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Abstract

Many studies in biomedical and health sciences
involve small sample sizes due to logistic or fi-
nancial constraints. Often, identifying weak (but
scientifically interesting) associations between
a set of predictors and a response necessitates
pooling datasets from multiple diverse labs or
groups. While there is a rich literature in statis-
tical machine learning to address distributional
shifts and inference in multi-site datasets, it is
less clear when such pooling is guaranteed to
help (and when it does not) — independent of the
inference algorithms we use. In this paper, we
present a hypothesis test to answer this question,
both for classical and high dimensional linear re-
gression. We precisely identify regimes where
pooling datasets across multiple sites is sensi-
ble, and how such policy decisions can be made
via simple checks executable on each site before
any data transfer ever happens. With a focus
on Alzheimer’s disease studies, we show empir-
ical results in regimes suggested by our analy-
sis, where pooling a locally acquired dataset with
data from an international study improves power.

1. Introduction

In the last two decades, statistical machine learning algo-
rithms for processing massive datasets have been inten-
sively studied for a wide-range of applications in computer
vision, biology, chemistry and healthcare (Murdoch & Det-
sky, 2013; Tarca et al., 2007). While the challenges posed
by large scale datasets are compelling, one is often faced
with a fairly distinct set of technical issues for studies in bi-
ological and health sciences. For instance, a sizable portion
of scientific research is carried out by small or medium-
sized groups (Fortin & Currie, 2013) supported by modest
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budgets (Lauer, 2016). Hence, there are logistic/financial
constraints on the number of experiments and/or number
of participants within a trial, leading to small size datasets.
While the analysis may be sufficiently powered to evalu-
ate the primary hypothesis of the study/experiment, inter-
esting follow-up scientific questions (often more nuanced),
come up during the course of the project. These tasks may
be underpowered for the sample sizes available. This ne-
cessitates efforts to identify similar datasets elsewhere so
that the combined sample size of the “pooled” dataset is
enough to determine significant associations between a re-
sponse and a set of predictors, e.g., within linear regression.

Motivating Application. In genomics, funding agencies
have invested effort into standardizing/curating data collec-
tion across large international projects (Consortium et al.,
2004). In other disciplines, such as neuroimaging, hetero-
geneity in disease etiology, imaging modalities and scan-
ners makes standardization more difficult. For Alzheimer’s
disease (AD), a motivation of this work, efforts such as
ADNI (Weiner et al., 2015) provide a variety of clinical,
imaging and cognitive data for 800+ older adults. How-
ever, the research focus has now moved to the early stages
of disease — as early as late middle age — where treatments
are expected to be more effective. But (a) the statistical sig-
nal at this stage is weak and difficult to demonstrate without
large sample sizes and (b) such “preclinical” participants
are not well represented, even in large ADNI sized stud-
ies. Hence, there is a concerted effort (e.g., ENIGMA (Ja-
hanshad et al., 2013)) for smaller standalone projects (fo-
cused on a specific disease stage), that can be retrospec-
tively pooled for analysis towards addressing a challeng-
ing scientific hypothesis. Unfortunately, image acquisition
protocols across sites are usually different and measure-
ments are heterogenous. These issues raise a fundamental
technical question. When is it meaningful to pool datasets
for estimating a simple statistical model (e.g., linear regres-
sion)? When can we guarantee improvements in statistical
power, and when are such pooling efforts not worth it? Can
we give a hypothesis test and obtain p-values to inform our
policies/decisions? While related problems have been stud-
ied in machine learning from an algorithm design perspec-
tive, even simple hypothesis tests which can be deployed
by a researcher in practice, are currently unavailable. Our
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goal is to remove this significant limitation.

Putting our development in context. The realization that
“similar” datasets from multiple sites can be pooled to po-
tentially improve statistical power is not new. With varying
empirical success, models tailored to perform regression
in multi-site studies (Group, 2002), (Haase et al., 2009),
(Klunk et al., 2015) have been proposed, where due to op-
erational reasons, recruitment and data acquisition are dis-
tributed over multiple sites, or even countries. When the
pooling is being performed retrospectively (i.e., after the
data has been collected), resolving site-specific confounds,
such as distributional shifts or biases in measurements, is
essential before estimation/inference of a statistical model.
We will not develop new algorithms for estimating the dis-
tributional mismatch or for performing multi-site regres-
sion — rather, our primary goal is to identify the regimes
(and give easily computable checks) where this regression
task on a pooled dataset is statistically meaningful, assum-
ing that good pre-processing schemes are available. We
will present a rigorous yet simple to implement hypothesis
test, analyze its behavior, and show extensive experimental
evidence (for an important scientific problem). The prac-
titioner is free to use his/her preferred procedure for the
“before step” (estimating the distributional shifts).

Contributions: a) Our main result is a hypothesis test to
evaluate whether pooling data across multiple sites for re-
gression (before or after correcting for site-specific distri-
butional shifts) can improve the estimation (mean squared
error) of the relevant coefficients (while permitting an in-
fluence from a set of confounding variables). b) We de-
rive analogous results in the high-dimensional setting by
leveraging a different set of analysis techniques. Using
an existing sparse multi-task Lasso model, we show how
the utility of pooling can be evaluated even when the sup-
port set of the features (predictors) is not exactly the same
across sites using ideas broadly related to high dimensional
simultaneous inference (Dezeure et al., 2015). We show
{5-consistency rate, which supports the use of sparse multi-
task Lasso when sparsity patterns are not totally identical.
¢) On an important scientific problem of analyzing early
Alzheimer’s disease (AD) individuals, we provide com-
pelling experimental results showing consistent acceptance
rate and statistical power. Via a package in CRAN/R, this
will directly facilitate many multi-site regression analysis
efforts in the short to medium term future.

1.1. Related Work

Meta-analysis approaches. If datasets at multiple differ-
ent sites cannot be shared or pooled, the task of deriving
meaningful scientific conclusions from results of multiple
independently conducted analyses generally falls under the
umbrella term of “meta analysis”. The literature provides

various strategies to cumulate the general findings from
analyses on different datasets. But even experts beleive
that, minor violations of assumptions can lead to mislead-
ing scientific conclusions (Greco et al., 2013), and substan-
tial personal judgment (and expertise) is needed to conduct
them. It is widely accepted that when the ability to pool the
data is an option, simpler schemes may perform better.

Domain adaptation/shift. Separately, the idea of ad-
dressing “shift” within datasets has been rigorously stud-
ied within statistical machine learning, see (Patel et al.,
2015; Li, 2012). For example, domain adaptation, includ-
ing dataset and covariate shift, seeks to align (the distri-
butions of) multiple datasets to enable follow-up process-
ing (Ben-David & Schuller, 2003). Typically, such algo-
rithms assume a bias in the sampling process, and adopt re-
weighting as the solution (Huang et al., 2007; Gong et al.,
2013). Alternatively, a family of such methods assume that
sites (or datasets) differ due to feature distortions (e.g., cal-
ibration error), which are resolved, in general, by minimiz-
ing some distance measure between appropriate distribu-
tions (Baktashmotlagh et al., 2013; Pan et al., 2011; Long
et al., 2015). In general, these approaches have nice theo-
retical properties (Ben-David et al., 2010; Cortes & Mohri,
2011; Zhou et al., 2016). However, it is important to note
that the domain adaptation literature focuses on the algo-
rithm itself — to resolve the distributional site-wise differ-
ences. It does not address the issue of whether pooling
the datasets, after applying the calculated adaptation (i.e.,
transformation), is beneficial. Our goal in this work is to
assess whether multiple datasets can be pooled — either
before or usually after applying the best domain adaptation
methods — for improving our estimation of the relevant
coefficients within linear regression. We propose a hypoth-
esis test to directly address this question.

The high-dimensional case. Neuroimaging scenarios,
in general, involve predicting a response (e.g., cognitive
score) from high dimensional predictors such as imaging
scans and genetic data, which in general, entails Lasso-
type formulations unlike the classical regression models.
Putting multi-task representation learning (Maurer et al.,
2016),(Ando & Zhang, 2005),(Maurer et al., 2013) together
with a sparsity regularizer, we get multi-task Lasso model
(Liu et al., 2009; Kim & Xing, 2010). Although this seems
like a suitable model (Chen et al., 2012), it assumes that
multiple tasks (sites here) have an identical active set of
predictors. Instead, we find that sparse multi-task Lasso
(Lee et al., 2010), roughly, a multi-task version of sparse
group Lasso (Simon et al., 2013; Lee et al., 2010) is a bet-
ter starting point. There is no theoretical analysis in (Simon
et al., 2013); although a ¢>-consistency for sparse group
lasso is derived in (Chatterjee et al., 2012) using a general
proof procedure for M-estimators, it does not take into ac-
count the specific sparse group Lasso properties, thereby,
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making the result non-informative for sparse group Lasso
(much less, sparse multi-task Lasso). Specifically, as we
will see shortly, in sparse multi-task Lasso, the joint ef-
fects of two penalties induces a special type of asymmet-
ric structure. We show a new result, in the style of Lasso
(Meinshausen & Yu, 2009; Liu & Zhang, 2009b), for ¢
convergence rate for this model. It matches with results
known for Lasso and group Lasso, and identifies regimes
where the sparse multi-task (multi-site) setting is advanta-
geous.

Simultaneous High dimensional Inference. Simulta-
neous high dimensional inference models such as multi
sample-splitting and de-biased Lasso is an active research
topic in statistics (Dezeure et al., 2015). Multi sample-
splitting use half of the dataset for variable selection and
the rest for calculating p-values. De-biased Lasso chooses
one feature as a response and the others as predictors to
estimate a Lasso model; this procedure is repeated for
each feature. Estimators from De-biased Lasso asymptot-
ically follow the multi-normal distribution (Dezeure et al.,
2016), and using Bonferroni-Holm adjustment produces
simultaneous p-values. Such ideas together with the {2-
convergence results for sparse multitask Lasso, will help
extend our analysis to the high dimensional setting.

2. Hypothesis Test for Multi-Site Regression

We first describe a simple setting where one seeks to ap-
ply standard linear regression to data pooled from multiple
sites. For presentation purposes, we will deal with variable
selection issues later. Within this setup, we will introduce
our main result — a hypothesis test to evaluate statistical
power improvements (e.g., mean squared error) when run-
ning a regression model on a pooled dataset. We will see
that the proposed test is transparent to the use of adapta-
tion algorithms, if any, to pre-process the multi-site data.
In later sections, we will present convergence analysis and
extensions to the large p setting. Matrices (vectors/scalars)
are upper case (and lower case). ||.||. is the nuclear norm.

We first introduce the single-site regression model. Let
X € R*"¥P and y € R™*! denote the feature matrix of
predictors and the response vector respectively. If 5 cor-
responds to the coefficient vector (i.e., predictor weights),
then the regression model is

1
in —lly— X832 1
min ~lly = XBl3 ()

where y = XB* + € and € ~ N(0,02) LLD. if 3* is
the true coefficient vector from which y is generated. The
mean-squared error (MSE) and /»-consistency of regres-
sion is well-known. The mean-squared error (MSE) of (1)
is E||f — B*[13 = tr (XTX)~') o2 If k denotes the
number of sites, then one may first apply a domain adapta-

tion scheme to account for the distributional shifts between
the k different predictors {X;}*_,, and then run a regres-
sion model. If the underlying “concept” (i.e., predictors
and responses relationship) can be assumed to be the same
across the different sites, then it is reasonable to impose
the same 3 for all sites. For instance, as discussed in Sec-
tion 1, the influence of protein measurements on cognitive
scores of an individual is assumed to be invariant to demo-
graphics. Nonetheless, if the distributional mismatch cor-
rection is imperfect, we may define AS; = 8; — 8* where
1 € {1,...,k} as the residual difference between the site-
specific coefficients and the true shared coefficient vector
(in the ideal case, we have ASZ; = 0). In the multi-site
setting, we can write

k
min} 77 lly: = XiBll3 )
=1

where for each site ¢ we have y; = X; 5" + X;AB; +¢; and
€; ~ N(0,02?) 1.LD. Here, 7; is a weighting parameter
for each site, if such information is available.

Our main goal is to test if the combined regression im-
proves the estimation for a single site. We can pose this
question in terms of improvements in the mean squared
error (MSE). Hence, W.L.0.G. using site 1 as the refer-
ence, we have the following reduced objective by setting
B1=p*and 7, = 1in (2),

k
mﬁinllyl—X15H§+Zn-2llyi—Xi5H§ 3)
i=2
Clearly, when the sample size is
not large enough, the multi-site
formulation in (3) may reduce
variance significantly, because of
the averaging effect in the objec-
tive function, while increasing the
bias by a little. This reduces the
Mean Squared Error (MSE), see
Figure 1. Note that while tra-
ditionally, the unbiasedness prop-
erty was desirable, an extensive
body of literature on ridge regres-
sion suggests that the quantity of
interest should really be E||3 —
B*||3. These ideas are nicely studied within papers devoted
to the “bias-variance” trade-off. Similar to these results, we
will focus on the mean squared error because the asymp-
totic consistency properties that come with an unbiased es-
timator are not meaningful here anyway — the key reason
we want to pool datasets in the first place is because of
small sample sizes. We now provide a result showing how
the tuning parameters 7o, .. ., 7, can be chosen.

Figure 1. (31 and [2
are 1°¢ and 2"¢ site
coefficients. After
combination, 1’s bias
increases but variance
reduces, resulting in a
smaller MSE.

Theorem 2.1 7; = 7% achieve the smallest variance in f3.



When can Multi-Site Datasets be Pooled for Regression?

Remarks: This result follows from observing that the each
site’s contribution is inversely proportional to site-specific
noise level, o;. We will show that this choice of 7;s also
leads to a simple mechanism to setup a hypothesis test.

2.1. Sharing all 3s

In the specification above, the estimates of [; across all k
sites are restricted to be the same. Without this constraint,
(3) is equivalent to fitting a regression separately on each
site. So, a natural question is whether this constraint im-
proves estimation. To evaluate whether MSE is reduced,
we first need to quantify the change in the bias and vari-
ance of (3) compared to (1). To do so, we introduce a few
notations. Let n; be the sample size of site ¢, and let BZ de-
note the regression estimate from a specific site ¢. We have
AB; = B; — 1. We define the length kp vector AST as
ABT = (ABT, ..., ABF) (similarly for ABT). We use ;
to give the sample covariance matrix of data (predictors)
from the site i and G € R*—Dpx(k=1)p jg the covariance
matrix of AJ, where Gi; = (n131) ! + (n;72%;)~* and
Gij = (nlﬁl)’l whenever i # j.

Let the difference in bias and variance between the single
site model in (1) and the multi-site model in (3) be Biasg

and Varg respectively. Let 5 = S 0,725, and BF =
n1¥1 + 25, We have,

Lemma 2.2 For model (3), we have

Biasg||3 Sy —2 /8 ES &
%SH(E’D CamE) IS + 5., @)
2

Varg = ol H(mfh)_l — (nlil + 2’5)_1 5)

Remarks: The above result bounds the increase in bias and
the reduction in variance (see discussion of Figure 1). Since
our goal is to test MSE reduction — in principle, we can use
bootstrapping to calculate MSE approximately.This proce-
dure has a significant computational footprint. Instead, (4)
(which comes from a one-step Cauchy-Schwartz), gives a
sufficient condition for MSE reduction as shown below.

Theorem 2.3 a) Model (3) has smaller MSE of B than
model (1) whenever

Hy: |G7Y2AB)% < 2. (6)
b) Further, we have the following test statistic,

a0
2
~ X(k—1)*p (Hal ,) (7

where |G=Y2AB /a1 |2 is called a “condition value”.

a-1208|°

g1

2

Remarks: This is our main test result. Although o; is typ-
ically unknown, it can be easily replaced using its site-

specific estimation. Theorem 2.3 implies that we can con-
duct a non-central x? distribution test based on the statis-
tic. Also, (6) shows that the non-central X2 distribution,
which the test statistics will follow, has a non-central pa-
rameter smaller than 1 when the sufficient condition H
holds. Meanwhile, in obtaining the (surprisingly simple)
sufficient condition Hj, no other arbitrary assumption is
needed except the application of Cauchy-Schwartz. From
a practical perspective, Theorem 2.3 implies that the sites,
in fact, do not even need to share the whole dataset to as-
sess whether pooling will be useful. Instead, the test only
requires very high-level information such as Bi, f]z o; and
n; for all participating sites — which can be transferred very
cheaply with no additional cost of data storage, or privacy
implications. The following result deals with the special
case where we have two participating sites.

Corollary 2.4 For the case where we have two participat-
ing sites, the condition (6) from Theorem 2.3 reduces to

Ho: ABT((nm21) ™Y + (ne723,) ") TAB < 02, (8)

Remarks: The left side above relates to the Mahalanobis
distance between (1, (2 with covariance (n; 531)_1 +
(na72%5)~ 1, implying that the test statistic is a type of a
normalized metric between the two regression models.

2.2. Sharing a subset of 3s

In numerous pooling scenarios, we are faced with certain
systemic differences in the way predictors and responses
associate across sites. For example, socio-economic sta-
tus may (or may not) have a significant association with a
health outcome (response) depending on the country of the
study (e.g., due to insurance coverage policies). Unlike in
Section 2.1, we now relax the restriction that all coefficients
are same across sites, see Figure 2. The model in (3) will
now include another design matrix of predictors Z € R™*4
and a corresponding coefficients ; for each site i,

k
1}3121 ZTZ?H‘% - X8 — Zivill ©)
’ i=1
yi = X"+ X ABi+ Ziv; + e, m=1 (10)

Our goal is still to evaluate whether the MSE of 3 reduces.
We do not take into account the MSE change in ~ because
they correspond to site-specific variables. For estimating
them, B can first be computed from (9). Treating it as fixed
entity now, ; can be computed using y; and Z; on each site
independently. Clearly, if B is close to the “true” 8%, it will
also enable a better estimation of site-specific variables. It
turns out that, if ;s are replaced by the conditional covari-
ance, the analysis from Section 2.1 still holds for this case.
Specifically, let flabi be the sample covariance matrix be-
tween features a and b from some site 7. We have,
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Theorem 2.5 Analysis in Section 2.1 holds for (3 in (9) by
replacing 3; with ¥y = ¥, — 300 (3.2,) 1.,

Remarks: The test now allows evaluating statistical power
improvements focused on the subset of the coefficient vec-
tor that is shared and permits site-specific confounds, en-
abling much flexibility in practice. For example, we can
test which subset of parameters might benefit from param-
eter estimation on pooled data from multiple sites.

3. Pooling in High Dimensional Regression

We now describe our analysis of pooling multi-site data in
the high-dimensional setting where p > n. The key chal-
lenge here is that variable section has to be a first order
concern. In classical regression, the /5 consistency prop-
erties are well known and so our focus in Section 2 was
devoted entirely to deriving sufficient conditions for the hy-
pothesis test. In other words, imposing the same 3 across
sites works in (3) because we understand its consistency.
In contrast, here, one cannot enforce a shared 3 for all sites
before the active set of predictors within each site are se-
lected — directly imposing the same [ leads to a serious
loss of /5-consistency, making follow-up analysis problem-
atic. Therefore, once a suitable model for high-dimensional
multi-site regression is chosen, the first requirement is to
characterize its consistency.

We start with the multi-task Lasso (a special case of group
Lasso) (Liu et al., 2009), where the authors show that the
strategy selects better explanatory features compared to
separately fitting Lasso on each site. But this algorithm un-
derperforms when the sparsity pattern of the predictors is
not identical across sites, so we use a recent variant called
sparse multi-task Lasso (Lee et al., 2010) — essentially sub-
stituting “sites” for “tasks”. The sparse multi-site Lasso in
p > n setting (p is the number of predictors) is given as

k
B = argmﬁin;Hyi—XiﬁngJr)\A(B) (11)
AB)= ad [Flh+ 1 —a)VED 8] (12)
Jj=1 j=1

where ) is the Lasso regularization parameter. Here, B €

Figure 2. X and Z influence the response Y. After adjustment,
X, and X> may be close requiring same 3. However, Z; and Z»
may differ a lot, and we need different v, and 7.

REXP is a matrix where the ' row corresponds to the co-
efficients from %" site (k sites in total). Also, 3; with sub-
script denotes the i" row (site) of B, we use 3/ with su-
perscript to give the j-th column (coefficients) of B. The
hyper-parameter « € [0, 1] balances the two penalties; a
larger o weighs the ¢ penalty more and a smaller « puts
more weight on the grouping. This will play an important
role for the remainder of this section. Similar to a Lasso-
based regularization parameter, A here will produce a so-
lution path (to select coefficients) for a given . We first
address the consistency behavior of the sparse multi-site
Lasso in (11), which was not known in the literature.

3.1. /5 consistency

Our analysis of (11) is related to known results for Lasso
(Meinshausen & Yu, 2009) and the group Lasso (Liu &
Zhang, 2009a). Recall that X3, ..., X} are the data ma-
trices from k sites. We define i = max? ;{n;} and
C = a 'pDIAG(X{ X1, ..., X} X)) where DIAG(A, B)
corresponds to constructing a block-diagonal matrix with
A and B as blocks on the diagonal. We require the follow-
ing useful properties of C (||-||o denotes £-norm).

Definition 3.1 The m-sparse minimal and maximal eigen-
values of C, denoted by ¢uin(m) and ¢max(m), are
vICv vITCv

min — max T
vipllo<Im] V-V villvlo<[m] V7V

13)

Let us call a feature “active” if its coefficient is non-zero.
We know that each site may have different active features:
let s;, < kp be the sum of the number of active features
over all sites. Similarly, s, is the cardinality of the union of
features that are active in at least one site (s, < ksp, s, <
p). Recall that when a # 0, we add the Lasso penalty to the
multi-site Lasso penalty. Whenever the sparsity patterns
are assumed to be similar across all sites, « is small. On the
other hand, to encourage site-specific sparsity patterns, we
may set « to be large. The following two technical results
analyze these cases independently.

Theorem 3.2 Let 0 < o < 0.4. Assume there exist con-
stants 0 < pmin < Pmax < 00 such that

2a 2
li inf min 1 ni{l > min
iminf ¢ <S”°g”<+12a>>p

k
lim Sup ¢max (sp + min{z ni, kp}) < pmax.

n—00

(14)

1=1

Then, for A < o/ log(kp), there exists a constant w > 0
such that, with probability converging to I for n — oo,

51
o2 5log(kp)

1 -
Z\|B* = B*||% <
kH [# <w P

; 15)

where § = {(1— ) /5 +av/sn/k}? o is the noise level.



When can Multi-Site Datasets be Pooled for Regression?

Remarks: The above result agrees with known results for
multi-task Lasso (Liu et al., 2009; Liu & Zhang, 2009b)
when the sparsity patterns are the same across sites. The
simplest way to interpret Theorem 3.2 is via the ratio r =
Z—’;. Here, = k when the sparsity patterns are the same
across sites. As r decreases, the sparsity patterns across
sites start to differ, in turn, the sparse multi-site Lasso
from (11) will provide stronger consistency compared to
the multi-site Lasso (which corresponds to o = 0). In other
words, whenever we expect site-specific active features, the
{5 consistency of (11) will improve as one includes an ad-
ditional ¢; -penalty together with multi-site Lasso.

Observe that for the non-sparse 37, we can verify that
[87]|; and Vk||37]]2 have the same scale. On the other
hand, for sparse 37, ||37||; has the same scale as ||37||2,
i.e., with no v/k penalization (see supplement). Unlike
Theorem 3.2 where the sparsity patterns across sites are
similar, due to this scaling issue, the parameters o and A
need to be ‘corrected’ for the setting where sparsity pat-
terns have little overlap. We denote this corrected versions
by 6 = 2 and A = (1 = a)Vk + )\

Theorem 3.3 Let 0.4 < & < 1. Assume there exist con-
stants 0 < pmin < Pmax < 00 such that

. (1 1=a)N?
lim inf ¢min Sh log n|{l4+-—= 2 Pmin
o

n—oo

. (16)

lim Sup Pmax (sn + min{z ni, kp}) < pmax.

n— oo ;
=1

Then, for \ox o/ log(kp), there exists w > 0 such that,
with probability converging to 1 for n — oo, we have (15)

with § = {(1 — &)\/sp/k + a+/sn/k}? instead of 3.

Remarks: This result agrees with known results for Lasso
(Meinshausen & Yu, 2009) when the sparsity patterns are
completely different across sites. In this case (i.e., « is
large), the sparse multi-site Lasso has stronger consistency
compared to Lasso (o« = 1). The sparse multi-site Lasso
is preferable as r = i—’; increases. Note that although &

and \ are used for the technical results instead of « and ),
in practice, one can simply scale the chosen as appropri-
ately. For instance, with k& = 100, we see that @ ~ 0.99
corresponds to a & = 0.95.

Performing hypothesis tests: Theorems 3.2 and 3.3
show consistency of sparse multi-site Lasso estimation.
Hence, if the hyper-parameters a and A are known, we can
estimate the coefficients B*. This variable selection phase
can be followed by a hypothesis test, similar to Theorem
2.3 from Section 2. The only remaining issue is the choice
of o and existing methods suggest a heuristic. They set it
to 0.05 when it is known that sparsity patterns are similar

across sites and 0.95 otherwise (Simon et al., 2013). Joint
cross-validation for o and A is shown to perform worse (Si-
mon et al., 2013). Below, we instead provide a data-driven
alternative that works well in practice.

Choosing o using simultaneous inference: Our theo-
retical results in Thm. 3.2 (and Thm. 3.3 resp.) seem to
suggest that increasing (and decreasing resp.) « will al-
ways improve consistency; however, this ends up requiring
much stronger m-sparsity conditions. We now describe a
procedure to choose «. First, recall that an active feature
corresponds to a variable with non-zero coefficient. We
call a feature (or predictor) “site-active” if it is active at a
site, an “always-active” feature is active at all & sites. The
proposed solution involves three steps. (1) First, we ap-
ply simultaneous inference (like multi sample-splitting or
de-biased Lasso) using all features at each of the £ sites
with FWER control. This step yields “site-active” features
for each site, and therefore, gives the set of always-active
features and the sparsity patterns. (2) Then, each site runs
a Lasso and chooses a \; based on cross-validation. We
then set Apuiti—site t0 be the minimum among the best
A’s from each site. Using Apuiti—site, W€ Can vary « to
fit various sparse multi-site Lasso models — each run will
select some number of always-active features. We plot
versus the number of always-active features. (3) Finally,
based on the sparsity patterns from the site-active set, we
can estimate whether the sparsity patterns across sites are
similar or different (i.e., share few active features). Then,
based on the plot from step (2), if the sparsity patterns from
the site-active sets are different (similar) across sites, then
the smallest (largest) value of « that selects the minimum
(maximum) number of always-active features is chosen.
The supplement has additional details.

4. Experiments

Our experiments are two-fold. First we perform simula-
tions evaluating the hypothesis test from Section 2 and the
sparse multi-site Lasso from Section 3. We then conduct an
experiment to pool two Alzheimer’s disease (AD) datasets
coming from different ongoing studies to evaluate improve-
ments in power, and checking whether the proposed tests
provide insights into the regimes when pooling is beneficial
for regression, thereby yielding tangible statistical benefits,
in neuroscience/neuroimaging research.

Power and Type I Error of Theorem 2.3: The first set
of simulations evaluate the setting from Section 2.1 where
the coefficients are same across two different sites. The
inputs for the two sites are set as X, Xo(€ R””) ~
N(0,%) with 3 = 0.5(1 + E) (where I is identity and F
is a 3 x 3 matrix of 1s). The true coefficients are given by
81 ~U(0,4I) and B2 = 1 +0.1 (where U(+) is multivari-
ate uniform), and the noise corresponds to €; ~ N(0,3I)
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and e3 ~ N(0,0.51) for the two sites respectively. With
this, the responses are set as y; = X151 + €1 and yo =
X232+ €2. Using { X1, 1} and {Xs, 5}, the shared /3 are
estimated. The simulation is repeated 100 times with 9 dif-
ferent sample sizes (n = 2° with b = 4,...,12) for each
repetition. Figure 3(a) shows the MSE of two-site (blue
bars) and a baseline single-site (red bars) model computed
using the corresponding Bs on first site. Although both
MSEs decrease as n increases, the two-sites model consis-
tently produces smaller MSE — with large gains for small
sample sizes (left-end of Figure 3(a)). Figure 3(d) shows
the acceptance rates of our proposed hypothesis test (from
(6) and (8)) with 0.05 significance level. The purple solid
line is the sufficient condition from Theorem 2.3, while
the dotted line is where the MSE of the baseline single-
site model starts to decrease below that of two-site model.
The trend in Figure 3(d) implies that as n increases, the test
tends to reject pooling the multi-site data with power — 1.
Further, the type I error is well-controlled to the left of the
solid line, and is low between the two lines. See supple-
ment for additional details about Figures 3(a,d).

Power and Type I Error of Theorem 2.5: The sec-
ond set of simulations evaluate the confounding vari-
ables setup from Section 2.2. Similar to Section 4, here
we have ()(17 Zl), (XQ, ZQ) ~ N(O, E) with ¥ =
0.5I3x3 + 0.5E3x3, 0.2FE3545

( 0.2E5y3, 0.8T5x5 + 0.2E5y 5 > P and
By are the same as earlier. v, = (1,1,2,2,2)7 and
72 = (2,2,2,1,1)T are the coefficients for Z; and Z re-
spectively. The new responses y; and y» will have the extra
terms Z,y; and Zyy, respectively. Figure 3(b,e) shows the
results. All the observations from Figure 3(a,d) hold here as
well. For small n, MSE of two-site model is much smaller
than baseline, and as sample size increases this difference
reduces. The test accepts with high probability for small n,
and as sample size increases it rejects with high power. The
regimes of low type I error and high power in Figure 3(e)
are similar to those from Figure 3(d).

4.1. Sparse multi-sites Lasso (5-consistency

We now use 4 sites with n = 150 samples each and
p = 400 features to test the sparse multi-site model from
Section 3. We set the design matrices X; (z = 1,...,4)
~ N(0,%) with ¥ = 0.81,x, + 0.2E,«,. The two cases
where sparsity patterns are shared, and not shared, are con-
sidered separately.

Few sparsity patterns shared: 6 shared features and 14
site-specific features (out of the 400) are set to be active in
4 sites. Each of shared features is sampled from U (0, 4)
for first two sites and U(0,0.5) for the rest. All the site-
specific features are ~ U(0,4). The noise ¢; ~ N(0,1),
and the responses are y; = X;3; + ¢;. Figure 3(c) shows
the 10-fold cross validation error as A changes (i.e., so-

lution path) for different o settings, including the value
from our proposed selection procedure (from Section 3.1),
Lasso (¢ = 1), group Lasso (a« = 0) and arbitrary val-
ues = 0.05, 0.95 (as suggested by (Simon et al., 2013)).
Our chosen o = 0.97 (the blue curve in Figure 3(c)) has
smallest error, across all the As, thereby implying a better
{5 consistency. Tables 1 in supplement includes more de-
tails. We show that o = 0.97 discovers more always-active
features, while preserving the ratio of correctly discovered
active features to all the discovered ones.

Most sparsity patterns shared: Unlike the earlier case,
here we set 16 shared and 4 site-specific features (both
~ U(0,4)) to be active among all the 400 features. The
result, shown in Figure 3(f), is similar to Figure 3(c). The
proposed choice of a = 0.25 competes favorably with al-
ternate choices while preserving the correctly discovered
number of always-active features. Unlike the previous
case, the ratio of correctly discovered active features to all
discovered ones increases here (see supplement).

4.2. Combining AD datasets from multiple sites

We now evaluate whether two AD datasets acquired at dif-
ferent sites — a Alzheimer’s Disease Neuroimage Initiative
(ADNI) dataset and a local dataset (ADlocal) — can be com-
bined. Supplement has dataset details. The sample sizes
are 318 and 156 respectively. Cerebrospinal fluid (CSF)
protein levels are the inputs, and the responses are hip-
pocampus volume. Using 81 age-matched samples from
each dataset, we first perform domain adaptation (using a
maximum mean discrepancy objective as a measure of dis-
tance between the two marginals), and then transform CSF
proteins from ADlocal to match with ADNI. The trans-
formed data is then used to evaluate whether adding AD-
local data to ADNI will improve the regression performed
on the ADNI data. This is done by training a regression
model on the ‘transformed’ ADlocal and a subset of ADNI
data, and then testing the resulting model on the remaining
ADNI samples. We use two baseline models each of which
are trained using — ADNI data alone; and non-transformed
ADlocal (with ADNI subset).

Figure 4(a,b) show the resulting mean prediction error
(MPE) scaled by the estimated noise level in ADNI re-
sponses, and the corresponding acceptance rate (with sig-
nificance level 0.05) respectively. The z-axis in Figure
4(a,b) represents the size of ADNI subset used for training.
As expected, the MPE reduces as this subset size increases.
Most importantly, pooling after transformation (green bars)
seems to be the most beneficial in terms of MPE reduction.
As shown in Figure 4(a), to the left of purple line where
the subset size is smaller than ADlocal datasize, pooling
the datasets improves estimation. This is the small sample
size regime which necessitates pooling efforts in general.
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As the dataset size increases (to the right of z-axis in Fig-
ure 4(a)) the resulting MPE for the pooled model is close
to what we will achieve using the ADNI data by itself.

Since pooling after transformation is at least as good as us-
ing ADNI data alone, our proposed hypothesis test accepts
the combination with high rate (=~ 95%) as can be seen
from Figure 4(b). The test rejects the pooling strategy with
high power for combining before domain adaptation (see
Figure 4(b)), as one would expect. This rejection power in-
creases rapidly as sample size increases as pointed out on
the red curve in Figure 4(b). The results in Figure 4(c,d)
show the setting where one cannot change the dataset sizes
at the sites i.e., the training set uses an equal number of
labeled samples from both the ADNI and ADlocal (z-axis
in Figure 4(c)), and the testing set always corresponds to
20% of ADNI data. This is a more interesting scenario for
a practitioner compared to Figure 4(a,b), because in Figure

4(c,d) we use the same sample sizes for both datasets. The
trends in Figure 4(c,d) are the same as Figure 4(a,b).

5. Conclusions

In this work, we present a hypothesis test to answer the
question of whether pooling multiple datasets acquired
from different sites is guaranteed to increase statistical
power for regression models. For both low and high di-
mensional linear regression, we precisely identify regimes
where such pooling is sensible, and show how such pol-
icy decisions can be made via simple checks executable on
each site before any data transfer ever happens. We also
show empirical results by combining two Alzheimer’s dis-
ease datasets in the context of different regimes proposed
by our analysis, and showing that the regression fit im-
proves as suggested by the theory.
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