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ABSTRACT
The recently released TV whitespaces offer a promising land for
wireless communications. The secondary users of TV whitespaces
today rely on spectrum occupancy databases to determine vacant
TV channels for unlicensed communications. However, the accu-
racy of these databases (that depend solely on propagation models
as per guidelines of the FCC) may be low. In this paper, we propose
V-Scope - a vehicular sensing framework aimed to collect wide-
area spectrum measurements for evaluating the accuracy of these
databases. A key design feature of V-Scope is to leverage spec-
trum sensors mounted on public vehicles for collecting and report-
ing measurements from the road (opportunistic wardriving). We
have currently deployed a version of our system on a single pub-
lic transit bus traveling across a mid-sized city in the US. Based
on measurements collected at over 1 million locations across a 100
square-km area, we find that databases tend to over-predict the cov-
erage of certain TV broadcasts, unnecessarily blocking the usage
of whitespace spectrum in a large area (up to 42% measured loca-
tions). We further propose ways of leveraging these measurements
to enhance existing propagation models in databases.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication
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1. INTRODUCTION
Wireless providers are facing spectrum crisis when trying to meet

the growing demand of mobile users. The recently released TV
whitespaces (512MHz-698MHz) have become an effective solution
to the spectrum crunch. However, there exists a fundamental chal-
lenge to correctly identify vacant and good channels for unlicensed
usage. The state-of-art approach is to rely on a spectrum occupancy
database that solely uses propagation models to predict the strength
of primary signals. However, such approach can sometimes have
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low accuracy in urban environment. In this work, we propose V-
Scope - a vehicle sensing (wardriving) framework aimed to collect
wide-area measurements for evaluating and augmenting commer-
cial databases. An unique feature of V-Scope is to leverage whites-
pace spectrum sensors mounted on public buses for this purpose,
thus avoiding costly and laborious measurement campaigns while
collecting measurements at an unprecedented scale.

In a whitespace network, a spectrum occupancy database plays
a central role in assigning operating channels to secondary devices
(TVBDs). On one hand, it distributes unused TV channels to TVBDs
based on their locations, thereby fulfilling the FCC’s requirement
of protecting licensed signals. As per FCC’s ruling [2], there ex-
ist three types of primary incumbents to be protected, i.e., digi-
tal TV, analog TV and wireless microphones. To detect TV sig-
nals, the database leverages well-known propagation models (e.g.,
R6602 [2]) to estimate the signal strength at the locations of TVBDs.
It concludes a channel as being occupied if the estimated power is
above a reception threshold (-84dBm). To protect microphones, the
database reserves two dedicated channels for their exclusive usage,
and allows more to be reserved upon request. On the other hand,
the database (e.g., SpectrumBridge [4]) might inform TVBDs with
channel quality in whitespaces predicted by the model. Hence, the
accuracy of a spectrum database largely affects the protection of
primary incumbents and channel selection by TVBDs.

Unfortunately, the database has inevitable inaccuracy in achiev-
ing above functions. First, it is inaccurate in predicting the cov-
erage of a TV broadcast, which leads to either waste of whites-
pace spectrum or harmful interference to primary incumbents. The
underlying reason is that its propagation model is tuned to aver-
age propagation conditions, and unable to capture the environment-
induced variation, e.g., shadowing and multipath fading of specific
objects and topologies. Our measurement shows this variation can
be as high as 25dBm for two locations separated by merely 10 me-
ters. Second, a database is incapable of estimating the power of
unlicensed mobile transmitters operating in whitespace channels,
some of which can cause high-power interference to other unli-
censed communications. The incapability of predicting the cov-
erage of a mobile transmitter is because the propagation model
usually requires accurate information about the mobile transmit-
ter, e.g., location and transmission power, which is rarely available
to the database and might change frequently. Both these factors
motivate the need of spectrum sensing, which provides spectrum
measurements for better tracking local propagation characteristics.

In this paper, we propose an opportunistic whitespace sensing
infrastructure-V-Scope, which uses spectrum sensors mounted on
public vehicles to collect large-scale measurements. Since the pub-
lic vehicles usually travel at a low speed, across wide area and for
long time, V-Scope can leverage a few spectrum sensors to collect
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Figure 1: System architecture of V-Scope.

wide-area measurements for augmenting databases. Further, it ob-
viates the need for expensive spectrum sensing hardware and their
overheads in the end TVBD devices, while organically bringing
some of the advantages of spectrum sensing. As a key component
in V-Scope, we propose a zoom-in pilot detection algorithm that
can reliably detect TV signals at -120dBm and operate in real-time.

We have deployed V-Scope on a single public transit bus in Madi-
son, WI. Since our bus operator tends to rotate their buses through
multiple routes in the course of each day, we have been able to
collect spectrum measurements at more than one million locations
over a 100 sq. km. area for a two week period. Our measurements
show that commercial databases that are based solely on propaga-
tion models have significant inaccuracies (up to 42% of measure-
ment locations). Furthermore, we find the quality difference among
whitespace channels tends to be high due to interference from mo-
bile transmitters, which can hardly be predicted by the existing
propagation models. Finally, we propose how to use measurements
collected by V-Scope to refine existing propagation models.

2. V-SCOPE DESIGN
In this section, we first describe the architecture of V-Scope and

then present our primary detection algorithms.
System architecture: V-Scope consists of a central server and mul-
tiple clients. Each client is envisioned to run on a different vehicle.
Figure 1 shows the overall architecture of V-Scope. We use a lap-
top at the client to control all the measurement procedures running
in parallel. Specifically, the laptop instructs the spectrum analyzer
to sweep across all the TV channels in the UHF band. The spec-
trum analyzer transfers spectrum samples (FFTs) to the laptop over
Ethernet. Upon receiving all the samples for each channel, the lap-
top performs a set of real-time analysis, e.g., primary detection and
power calculation. In the meanwhile, the laptop obtains the ve-
hicle’s location from a GPS module. It includes this GPS reading
into the analysis results, and upload them to the central server using
some wide-area networks, e.g., cellular networks.

The server is equipped with an Ethernet connection to receive
measurement results. It uses the GPS reading to query the database
for vacant channels. It stores the database’s response with the mea-
surements for later comparison. One design caveat is to use the cen-
tral controller instead of each client to query the database. This is
due to the intention of reducing burden on the wireless link. More-
over, the client is robust to connection outage by storing the mea-
surements in the local disk and uploading them asynchronously.
Since the TV signal remains stable for long period of time (order of
days), the extra round-trip delay over Ethernet and the brief outage

-170
-160
-150
-140
-130
-120
-110
-100

-90
-80

 578  579  580  581  582  583  584

Po
w

er
 (d

Bm
)

Frequency (MHz)

Pilot

(a)

-170
-160
-150
-140
-130
-120
-110
-100

-90
-80

 578  578.1  578.2  578.3  578.4

Po
w

er
 (d

Bm
)

Frequency (MHz)

Pilot

(b)

Figure 2: Spectrum of a digital TV signal at -114dBm. (a) Full-
channel capture; (b) Zoom-in capture at first 488KHz band.

period (usually <2s) introduce negligible inaccuracy to the mea-
surements.
Zoom-in pilot detection: Central to our measurement is a set of
algorithms to detect primary incumbents. We adopt the same detec-
tion criteria as the sensing-based TVBDs [2], i.e., to detect primary
signals as low as -114dBm. The reason for being able to detect such
weak signal is to account for the transmission range of TVBDs.

Detecting a weak TV signal is very challenging because most
of spectrum analyzers generate thermal noise at a much higher
power. For example, our high-end device (WSA4000 [5]) produces
-91dBm noise over a 6MHz TV channel. This requires a detection
algorithm to identify primary signals at very harsh SNR (-23dB).
We note alternative approaches of using amplification hardware
(e.g., directional antennas or low noise amplifiers). However, it
causes significant distortion that reduces detection accuracy.

Our algorithm leverages two interrelated techniques, i.e., zoom–
in and pilot tracking. For pilot tracking, both analog and digital TV
signals have pilots to assist decoding. These pilots are at a specified
frequency and more robust to noise than other spectral components.
Moreover, TV standards [1] specify a fixed difference in power be-
tween a TV signal and its pilot. For example, the pilot in digital
TV should be 11.3dB below the total power. Thus, we simplify the
detection task by tracking pilots at an equivalent strength.

Unfortunately, even the pilot of a weak TV signal can be over-
whelmed by noise. Figure 2(a) shows such a weak TV signal. We
leverage a zoom-in technique to reduce noise. It configures the
spectrum analyzer (through decimation) to capture at very narrow
bands (488KHz). This reduces the amount of noise passing through
the radio front-end, thus effectively improving SNR by 12dB. Fig-
ure 2(b) shows the beginning fraction of the TV channel where the
same pilot signal is present. We observe a clear peak at 578.38KHz
in front of reduced noise. Now, we can reliably detect a weak TV
signal by tracking its pilot.

Combining the two ideas, our final algorithm takes two narrow-
band captures at fixed frequencies of a TV channel. We extract the
pilots by searching for the maximum FFT bin (fmax, pmax) within
a predetermined frequency range (fstart, fend). Upon detecting
this maximum bin, we include all the continuous FFT bins around
it as part of the pilot, if they have a power pi higher than a threshold
(pmax − δ). Formally, Pilot = {(fi, pi) : (fi, pi) ∈ FFT, pi ≥
pmax − δ ∧ fi ≥ fstart ∧ fi ≤ fend}. We extract several features
(e.g., power, center frequency and bandwidth) from the pilot bins,
and feed them into a decision tree based classifier for TV detection.

3. EVALUATION
In this section, we present our results about the performance of

a commercial database. We highlight our findings that the database
tends to over-predict the coverage of TV broadcasts, causing up to
42% lost in whitespaces. We start by benchmarking the accuracy
of our primary detection algorithms.
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Figure 3: Fraction of whitespace loss in a
model-driven database.
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Figure 4: Prediction errors of a model-
driven database in channel 45.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  12  14  16  18  20  22  24  26  28  30

C
D

F

Difference in Noise Floor (dBm)

Figure 5: Quality difference in whitespace
channels at same locations.

Accuracy of detection algorithms: We collect spectrum traces
from 31 TV channels in the UHF band at different indoor loca-
tions. Using a high-end TV tuner, we identify that five channels
have digital TV broadcasts, one has analog broadcast, and the rest
has noise or microphone signals. We further attenuate the TV sig-
nals to obtain traces at a wide range of power (-40dB to -114dB
at 10dB step). We apply a standard cross-validation procedure by
randomly choosing 90% of the traces as the training data to detect
the remaining 10%. Table 1 shows our algorithm has very low error
rates (<5%). We also measure the detection latency and find it to
be less than 1s. This short delay enables V-Scope to conduct very
dense measurements, e.g., 10m separation in our deployment.
Accuracy of spectrum databases: We now evaluate the accuracy
of a commercial database from SpectrumBridge [4] in predicting
whitespace spectrum. The dataset is collected on a metro bus dur-
ing a two-week period, containing measurements at more than 1
million distinct locations over a 100 sq. km. area around Madi-
son, WI. All 31 channels in the UHF band were measured, among
which 8 channels had active TV broadcasts in part of the measured
area. We define two types of prediction errors, i.e., false positive
and false negative. A false positive is the case where the database
mis-predicts an occupied channel as whitespaces. The opposite is
a false negative. We find very low (<0.4%) false positive rates
in all these TV channels, which is similar to the prior report [3].
This demonstrates that current databases can faithfully protect TV
broadcasts. However, Figure 3 shows high false negative rates in
channels that have TV broadcasts. The worse channel (45) has 42%
area unnecessarily blocked for unlicensed usage.

To reveal the underlying reason, Figure 4 shows the locations of
false negatives in channel 45 from traces collected in one day. We
note most prediction errors are densely located at the east side of
the city. This is because at the east side stands several tall buildings
blocking TV signals. The database failed to capture this shadowing
effect, thus over-predicting the coverage of a TV broadcast.
Difference in channel quality: We compare the noise floor of dif-
ferent whitespace channels at each measured location. Figure 5
shows the CDF of maximum difference between the best channel
and the worst channel. We note that the median quality difference
can be 21dBm at same locations. This indicates that randomly se-
lecting a whitespace channel can lead to poor communication per-
formance. After examining spectrum waveforms, we identify large
variation is mainly due to microphone transmissions and small vari-
ation is caused by both microphones and adjacent channel leak-
age from TV broadcasts. Since the database can hardly predict the
signal strength from these mobile transmitters, spectrum measure-
ments are necessary in facilitating channel selection by whitespace
devices, and can be opportunistically performed by V-Scope.

Detected Digital Analog MIC
Groundtruth

Digital 94.9 0.7 4.4
Analog 0.5 97.4 2.1

MIC 1.2 0.7 98.1

Table 1: Accuracy of primary detection algorithms.

4. FUTURE WORK AND CONCLUSION
Developing measurement-driven models: The measurements col-
lected in V-Scope can be used to construct local propagation models
that can better capture a propagation environment. A set of geo-
statistical interpolation methods (e.g., regression, Kriging) can be
used to construct these local models, which we intend to explore.
Augmenting spectrum occupancy databases: V-Scope can be
leveraged to build a hybrid database, which uses measurements or
predictions from local models when available. There are a variety
of open challenges for building this database, e.g., the scalability
issue in storing local measurements, when to switch between lo-
cal and global models, and how frequent should measurements be
repeated.

In conclusion, we present the design and deployment of a vehicu-
lar sensing infrastructure called V-Scope. V-Scope is able to collect
large-scale measurements in TV whitespaces by using spectrum
sensors mounted on public vehicles. We are currently developing
approaches to augmenting the database with these measurements.
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