured signal strength can best
reflect a propagation environment, V-Scope uses this general model
and calculates «, € based on measurements.

A standard model fitting procedure [13] solves «, € by plugging
measurements P;, d; into a given propagation model. This forms a
set of linear equations P; = «alog,, d; + €. It uses least-squares
linear regression to calculate «, €, with the objective of minimizing
the squared sum of fitting errors >, (P; —a log,, d; —€)*. V-Scope
improves this approach by (i) fitting an individual set of parameters
for each local area to better model its propagation environment, and
(ii) performing a weighted regression to avoid fitting bias caused by
non-uniform distribution of vehicular measurements.

Region-specific model: V-Scope groups measurements into road
segments and fits a different set of parameters for each segment as
shown in Figure 10. The motivation is that these regions are likely
to have different propagation characteristics, especially in an urban
environment. This region-specific variation can hardly be captured
by a global propagation model using a single set of parameters. To
demonstrate this, we fit different o and € based on measured signal
strength of TV broadcasts in each 100m road segment. We compare
this model with a global model fitted with all the measurements in
predicting the strength of TV signals. Figure 8 shows that our re-
gion model achieves a median error of 1.4dB and 75 quartile error
of 2.6dB, which are 3 x and 2.9 x lower than a global model. Thus,
V-Scope fits a different set of model parameters (o, €) to better
capture each local propagation environment.

Weighted regression fitting: In fitting a region model, we note
the non-evenly spaced vehicular measurements can degrade the per-
formance of linear regression. Since a public vehicle drives at
a varying speed and stops quite often, V-Scope collects measure-
ments at non-uniform density. This causes linear regression to pro-
duce a biased model that favors densely measured area, and has
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tors in Figure 11 are also marked.

large errors at sparsely measured area. The underlying reason is
that linear regression aims to minimize the squared sum of fitting
error; the area with sparse measurements contribute less to this
squared sum, thus being under-fitted. Figure 9 shows an exam-
ple where we fit a model for a 100m region with most of training
measurements collocated at a bus top. We observe that the model
fitted by linear regression has up to 36dB error in predicting TV
signal strength at the testing locations.

V-Scope uses weighted regression to compensate the effect of
non-uniform measurement density in model fitting. The algorithm
assigns a weight W; to each measurement ¢, with the objective of
minimizing the weighted squared sum of fitting errors » . Wi(P; —
alog,,d; — €). A higher weight can indicate greater importance
in fitting a measurement. Therefore, we assign higher weights to
sparse measurements to compensate for the difference in measure-
ment density in model fitting. To accurately capture this measure-
ment sparsity, we calculate the weight of a measurement based on
its total distance to other measurements W; =} dist(i, j). Fig-
ure 9 shows our model fitted by weighted regression achieves high
prediction accuracy at all the testing locations.

To recapitulate, our model fitting procedure first bins measure-
ments of each device into road segments. For each segment, it com-
putes a weight for each measurement based on its distance to other
measurements. It then takes these measurements and their weights
as the input to weighted least-squares regression for constructing
region models.

The fitted model will then be used to predict for a m-by-m square-

shape region centered around the measured road segment. The re-
gion size m is the length of the road segment. We will explore
the performance tradeoff between the prediction accuracy and stor-

age overhead of different region sizes in § 4.1. Finally, beyond the
coverage of these regions, the database may use its default model
(R6602) for predicting TV whitespaces.

3.4 Sector based localization

The above model fitting procedure requires the location of a
transmitting device to calculate the distance d; for each measure-
ment. V-Scope leverages popular RSSI modeling techniques [1, 16]
to localize a device if its location is unknown or awaits valida-
tion. Our motivation of using this technique comes from its flexibil-
ity in localizing a device from arbitrarily measured locations, and
the simplicity of using signal strength (RSSI) information that is
readily available from spectrum measurements. Such an approach
works similarly to model fitting. It uses signal strength measure-
ments and a propagation model to form a set of equations P; =
alog, o di+e. Here d; is replaced with \2/(36,5 —x:)? + (ye — yi)?,
where (¢, y¢) is the transmitter location and (x5, y;) is the location
of each measurement. The algorithm solves «;, €, z+, y; to estimate
a device’s location. V-Scope adapts this approach to outdoor sce-
nario by (i) carefully selecting measurements in certain radiation
sectors of a device and (ii) constructing a sector-specific model
based on the chosen sectors.

While a RSSI modeling approach is reported to achieve a high
accuracy within few meters in an indoor scenario, directly applying
this technique to our outdoor area leads to large localization error
(up to 100m in § 4.2.2). The reason is that its underlying propa-
gation model matches poorly with the signal strength pattern of a
transmitting device in an outdoor scenario. We use the wardriving
measurements collected for our whitespace device in dataset B to
demonstrate this. Figure 11(a) shows the received signal strength
over different transmission ranges for all the measurements. A




propagation model expects a linear trend of the measured signal
strength P; over an increasing distance logiod;, but we observe
many measurements deviate from this trend (the fitted line). We
use Pearson correlation coefficient to quantify the linearity of these
measurements, with 1 and -1 being an extract positive and negative
linear trend and O implying no correlation. We find the correlation
value to be merely -0.57.

Such a poor linear trend is caused by surrounding environment,
e.g., terrain elevation, obstacles, etc. To illustrate this, we decom-
pose measurements according to different radiation sectors of the
device with 10-degree angle as shown in Figure 12. Figure 11(b)
is a scatter plot for measurements from one such sector. We ob-
serve a sharp drop of signal strength at a distance between 350 —
500m due to a building blocking the transmission, but a drastic
increase in signal strength beyond 500m due to the rising terrain
elevation coupled with diminishing blocking effect of the build-
ing at faraway locations. This environmental-induced variation can
largely perturb a propagation model in capturing the large-scale
path loss, leading to large localization error. Fortunately, we find
measurements in some other radiation sectors present a less noisy
propagation trend as show in Figure 11(c). This is owing to the
environmental shadowing being unlikely to affect the signal along
all the directions. Thus, V-Scope only uses measurements in a few
sectors that present a good propagation trend for localization.

Localization procedure: Our proposed algorithm proceeds in
five steps. (a) We use the centroid location of the strongest mea-
surements (top 5dB) as the partitioning center, while grouping mea-
surements into radiation sectors at a narrow angle (10 degree). The
intuition behind this heuristic approach is that the centroid loca-
tion is usually not far from a device’s actual location (e.g., 100m
in Figure 12); and by using a narrow angle, some radiation sec-
tors are likely to “fall through” the gaps of a blocking environment,
thus having measurements following a good propagation trend. To
validate this intuition, Figure 13 shows the absolute correlation of
measurements in different sectors partitioned at various angles for
the whitespace device. We observe that the narrowest angle used
in our implementation indeed leads to best correlation (>0.9) for
some sectors. (c) Post partitioning, we calculate the Pearson corre-
lation value between the measured signal strength and the transmis-
sion range for those sectors that have at least some measurements
present. We then select the sectors with a high correlation value
(top 0.1 bin) for localization. (d) Given these candidate sectors, we
use a sector-specific model with different 5, €; for each sector j.
This is because these chosen sectors can still have a different prop-
agation trend in slope and intercept due to environmental variation.
We omit this result for the sake of brevity. (e) We construct linear
equations based on measurements from all the chosen sectors, and
solve x¢,y: and all o, €; to estimate a device’s location using an
optimization function from a statistics package [15].

3.5 Adjacent-channel model for predicting TV
broadcast leakage

V-Scope builds a model to predict the leakage power of a TV
broadcast into its adjacent channels based on its in-band power *.
It first identifies those locations with adjacent-channel measure-
ments classified to be noise because the leakage is simply high-
power noise. It then leverages a linear relationship between the
measured power of this TV broadcast and that of its adjacent chan-
nel to construct the model. To demonstrate this power relationship,
Figure 14 shows the power of a TV broadcast in channel 26 and that
of its leakage in channel 27 at each chosen location. We observe

*Different TV broadcasts are usually allocated in far apart chan-
nels, and their adjacent channels therefore do not overlap.

that the leakage power increases approximately along a 45-degree
line with TV power, and can be as high as -65dBm. The Pearson
correlation between these datasets is 0.91. This prominent linear
relationship comes from both a TV signal and its leakage being
transmitted from a same location and at a power of constant dif-
ference. After traversing along similar paths to any location, their
power still differ approximately by this amount leading to a linear
trend between the in-band power and adjacent-channel power.

Since the specific leakage trend is different among TV transmit-
ters, V-Scope constructs an individual model for each TV broad-
cast. The model takes the form P, = yP;, + 3, where P, and
P, are the power of a TV signal and its leakage at a given location,
and +y, 8 are tunable parameters to capture the power relationship
between these signals. V-Scope calculates -y, 5 by applying linear
regression on the power measurements. To estimate the leakage of
a TV broadcast at a given location, the databases can first use our
region model to predict its in-band power P;,, then leveraging the
leakage model to predict P;.

4. EVALUATION

In this section, we evaluate the performance of V-Scope based on

three datasets collected over a 120 square-km area in and around a
US city as described in § 2.1. We start by evaluating the overall
performance of V-Scope in § 4.1. We then benchmark the perfor-
mance of individual components in § 4.2. Overall, we find V-Scope
can reduce false negative rates for protecting TV broadcasts by up
to 59%, identify all the suitable whitespace channels at 72 — 83%
locations under different channel quality constraints, and localize
unlicensed devices at various locations with an error of 16 — 27m.
Implementation: We have implemented the measurement collec-
tion module and all the data processing modules in 7500 lines of
Python, and built a database query utility in 650 lines of C++.
Methodology: We apply a standard five-fold cross-validation by
using 80% randomly selected measurements to construct V-Scope
models. The fitted models are used to predict the power of TV
broadcasts, unlicensed devices and adjacent-channel leakage at re-
maining measured (testing) locations. We compare the predicted
power of TV broadcasts with the -114dBm threshold to determine
TV whitespace, while combining the predicted power of unlicensed
devices and adjacent-channel leakage to estimate the noise power
of whitespace channels. We compared our predictions with ground
truth results based on measurements at these testing locations. To
evaluate localization, we use measurements for our whitespace de-
vice and microphones operating at various locations, with ground
truth locations determined by a GPS device.
Evaluation metrics: We use a variety of metrics to evaluate the
performance of V-Scope such as false positive and false negative
rates in predicting the availability of TV whitespaces, number of
inappropriate whitespace channels selected under different channel
quality constraints, absolute error in predicted signal strength, lo-
calization error between the actual location and predicted location
of different TV-band devices, etc.

4.1 Overall performance of V-Scope

We use dataset A to evaluate overall performance of V-Scope in
predicting whitespace channels and estimating their quality. We
quantify the gain of V-Scope over a FCC-approved database [19]
that predicts whitespace channels based solely on a propagation
model without distinguishing their quality. We also evaluate the
performance of V-Scope models fitted under different region sizes.
This can provide database operators with insights about the tradeoff
between prediction accuracy and storage overhead in choosing an
appropriate region size for different spectrum management tasks.
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Approach Database VS-100m VS-200m VS-400m VS-800m Signal Type 25th Median 75th 95th 99th

False Positive Rate 0.29% 0.29% 0.22% 0.17% 0.17%

TV broadcast 0.2dB 0.5dB 1.1dB 3.2dB 7.7dB

Table 4: False positive rates of the database and V-Scope models
fitted at different region sizes in predicting TV broadcasts.

4.1.1 Predicting TV whitespace spectrum

We start by quantifying the false negative rates of the database
and V-Scope models fitted at different region sizes for predicting
TV broadcast channels that are accessible at least in part of our
measured area. Figure 15 shows that different V-Scope models can
reclaim the spectrum wastage of the databases by up to 59% lo-
cations. We then present the false positive rates averaged across
different broadcast channels for these approaches in Table 4. Com-
pared to the conservative database, we find the V-Scope models
are able to offer same or even better protection to primary users.
One important observation is that the V-Scope models fitted un-
der different region sizes present little difference in the accuracy
of whitespace determination, e.g., <2% in false negative rate and
<0.1% in false positive rate. This is because most of their dif-
ferences in predicted signal strengths are masked when comparing
them with the detection threshold. We may therefore use a large
region size (e.g., 800m) to fit V-Scope models for TV broadcasts,
thereby reducing the overhead of storing model parameters.

4.1.2 Selecting suitable whitespace channels

Using the predicted whitespace channels, we evaluate V-Scope
and the database in selecting appropriate channels under different
power constraints. A whitespace channel is deemed to be suitable
if its interference power is below a given constraint. Such a quality
constraint can be estimated by network operators based on parame-
ters such as the distance of wireless links, transmission power, and
the minimum signal-to-noise ratio (SNR) for decoding a received
signal (under desired modulations).

Figure 16 shows the CDF of the number of wrongly selected
channels at different locations for a 100m V-Scope model and the
database under different quality constraints. Note that a 5dB in-
crease in two consecutive power constraints can lead to a 15 —
30Mbps drop in the achievable PHY rates for the 802.11n tech-
nology [21]. Without attempting to distinguish channel quality, the
database can select all the appropriate channels at less than 2% of
the locations, and have 3 — 4 channels wrongly selected for 50% of
the locations. In contrast, V-Scope correctly selects all the qualified
whitespace channels at 72% — 83% locations, and mis-predicts at
most 1 channel for 92% — 97% locations. The much higher accu-

Unlicensed signal 0.2dB  0.6dB 1.3dB 3.4dB 6.9dB
TV leakage 03dB 0.7dB 14dB 3.6dB 6.9dB

Table 5: Absolute error in predicting the power of different types
of signals by a 100m V-Scope model.
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Figure 18: Accuracy in predicting the power of TV signals.

racy suggests that V-Scope can help avoid most of the performance
penalty on a whitespace network due to channel mis-selection.

We break down the accuracy of V-Scope in predicting the power
of different types of signals in Table 5. We note for all the signal
types, the median error is below 0.7dB and a 95 quartile error below
3.6dB, thus explaining its high accuracy in channel selection.

We now study the impact of region sizes on the accuracy of V-
Scope models for selecting suitable whitespace channels. Figure 17
shows the fraction of locations where all the appropriate channels
are correctly identified by these models. We observe that the ac-
curacy degrades at a larger region size. For example, a 800m re-
gion model correctly selects all the suitable channels at 8% — 11%
fewer locations than a 100m region model, and a global model has
27% — 31% fewer such locations than a 100m model. This is be-
cause a model fitted for a larger region is not fine-tuned enough to
capture local environment. The database operators may use this in-
formation to choose an appropriate region size for channel quality
estimation based on available storage and desired accuracy.

4.2 Microbenchmarks of V-Scope

We now benchmark the performance of individual components
in V-Scope, which are region-specific model in predicting TV broad-
casts, sector-based localization algorithm, region-specific model in
predicting unlicensed signals, and adjacent-channel models in pre-
dicting the leakage of TV broadcasts.



Error (m)

Sinqle- rob @ 80 7 Sector-deter(V-Scope) mmm
Single-deter —o— 70 Single-deter
entroid
Sector- robEV-Scopeg o 60
,,,,,,,,,,, .. Sector-deter(V-Scope) —— g |

-75
Maximum Power of Measurements (dBm)

-70 -65 -60 -55 -50

Location

Figure 19: Accuracy in localizing a whitespace device (left) and micro-

phone device (right).

80 o 1
k<]
60 5 09
£ 5 08
5 40 o
= o 07
] =]
20 2 06
S
0 T T T 1 0.5 T T T 1
10 30 45 90 360 10 30 45 90 360
Angle (degree) Angle (degree)

(a) Localization error. (b) Average correlation.

approach for localizing the whitespace device.

0.8 + 0.8 0.8
w 064 w 064 L 06
a o o
© 0.4 4 o 0.4 o 0.4 -
¥-gcope100m — x-gcope 100m ——
2 -Scope 400m —— . -Scope 200m —— iya
02 V-Scope 600m 0.2 $ V-Scope 400m 02 V-Scope
S Global - ¢ Global - All-Broadcast s
0 T T T | 0 T T T 1 0 T T T T T T T 1
o 5 10 15 20 o 5 10 15 20 0 1 2 3 4 5 6 7 8

Absolute Power Error (dB)
(a) Whitespace transmitter.

Figure 21: Accuracy in predicting the power of unlicensed devices.

4.2.1 Accuracy in predicting TV broadcasts

We compare the V-Scope model with those models fitted by two
alternative approaches. Global is a single model fitted for the entire
measured area. Local is a region model fitted by linear regression
instead of weighted regression. We quantify the gain of V-Scope
models based on two datasets — dataset A collected during a 6-
week period and a subset of it collected in an initial week.

Figure 18(a) shows the 99th quartile error of different models
fitted based on the 1-week dataset. We first observe that Global
has the highest prediction error since a global model can hardly
be tailored to different local propagation environments. We then
note a 19% — 40% reduction in prediction error achieved by Local
over Global because Local tunes an individual model to each small
region. V-Scope outperforms Local by 8% — 13% due to the use of
weighted regression to compensate the non-uniform measurement
density in model fitting.

As more measurements were subsequently collected, the mea-
surement density tends to become uniform in each road segment.
As aresult, Figure 18(b) shows Local achieves a similar accuracy to
V-Scope based on the 6-week data. This suggests that both versions
of regression apply well on uniformly distributed measurements,
but our weighted regression has its unique advantage in dealing
with non-uniform measurements collected during a short wardriv-
ing period. Finally, we observe the accuracy in predicting the TV
power improves at a smaller region size from both datasets.

4.2.2  Accuracy in localizing unlicensed devices

We use measurements collected for our whitespace transmitter
and a microphone device in dataset B and C for evaluating our lo-
calization technique. The ground truth locations of these devices
were obtained by a GPS device as mentioned before.

Overall accuracy: We compare following localization techniques.
Single-deter and Single-prob are two popular RSSI modeling tech-
niques used in EZ system [1] and WiFiNet system [16] respectively.

Absolute Power Error (dB)

Absolute Power Error (dB)

(b) Unlicensed microphones.

Figure 22: Accuracy in predicting the
leakage power from TV broadcasts.

Single-deter uses a deterministic propagation model as described in
§ 3.4, whereas Single-prob uses a probability model based on the
same propagation trend. Sector-deter and Sector-prob are our sec-
tor based versions of these common techniques. Centroid is the
center location used by our technique to partition sectors, which is
the geometric center of the strongest measurements (top 5dB).

Figure 19(left) shows the error of different algorithms for localiz-
ing our whitespace device. The measurements were selected based
on different maximum power thresholds to emulate a variety of lo-
calization environment. We first observe that Single-deter achieves
a low error of 26.9m using all the measurements (-45dBm thresh-
old). Under different power thresholds, our sector based techniques
improve Single-deter and Single-prob by 1.2 —3x and 1.5 -3.5x,
because they carefully choose a few sectors and develop an indi-
vidual propagation model for them. Sector-deter also refines the
partitioning center Centroid by 1.2 — 4.1x. The error of Sector-
deter and Sector-prob increases by up to 2.8 X and 1.8 when us-
ing measurements at a lower power (e.g., -80dBm threshold). This
is because the low-power measurements present a less distinct path
loss trend and the partitioning center (Centroid) deviates more from
the device’s actual location.

Figure 19(right) shows the accuracy of Sector-deter and Single-
deter for localizing our microphone device in 5 different buildings
based on clustered measurements as described in § 3.2. The maxi-
mum measured power ranges from -70dBm to -60dBm for different
operating locations of the device. We observe that our technique
Sector-deter achieves a low error between 16 — 27m, which are 2 —
2.8 lower than Single-deter.

Accuracy over different partitioning angles: Figure 20(a) shows
the accuracy of Sector-deter with different partitioning angles for
localizing the whitespace device. We observe that a larger angle
leads to worse performance, e.g., the error increases by 1.5x from
the 10-degree angle to the 30-degree angle, and by 2.06x to a 360-
degree angle that is the baseline algorithm — Single-deter. To ex-

Figure 20: Performance of different partitioning angles used by our



plain this performance degradation, we present the absolute corre-
lation ratio averaged over the selected sectors for localization. Note
that these sectors have a correlation ratio within the top 0.1 bin of
all the sectors (§ 3.4). Figure 20(b) shows the absolute correlation
decreases over an increasing angle, with a 360-degree sector having
0.36 lower correlation than a 10-degree. The highest correlation of
10-degree sectors indicates a best match of the selected measure-
ments to the linear path loss trend, which in turn leads to highest
accuracy. This justifies our use of the narrowest partitioning angle
in the final algorithm.

4.2.3 Accuracy in predicting unlicensed signals

Using the device locations predicted by Sector-deter, we con-
struct region-specific models for predicting the signal strength of
the whitespace device and all (5) the microphone instances. Fig-
ure 21 shows the CDF of absolute errors in predicting the signal
strength of different types of devices. We observe a 100m V-Scope
model can achieve a median error of 1.3dB and 0.9dB, and a 75-
quartile error of 2.8dB and 2.7dB for predicting the whitespace and
microphone devices respectively. The prediction error increases at
a larger region size, with a global model having about 3x higher
median error than a 100m region model for both types of devices.

4.2.4  Accuracy in predicting TV broadcast leakage

We compare our leakage model tuned to individual TV broad-
casts with an alternative model (All-Broadcast) comprising a single
set of parameters fitted for all the TV broadcasts. Figure 22 shows
the CDF of absolute error for predicting the TV leakage power in all
the adjacent channels based on dataset A. We observe that V-Scope
achieves a 0.7dB median error and a 1.4dB 75-quartile error. All-
Broadcast, albeit with slightly lower storage overhead, has a 1.6x
higher error in median and 1.4 higher error at 75-quartile. The
worse performance in All-Broadcast is because a single model fit-
ted for all the TV broadcasts cannot accurately capture the specific
leakage characteristics of each TV transmitter. Since the overhead
of storing a separate set of model parameters for a few TV broad-
casts is low, we choose this broadcast-specific model in our final
design to improve accuracy.

S. DISCUSSION

Impact on FCC ruling: To harvest the benefits of V-Scope, we
envision several changes to be made to the current FCC ruling. To
ensure the validity of spectrum measurements, the measurement
hardware needs to be rigorously tested to ensure the required de-
tection accuracy, perhaps following the same testing procedure for
the sensing-based whitespace devices. To utilize the opportunistic
measurements, the database may choose an appropriate region size
to fit the V-Scope models based on the desired accuracy. It may fall
back to use its default model (R6602) when predicting those ar-
eas beyond the regions covered by measurements. Finally, while
we find non-negligible temporal and spatial under-utilization of
whitespace spectrum in microphone protection, our system has in-
herent limitations in reliably protecting licensed microphones with
the use of vehicular measurements. To achieve this goal, perhaps
some static sensors can be deployed in the proximity of microphone
reserved locations for continuously monitoring their activity, or a
proactive protocol can be adopted by microphones to alert interfer-
ence from whitespace devices as suggested in prior work [12].

Coping with deployment cost: Our opportunistic wardriving ap-
proach has costs and overheads in deploying and managing whites-
pace sensors. Perhaps this measurement infrastructure is most use-
ful in urban areas where seizing additional spectrum of good qual-
ity can be particularly beneficial to users. In such scenarios, spec-

trum database providers may contract with public vehicle operators
to deploy this infrastructure, and recoup their costs by charging ad-
ditional fees to use the services enabled by them. In this paper,
we do not explore the economic aspects of opportunistic wardriv-
ing, but focus on the technical aspects in collecting and utilizing
spectrum measurements to augment databases.

Addressing temporal variations and storage overhead: The col-
lected measurements can become invalid with the change of envi-
ronment and transmission behavior of (secondary) devices. While
such temporal variation is observed to be small (<5dB) at most of
our measured locations, it can increase with the future prolifera-
tion of whitespace devices. We envision to use time-based filter-
ing, backed up by statistical algorithms such as Dixon’s test [4],
to identify up-to-date measurements. To mitigate storage overhead,
the databases may only store the fitted model parameters and device
locations while discarding the measurements after using them.
Impact of measurement volume and coverage: Since our mea-
surements are collected on a public transit bus opportunistically, the
number of measurements in each region vary to a large extent. For
example, different 100m regions can have measurements ranging
from two to hundreds. We do not observe any clear trend between
the number of measurements and the accuracy of the fitted model.
Instead, the location of these measurements can play a more signif-
icant role. For example, using densely distributed measurements to
fit a model can have lower accuracy than using a few measurements
collected on sparse locations, which is the very motivation for our
weighted regression model. Finally, the evaluation of our region
model is not applicable to those locations beyond road segments.
However, for those neighborhoods surrounded by the roads, we ex-
pect similar fading and shadowing effects introduced by the same
environment, hence rendering our models to be relatively useful in
predicting these areas.

6. RELATED WORK

Whitespace spectrum database: In its recent ruling, the FCC
mandates commercial databases to use a well-known set of R6602
propagation curves [3] to estimate the coverage of TV broadcasts.
‘We have found non-negligible spectrum wastage in these databases,
possibly due to their inability to capture shadowing and fading in
an urban environment.

Senseless [10] proposes an improved database design that is based
on the Longley-Rice model incorporating terrain data and reported
to incur low loss of whitespace spectrum. While V-Scope and
Senseless share the same essence of using additional environmen-
tal information to calibrate a propagation model, their difference
lies in the trade-off between the richness of the environmental data
and the associated overhead in collecting such information. Sense-
less has the apparent advantage of obviating any measurement over-
head. But the terrain information alone is somewhat insufficient to
thoroughly reveal a propagation environment, e.g., the shadowing
effect of buildings. In addition, Senseless is not designed to pre-
dict the quality of whitespace channels due to the lack of knowl-
edge about the transmission power of secondary devices and the
leakage characteristics of TV broadcasts. In contrast, V-Scope di-
rectly uses spectrum measurements in a local environment to tune
a propagation model, which can therefore take account most of the
environmental effects along with the transmission characteristics
of TV-band devices. Hence V-Scope is likely to not only achieve
better performance in predicting whitespace channels, but also es-
timate their quality. As the downside, V-Scope incurs the mea-
surement and storage overhead and is only able to predict confined
regions where measurements are available. Given these pros and
cons, we believe the selection of either technique depends on the



desired functionality and the availability of training information,
i.e., terrain data and spectrum measurements.

The design of V-Scope is also motivated by a recent indoor whites-
pace database (WISER [23]) that is purely based on measurements
from sensors placed at strategic indoor locations. Targeting at a
different scenario, V-Scope leverages opportunistic spectrum mea-
surements to refine a propagation model for the vast outdoor area.

Propagation model enhancement: Some recent work [13, 14]
aims to improve propagation models using a few measurements.
Caleb et.al [13] proposes an adaptive path loss model for a 2.5GHz
WiMax network based on linear regression. A geo-statistical ap-
proach has been subsequently proposed in [14], which interpolates
systematically sampled measurements to build radio environment
maps. Most of these approaches require measurement locations to
be carefully chosen, which can hardly be guaranteed in vehicular
sensing. V-Scope leverages weighted regression to remove fitting
bias caused by the non-uniform distribution of measurements.

Localization: Existing RSSI modeling systems [1, 16] build a
propagation model based on a few indoor measurements to pin-
point a device with an error of few meters. V-Scope adapts the
RSSI modeling approach to outdoor scenario by carefully selecting
measurements in certain radiation sectors and constructing a sector-
specific model. Recent AoA based localization systems [7, 18, 22]
are reported to achieve even higher accuracy within a meter, by
measuring the arriving angle of a signal with an antenna array. Our
current implementation leverages SISO based commercial spec-
trum analyzers, and thus cannot implement these techniques. We
intend to explore their advantage in our future deployment when
MIMO based spectrum analyzers become available.

Primary detection: Energy detection is the most straightfor-
ward algorithm for primary detection. However, it fails to detect
a primary signal below a certain SNR threshold [8]. Subsequent
work in feature detection [8, 11] proposes to leverage spectral fea-
tures of a primary signals to improve detection sensitivity. V-Scope
enhances the sensitivity of this technique with zoom-in capturing,
while leveraging the detected features to estimate the strength of
weak primary signals.

Finally, the concept of opportunistic wardriving on public vehi-
cles was first reported in a position paper [24] that explored the
accuracy of existing databases and the potential of a measurement-
enhanced propagation model. In this paper, we significantly extend
this prior concept by presenting a complete measurement frame-
work that can enhance databases to accurately determine whites-
pace spectrum, predict its channel quality, and validate device lo-
cation, backed up by extensive evaluation based on a large volume
of measurement data.

7. CONCLUSION

We have presented V-Scope, a measurement framework for TV
whitespaces. Our system leverages spectrum sensors mounted on
public vehicles to collect spectrum measurements during the drive.
These measurements are aggregated to refine various propagation
models, which can augment spectrum databases to better identify
whitespace spectrum, predict its channel quality, and validate the
location of primary and secondary devices. We believe the concept
of opportunistic wardriving and our techniques developed to uti-
lize such measurements, can have broader applications in dynamic
spectrum access beyond TV whitespaces.
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