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Abstract: Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-
weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substan-
tial interest in aging, and age-related neurological disorders such as Alzheimer’s disease (AD). This is
mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in
the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within
and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt
two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using tex-
ture features engineered by texton filter banks, we provide a suite of effective segmentation methods for
this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD
risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure
of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associ-
ated with dementia in older adults and parental family history in cognitively normal subjects. We pro-
vide an open source library for hyperintensity detection and accumulation (interfaced with existing
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neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies.
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INTRODUCTION

Focal white matter (WM) changes associated with aging
and diseases of the central nervous system are common
and are often labeled as white matter hyperintensities
(WMH) because of their bright appearance on transverse
relaxation (T2-weighted) or fluid attenuated inversion
recovery (FLAIR) magnetic resonance (MR) image sequen-
ces [Goldberg and Ransom, 2003, Maillard et al., 2012]. In
the context of normal aging as well as cerebrovascular dis-
eases and neurodegenerative disorders, such as Alzhei-
mer’s disease (AD), WMH may reflect ischemic injury and
contribute to cognitive decline in aging [Au et al., 2006;
Yoshita et al., 2006] and portend progression to dementia
due to AD [Brickman et al., 2012; Carmichael et al., 2010;
Debette et al., 2010]. They may be an early indicator of
white matter neurodegenerative change, amyloid angiopa-
thy, or be primarily ischemic in nature [Maillard et al.,
2012]. Their presence in the context of AD, particularly
when cognitive symptoms are mild, is variable and their
relative contribution to explaining the mechanism of cog-
nitive loss in AD remains unclear [Brickman et al., 2012;
Jellinger, 2002]. In contrast, in the context of multiple scle-
rosis (MS) or other demyelinating disease, the presence of
hyperintensities is typically viewed as pathognomonic,
representing inflammatory lesions, and may be indicative
of disease phase and predictive of cognitive outcome [Fili-
ppi et al., 2011]. Because WMH are commonly observed in
aging individuals that are ostensibly cognitively normal, it
has been proposed that these may be indicative of subclin-
ical cerebrovascular disease [Luchsinger et al., 2009]. Fur-
ther, it has been proposed that the extent of WMH burden
adversely affects an individual’s brain resilience to other
disease such as AD [Brickman et al., 2011; Meier et al.,
2012], a devastating neurodegenerative disorder affecting 1
in 10 older adults over age 65. Thus, the careful quantifica-
tion of WMH may improve the prediction of AD, and a
better understanding of WMH occurrence may yield
mechanisms to prolong brain health in people who acquire
additional brain disease. For this reason, in the last few
years, efforts seeking to precisely extract and quantify
WMH volume and tie their occurrence to the temporal
course and severity of AD and related disorders have
attracted substantial interest in the neuroimaging commu-
nity [Debette and Markus, 2010; Ramirez et al., 2011; Smith
et al., 2011; Yoshita et al., 2006].

At its core, the WMH extraction task described above is
an image segmentation problem, a fundamental topic of
research in computer vision. A number of recent articles

have successfully applied vision algorithms for identifying
WMH [Admiraal-Behloul et al., 2005; Anbeek et al., 2004;
Geremia et al., 2011; Kruggel et al., 2008; Ong et al., 2012;
Schmidt et al., 2011], albeit this body of literature focuses
overwhelmingly on identifying MS pathologies from the
images. For the MS application, these methods have been
validated on benchmark datasets, mostly yield satisfactory
performance, and have been translated into end user soft-
ware [Schmidt et al., 2011] (http://www.applied-statistics.
de/lIst.html). While in principle, these algorithms should
be extendable to the task of identifying hyperintensities
independent of the disorder under study, it is not obvious
whether existing algorithms will perform sufficiently well
when the lesions are small, diffuse, or otherwise irregular
in shape or intensity, which are characteristics of subtle or
emerging ischemic lesions seen in the context of cerebro-
vascular disease and aging. Even among WMH identified
in a single image, we empirically find that there may be
sufficient heterogeneity in characteristics that leads to
unsatisfactory misclassification of some small or diffuse
lesions using the existing standard methods for reasons
that go much beyond mere parameter adjustment.

This article is motivated by the problem described
above, and focuses on new strategies for reliable identifica-
tion and extraction (i.e., segmentation) of WMH in studies
centered on mild cognitive impairment (MCI), AD, cardio-
vascular risk, and other aging-related disorders. To put
this goal in context, we must highlight its need relative to
the state of the art in image processing and certain proper-
ties of this specific application. First, observe that segmen-
tation algorithms from computer vision, in general, are
fundamentally designed to detect globally conspicuous or
salient regions of interest from natural images [Forsyth
and Ponce, 2011]. This assumption applies to most widely
used segmentation functions such as Markov Random
Fields [Boykov et al., 2001], Normalized Cuts [Shi and
Malik, 2000], Random Walks [Grady, 2006], as well as spa-
tial adaptations of clustering objective functions [Comani-
ciu and Meer, 2002]. WMH in AD may be small in size
and their structure is occasionally elongated (spatially
aligned with lateral ventricles). Further, they may not have
a strong image gradient which makes visual identification
of these regions from the background quite problematic.
In summary, while this is still a segmentation task, it does
not satisfy the basic assumptions that make standard seg-
mentation objectives directly applicable. As the regions of
interest become less salient and difficult to pick out (espe-
cially for a nonexpert), the use of common segmentation
algorithms incrementally becomes more problematic. Note
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that it is not the effectiveness of these “unsupervised” seg-
mentation functions per se, rather their appropriateness
for the task at hand.

In this article, we argue that accurate segmentations of
WMH in AD imaging studies can significantly benefit
from user supervision provided a priori in the form of
training data (i.e., expert indications)—to specify character-
istics of the regions we seek to extract. A few explorations
of this idea have been undertaken before [Gaonkar et al.,
2010; Lao et al., 2008], however, these works made limited
use of only image intensity and histogram based features.
It turns out that features based on rich textural and percep-
tual (structural) characteristics of WMH, to be presented
shortly, yield significant benefits beyond intensity features,
and provide reliable detection mechanisms that generalize
well even when the underlying imaging protocol changes.
We argue that with a suitable set of image processing based
features that extract this structural information, a state of the
art supervised algorithm can “learn” the relevant character-
istics to be able to identify/classify WMH and non-WMH
pixels in new unseen MR images in a reliable manner.
When actualized, this allows incorporating expert knowl-
edge within segmentation to significantly improve sensitiv-
ity to hyperintensities and reproducibility of detection.

The proposed methods are based on training data that
was generated via interactive hand indications by an
expert. A suite of image processing steps (described in the
next section) are then adopted to distill various perceptual
summaries of WMH regions. Utilizing these measures as
features within a supervised framework, the core learning
module models classifiers trained to distinguish between
WMH and non-WMH pixels. On unseen MR images, the
classifiers can accurately segment WMH regions in a com-
pletely automated manner. We present empirical evidence
showing the efficacy of the proposed methods on three
distinct medium sized datasets, and compare it with the
state of the art. The key contributions of this article are:

a. It is demonstrated via an extensive set of experiments
that reliable segmentation of white matter hyperintensities
in AD risk studies is possible via adaptations of super-
vised learning methods on an appropriately constructed
set of features. The training process is simple to execute.

b. An easy to use software library (interfaced with SPM12,
a widely used neuroimaging tool) is provided, for adoption
of these segmentation methods within neuroimaging analy-
ses in AD as well as studies focused on other disorders.

This article is organized as follows. Methodology section
briefly outlines the theory of the supervised learning mod-
els adopted here—specifically, Support Vector Machines
(SVM) and Random Forests (RF). This is followed by the
various image processing modules that comprise the
actual detection process. Experimental Setup section evalu-
ates segmentation results of the two models, SVM and RF,
against training data (an existing lesion segmentation tool
serves as a baseline for these comparisons). We also

present results of a statistical analysis of WMH quantifica-
tions relative to several clinically-based cardiovascular risk
biomarkers. Discussion section interprets and sheds addi-
tional light on our empirical findings. Also we briefly
summarize the features of the open source library accom-
panying this manuscript, and finally Conclusion section
concludes the article.

METHODOLOGY

Before going into the details of our detection framework,
we first provide a high level overview of the key modules
involved in segmentation process. We formulate the task
of White Matter Hyperintensities (WMH) segmentation as
a supervised inference problem. In other words, prior
knowledge of the physical characteristics of these hyperin-
tensities is incorporated into our segmentation algorithm
via a learning procedure on a small set of input images
(using available expert indicated segmentations). We con-
struct texton based features from the imaging data, and
then learn a classifier (based on Support Vector Machines
and Random Forests) which assigns varying weights to
those features that best discriminate WMH and non-WMH
voxels. With a learned model in hand, our segmentation
task boils down to evaluating a probability estimate of
whether a voxel is WMH or not, given the parameters of
the classifier. Both models offer distinct advantages in the
context of estimating the conditional probabilities—shortly,
we will discuss their relative benefits before moving to
evaluating their performance.

Preprocessing

An important physical characteristic of WMH is they
appear to be hyperintense on T2-fluid attenuated inversion
recovery (T2-MR) images. On the other hand, they tend to
be fairly dark on T1-weighted (T1-MR) scans as shown in
Figure 1. This suggests that using both T1-MR and T2-MR
(i.e., multichannel information) to model WMH will be
beneficial. To do this, we first coregister T2-MR to T1-MR
and then apply multichannel tissue segmentation to extract
GM, WM, and CSF partial volume estimates (PVE).
SPM12b (http://www filion.ucl.ac.uk/spm) was used to
construct the PVEs. Bias correction to the coregistered T2-
MR is applied before constructing a region of interest (ROI)
using WM PVE. It has been observed that several regions
lying on the boundaries of ventricles are miss-segmented as
GM and/or CSF. Hence we extract a ventricular template
from CSF PVE and adjust the ROI to include these periven-
tricular regions. Figure 2 gives a schematic overview of the
preprocessing pipeline. The input to our detection module
is the extracted ROL

Feature Extraction

To characterize the low-level localized context around
each voxel, we extract texture and intensity-variation
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Figure I.
T1 and T2 images of two subjects showing varying visual characteristics of lesions in the different

modalities. [Color figure can be viewed
wileyonlinelibrary.com.]

based features using standard image processing filtering
operations. In particular, we use texture filters referred to
as textons [Leung and Malik, 2001; Malik et al., 1999]
which are an ensemble of low, high and band pass spatial
filters. A low pass filter extracts smoothness of intensities
across voxels, band pass filters encode the partial volume
effect, whereas high pass and edge filters pick up bounda-
ries and edges. Overall, the set of filters we use are (a)
baseline low-pass filter; (b) baseline high-pass filter; (c)
ensemble of band-pass filters; (d) edge filter. All these

in the online issue, which is available at

responses are concatenated into a feature vector (con-
structed for each voxel). Figure 3 gives an overview of this
feature construction process. For each voxel v in the ROI, a
neighborhood “patch” I(v) is extracted. This three-
dimensional matrix is then convolved with a kernel (corre-
sponding to the texton filters above). Gaussian and Lapla-
cian kernels are used for low and high pass filters
respectively. Band-pass filters constitute a “pyramid” of
difference of Gaussians and Laplacians [De Bonet, 1997;
Leung and Malik, 2001; Malik et al., 1999]. The edge filter

* 4222 ¢


http://wileyonlinelibrary.com

¢ WMH in the Prediction of AD Risk and Aging Studies ¢

Tissue

Extraction

Correction

Ventricle
Extraction

Figure 2.
Preprocessing pipeline. WM and CSF PEVs from T1-MR and coregistered (and bias corrected)
T2-MR are used to construct the ROI. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

used Sobel detection maps Lee et al. [1987]. The concaten-
ated response to all these filters (referred to as textons)
characterize the voxel intensities, localized intensity varia-
tions as well as the texture of the patch I(v). Depending on
the number of texton filters n, and the size of patch Lv ,

we construct a ngLv length feature vector for each voxel of
interest. Figure 4 illustrates texture-based feature responses
for WMH voxels and non-WMH voxels (randomly selected
across several image slices). Compare the strong inter-
cluster similarities between the filter responses of WMH

I(v) ——4 Local Voxel Intensities I_’[l

Texton Filter Bank

N

I Baseline Low + High Pass Filters I.—-—. (f_) f}) J,-__,

Band Pass Filters

Gaussian + Laplacian Pyramid f'l“__ T /13)

. f(] $ : = é(v)

| Sobel Edge Filter I‘_ fl(l f
: J16

Figure 3.
Feature extraction. For each vowel, v, a patch I(v) is used to construct the features. f| gives the
intensity variation inside I(v) and f; -, fi¢ represent the textural information. The final feature
vector is ¢(v). By its contribution ¢(v) is 16 times the number of voxels in I(v). Note that I(v) is
three-dimensional. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 4.
Filter bank responses. Low pass, high pass, and band pass texton responses for a set of 8,000
voxel centers (equally split between WMHSs and non-WMHs) depicting a definitive structure of
WMHs (the blue cluster) versus the more diffuse and irregular fabric of non-WMHs (in black).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

voxels (in blue) versus those of non-WMH voxels (in black)
which appear to be diffuse and show high variance.
Our next goal is to exploit the clustering behavior seen in
Figure 4 within a classifier, so the determination of whether
a voxel is WMH/non-WMH can be performed automati-
cally at segmentation time. Details on filter parameters like
kernel type, bandwidth and variance are provided in the
project documentation.

Learning Algorithms

The machine learning methods we utilize in our frame-
work are Support Vector Machines (SVM) and Random
Forest (RF). We provide a brief self-contained overview
here and refer the reader to Cortes and Vapnik [1995],
Schilkopf and Smola [2001], Breiman [2001] for more details.

Support vector machines (SYM)

The SVM model solves for a hyperplane that separates
the data points (or their high dimensional representation).
Other than merely finding any hyperplane that offers sep-
arability, SVM seeks to divide the classes maximally—that
is, the hyperplane should have a large margin to each
class (which gives good generalization capability). In
WMH segmentation, we have a two class problem with
labels denoted as y;, i = 1, ..., N where +1 gives the
WMH class and —1 gives the non-WMH class. Further, N
denotes the training data size—in other words, the num-
ber of voxels whose class label is already known. Denote
the vector of filter responses as x;. Using widely available
solvers, we optimize the model in Eq. (1), where C con-
trols how heavily misclassification will be penalized. The
kernel K is analogous to a similarity matrix, which denotes
how similar example xi is to example x;. Once the varia-
bles o; are calculated, the prediction for a test feature sam-
ple x is simply given by X; (a;K(x,x;) — b). Sign of the
prediction denotes the WMH/non-WMH class (*+1) and
magnitude represents the confidence level (i.e., the predic-
tion can be treated as a signed distance),

N
1
mo'iix Z o — EZ Oliajyi]/jlc(xiv xj)
b=l ij )
N
s.t. Zoqy,—zo, 0<e; <C
i=1

Random forest (RF)

The second learning model used in our framework is
the Randomized Decision Trees. RF construct a large num-
ber of independent decision trees based on random sub-
space selection of training features. Let R represent the
number of trees to be constructed and F denote the train-
ing feature set. A 2-class RF design is shown in Figure 5.
We first select a random subset of features, and then grow
a binary tree by picking a smaller fraction of features
within the selected feature set, and choosing a split-point
at each tree level. The best threshold (split point) is the
one which favors homogeneity within each child node
(low impurity) and heterogeneity across them. The output
from the training procedure is an ensemble of trees. Pre-
diction of class membership for new examples is per-
formed by evaluating inter and intra tree variability
(instead of maximal class separation), that is, the mean of
individual tree outputs. This design extends easily to the
regression setting where the output is any real number
between —1 and +1.

Training

We use the above methods to learn a WMH classifier
from preprocessed T2-MR images. To generate the training
data, we need a precise characterization of local visual
appearance of both WMH and non-WMH voxels. To this
end, we used hand-indications from an expert who
scanned through all images in our dataset and marked out
all the WMH regions. Since this is a very tedious process
especially if the image has many small sized WMH and
introduces unintended error at the boundaries with low
intensity contrast, we used a semisupervised Random
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Figure 5.
Random forest design. A total of R trees are designed. Fy,...., Fr are the feature subsets (with

replacement) used to construct the respective tree. For the rth tree, at node k, a query Qy is

asked about the data f; € F, and depending on

the result the data f; is split into two parts. Each

tree is grown to the maximum resulting in pure leaf nodes (data belong to a single class). [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Walker based segmentation method [Grady, 2006] to facili-
tate the indications. Here, the user marks many fore-
ground/background seed points and incrementally
interacts with the segmentation method until the results are
considered satisfactory. The traced out WMH regions are
checked for accuracy in a second session to ensure that no
WMH are missed, and we obtain good training data with
accurate boundary delineation. Our training data must con-
sist of both positively and negatively labeled examples. A
large number of patches centered on WMH voxels serve as
positive training examples, whereas patches randomly
derived from other regions serve as negative training exam-
ples for the training set.

Obtaining the Final WMH Segmentation

Once the training process has been completed and the
classifier

SVM/RF has been obtained, for a given

Model Output

to-be-segmented FLAIR image I, we apply the model(s) to
obtain a voxel-level class-specific labeling of the image. The
two methods investigated are following the description in
2.3 SVM based classification and RF based regression. Note
that regression setting of RF, though theoretically similar to
the classification, provides flexibility in terms of the outputs
being continuous. The range of segmentation outputs
depend on the method utilized. (i) SVM outputs are signed
distance maps where positive values indicate WMH and
negative indicate non-WMH. (ii) RF (regression) outputs are
empirical distributions ranging from —1 (WMH) to 1 (non-
WMH). Each of these outputs are then converted into class-
wise probabilities via logistic regression [Bewick et al.,
2005] providing the desired WMH segmentation “maps”
(refer to Fig. 6). These final WMH segmentations are proba-
bility maps in [0, 1], and denote the likelihood that a given
voxel is hyperintense.

The total WMH burden (along with deep and periven-
tricular accumulations) in the form of raw voxel count is

Logistic Function

WMH Map

Figure 6.
Final WMH segmentation maps. Depending on the method used the segmentation outputs are
either distance maps (SVM) or empirical distributions (RF). The final WMH map is obtained by
registering these outputs. Range of the final WMH maps is [0, ] with 0 denoting a non-WMH,
and | a WMH. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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used for analysis in several neurological studies [Au et al.,
2006; Kruit et al., 2010; Vermeer et al., 2003]. Our probabil-
ity map outputs allow us to calculate a per subject WMH
burden which we call a normalized Effective WMH Vol-
ume (EV), and can serve as a useful summary measure.
The EV measure is calculated as,

> P(2)'D(z) 1 P(z) >v
EV==%__—— where D(z)= ()
cv 0 else

where P(z) is the output probability map and ICV is the
intracranial (or brain) volume [Keihaninejad et al., 2010].
D(z) is an indicator function that nullifies any voxels with
WMH probability smaller than 0 < y < 1. A low value of
v (generally <0.25) ensures the removal of low-confidence
(presumably noisy) voxels while summarizing the accu-
mulation. k > 1 is an integer. Hence EV calculates the
hyperintense voxel count “weighted” by the correspond-
ing likelihood (where k controls the degree of the weight).
This scalar summary can now be used in additional analy-
ses, as discussed shortly. Note that the normalization by
ICV accounts for the differences in brain sizes, hence mak-
ing EV an unbiased estimator of hyperintensity burden.
Periventricular (pEV) and deep (dEV) hyperintensity accu-
mulations can be calculated using the ventricular template
(estimated in the process during preprocessing, refer to
Fig. 2) as follows,

PEV=) EV(R(); dEV=} EVE)(1-R() ©)

where R(z) is 1 if voxel z belongs to periventricular region.
Although there are several definitions that delineate deep
white matter from periventricular, we follow the construc-
tion used in [DeCarli et al., 2005a].

Experimental Setup
Subjects and data

For experimental evaluations of our proposed methods,
we utilized T1-MR and T2-MR scans from a total of 251
subjects (male: 114, female: 137). This data comes from one

TABLE I. Data acquisition protocol parameters

Parameter Tl T2-FLAIR
Matrix (pixels) 256 X 256 256 X 256
Number of Slices 156 100
Thickness (mm) 1 2
FOV (Percent Phase) 100 90
Repetition Time 8.16 6000
Echo Time 3.18 122.95
Inversion Time 450 1869
Flip Angle 12 90
Pulse Sequence IR-SPGR CUBE

TABLE Il. SPMI2 preprocessing parameters

Co-registration

Objective function NMI
Sampling distance 4 X2
Smoothing distance 7 X7
Interpolation Trilinear
Tissue Segmentation
Bias regularization 1074
Bias FWHM 120 mm
Coregistration SPM default
Processing space Native

of the several studies conducted at Wisconsin Alzheimer’s
Disease Research Center (WADRC). All scans were
acquired on a GE 3T scanner with eight-channel coil. Table
I lists the relevant imaging protocol parameters. Our cohort
included 169 healthy controls (CN) (age in years: 46-91,
median: 61.7), 40 mild cognitively impaired (MCI) (age in
years: 53-89, median: 75.4), and the remainder were
demented (AD) (age in years: 58-95, median: 75.5). The cri-
teria for MCI (amnestic single or multidomain) and AD fol-
lowed from standard published clinical criteria [Albert
et al.,, 2011, McKhann et al.,, 2011]. A validation is done
from an expert panel of dementia specialists (which
included two of the co-authors C.M.C. and S.CJ.). All of
the subjects had at least 8 years of education. 62 carried at
least one copy of Apolipoprotein E (APOE) e4 allele.
Among the 169 CN, 131 had parental Family History (FH)
(52 maternal, 39 paternal, and 40 both) of AD, ascertained
from review of the parent medical records including
autopsy results (if available).

Evaluations setup

We evaluated the performance of our methods by com-
paring the voxel-wise WMH/non-WMH class predictions
with respect to training data. Apart from comparisons
with respect to expert indications, we used the Lesion Seg-
mentation Toolbox (LST) [Schmidt et al., 2011] (which is
currently the state of the art for this task) as a baseline.
LST constructs lesion belief maps using Markov Random
Field (MRF) based lesion growing. These lesion belief
maps are initialized by thresholding voxel intensities for
GM, WM, and CSF. Voxel intensities are used to update
the likelihoods. Please refer to [Schmidt et al., 2011] for
complete details. For these experiments, training was per-
formed on a random sample of 38 T2-MR images and test-
ing was done with leave-one-out cross-validation (with
multiple realizations). We ensured consistency across the
comparisons by applying the same preprocessing pipeline
(refer to Table II) to both our methods as well as LST. A
total of 16 textons were used in our experiments. For each
voxel of interest a 2,000 long feature vector was con-
structed using 5 X 5 X 5 neighborhood. Misclassification
tolerance of SVM model (C) was set to 1, and the number
of trees R for RF was 50. We provide complete details of
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our parameter values (e.g., error tolerance, feature subset
size and impurity indices of RF) in the project documenta-
tion. Empirically we found that LST was sensitive to x (in
[0, 1]), the threshold for initializing belief maps, which is
set heuristically. However, the algorithm performs an
internal selection process to provide an “optimal” « (here-
after referred to as LST.p). We used this automated
threshold as well as a wide range of manual thresholds
(10 of them) to setup a fair set of comparisons which were
designed to assess overall segmentation performance
enhancement of our models over the current solutions. It
should be observed that, although comparing supervised
segmentation methodology to an unsupervised technique
is not “traditional,” the main purpose of these evaluations
is to prove the necessity of supervised methods (and not
to present a new supervised detection). k = 1 and y = 0.25
in all the experiments.

The performance measures include precision-recall (PR)
and dice coefficient-recall (DR) curves [Arbelaez et al., 2011;
Manning et al., 2008]. F-measure (not to be confused with
F-statistic) and average precision (AP), calculated from the
PR curves, are used to summarize the overall segmentation
performance of each method [Manning et al., 2008]. EF-
measures inherently assume equal importance to both false
positives (FP) and false negatives (FN). Hence, in addition,
we evaluated Fjs-measures (and F,-measures respectively)
which summarize the PR curves when FN are assumed to
be half (and twice respectively) as important as FP. Also a
hypothetical summary measure, break even point (BEP) is
reported, which can be interpreted as the “best” possible
operating point of the method is reported [Manning et al.,
2008]. It is important to note that the number of WMH vox-
els (true-positives, TP) is far smaller (on the order of 1074
compared with the non-WMH voxels (true negatives, TN)
in an image. Therefore, it is meaningless to report raw accu-
racy measures (which yield >99% accuracy independent of
method). The above described PR curve based measures
turn out to be more meaningful in this case. For further
details, see Manning et al. [2008].

Secondary statistical analysis

Recall that the accumulation of hyperintensities across
white matter has significant correlation with age and demen-
tia status [Barber et al.,, 1999; Debette and Markus, 2010;
Smith et al., 2008] of middle-aged and older adults. Further
there have been studies that investigate the relationship of
family history (FH) to the hyperintensity burden in cogni-
tively healthy subjects. Having constructed a hyperintensity
accumulation, EV, we investigate the efficacy of this sum-
mary measure in revealing similar statistical dependencies.
To this end, the following statistical tests are conducted. (A)
EV versus age — monotonicity of EV with increasing age,
(B) EV versus dementia, controlled for age — differences of
mean and rate of change of accumulation with respect to
age, across CN, MCI and AD, (C) EV versus FH for cogni-
tively healthy subjects — group differences of mean EV.

Note that the empirical distribution of accumulations is not
normal. To maintain consistency across all the three analy-
ses, a power transformation is applied over EV. More details
about the analysis setup for each of the three cases (charac-
teristics of the data, etc.) will be presented in Discussion sec-
tion while discussing the results. Observe that the
segmentation performance was assessed using the 38 sub-
jects who had training data, while the statistical analysis was
conducted using accumulations from all the 251 subjects.

RESULTS

Figure 7 and Table III summarize the performance com-
parison of SVM and RF (along with the baseline LST)
against ground truth. PR and DR curves of SVM, RF and
LSTopt are shown in Figure 7(a,b). The corresponding per-
formance summaries (i.e. F, AP, BEP, Fy5, and F,) are
shown in Table III. Observe that RF-based regression per-
formed the best with F = 0.672, AP ~ 0.8 and BEP =
0.678. LSTopt, as expected (being unsupervised), per-
formed the worst (F = 0.410 and AP = 0.350). Following
the described in Evaluation setup section, 10 different ¢ s
are used for LST (including an optimal one), all chosen
meaningfully by visual validation. The corresponding PR
curves and maximum F values are shown in Figure 7c,d.
LSTs F values ranges from 0.392 to 0.426 much smaller
then that of RF, and the maximum (0.426) did not corre-
spond to the optimal choice used by the toolbox (0.410).
Figure 8 shows the detections of our best method, RF on
six different image slices with varied hyperintensity struc-
tures (from large and contiguous to small and diffuse).
The last two images are of particular interest where there
were false positives (along the cortical regions fourth col-
umn) and false negatives (along periventricular WMH
boundaries — last column). None of the images in Figure 8
had any expert indications. Figure 9 presents the effective-
ness of supervised methods, as claimed in Introduction
section, in segmenting small and diffuse (irregular) hyper-
intensities. It compares the postprocessed segmentation
outputs (i.e. probability maps) to both the expert indica-
tions and LSTopt on three different images. Observe that
LST performs very poorly, and SVMs outputs seem to be
over segmented compared with RF. Note that all the
image overlays in Figures 8 and 9 are produced in AFNI
with a overlay threshold of 0.5. Following comparison
against multiple t s of LST as in Figure 7c,d, Figure 10
presents LST outputs at three different ¢ s (one of which is
the optimal ¢ chosen by the toolbox) to that of SVM and
RF. Figure 11 and Table IV show the results of our second-
ary statistical analysis. Firstly, the interaction of age and
dementia had a significant (P < 0.01, F = 6.56) depend-
ence on accumulation. Secondly, both the accumulation
volume and its rate of change (with increasing age) were
found to be different for CN, MCI, and AD groups (refer
to Fig. 11a). Further, there was a significant dependence of
hyperintensity burden on parental family history with P =
0.02, F = 3.34. The subjects with maternal and both FH
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Figure 7.

Precision versus recall (PR) curves, dice coefficient versus recall
(DR) curves and F measures. (a) PR curves of LST, SVM, and
RF. (b) DR curves of LST,,, SVM, and RF. (c) PR curves with
differential initial thresholds k (including the optimal one) of LST.
(d) Comparison of change in F-measures across the multiple
LST implementations (of c) with respect to that of SVM and RF.
Color map for LST, SVM, and RF is blue, black, and red,

had more hyperintensity accumulation (1.63 * 1.15 and
0.88 = 0.45 respectively) than those with paternal and no
FH (0.78 * 0.40 and 0.73 = 0.30 respectively).

DISCUSSION

The foremost observations from our results is that RF
based regression performs best with F = 0.672, AP = 0.797

respectively. Observe that the results of LST,, are sensitive to
the hyperparameter k, and the performance does not improve
by changing it. These results show the improved performance of
our methods over existing best unsupervised segmentation
method. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

and BEP = 0.678 (refer to Table IIT). Good F and AP indi-
cate that the number of FP are low, which is supported by
Fos = 0.685. Also F, = 0.763 and BEP is almost the same
as F which shows that RF method penalizes both the
FN and FP equally strongly (indicating a balanced minimi-
zation of false classifications) while recovering the TP. Fig-
ure 9 shows the effectivity of RF is picking up small and
diffuse regions, the main characteristic of a hyperintense
region, as described in Introduction section. SVM, however
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TABLE Illl. Performance of LST,,,, SVM, and RF meth-
ods against expert indications

Method Model F AP BEP Fos F,

LSTpe MRF 0410 0350 0414 0412 0.504
sc Classification 0.540 0.565 0.534 0.558 0.626
RR Regression 0.672 0.797 0.678 0.685 0.763

F-measure (also referred to as Dice Coefficient) is the (maxi-
mum) of the ratio of 2TP to 2TP+FP+FN. AP (which is equiva-
lent to the area Tinder Precision Recall curve) and BEP
summarize the effectivity of each method in minimizing both FP
and FN simultaneously. Fy 5 and F, penalize FP over FN and FN
over FP, respectively. RF-based regression was the best with
highest AP, Fy5, and F, values.

was worse compared with RF, with F = 0.540 and AP =
0.565. This is not surprising as SVM tends to over segment
(being liberal) the hyperintensities (for examples refer to
Fig. 9), since the output of a SVM is margin (distance from
the class-separating hyperplane) and that of RF is an
empirical distribution (bounded within [0, 1]). Hence the
number of FP (including extra boundaries as shown in
Fig. 9) in the case of SVM will be much higher than that of
RF. Note that the F (and the Fy5, F, measures) in Table III
are based on the PR curves of Figure 7a and represent the
maximum of the harmonic mean of precision and recall

[Manning et al., 2008]. Figure 7b shows the change in this
F-measure (i.e., Dice coefficient) as a function of recall (i.e.,
sensitivity). Observe that both RF has consistently best F
values as recall is varied from 0 to 1.

To understand the variability in segmentation perform-
ance of RF refer to Figure 8 where five different images
(not from the training/cross-validated set) are shown. As
shown in the first three columns of Figure 8, RF does good
job in picking up long and contiguous regions (which are
characteristics of periventricular WMH in demented sub-
jects, and subjects who had stoke), as well as small and
diffuse deep hyperintensities. Fourth and fifth columns
show two cases involving false detections, where several
cortical regions (fourth column) are detected and bounda-
ries along periventricular hyperintensities (fifth column)
are missed. The reason of these false segmentations is
mainly due to high non-uniformity of intensity bias along
the scan, and it should be observed that these artifacts
have to be corrected for during preprocessing (the seg-
mentation module implicitly cannot correct for such
errors). Although most of the noisy detections, especially
along the cortical surfaces and boundaries of white and
grey matter tissues are removed by a postprocessing step
(refer to obtaining the final WMH segmentation section).
Also, the number of trees learned by RF did not have any
influence on the performance of detection (This observa-
tion is not random or specific to the problem at hand, but

Figure 8.
Example segmentation outputs of RFE These results show that RF method performs well both in
picking up at large contiguous as well as small irregular hyperintensity regions. Fourth column
shows an example of over segmentation (along cortical regions) and the last column shows a
case of false negatives. The color map overlays range from blue (0) to red (I). [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FLAIR

Figure 9.

Three example segmentation results compared with expert indi-
cations and LST,,.. Each row corresponds to one subject. First
column shows the FLAIR image. Second column present the
expert indications overlayed onto the FLAIR. Third and fourth
columns correspond to the SVM and RF outputs (final probabil-
ity maps). The last column presents the LST,,. Observe that

follows from their theory [Breiman, 2001], which shows
that sufficiently large number of trees do exceedingly well
in picking up the structural characteristics of a given data
distribution).

LST outputs (as described in Evaluation setup section)
were found to be highly sensitive to its initial threshold, t.
While occasionally, manual adjustment of { on an image
by image basis led to some improvements, overall the
results showed no compelling improvement. Figure 10
illustrates this observation, where LST outputs of two sub-
jects (once corresponding to diffuse and small hyperinten-
sities and the other more contiguous) at three different ¢ s.
The results improved for the image in top column (where

the number of false negatives are very few, if not none, both for
SVM and RF outputs, and there are a few false positives. The
color map of overlays ranged from blue (0) to red (1). [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

the hyperintensity is contiguous and large in size) as the
threshold ¢ varied from its optimum. However, the results
deteriorated for the second case where the regions are
very small and highly diffuse in terms of their intensity
variation. This suggests that LST picked up conspicuous
hyperintensities missing many of the smaller ones (inde-
pendent of the chosen t). Figure 7c,d compares the PR
curves and the resulting F-measures for 10 different t s
where no noticeable improvement was observed in overall
detection performance (maximum F-measure was 0.409,
with median equal to 0.380). These observations (missing
much of the WMH of interest and sensitivity to t) arise
due to the nature of LSTs learning model, which is a
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Figure 10.
Sensitivity of LST outputs to k. Each row corresponds to one subject. First three columns are
the LST outputs at different ks (optimal k chosen by toolbox followed by k = 0.l and k = 0.2,
respectively). Last two columns correspond to the outputs of SVM and RF, respectively. Under-
lays are coregistered and bias corrected FLAIR images and the color map of overlays range from
blue (0) to red (I). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

lesion growing algorithm using Markov Random Fields
(MRF) [Schmidt et al., 2011]. Its initialization (which
depends on the initial threshold f) is heuristic and the
growth rate parameters are iteratively solved. Such unsu-
pervised segmentation algorithms [Boykov et al.,, 2001]
work reasonably well when the region of interest is large/
conspicuous, with significant image gradient or contrast
variation from background pixels. However, WMHs in
older populations, may not always have these characteris-
tics, and may instead exhibit some differences (relative to
non-WMH regions) in the texture representation. Our
results suggest that this textural (structural) information,
when appropriately characterized by sufficient training
data, yields improved segmentation performance with reli-
able detections (Table III). The computational time
required for our method was approximately 35 min per
subject (this was the same as LST). Although the time
taken for generating training data is subjective to the
expert generating them and the image being segmented,
the approximate time per subject is under 45 min. Note
that the time for expert indications is only part of training,
and not testing.

The supervised modeling considered here is further vali-
dated by performing a secondary statistical analysis of the

clinical significance of our summary measure EV (as
described in Secondary statistical analysis section). Before
interpreting these results it should be noted that, our main
aim here is to support existing relationships (already
reported [Barber et al.,, 1999; Debette and Markus, 2010;
Smith et al., 2008]) of hyperintensity accumulation to age,
dementia status, and/or family history (for dementia).
Although, in the process we indicate comparisons that need
more detailed analysis (both in terms of choice of modeling
and independent/dependent variables). A significant corre-
lation of age was observed with EV, with P < 10™* and
Spearman Correlation value of 0.29. Note that EV is a
“true” summary of accumulation since the differences in
brain volume is already accounted for [refer to Eq. (2)]
making the summaries. Hence comparing raw values of
EVs across subjects is valid for the purpose of any down-
stream analysis. k = 1, y = 0.5 and ICV measured in cubic
milliliters is for all these validations.

The mean age of CN subjects was 61.14 which is much
lower than that of MCI (75.4) and AD (75.5). Hence to
evaluate the interaction of age and dementia status on the
hyperintensity accumulation, a linear regression (i.e. a lin-
ear fit) of EV and age was performed independently for
each of the three groups (CN, MCI and AD). Figure 1la
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Figure 11.

(a) Linear regression fits of EV versus age for each of the three
groups CN, MCI, and AD. The slope (rates) for CN fit was almost
constant and AD fit was the highest. And at a given age, as
expected, AD subjects had more accumulation than MCl and CN.
(b) ANOVA box plot for transformed accumulation versus FH.
There was significant difference across the four groups (P = 0.02,

shows these three linear fits. Note that no transformation
of any type has been applied to the accumulations
[derived using Eq. (2)].Though the minimum and maxi-
mum ages in our cohort are 46 and 95, the line fits are
only considered from 58 to 89. This is because outside this
range, at least one of the three groups (CN, MCI, AD) has
no subjects. Firstly, Figure 11a shows that the slopes of the
three linear fits were found to be different (CN < 0.005,
MCI = 0.03, AD > 0.16). The hyperintensity accumulation
rate of MCI (AD respectively) subject was ~4 (~32 respec-
tively) times to that of CN with increase in age. Also the
mean accumulations (line fit values) of AD were consis-
tently higher than that of MCI and CN. The precise differ-
ences in the mean EVs between the three groups (along
with the standard deviations) are shown in Table IV for
ages of 65, 75, and 85. Observe that the mean EV for an
AD subject is much higher than that of MCI and CN at a

F = 3.34), with maternal and both FH subjects having higher EVs
compared with paternal and none. On each box, the central mark
is the median, the edges of the box are the 25th and 75th percen-
tiles and the whiskers extend to *£2.5 standard deviations. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

given age. The mean and rate of increase of EV was found
to be approximately constant in the age range under con-
sideration. Although this might be a data artifact (the
number of CN subjects who are older than 70 was smaller
than those who are younger). These results suggest that
not only does the hyperintensity accumulation increase as
a subject grows older, but this rate of change is high for
MCI, and much higher for AD groups, than that of healthy
ones. For completion, an analysis of covariance was per-
formed indicating the significance of the interaction term
(status X age) with a P < 0.01 and F statistic of 6.56.
Finally, ANOVA (analysis of variance) was conducted on
EV against FH among cognitively normal subjects (169 in
number). The four groups of FH include subjects with
maternal, paternal, both and none dementia. A cubic power
transformation was applied to EVs so that their empirical
distribution will be approximately normal. The group

TABLE IV. Confidence levels (i.e., mean and standard deviations) of accumulations for CN, MCI, and AD groups at
four difference ages along with the rates of change (slopes of linear fit)

Age
Dementia status Slope of linear fit 60 70 80 85
CN 0.004 1.24 +0.51 1.27 *£0.63 1.30 +1.04 1.31 £1.28
MCI 0.03 1.30 *1.21 1.88 £1.22 2.33 +1.24 2.56 +1.68
AD 0.17 142 +1.19 3.05 +1.18 4.78 + 1.09 5.64 £1.37

The accumulation is smallest for CN (and remained almost the same with increasing age), followed by MCI and much higher for AD.
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difference was significant with P = 0.02 and F = 3.34 (refer
to the ANOVA table in Fig. 11b). The four subjects with
maternal FH (1.63 = 1.15) were found to have highest accu-
mulation (in the nontransformed domain) followed by those
with both (0.88 * 0.45), paternal (0.78 * 0.40), and no (0.73
+ 0.30) FH in that order. Note that the y-axis in Figure 11b
is in power transformed domain. It should be observed that
the efficacy of statistical analysis has a direct correlation to
that of segmentation accuracy of a given model. Hence, a
statistical analysis done using LST (which performs worse
than our method, refer to Fig. 7 and Table III) would be
expected to be inaccurate in detecting the dependency of
hyperintensity burden to both age and dementia status.

Limitations

The limitation of region growing based algorithms dis-
cussed above is a shared characteristic of many automated
unsupervised learning methods. Specifically, segmentation
methods based on Gaussian distribution/curve fitting (fol-
lowed by thresholding) [Brickman et al, 2009, 2011;
DeCarli et al., 2005b; de Boer et al., 2009], template match-
ing and thresholding [Au et al., 2006; Carmichael et al.,
2010] (which are most popular AD risk and aging studies)
are susceptible to these limitations. On the other hand, our
methods are supervised and therefore can suitably exploit
expert indications. But since the textural (structural) infor-
mation provided by such data is domain dependent, the
performance of our methods may be unsatisfactory if the
training and testing (prediction) data is inaccurate or come
from completely unrelated imaging (MRI) protocols (to the
point that the extracted texture features are meaningless).
Also, in our procedure, the preprocessing is almost
entirely done by SPM12, and any errors in white matter
tissue segmentation will propagate into the classifier.
Hence, the user intervention involved in training data gen-
eration (and evaluation of its quality) and the reliability of
preprocessing can be seen as limitations of the proposed
model.

Wi isconsin WMH Segmentation Toolbox

We provide a MATLAB based implementation of our
algorithms. The toolbox, which we refer to as W2MHS
(Wisconsin WMH Segmentation Toolbox) is available for
download from NITRC, Source Forge as well as from
http:/ /pages.cs.wisc.edu/~vamsi/w2mhs.html. This tool
interfaces with SPM12, a widely used neuroimaging soft-
ware and builds upon its preprocessing module. The
implementation encompasses the best supervised method,
RF based regression and provides as output the segmented
probability maps as well as EV summaries (total, periven-
tricular and deep) for use in a downstream analysis. The
inputs to the tool are Tl-weighted and T2-FLAIR images,
though the individual modules can be adapted for other
segmentation tasks as well. Additional options are

provided for incorporating new ground truth data.
Although SVM was not found to be the best model, the
toolbox provides options for implementing SVM based
classification too. Exhaustive details about preprocessing
criteria, texton filter bank parameters (kernel types, band-
widths, variances, etc.), constants of SVM and RF models
(misclassification rate, number of trees, impurity indices,
etc.), are provided in the documentation (included in the
download link apart from the scripts). The default parame-
ters are set in a way where the segmentations are reasona-
ble, however, we give the user the capability to modify
them, if desired, by explicitly explaining the role of each
of the parameter. Detailed instructions about downloading
installing the library (including a few supporting libraries)
and the naming notations (of files) can be found in the
documentation as well.

CONCLUSION

We investigated the task of detecting and quantifying
White Matter Hyperintensities (WMH) observed in T2
FLAIR images of subjects with the risk of neurological dis-
orders, especially Alzheimer’s disease. We posed the prob-
lem as supervised inference, and using texture based
features we evaluated three different segmentation meth-
ods derived from Support Vector Machines and Random
Forests. Through extensive simulations we showed that
the Random Forest based regression works the best with
significant improvement over the current state-of-the-art
unsupervised model. Our evaluations also highlighted the
importance of user supervision in the form of expert indica-
tions for segmenting hyperintensities. Further, we described
a summary measure of hyperintensity accumulation,
referred to as normalized Effective WMH Volume and vali-
dated its efficacy using age, dementia and family history.
Finally, this article is accompanied with an open source
implementation (interfaced with widely used tools) for seg-
menting and quantifying hyperintensities, which can be
adapted to segmentation tasks in aging and other neuroi-
maging studies.
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