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Abstract— The regularization and output consistency behav-
ior of dropout and layer-wise pretraining for learning deep
networks have been fairly well studied. However, our under-
standing of how the asymptotic convergence of backpropagation
in deep architectures is related to the structural properties
of the network and other design choices (like denoising and
dropout rate) is less clear at this time. An interesting question
one may ask is whether the network architecture and input data
statistics may guide the choices of learning parameters and vice
versa. In this work, we explore the association between such
structural, distributional and learnability aspects vis-à-vis their
interaction with parameter convergence rates. We present a
framework to address these questions based on convergence
of backpropagation for general nonconvex objectives using
first-order information. This analysis suggests an interesting
relationship between feature denoising and dropout. Building
upon these results, we obtain a setup that provides systematic
guidance regarding the choice of learning parameters and
network sizes that achieve a certain level of convergence (in
the optimization sense) often mediated by statistical attributes
of the inputs. Our results are supported by a set of experimen-
tal evaluations as well as independent empirical observations
reported by other groups.

I. INTRODUCTION

The successful deployment of deep learning in a broad
spectrum of applications including localizing objects in im-
ages, analyzing particle accelerator data, converting speech
into text, predicting the activity of drug molecules, and
designing clinical trials [1, 2, 3, 4, 5] provides compelling
evidence that they can learn very complex concepts with
fairly minimal feature engineering or preprocessing. This
success is attributed to the idea of composing simple but
non-linear modules that each transform the lower levels
(raw or normalized data) into a representation at a more
abstract level [6, 7, 8]. While this high level representation
learning procedure is quite general, the problem at hand
may at least partly govern the choice of the architecture
and require certain modifications to the algorithm. Motivated
by various experimental considerations, several variants of
deep architectures and corresponding regularization schemes
have been developed [9, 10, 11, 12]. Complementary to
such algorithmic and empirical developments, there is also
a growing recent interest in better understanding the math-
ematical properties of these algorithms. Over the last few
years, several interesting results have been presented [13,
14, 15, 16, 17, 18, 19, 20]. While some of these address the
hypothesis spaces and the sets of functions learnable by deep
networks, the others analyze the parameter space learned
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via backprogapation. A more detailed discussion about these
works is included in Section I-A.

Our work is related to the foregoing recent results deal-
ing with a theoretical characterization of the properties of
deep networks. At the high level, we study the relationship
between the learnability of the network (convergence of pa-
rameter estimation in an optimization sense) and the structure
of deep networks. In particular, we are interested in a set
of questions that can better elucidate the interplay between
certain concepts that intuitively seem related, but for the most
part, have been studied separately. For instance, what is the
influence of the structural aspects of the architecture (number
of layers, activation types) on practical considerations such as
dropout rate, stepsizes, and so on? Can we guide the choice
of some of these parameters based on their relationship to
the others using information about the statistical moments
of the data? More generally, can we evaluate which network
converges faster, for a given learning problem? Or more
specifically, what is the best network structure and activation
functions for a given learning task? Understanding such
an interplay of the architecture and data statistics vis-à-
vis distinct learning schemes is necessary to complement
and even facilitate the continuing empirical successes of
deep networks, especially in regimes where deep networks
have not yet been thoroughly tested (like learning with
small datasets). Further, the interplay allows for relating the
input data statistics to deep network learnability. This may
enable constructing nonlinearities beyond convolution and
max-pooling (which remain important for computer vision
datasets), for instance, to tackle structured data like brain
images or genetic data where the sample size is a bottleneck.

Overview: The most commonly used procedure for param-
eter estimation in deep networks is mini-batch stochastic gra-
dients [21]. This involves deriving the average gradient from
the error computed on a few training instances, adjusting the
weights/parameters accordingly, and iterating until conver-
gence. Our general goal is to tie this procedure (to the extent
possible) to the network structure. In contrast to the other
recent results [19], we directly work with stochastic gradients
with no strong assumptions on the data/network structure
[16], which allows obtaining results that are quite generally
applicable. The starting point of our analysis is a recent work
by [22] dealing with the convergence of stochastic gradients
for arbitrary nonconvex problems using a first-order oracle.
We build upon and adapt this analysis by first addressing
single-layer networks and unsupervised pretraining, and then,
the more general case of multi-layer nets with dropout. More
importantly, apart from addressing the interplay of network
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structure and convergence, the algorithms we present, with
minor tweaks are easily deployable to the standard training
pipeline. Further, our bounds natively take into account the
standard regularization schemes like dropout and layer-wise
pretraining, making them potentially more useful in practice.

A brief description of our contributions are: (a) Based
on the idea of randomly stopping gradient updates from
[22], we present a framework for analyzing mini-batch
stochastic gradients on multi-layer deep networks, and prove
gradient convergence of deep networks learned via dropout
(with/without layer-wise pretraining). (b) Later, we derive
explicit relationships between the network structure, learning
parameters and input data statistics. Our results corroborate
many empirical studies, and may guide the choices of
network/learning hyper-parameters.

A. Related Work

The body of literature addressing backpropagation in neu-
ral networks, and deep networks in general, is very large and
dates back at least to the early 1970s. Hence, we restrict the
discussion only to those works that fall immediately within
the context of this paper. While there are a number of seminal
papers addressing variants of backpropagation, and stochastic
gradients, focusing on the convergence of neural networks
training [23, 24], a number of recent works [25, 26, 14, 19,
20] provide a fresh treatment of these problems and analyze
efficient learning schemes in the context of deep networks
specifically. The solution space of backpropagation in this
setting has also been addressed in recent results [27, 13],
providing new insights into the types of functions learnable
by deep networks [15, 16]. [20] have shown that better
generalization can be achieved by ensuring smaller training
times, while [14] describes in detail the non-convex land-
scape of deep learning objectives and the goodness of local
optima. Beyond these optimization related works, several
authors have independently addressed the regularization and
learnability aspects of deep networks. For example, [28, 11]
extensively analyzed dropout, [18] develops a probabilistic
theory of deep learning, and [17] studies the existence of
deep representations. [29] presents a generative model for
ReLU-type deep networks, and very recently, [30] studied
the equivalence of arbitrary deep networks. Complimentary
to these, [19] uses a tensor decomposition perspective.

II. PRELIMINARIES

A. Notation

Let x ∈ Rdx and y ∈ Rdy denote the input feature
vector and the corresponding output (or label) respectively.
Given multiple {x,y} ∈ X , the unknown input-to-output
mapping is modeled by a L-layered neural network (L-NN),
which comprises of the input (or visible) unit x, followed by
L−1 hidden representations h1, . . . ,hL−1 and the output (or
final) unit y [7]. The lengths of these L+ 1 representations
are d0 = dx, d1, . . . , dL−1, dL = dy respectively. Each
layer transforms the representations from the previous layer

by first applying an affine transform, followed by a non-
linearity (in general, non-convex and not necessarily point-
wise) [7, 8]. The layer-wise transformations are denoted
by Wl ∈ Rdl×dl−1 for l = 1, . . . , L. Using these, the
hidden representations are given by hl = σ(Wl,h

l−1)
for l = 1, . . . , L − 1 (h0 = x), and the output layer is
y = σ(WL,h

L−1), where σ(·) represents the non-linear
function/mapping between layers. For a 1-NN with no hidden
layers, we simply have y = σ(W,x) where W’s are the
unknowns. Note that the bias in the affine transformation is
handled by augmenting features with 1 whenever necessary.
We will restrict ourselves to point-wise sigmoid non-linearity
i.e., for any v ∈ Rd, σ(v) = { 1

1+exp(−vi)} (i = 1, . . . , d).
The distributional hyper-parameters of interest are µx =
1
dx

∑
j Exj and τx = 1

dx

∑
j E2xj , which correspond to the

average first moment and average squared first moment of the
inputs respectively (the average is across the dx dimensions).
For simplicity we assume x ∈ [0, 1]dx and y ∈ [0, 1]dy , and
so µx ∈ [0, 1] and τx ∈ [0, 1].

Consider the following minimization performed via mini-
batch stochastic gradients [21],

min
W

f(W) := Ex,yL(x,y;W) (1)

where L(·) denotes some loss function parameterized by
W and applied to data instances {x,y}. Denote η :=
{x,y} ∼ X . The mini-batch stochastic gradient update using
B samples η1, . . . , ηB is W←W− γG(η;W) where γ is
the stepsize. G(η;W) computed at W using the sample set
η1, . . . , ηB is given by

G(η;W) =
1

B

B∑
i=1

∇WL(ηi;W) (2)

Depending on L(·), (1) corresponds to the backpropaga-
tion learning of different classes of neural networks using
stochastic gradients. To address many such broad families,
we exhaustively develop the analysis for three interesting
and general classes of deep networks, starting with single-
layer networks, followed by unsupervised pretraining via
box-constrained denoising autoencoders [10], and finally
multi-layer deep networks with dropout [31]. Due to space
restrictions, extensions to the more complex convolutional
and recurrent networks including, fancier non-linearities like
rectified linear units or max-outs [32], are deferred to the
longer version of this paper. For each of these settings,
the loss function L(·) is defined as follows. Due to space
constraints we restrict the description of these classes to
minimum, and refer the readers to [7, 10, 31], and the
references there in, for further and extensive details.
• 1-NN: Single-layer Network

L(x,y;W) = ‖y − σ(Wx)‖2 (3)

• DA: Box-constrained Denoising Autoencoder

L(x,y;W) = ‖x− σ(WTσ(W(x ∗ z)))‖2 (4)

where W ∈ [−wm, wm]dh×dv . ∗ denotes element-wise
product and z is a binary vector of length dx. Given
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the denoising rate ζ, the binary scalars z1, . . . , zdx ∼
Bernoulli(ζ) are noise-indicators, such that, whenever
zi = 0, the ith element of the input x, xi is nullified. We
denote x∗z as x̃. [−wm, wm] is the box-constraint on the
unknowns W, which forces the learned representations to
not saturate around 0 and/or 1, and has been widely used in
variants of both autoencoder design and backpropagation
itself [10, 33]. The nature of this constraint is similar in
part to other regularization schemes like [26] and [25, 31].

• L-NN: Multi-layer Network

h0 = x; hl = σ
(
Wl(h

l−1 ∗ zl)
)

L(x,y;W) = ‖y − σ
(
WL(hL−1 ∗ zL)

)
‖2

(5)

where l = 1, . . . , L − 1. Recall the dropout scheme
in training deep networks which address the overfitting
problem [31]. In each gradient update iteration, a random
fraction of the hidden and/or input units are dropped based
on the (given) dropout rates ζ1, . . . , ζL [31]. Similar to
DA, the dropped out units for each layer are denoted
by a set of binary vectors z1, . . . , zL such that zli ∼
Bernoulli(ζl) for l = 1, . . . , L. Within each iteration, this
results in randomly sampling a smaller sub-network with
approximately

∏L
l=1 ζl fraction of all the transformation

parameters. Only these
∏L
l=1 ζl fraction of weights are

updated in the current iteration, while the rest are not,
and the re-sampling and updating process is repeated.
For simplicity of analysis we use the same dropout rate,
denoted by ζ, for all layers. With some abuse of notation,
we use Wk

l to represent the kth gradient update of the lth

layer transformation Wl.
– A L-NN may be pretrained layer-wise before supervised

tuning [7, 10, 33]. Here, the L − 1 hidden layers are
first pretrained, for instance, using the box-constrained
DA from (4). This gives the estimates of the L − 1
transformations W1, . . . ,WL−1, which (along with ys)
are then used to initialize the L-NN. This ‘pretrained’
L-NN is then learned using dropout as in (5). This is the
classical deep learning regime [7, 33], and we discuss
this case separately from the fully-supervised version
which has no layer-wise pretraining. Several studies
have already shown interesting empirical relationships
between dropout and the DA [28], and we complement
this body of work by providing explicit relationships
between them.

B. Roadmap

The gradient update in (2) is central to the ideas described
in this paper. By tracking the behavior of these gradients
as they propagate across multiple layers of the network,
with minimal assumptions on the loss function L(η;W), we
can assess the convergence of the overall parameter estima-
tion scheme while taking into account the influence (and
structure) of each of the layers involved. Since the updates
are stochastic, ideally, we are interested in the “expected”
gradients over a certain number of iterations, fixed ahead of
time. Motivated by this intuition, our main idea adapted from

[22], is to randomly sample the number of gradient update
iterations. Specifically, let N denote the maximum possible
number of iterations that can be performed keeping in mind
the memory and time constraints (in general, N is very
large). The stopping distribution PR(·) gives the probability
that kth iteration (k = 1, . . . , N ) is the last or stopping
iteration. We denote this randomly sampled stopping iteration
as R ∈ {1, . . . , N}, and so,

PR(·) :=
pkR∑N
k=1 p

k
R

where pkR = Pr(R = k) (6)

PR(·) can either be fixed ahead of time or learned from a
hyper-training procedure. An alternate way to interpret the
stopping distribution is by observing that pkR represents the
probability that the estimates (W’s) at the kth iteration are
desired final solutions returned by the learning procedure.

By proceeding with this random stopping mini-batch
stochastic gradients, and using some Lipschitz properties of
the objective and certain distributional characteristics of the
input data, we can analyze the three loss functions (3), (4)
and (5). The stopping iteration R is random and the loss
function in (1) includes an expectation over data instances
η = {x,y}. Therefore, we are interested in the expectation
of the gradients ∇Wf(Wk) computed over R ∼ PR(·) and
η ∼ X . Few of the hyper-parameters that play significant
role are, the variance of G(η;W) in (2) denoted by es,
eda and em for single-layer, pretraining and multi-layer
cases respectively, the distributional hyper-parameters µx
and τx, and the denoising/dropout rate ζ along with the
box-constraint. Apart from the convergence bounds, we also
derive sample sizes required for large deviation estimates of
W’s which marginalizes the influence of the random stop-
ping iteration. This leads to bounds on training time and the
minimum required training dataset size, which in turn can be
used to ensure certain level of generalization using existing
results [20]. The treatment for the simple case of single-layer
networks serves as basis for the more general settings. Due to
space constraints, the proofs for all the technical results are
included in an adjoining technical report at http://pages.
cs.wisc.edu/%7Evamsi/files/techrep-dlinterplay.pdf

Why gradient norm? We may ask if characterizing the
behavior of the gradients is ideal for the goal of charac-
terizing the interplay. There are more than a few reasons
why this strategy is at least sensible. First, note that it is
NP-hard to check local minima even for simple non-convex
problems [34] — so, an analysis using the norms of the
gradients is an attractive alternative, especially, if it leads to a
similar main result. Second, a direct way of approaching our
central question of the architecture and convergence interplay
is by analyzing the gradients themselves. Clearly, learnability
of the network would be governed by the goodness of
the estimates, which in turn depend on the convergence of
stochastic gradients. In most cases, this naturally requires
an asymptotic analysis of the norm, which, for nonconvex
objectives with minimal assumptions (like Lipschitz continu-
ity) was unavailable until very recently [22]. Third, working
with the gradient norm directly allows for assessing faster
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training times, which, as argued in [20], is vital for better
generalization. Alternatively, using the gradient convergence
as a surrogate for this training time allows for modulating
the network structure to improve generalization.

III. SINGLE-LAYER NETWORKS

Consider a 1-NN with the corresponding loss function
from (3). We learn it via the random stopping mini-batch
stochastic gradients (batch size B and R ∼ PR(k), k =
1, . . . , N ). This learning procedure is summarized in Alg.
1 in the supplemental technical report (see the link from
Section II); referred from here on as single-layer randomized
stochastic gradients, single-layer RSG. W1 and WR are the
initial and final estimates respectively, and γk is the stepsize
at the kth iteration. With no prior information about how
to setup the stopping distribution, one would simply choose
PR(k) := Unif [1, N ]. The first result summarizes the decay
of the expected gradients in single-layer RSG for this setting.
Df = f(W1) − f∗ is the initial deviation of the objective
from unknown optimum W∗.

Theorem III.1 (1-NN, Constant Stepsize). Consider a
single-layer RSG with no dropout and constant stepsize γk =
γ∀k. Let esγ = (1− 13

16γ), es =
13dxdy
256 and R ∼ Unif [1, N ].

The expected gradients are given by

ER,η(‖∇Wf(WR)‖2) ≤ 1

esγ

(
Df

Nγ
+
esγ

B

)
(7)

and the optimal constant stepsize is γo =
√

Bf(W1)
esN

Remarks: We should point out that the asymptotic behavior
of gradients in backpropagation, including variants with
adaptive stepsizes, momentum etc. have been well studied
[24, 23, 27, 13]. This aspect is not novel to our work
specifically, as also described in Section I. However, to
our knowledge, relatively few ‘explicit’ results about the
convergence rates are known; although imposing restrictions
on the objective does lead to improved guarantees [35]. This
may be because of the lack of such results in the numerical
optimization literature in the context of general nonconvex
objectives. The recent result in [22] presents one of the first
such results addressing general nonconvex objectives with
a first-order oracle. Consequently, we believe that Theorem
III.1 gives non-trivial information and, as we will show in
later sections, leads to interesting new results in the context
of neural networks. We now explain (7) briefly.

While the first term corresponds to the goodness of fit of
the network (showing the influence of Df ), the second term
encodes the network degrees of freedom (es), and is larger
for big (or fatter) networks. Clearly, the bounds decreases as
N (and/or B) increase, and it is interesting to see that the
effect of network size (dxdy) is negligible for large batch
sizes. The second term in (7) induces a kind of ‘bias’, that
depends on es and B. As B increases, (2) will be much
closer to a full-batch gradient update, there by reducing this
bias (a classical property of mini-batch stochastic gradients
[36, 26]). Further, this term indicates that larger batch sizes

are necessary for fatter networks with large dx or dy . One
caveat of the generality of (7) is that it might be loose in the
worst case where Df ∼ 0 (i.e., when W1 is already a good
estimate of the stationary point). esγ increases the overall
bound as γ increases. The optimal stepsize γo in Theorem
III.1 is calculated by balancing the two terms in (7), using
which we see that the expected gradients are O

(
1√
N

)
for a

given network and O(
√
dxdy) for a given N.

We see from the proof of Theorem III.1 that (see tech-
nical report), allowing constant γks directly corresponds to
choosing uniform PR(·) i.e., they are equivalent in some
sense. Nevertheless, using alternate PR(·) in tandem with
constant γks results in different sets of constants in (7), while
the overall (high-level) dependence on N and network size
dxdy would remain the same. Beyond constant γks, the most
common setting is to use decaying γks. The corresponding
result is in Theorem III.2 with γk = γ

kρ (for some ρ > 0),
and HN (θ) =

∑N
i=1

1
iθ

is the generalized harmonic number.

Corollary III.2 (1-NN, Decreasing Stepsize). Consider a
single-layer RSG with no dropout and stepsizes γk = γ

kρ . Let
es =

13dxdy
256 and the probability of stopping at kth iteration

pkR = γk(1− 13
16γ

k). The expected gradients are given by

ER,η(‖∇Wf(WR)‖2) ≤ 16

3HN (ρ)

(
Df

γ
+
esγHN (2ρ)

B

)
(8)

Remarks: Whenever ρ ≈ 0, the stepsizes are approx-
imately constant, and we have HN (ρ) ≈ N (assuming
that γ < 1). Here the bound in (8) is at least as large
as (7) making the two results consistent with each other.
The dependence of ρ, and its interaction with N and other
hyper-parameters, on the decay of the expected gradients is
reasonably complex. Nevertheless, broadly, as ρ increases,
the bound first decreases and eventually increases becoming
more looser. This trend is expected. To see this, first observe
that large ρ implies strong decay of the stepsizes. For suffi-
ciently small γ, this results in stopping iteration probability
pkR that decreases as k increases (refer to its definition from
Theorem III.2), i.e., large ρ results in R� N . The bound is
implying the trivial fact that the expected gradients are going
to be large whenever the gradient updating is stopped early.

Overall, these observations clearly imply that (7) and (8)
are capturing all the intuitive trends one would expect to
see from using stochastic gradients, in turn, making the
analysis and results all the more useful. Lastly, it may
not be appropriate to bias R to be far smaller than N .
One can relax this and instead use arbitrary PR(·) that
is monotonically increasing, i.e., pkR ≤ pk+1

R ∀k, there by
pushing R towards N with high probability. A similar decay
of gradients (like Corollary III.2) result can be obtained for
this case, but we omit it from this shorter version of the paper.
Theorem III.1 and Corollary III.2 describe convergence of
1-NN for one run of stochastic gradient. In practice, one
is more interested in a large deviation bound over multiple
runs, especially because of the randomization over η and R
(see (7)). We define such a large deviation estimate, using

491



WR1 , . . . ,WRT computed from T > 1 independent runs of
single-layer RSG, and compute the minimum N required to
achieve such an estimate.

Definition 1 ((ε, δ)-solution). Given ε > 0 and 0 <
δ � 1, an (ε, δ)-solution of a single-layer net-
work is given by arg mint ‖∇Wf(WRt)‖2 such that
Pr
(
mint ‖∇Wf(WRt)‖2 ≤ ε

)
≥ 1− δ.

Corollary III.3 (Computational Complexity). To compute
a (ε, δ)-solution for single-layer RSG with no dropout, opti-
mal constant stepsizes and PR := Unif [1, N ], we need

N(ε, δ) ≥ 4f(W1)es

Bδ2/T ε2
(1 + δ̄)2 , δ̄ =

13Bεδ1/T

32es
(9)

Remarks: To illustrate the practical usefulness of this
result, consider an example network with dx = 100, dy = 5
and say f(W1) ∼ dy . For a (0.05, 0.05)-solution with
T = 10 runs and a batchsize B = 50, (9) gives N >
7.8×103. If the number of epochs is C = 200, then under the
(reasonable) assumption that SC ≈ BN (where S is sample
size), this leads to ∼ 2000 instances. Clearly, (9) implies
that N increases as the network size (dxdy) and f(W1)
increase, and for obtaining good large deviation estimates
(i.e., ε, δ ≈ 0), the number of required iterations is large.
Corollary III.3 does not use any information about the input
data statistics (e.g., moments), and so expectedly, (9) may
overestimate N and S. Later, we make use of such data
statistics to analyze networks with hidden layers, while the
rest of the recipe extends from the 1-NN setting.

Choosing PR(·): An important issue in the results pre-
sented is the choice of PR(·). Firstly, Theorem III.1 and
Corollary III.2 cover the typical choices of stopping criteria.
Secondly, from a practical stand-point, once can use multiple
choices of PR(·) from a dictionary of distributions P , and
choose the best one via some cross-validation. For instance,
the best PR(·) ∈ P can be selected based on a validation
dataset either by directly computing the empirical average of
the gradients, or using alternate measures like generalization
performance. This is valid because several recent results
justify using number of training iterations as a ‘surrogate’
for the generalization performance [20]. Further, the analysis
also allows for probing the nature of the R after fixing PR(·)
i.e., depending on the Hessian at Rth iteration, gradient
updates may be continued if needed, and the technical results
presented here would still hold for this post-hoc increase in
iterations. The longer version of the paper will have extensive
analysis about the influence and appropriate choices of PR(·)

IV. UNSUPERVISED PRETRAINING

Building upon the results from III.1–III.3, we now con-
sider single-layer networks that perform unsupervised learn-
ing via box-constrained DA [10] (see the loss function from
(4)). Unlike the single-layer setting, because of the constraint
on W, we will now be interested in the expected projected
gradients ∇Wf̃(W), which simply are the Euclidean pro-
jections of ∇Wf(W) on W ∈ [−wm, wm]dh×dx . Alg. 2 in
the supplemental technical report summaries this DA RSG

procedure. To ensure broader discussion of the interplay
(of network structure and learning) we restrict ourselves to
the case of constant γks with R ∼ Unif [1, N ]. We point
out that the trends inferred from our results would still be
appropriate for alternative stepsizes and PR(·). The following
result bounds ∇Wf̃(W) for DA RSG. eda and edaγ encode
the network structure and learning constants.

Theorem IV.1 (DA, constant stepsize). Consider a DA RSG
with W ∈ [−wm, wm]dh×dx . Let

eda =
dxdh
16

[
1 +

ζdxwm
4

µx +

(
5ζ

16
− ζ2

4

)
(ζdxwm)2τx

]
(10)

and Uda denote the Lipschitz constant of ∇Wf(W) with
loss function from (4). Using constant stepsize γ < 2

Uda and
denoting edaγ = 1 − Uda2 γ, the expected projected gradients
are

E(‖∇Wf̃(WR)‖2) ≤ Df

Nγedaγ
+
eda

B

(
1 +

1

edaγ

)
(11)

and the optimal stepsize is γo ≈
√

2BDf
UdaedaN

Remarks: Similar to (7) from Theorem III.1 for 1-NN,
the above result in (11) combines the contributions from the
output goodness of fit (Df ), the number of free parameters
(dhdx) and the stepsize choice (γ, edaγ ). All the remarks from
Theorem III.1 would still apply here – Df is balanced out
by the number of iterations N , the second term involving
the variance of gradients (eda) and the batchsize controls
the ‘bias’ from the network’s degrees of freedom. However,
unlike 1-NN, here the dependence on the network structure
is much more involved. The input and hidden layer lengths
do not contribute equally (see eda from (10)) which can be
partly explained by the asymmetric structure of the loss (refer
to (4)). For smaller constraint sets i.e., small wm, and hence
small eda, we expect the projected gradients to typically
have small magnitude, which is clearly implied by (11). In
practice, wm is reasonably small [37] and, in general, Wij’s
have been shown to emulate a ‘fat’ Gaussian with mean
centered around zero [38].

Denoising Rates versus Network structure: (10) and its
resulting structure in (11) seem to imply a non-trivial inter-
play between the network size dhdx, the data statistics (via
µx and τx) and the denoising rate ζ. Here we analyze this for
few commonly encountered cases. A trivial observation from
(11) is that it is always beneficial to use smaller (or thinner)
networks, resulting in faster decay of expected gradients as
iterations increase. This trend, in tandem with observations
from [20] about generalization imply the superiority of
thinner networks – [39] and others have already shown some
empirical evidence for this behavior. As was seen with 1-
NNs, fatter DAs will need large batchsize.

Small data moments; (µx ≈ 0, τx ≈ 0) In this trivial
case, there is nothing much to learn. eda will be as small as
possible, resulting in faster convergence, and the influence
of ζ on (11) is nullified as well. Hence, independent of the
complexity of the task, there is no necessity for using large

492



ζs whenever the input data averages are small. The only
contributing factor is the network size, and clearly, smaller
networks are better.

Small denoising rate; (0� ζ < 1) Here x ∗ z ≈ x, and
the noise in gradients ∇WL(η;W) is almost entirely from
data statistics. Within this setting,
• Small µx and τx leads to faster convergence. As they

increase, large batches and N are needed.
• For large µx and τx, smaller stepsizes and input length

(dx) are required to control (11). In the pathological case
where µx, τx ∼ 1 and ζ ≈ 1, the bounds may be too loose
to be relevant.

Independent of how small (11) is, large ζ always leads
to overfitting and poor hidden representations [10]. (11)
predicts this from the convergence perspective. To see this,
observe that large ζ (and mid-sized network) implies large
expected gradients, and hence, the training time N needs
to be reasonably large. [20] show that networks with large
training times may not generalize well.

Large denoising rate, (0 < ζ � 1) Here eda ≈ dxdh
16 . The

influence of data statistics is completely nullified by large
corruptions (i.e., small ζ, see (4) and the last two terms in
(10)). Unless µx, τx are unreasonably large the convergence
is almost entirely controlled by ζ, which in turn would be
faster for thinner networks with large batchsize.

Beyond these prototypical settings, for small stepsizes γ,
edaγ will be as large as possible making the bound tighter.
Clearly, the influence of both data moments and denoising
rates may be mitigated by increasing B and N . The above
described cases are some of the widely used settings, but
the interplay from (11) and (10) in Corollary IV.1 is much
more involved. The trends and interpretations derived here
will be useful in understanding multi-layer networks. Recall
the discussion about large deviation estimates from Corollary
III.3. A similar such result relating N to the number of
instances S and B can be obtained for DA as well, however,
due to space restrictions we omit it here.

V. MULTI-LAYER NETWORKS

We now extend our analysis to multi-layer networks. Using
Theorem IV.1 as a starting point, we first consider a L-NN
that performs layer-wise pretraining using DAs from Sec-
tion IV before backpropagation based supervised finetuning.
Since the layer-wise pretraining uses box-constraints, we are
still interested in the expected projected gradients, accumu-
lated across all the layers. The resulting bound allows us
to incorporate feature dropout (during the supervised tuning
stage) in both the input and hidden layers later in Section
VI. Recall the discussion about L-NN learning mechanisms
and the corresponding loss functions (see (5)) from Section
II. A consequence of this general result is a clear and
intuitive relation between dropout based supervised learning,
layer-wise pretraining and other structural and distributional
parameters. Alg. 3 in the technical report presents this
multi-layer RSG procedure. For notational convenience we
collectively denote the final estimate WR

1 , . . . ,W
R
L simply

as WR in the results.

A. Layer-wise Pretraining

The following result shows the decay of expected pro-
jected gradients for multi-layer RSG. Df here denotes the
initial deviation of the objective after the L − 1 layers
have been pretrained. eml for l = 1, . . . , L encode the
structural and learning hyper-parameters of the network, and
we assume that all the hidden layers are pretrained to the
same degree i.e., each of the L− 1 layers are pretrained to
a given (α, δα) solution.

Corollary V.1 (Multi-layer Network). Consider a multi-
layer RSG with no dropout learned via layer-wise box-
constrained DA pretraining followed by supervised back-
propagation with constant stepsizes γl∀l. Let em1 =
γ1
4 d0d1d2w

l
m, eml = γl

4 dl−1dldl+1w
l
m and emL =

13dL−1dLγ
2
L

256 . Whenever γl < 20
αdl+1wlm

, and the hidden layers
are pretrained for a (α, δα) solution (as defined in Definition
1), we have

E‖∇Wf̃(WR)‖2 ≤ 1

emγ

(
Df

N
+

1

B
(emL + α

L−1∑
l=1

eml )

)
(12)

where emγ = min
{
γL − 13

16 (γL)2, γl − αdl+1w
l
m

20 (γl)
2
}

Remarks: The structure of (12) is similar to those from
(7) and (11). Hence, the trends suggested by the interplay
of Df , L and d0, . . . , dL, stepsizes, N and B are similar to
those observed from the Theorems III.1 and IV.1. However,
as expected, the interactions are much more complex because
of the presence of multiple layers. For fixed network lengths
and stepsizes, eml are constants, and encode the variance
of gradients within the lth layer and the corresponding
free parameters. As network size increases, these constants
increase proportionally, there by requiring large N and B.
The observations about thinner networks being superior to
fatter ones can also be seen from eml s, and (12) suggests
that the network depth should not be more than necessary.
Such a minimum depth would depend on the trade-off of
convergence (from (12)) and generalization [20, 7].

The influence of layer-wise DAs are concealed within
α and δα and the corresponding Df . A small α in (12)
(which controls the goodness of pretraining) suggests that the
influence of the h1, . . . ,hL−1 on backpropagation tuning is
very small. In such a scenario, the tuning is mostly confined
to mapping hL−1 to the outputs y – which is not necessarily
a good thing, and one would want to allow for all hls (and
Wls) to change if needed [10, 40]. On the other hand, a
large Df controls the alternate regime where hls are not
“good enough” to abstractly represent the input data. In such
a case, aggressive tuning is needed, as suggested by (12),
with large N and B. Overall, (12) implies that the goodness
(or badness) of pretraining will be passed on to the tuning
stage convergence via α and Df . As suggested earlier, these
trade-offs can be related to the training times (proportional to
N , derived from generalization [20]). Recently, [41] showed
empirical evidence that aggressive pretraining (especially in
higher layers) results in hls that may not be transferable

493



across multiple arbitrary tasks. Theorem V.1 suggests the
same – α (and Df ) should not be reasonably small to allow
for aggressive tuning to arbitrary learning tasks. It is clear
from (12) that we can control the convergence of multi-
layer nets by preceding the backpropagation tuning with
layer-wise pretraining. There is already very strong empirical
evidence for the generalization performance of pretraining
[33, 10, 40]. Corollary V.1 complements these studies with
guaranteed convergence of gradients.

VI. MULTI-LAYER WITH DROPOUT

Using ReLUs and dropout, [42, 2, 43] and others have
shown that whenever large amounts of labeled data is avail-
able, pretraining might not be necessary to achieve good
generalization, clearly suggesting an underlying relationship
between dropout and layer-wise pretraining. The following
result summarizes the convergence of expected projected
gradients in this general setting where the L − 1 layers are
not pretrained, and instead dropout is induced in input and all
hidden layers, and supervised backproporagion is performed
directly with random initializations for W1

1, . . . ,W
1
L [31].

Here, ζ denotes the dropout rate for all layers i.e., w.p. 1−ζ a
unit is dropped and all parameters corresponding to this unit
are not updated (see Section II, and (5)). It is reasonable to
expect some interaction between α (the pretraining goodness,
see Corollary V.1) and ζ.

Corollary VI.1 (Pretraining vs. Dropout). Given the input
and hidden layer dropout rate ζ, for learning the L-layered
network from Corollary V.1 that is pretrained to a (α, δα)
solution, we have

ER,η‖∇Wf̃(WR)‖2 ≤ Df

Nemγ ζ
2

+
1

emγ B

(
emL
ζ

+ αemL−1 + αζ

L−2∑
l=1

eml

) (13)

Remarks: This is our most general result. Although, the
schools of layer-wise pretraining and dropout have been
studied independently, from our knowledge, this is the first
theoretical result that explicitly combines these two regimes
in a systematic way. Recall that em1 , . . . , e

m
L encode L-

NN’s degrees of freedom. Hence, the first term in (13)
corresponds to the outputs’ goodness-of-fit, while the other
terms represent the effective ‘reduction’ in the number of free
parameters because of pretraining. Independent of ζ, (13)
clearly implies that pretraining always improves convergence
(since α will reduce). [9, 31] have shown empirically that
this is especially true for improving generalization. To better
interpret (13), consider the two standard mechanisms —
dropout learning with and without layer-wise pretraining.
Given L, d0, . . . , dL and stepsizes (γ1, . . . , γL), em1 , . . . , e

m
L

from Corollary V.1 are constants. We assume Df (which
depends on pretraining) to be reasonably large because the
loss is calculated over predicted vs. observed ys (see (5)).

A. Pretraining + Dropout
• If L-NN is pretrained to a small α, the last two terms

in (13) are already as small as they can be, and the

rest will dominate them. For a given B and N , the best
choice for ζ will then be ≈ 1 i.e., very minimal or no
dropout. This is essentially “good” layer-wise pretraining
followed by supervised fine-tuning, which is known to
work well [44, 33]. Hence, (13) presented a succinct
and clear theoretical argument for the classical revival of
deep networks from the perspective of convergence (and
eventually generalization).

• Alternatively, if the pretraining is poor (i.e., large α), and
we still operate in the ζ → 1 regime, the fine-tuning will
update the full network in each iteration. This would result
in overfitting – the fundamental argument that necessitates
dropout (empirically made clear in [31, 28]). Hence one
needs to decrease ζ, resulting in slower convergence
because the first two terms will rapidly increase as ζ
decreases. This is expected since dropout essentially adds
‘noise’ to the solution path, forcing backpropagation to
work with a subset of all activations [11, 28], and overall,
involving more work.

B. Only Dropout

With no pretraining, there is a complex trade-off between
the terms involving ζ in (13). The optimal ζ will need to
balance out the variance from the hidden layers (the last
term) and the goodness of output approximation (first and
second terms). For certain values of Df and eml ’s, the best
ζ will be ∼ 0.5, which was recently reported as the best
rate as per dropout dynamics [11]. Large values of B and N
will ensure that the bound is small. Large N , in turn, implies
larger training dataset size (see the setup from Corollary III.3
and V.1). Putting it another way, if large amounts of labeled
data is available, one can by-pass pretraining completely
and only perform supervised backpropagation forcing all the
terms in (13) to reduce with reasonably large B and number
of epochs. This was the argument put forth by the recent
school of deep learning [2, 43] – fully supervised dropout
with very large amounts of training data – where pretraining
has been for the most part neglected completely.

Overall, Corollary VI.1 corroborates many existing ob-
servations about pretraining and dropout, and provides new
tools to guide the learning procedure, in general. It guaran-
tees convergence, and allows us to explicitly calculate the
best possible settings for all hyper-parameters, to achieve
a certain level of generalization or training time [20]. A
more extensive discussion about the outcomes and insights
from the interplay in Corollary VI.1 will be included in the
longer version of the paper. The three algorithms presented
in this work are only minor modifications over the classi-
cal autoencoder and backpropagation pipeline, and so, are
straightforward to implement.

VII. EXPERIMENTS

We evaluate the bounds in (11), (12) and (13) using
MNIST, CIFAR-10, CALTECH-101 and a brain imaging
dataset. Figures 1 summarizes a fraction of the findings
on CIFAR-10. The longer version of the paper will have
complete set of evaluations. Figure 1(a) shows the expected
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Fig. 1. Expected gradients (CIFAR) for pretraining (a,b) and multi-layer net (c,d). (e) Influence of dropout. y-axes are scaled to maximum. B = 100.

gradients vs. network sizes. As predicted in (7), the con-
vergence is slower for large networks. Visible and hidden
layer lengths have unequal influence on the convergence (see
remarks of Corollary IV.1). The influence of denoising rate
and wm is in Figure 1(b). The y-axis shows the expectation
of projected gradients on [−wm, wm], and as suggested by
(11), the convergence is faster for small wms. It is interesting
that the choice of ζs has an almost negligible influence
(refer Figure 1(b), for a given wm. Figure 1(c), shows the
interaction of network lengths vs ζ, and as observed from
Figure 1(a), the networks lengths dominate the convergence
with visible layer length being the most influential factor. The
plots in Figure 1 correspond to the data moments µx ∼ 0.5
and τx ∼ 0.3, implying that the terms in eda (refer (10))
are non-negligible. Figure 1(d) shows the influence of the
network depth. Clearly, the expected gradients are influenced
more by layer lengths than the number of layers itself (12).
Figure 1(e) shows the effect of changing the dropout rate in a
3-layered network. Although the overall effect is small, the
convergence is slower for very small (red curve) and very
large (cyan, magenta curves) ζs (see (13)).
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