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Abstract

The success of deep architectures is at least in part attributed to the layer-by-layer unsupervised pre-training that
initializes the network. Various papers have reported extensive empirical analysis focusing on the design and imple-
mentation of good pre-training procedures. However, an understanding pertaining to the consistency of parameter
estimates, the convergence of learning procedures and the sample size estimates is still unavailable in the literature.
In this work, we study pre-training in classical and distributed denoising autoencoders with these goals in mind. We
show that the gradient converges at the rate of 1√

N
and has a sub-linear dependence on the size of the autoencoder

network. In a distributed setting where disjoint sections of the whole network are pre-trained synchronously, we show
that the convergence improves by at least τ3/4, where τ corresponds to the size of the sections. We provide a broad
set of experiments to empirically evaluate the suggested behavior.

1 Introduction
In the last decade, deep learning models have provided state of the art results for a broad spectrum of problems in
computer vision Krizhevsky et al. (2012); Taigman et al. (2014), natural language processing Socher et al. (2011a,b),
machine learning Hamel & Eck (2010); Dahl et al. (2011) and biomedical imaging Plis et al. (2013). The underly-
ing deep architecture with multiple layers of hidden variables allows for learning high-level representations which
fall beyond the hypotheses space of (shallow) alternatives Bengio (2009). This representation-learning behavior is
attractive in many applications where setting up a suitable feature engineering pipeline that captures the discriminative
content of the data remains difficult, but is critical to the overall performance. Despite many desirable qualities, the
richness afforded by multiple levels of variables and the non-convexity of the learning objectives makes training deep
architectures challenging. An interesting solution to this problem proposed in Hinton & Salakhutdinov (2006); Bengio
et al. (2007) is a hybrid two-stage procedure. The first step performs a layer-wise unsupervised learning, referred to as
“pre-training”, which provides a suitable initialization of the parameters. With this warm start, the subsequent discrim-
inative (supervised) step simply fine-tunes the network with an appropriate loss function. Such procedures broadly fall
under two categories – restricted Boltzmann machines and autoencoders Bengio (2009). Extensive empirical evidence
has demonstrated the benefits of this strategy, and the recent success of deep learning is at least partly attributed to
pre-training Bengio (2009); Erhan et al. (2010); Coates et al. (2011).

Given this role of pre-training, there is significant interest in understanding precisely what the unsupervised phase
does and why it works well. Several authors have provided interesting explanations to these questions. Bengio (2009)
interprets pre-training as providing the downstream optimization with a suitable initialization. Erhan et al. (2009,
2010) presented compelling empirical evidence that pre-training serves as an “unusual form of regularization” which
biases the parameter search by minimizing variance. The influence of the network structure (lengths of visible and
hidden layers) and optimization methods on the pre-training estimates have been well studied Coates et al. (2011);
Ngiam et al. (2011). Dahl et al. (2011) evaluate the role of pre-training for DBN-HMMs as a function of sample sizes
and discuss the regimes which yield the maximum improvements in performance. A related but distinct set of results
describe procedures that construct “meaningful” data representations. Denoising autoencoders Vincent et al. (2010)
seek representations that are invariant to data corruption, while contractive autoencoders (CA) Rifai et al. (2011b) seek
robustness to data variations. The manifold tangent classifier Rifai et al. (2011a) searches for low dimensional non-
linear sub-manifold that approximates the input distribution. Other works have shown that with a suitable architecture,
even a random initialization seems to give impressive performance Saxe et al. (2011). Very recently, Livni et al. (2014);
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Bianchini & Scarselli (2014) have analyzed the complexity of multi-layer neural networks, theoretically justifying
that certain types of deep networks learn complex concepts. While the significance of the results above cannot be
overemphasized, our current understanding of the conditions under which pre-training is guaranteed to work well is
still not very mature. Our goal here is to complement the above body of work by deriving specific conditions under
which this pre-training procedure will have convergence guarantees.

To keep the presentation simple, we restrict our attention to a widely used form of pre-training — Denoising au-
toencoder — as a sandbox to develop our main ideas, while noting that a similar style of analysis is possible for other
(unsupervised) formulations also. Denoising auto-encoders (DA) seek robustness to partial destruction (or corruption)
of the inputs, implying that a good higher level representation must characterize only the ‘stable’ dependencies among
the data dimensions (features) and remain invariant to small variations Vincent et al. (2010). Since the downstream
layers correspond to increasingly non-linear compositions, the layer-wise unsupervised pre-training with DAs gives
increasingly abstract representations of the data as the depth (number of layers) increases. These non-linear transfor-
mations (e.g., sigmoid functions) make the objective non-convex, and so DAs are typically optimized via a stochastic
gradients. Recently, large scale architectures have also been successfully trained in a massively distributed setting
where the stochastic descent is performed asynchronously over a cluster Dean et al. (2012). The empirical evidence
regarding the performance of this scheme is compelling. The analysis in this paper is an attempt to understand this be-
havior on the theoretical side (for both classical and distributed DA), and identify situations where such constructions
will work well with certain guarantees.

We summarize the main contributions of this paper. We first derive convergence results and the associated sample
size estimates of pre-training a single layer DA using the randomized stochastic gradients Ghadimi & Lan (2013). We
show that the convergence of expected gradients is O

(
(dhdv)

3/4

√
N

)
and the number of calls (to a first order oracle) is

O
(

(dhdv)
3/2

ε2

)
, where dh and dv correspond to the number of hidden and visible layers, N is the number of iterations,

and ε is an error parameter. We then show that the DA objective can be distributed and present improved rates while
learning small fractions of the network synchronously. These bounds provide a nice relationship between the sample
size, asymptotic convergence of gradient norm (to zero) and the number of hidden/visible units. Our results extend
easily to stacked and convolutional denoising auto-encoders. Finally, we provide sets of experiments to evaluate if the
results are meaningful in practice.

2 Preliminaries
Autoencoders are single layer neural networks that learn over-complete representations by applying nonlinear trans-
formations on the input data Vincent et al. (2010); Bengio (2009). Given an input x, an autoencoder identifies repre-
sentations of the form h = σ(Wx), where W is a dh × dv transformation matrix and σ denotes point–wise sigmoid
nonlinearity. Here, dv and dh denote the lengths of visible and hidden layers respectively. Various types of autoen-
coders are possible depending on the assumptions that generate the h’s — robustness to data variations/corruptions,
enforcing data to lie on some low-dimensional sub-manifolds etc. Rifai et al. (2011b,a).

Denoising autoencoders are widely used class of autoencoders Vincent et al. (2010), that learn higher-level rep-
resentations by leveraging the inherent correlations/dependencies among input dimensions (j = 1, . . . , dv), thereby
ensuring that h is robust to changes in less informative input/visible units. This is based on the hypothesis that abstract
high-level representations should only encode stable data dependencies across input dimensions, and be robust to spu-
rious correlations and invariant features. This is done by ‘corrupting’ each individual visible dimension randomly,
and using the corrupted version (x̃’s) instead, to learn h’s. The corruption generally corresponds to ignoring (setting
to 0) the input signal with some probability (denoted by ζ), although other types of additive/multiplicative corruption
may also be used. If xj is the input at the jth unit, then the corrupted signal is x̃j = xj with probability 1 − ζ and
0 otherwise where j = 1, . . . , dv . Note that each of the dv dimensions are corrupted independently with the same
probability ζ. DA pre-training then corresponds to estimating the transformation W by minimizing the following
objective Bengio (2009),

min
W

Ep(x,x̃)‖x− σ(WTσ(Wx̃))‖2 (1)

where the expectation is over the joint probability p(x, x̃) of sampling an input x ∼ D and generating the correspond-
ing x̃|x using ζ. The bias term (which is never corrupted) is taken care of by appending inputs x with 1.

For notational simplicity, let us denote the process of generating {x, x̃} by a random variable η, i.e., one sample
of η corresponds to a pair {x, x̃} where x̃ is constructed by randomly corrupting each of the dv dimensions of x
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with some probability ζ. Then, if the reconstruction loss is L(η;W) := L(x̃,x;W) = ‖x − σ(WTσ(Wx̃))‖2, the
objective in (40) becomes

min
W

f(W) := EηL(η;W) (2)

Observe that the loss L(η;W) and the objective in (2) constitutes an expectation over the randomly corrupted sample
pairs η := {x, x̃}, which is non-convex. Analyzing convergence properties of such an objective using classical
techniques, especially in a (distributed) stochastic gradient setup, is difficult. Therefore, given that the loss function
is a composition of sigmoids, one possibility is to adopt convex variational relaxations of sigmoids in (2) and then
apply standard convex analysis. But non-convexity is, in fact, the most interesting aspect of deep architectures, and so
the analysis of a loose convex relaxation will be unable to explain the empirical success of DAs, and deep learning in
general.

High Level Idea. The starting point of our analysis is a very recent result on stochastic gradients which only
makes a weaker assumption of Lipschitz differentiability of the objective (rather than convexity). We assume that the
optimization of (2) proceeds by querying a stochastic first order oracle (SFO), which provides noisy gradients of the
objective function. For instance, the SFO may simply compute a noisy gradient with a single sample ηk := {xs, x̃s}
at the kth iteration and use that alone to evaluate∇WL(ηk;Wk). The main idea adapted from Ghadimi & Lan (2013)
to our problem is to express the stopping criterion for the gradient updates by a probability distribution PR(·) over
iterations k, i.e., the stopping iteration is k ∼ PR(·) (and hence the name randomized stochastic gradients, RSG).
Observe that this is the only difference from classical stochastic gradients used in pre-training, where the stopping
criterion is assumed to be the last iteration. RSG will offer more useful theoretical properties, and is a negligible
practical change to existing implementations. This then allows us to compute the expectation of the gradient norm,
where the expectation is over stopping iterations sampled according to PR(·). For our case, the updates are given by,

Wk+1 ←Wk − γkG(ηk;Wk) (3)

where, G(ηk;Wk) = ∇WL(ηk;Wk) is the noisy gradient computed at kth iteration (γk is the stepsize). We have
flexibility in specifying the distribution of stopping criterion PR(·). It can be fixed a priori or selected by a hyper-
training procedure that chooses the best PR(·) (based on an accuracy measure) from a pool of distributions PR. With
these basic tools in hand, we first compute the expectation of gradients where the expectation accounts for both the
stopping criterion k ∼ PR(·) and η := {x, x̃}. We show that if the stepsizes γk in (3) are chosen carefully, the
expected gradients decrease monotonically and converge. Based on this analysis, we derive the rate of convergence
and corresponding sample size estimates for DA pre-training. We describe the one–layer DA (i.e., with one hidden
layer) in detail, and all our results extend easily to the stacked and convolutional settings since the pre-training is done
layer-wise in multi-layer architectures.

3 Denoising Autoencoders (DA) pre-training
We first present some results on the continuity and boundedness of the objective f(W) in (2), followed by the conver-
gence rates for the optimization. Denote the element in ith row and jth column of W by Wij where i = 1, . . . , dv
and j = 1, . . . , dh. We require the following Lipschitz continuity assumptions on L(η;Wij) and the gradient
∇Wij

f(Wij), which are fairly common in numerical optimization. L and L′ are Lipschitz constants.

Assumption (A1).
‖L(η;Wij)− L(η;Ŵij)‖ ≤ L‖Wij − Ŵij‖ ∀i, j

Assumption (A2).
‖∇Wij

f(Wij)−∇Wij
f(Ŵij)‖ ≤ L′‖Wij − Ŵij‖ ∀i, j,

We see from (40) that L(η;Wij) is symmetric in Wij ,∀i, j. Depending on where Wij is located in the parameter
space (and the variance of each data dimension j), each L(η;Wij) corresponds to some Lij , and L will then be the
maximum of all such Lij’s (similarly for L′).

Based on the definition ofG(ηk;Wk) and (2), we see that the noisy gradientsG(ηk;Wk) are unbiased estimates of
the true gradient since∇Wf(Wk) = EηkG(ηk;Wk). To compute the expectation of the gradients,∇Wf(Wk), over
the distribution governing whether the process stops at iteration k, i.e., R ∼ PR(·), we first state a result regarding the
variance of the noisy gradients and the Lipschitz constant of∇Wf(Wk). All proofs are included in the supplement.
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Lemma 3.1 (Variance bound and Lipschitz constant). Using A1, A2 and ∇Wf(Wk) = EηkG(ηk;Wk), we have

Var(G(ηk;Wk)) ≤ dhdvL2

‖∇Wf(W)−∇Wf(Ŵ)‖ ≤
√
dhdvL

′‖W − Ŵ‖
(4)

Proof. Recall that the assumptions [A1] and [A2] are,

[A1] ‖L(η;Wij)− L(η;Ŵij)‖ ≤ L‖Wij − Ŵij‖ ∀ i, j

[A2] ‖∇Wij
f(Wij)−∇Wij

f(Ŵij)‖ ≤ L′‖Wij − Ŵij‖ ∀ i, j

The noisy gradient is defined as G(ηk;Wk) = ∇WL(ηk;Wk). Using the mean value theorem and [A1], we have
|G(ηk;Wk

ij)| ≤ L. This implies that the maximum variance of G(ηk;Wk
ij) is L2. We can then obtain the following

upper bound on the variance of G(ηk;Wk),

Eηk(‖G(ηk;Wk)−∇Wf(Wk)‖2) = Eηk(
∑
ij

(G(ηk;Wk
ij)−∇Wij

f(Wk
ij))

2)

=
∑
ij

V ar(G(ηk;Wk
ij)) ≤ dhdvL2

(5)

Using [A2], we have

‖∇Wf(W)−∇Wf(Ŵ)‖2 =
∑
i,j

‖∇Wij
f(Wij)−∇Wij

f(Ŵij)‖2

≤
∑
i,j

(L′ij)
2‖Wij − Ŵij‖2 ≤

∑
i,j

(L′ij)
2
∑
i′,j′

‖Wi′j′ − Ŵi′j′‖2

≤ dhdvL′2‖W − Ŵ‖2

(6)

where the equality follows from the definition of `2-norm. The second inequality is from [A2]. The last two inequali-
ties use the definition of `2-norm and that L′ is the maximum of all L′ijs.

Whenever the inputs x are bounded between 0 and 1, f(W) is finite-valued everywhere and there exists a minimum
due to the bounded range of sigmoid in (40). Also, f(·) is analytic with respect to Wij∀i, j. Now, if one adopts the
RSG scheme for the optimization, using Lemma 3.1, we have the following upper bound on the expected gradients for
the one–layer DA pre-training in (2).

Lemma 3.2 (Expected gradients of one–layer DA). Let N ≥ 1 be the maximum number of RSG iterations with step
sizes γk < 2

L′
√
dhdv

. Let PR(·) be given as

PR(k) :=Pr(R = k)

=
2γk − L′

√
dhdv(γ

k)2∑N
k=1

(
2γk − L′

√
dhdv(γk)2

) (7)

where k = 1, . . . , N . If Df = 2(f(W1)− f∗), we have

E
(
‖∇Wf(WR)‖2

)
≤
Df +

(√
dhdv

)3
L2L′

∑N
k=1(γk)2∑N

k=1

(
2γk − L′

√
dhdv(γk)2

) (8)

Proof. Broadly, this proof emulates the proof of Theorem 2.1 in Ghadimi & Lan (2013) with several adjustments. The
Lipschitz continuity assumptions (refer to [A1] and [A2]) give the following bounds on the variance of G(ηk;Wk)
and the Lipschitz continuity of∇Wf(W) (refer to Lemma 3.1),

Var(G(ηk;Wk)) ≤ dhdvL2

‖∇Wf(W)−∇Wf(Ŵ)‖ ≤
√
dhdvL

′‖W − Ŵ‖
(9)
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Using the properties of Lipschitz continuity we have,

f(Wk+1) ≤ f(Wk) + 〈∇Wf(Wk),Wk+1 −Wk〉+

√
dhdvL

′

2
‖Wk+1 −Wk‖2

Since the update of Wk using the noisy gradient is Wk+1 ← Wk − γkG(ηk;Wk), where γk is the step–size, we
then have,

f(Wk+1) ≤ f(Wk)− γk〈∇Wf(Wk), G(ηk;Wk)〉+

√
dhdvL

′

2
(γk)2‖G(ηk;Wk)‖2

By denoting δk := G(ηk;Wk)−∇Wf(Wk),

f(Wk+1) ≤ f(Wk)− γk‖∇Wf(Wk)‖2 − γk〈∇Wf(Wk), δk〉

+

√
dhdvL

′

2
(γk)2

(
‖∇Wf(Wk)‖2 + 2〈∇Wf(Wk), δk〉+ ‖δk‖2

)
Rearranging terms on the right hand side above,

f(Wk+1) ≤ f(Wk)−
(
γk −

√
dhdvL

′

2
(γk)2

)
‖∇Wf(Wk)‖2

−
(
γk −

√
dhdvL

′(γk)2
)
〈∇Wf(Wk), δk〉+

√
dhdvL

′

2
(γk)2‖δk‖2

Summing the above inequality for k = 1, . . . , N ,

N∑
k=1

(
γk −

√
dhdvL

′

2
(γk)2

)
‖f(Wk)‖2 ≤ f(W1)− f(WN+1)

−
N∑
k=1

(
γk −

√
dhdvL

′(γk)2
)
〈∇Wf(Wk), δk〉+

√
dhdvL

′

2

N∑
k=1

(γk)2‖δk‖2
(10)

where W0 is the initial estimate. Using f∗ ≤ f(WN+1), we have,

N∑
k=1

(
γk −

√
dhdvL

′

2
(γk)2

)
‖f(Wk)‖2 ≤ f(W1)− f∗

−
N∑
k=1

(
γk −

√
dhdvL

′(γk)2
)
〈∇Wf(Wk), δk〉+

√
dhdvL

′

2

N∑
k=1

(γk)2‖δk‖2
(11)

We now take the expectation of the above inequality over all the random variables in the RSG updating process –
which include the randomization η used for constructing noisy gradients, and the stopping iteration R ∼ PR(·).
First, note that the stopping criterion is chosen at random with some given probability PR(·) and is independent of η.
Second, recall that the random process η is such that the random variable ηk is independent of ηk+1 for some iteration
number k, because SFO selects then randomly. However, the update point Wk+1 depends on G(ηk;Wk) (which are
functions of the random variables ηk) from the first to the kth iteration. That is, Wk+1 is not independent of Wk, and
in fact the updates Wk form a Markov process. So, we can take the expectation with respect to the joint probability
p(η[N ], R) = p(η[N ])p(R) where η[N ] denotes the random process from η1 until ηN . We analyze each of the last two
terms on the right hand side of (11) by first taking expectation with respect to η[N ]. The second last term becomes,

Eη[N]

[
N∑
k=1

(
γk −

√
dhdvL

′(γk)2
)
〈∇Wf(Wk), δk〉

]

=

N∑
k=1

(
γk −

√
dhdvL

′(γk)2
)

Eη[k](〈∇Wf(Wk), δk〉|η1, . . . , ηk) = 0

(12)
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where the last equality follows from the definition of δk = G(ηk;Wk) − ∇Wf(Wk) and Eηk(G(ηk;Wk)) =
∇Wf(Wk)). Further, from Equation 9 we have Eηk‖δk‖2 = V ar(G(ηk;Wk)) ≤ dhdvL

2. So, the expectation of
the last term in (11) becomes,

Eη[N]

[√
dhdvL

′

2

N∑
k=1

(γk)2‖δk‖2
]

=

√
dhdvL

′

2

N∑
k=1

(γk)2Eη[N](‖δk‖2) ≤ (
√
dhdv)

3L′L2

2

N∑
k=1

(γk)2 (13)

Using (12) and (13) and the inequality in (11) we have,

N∑
k=1

(
2γk −

√
dhdvL

′(γk)2
)
Eη[N]‖f(Wk)‖2 ≤ 2(f(W1)− f∗) + (

√
dhdv)

3L′L2
N∑
k=1

(γk)2 (14)

Using the definition of PR(k) from Equation 7 and denoting Df = 2(f(W1)− f∗), we finally obtain

ER,η[N](‖∇Wf(WR)‖2) =

N∑
k=1

(2γk − L′
√
dhdv(γ

k)2)Eη[N](‖∇Wf(WR)‖2)∑N
k=1(2γk − L′

√
dhdv(γk)2)

≤
Df + (

√
dhdv)

3L2L′
∑N
k=1(γk)2∑N

k=1(2γk − L′
√
dhdv(γk)2)

(15)

The expectation in (8) is over η and R ∼ PR(·). Here, γk < 2
L′
√
dhdv

ensures that the summations in the
denominators of PR(·) in (7) and the bound in (8) are positive. Df represents a quantity which is twice the deviation
of the objective f(W) at the RSG starting point (W1) from the optimum. Observe that the bound in (8) is a function
of Df and network parameters, and we will analyze it shortly.

As stated, there are a few caveats that are useful to point out. Since no convexity assumptions are imposed on the
loss function, Lemma 3.2 on its own offers no guarantee that the function values decrease asN increases. In particular,
in the worst case, the bound may be loose. For instance, when Df ≈ 0 (i.e., the initial point is already a good estimate
of the stationary point), the upper bound in (8) is non–zero. Further, the bound contains summations involving the
stepsizes, both in the numerator and denominator, indicating that the limiting behavior may be sensitive to the choices
of γk. The following result gives a remedy — by choosing γk to be small enough, the upper bound in (8) will decrease
monotonically as N increases.

Lemma 3.3 (Monotonicity and convergence of expected gradients). By choosing γk such that

γk+1 ≤ γk with γ1 <
1

L′
√
dhdv

(16)

the upper bound of expected gradients in (8) decreases monotonically. Further, if the sequence for γk satisfies

lim
N→∞

N∑
k=1

γk →∞ , lim
N→∞

N∑
k=1

(γk)2 <∞

then lim
N→∞

E(‖∇Wf(WR)‖2)→ 0

(17)

Proof. We first show the monotonicity of the expected gradients followed by its limiting behavior. Observe that
whenever γk < 1

L′
√
dhdv

, we have (
2− L′

√
dhdvγ

k

)
> 1 ∀ k

Then the upper bound in (8) reduces to

E(‖∇Wf(WR)‖2) ≤
Df + (

√
dhdv)

3L2L′
∑N
k=1(γk)2∑N

k=1 γ
k

(18)
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To show that right hand side in the above inequality decreases as N increases, we need to show the following

Df + (
√
dhdv)

3L2L′
∑N+1
k=1 (γk)2∑N+1

k=1 γ
k

≤
Df + (

√
dhdv)

3L2L′
∑N
k=1(γk)2∑N

k=1 γ
k

(19)

By denoting the terms in the above inequality as follows,

a = Df + (
√
dhdv)

3L2L′
N∑
k=1

(γk)2

b = (
√
dhdv)

3L2L′(γN+1)2 c =

N∑
k=1

γk d = γN+1

(20)

To show that the inequality in Equation 19 holds,

a+ b

c+ d
≤ a

c
⇐⇒ b ≤ a

c
d

⇐⇒ (
√
dhdv)

3L2L′(γN+1)2 ≤
Df + (

√
dhdv)

3L2L′
∑N
k=1(γk)2∑N

k=1 γ
k

γN+1
(21)

Rearranging the terms in the last inequality above, we have

(
√
dhdv)

3L2L′
N∑
k=1

γN+1γk ≤ Df + (
√
dhdv)

3L2L′
N∑
k=1

(γk)2

⇐⇒ (
√
dhdv)

3L2L′
N∑
k=1

γk(γN+1 − γk) ≤ Df

(22)

Recall that Df = 2(f(W0) − f∗); so without loss of generality we always have Df ≥ 0. With this result, the last
inequality in (22) is always satisfied whenever γN+1 ≤ γk for k = 1, . . . , N . Since this needs to be true for all N ,
require γk+1 ≤ γk for k = 1, . . . , N − 1. This proves the monotonicity of expected gradients. For the limiting case,
recall the relaxed upper bound from (18). Whenever limN→∞

∑N
k=1 γ

k → ∞ , limN→∞
∑N
k=1(γk)2 < ∞, the

right hand side in (18) converges to 0.

The second part of the lemma is easy to ensure by choosing diminishing step-sizes (as a function of k). This result
ensures the convergence of expected gradients, provides an easy way to construct PR(·) based on (7) and (17), and to
decide the stopping iteration based on PR(·) ahead of time.

Remarks. Note that the maximum γk in (17) needed to ensure the monotonic decrease of expected gradients
depends on L′. Whenever the estimate of L′ is too loose, the corresponding γk might be too small to be practically
useful. An alternative in such cases is to compute the RSG updates for some N (fixed a priori) iterations using
a reasonably small stepsize, and select R to be the iteration with the smallest possible gradient ‖∇Wf(Wk)‖2 or
the cumulative gradient

∑k
i=1 ‖∇Wf(Wi)‖2 among some last N1 < N iterations. While a diminishing stepsize

following (17) is ideal, the next result gives the best possible constant stepsize γ = γk,∀k, and the corresponding rate
of convergence.

Corollary 3.4 (Convergence of one–layer DA). The optimal constant step sizes γk are given by

γk =
D√

N(dhdv)3/4
∀k; 0 < D ≤

√
N

L′
(dhdv)

1/4 (23)

If we denote D̄ =
Df
D +DL2L′, then we have

E(‖∇Wf(WR)‖2) ≤ D̄ (dhdv)
3/4

√
N

(24)
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Proof. Using constant stepsizes γk = γ, k = 1, . . . , N , the convergence bound in (8) reduces to

E(‖∇Wf(WR)‖2) ≤ Df + (
√
dhdv)

3L2L′N(γ)2

Nγ(2− L′
√
dhdvγ)

(25)

To achieve monotonic decrease of expected gradients, we require γk < 1
L′
√
dhdv

(from (17) in Lemma 3.3). For such
γks, (

2− L′
√
dhdvγ

k

)
> 1 ∀ k

which when used in (25) gives,

E(‖∇Wf(WR)‖2) ≤ Df

Nγ
+ (
√
dhdv)

3L2L′γ (26)

Observe that as γ increases (resp. decreases), the two terms on the right hand side of above inequality decreases (resp.
increases) and increase (resp. decreases). Therefore, the optimal γ = γk for all k, is obtained by balancing these two
terms, as in

Df

Nγ
= (
√
dhdv)

3L2L′γ =⇒ γ = γk =

√
Df√

NL2L′(dhdv)3/4
(27)

However, the above choice of γk has the unknowns Df , L′ and L2 (although note that the later two constants can be

empirically estimated by sampling the loss functions L(·) for different choices of x and W). Replacing
√

Df
L′L2 by

some D, the best possible choice constant stepsize is

γ = γk =
D√

N(dhdv)3/4
∀ k (28)

Since γk needs to be smaller than 1
L′
√
dhdv

as discussed at the start of the proof, we have

D√
N(dhdv)3/4

<
2

L′
√
dhdv

=⇒ D ≤ 2
√
N

L′
(dhdv)

1/4 (29)

Now substituting this optimal constant stepsize from (28) into the upper bound in (26) we get

E(‖∇Wf(WR)‖2) ≤ Df

Nγ
+ (dhdv)

3/2L2L′γ

=
Df (dhdv)

3/4

√
ND

+
DL2L′(dhdv)

3/4

√
N

(30)

and by denoting D̄ =
Df
D +DL2L′, we finally have

E(‖∇Wf(WR)‖2) ≤ D̄ (dhdv)
3/4

√
N

(31)

The upper bound in (8) can be written as a summation of two terms, one of which involves Df . The optimal
stepsize in (23) is calculated by balancing these terms as N increases (refer to the supplement). The ideal choice for

D is
√

Df
L2L′ in which case D̄ reduces to 2

√
DfL′L2. For a fixed network size (dh and dv), Corollary 3.4 shows

that the rate of convergence for one–layer DA pre-training using RSG is O(1/
√
N). It is interesting to see that the

convergence rate is proportional to (dhdv)
3/4 where the number of parameters of our bipartite network (of which DA

is one example) is dhdv .
Corollary 3.4 gives the convergence properties of a single RSG run over some R iterations. However, in practice

one is interested in a large deviation bound, where the best possible solution is selected from multiple independent runs
of RSG. Such a large deviation estimate is indeed more meaningful than one RSG run because of the randomization
over η in (2). Consider a C–fold RSG with C ≥ 1 independent RSG estimates of W denoted by WR1 , . . . ,WRC .
Using the expected convergence from (24), we can compute a (ε, δ)-solution defined as,
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Definition ((ε, δ)-solution). For some given ε > 0 and δ ∈ (0, 1), an (ε, δ)-solution of one–layer DA is given by
{WRc}, c = 1, . . . , C such that

Pr

(
min
1,...,C

‖∇Wf(WRc)‖2 ≥ εD̄
)
≤ δ (32)

ε governs the goodness of the estimate W, and δ bounds the probability of good estimates over multiple inde-
pendent RSG runs. Since N is the maximum iteration count (i.e., maximum number of SFO calls), the number of
data instances required is S = N/t, where t denotes the average number of times each instance is used by the oracle.
Although in practice there is no control over t (in which case, we simply have S ≤ N ), we estimate the required
sample size and the minimum number of folds (C) in terms of t, as shown by the following result.

Corollary 3.5 (Sample size estimates of one–layer DA). The number of independent RSG runs (C) and the number
of data instances (S) required to compute a (ε, δ)-solution are given by

C(r, δ) ≥
⌈

log( 1
δ )

log(
√
r)

⌉
; S(r, ε) ≥ r(dhdv)

3/2

tε2
(33)

where r > 1 is a given constant,
⌈
·
⌉

denotes ceiling operation and t denotes the average number of times each data
instance is used.

Proof. Recall that a (ε, δ)-solution is defined such that

Pr

(
min
1,...,C

‖∇Wf(WRc)‖2 ≥ εD̄
)
≤ δ (34)

for some given ε > 0 and δ ∈ (0, 1). Using basic probability properties,

Pr

(
min
1,...,C

‖∇Wf(WRc)‖2 ≥ εD̄
)

= Pr
(
‖∇Wf(WRc)‖2 ≥ εD̄ ∀ c = 1, . . . , C

)
=

C∏
c=1

Pr
(
‖∇Wf(WRc)‖2 ≥ εD̄

) (35)

Using Markov inequality and (24),

Pr
(
‖∇Wf(WRc)‖2 ≥ εD̄

)
≤ E(∇Wf(WRc)‖2)

εD̄

≤ (dhdv)
3/4

ε
√
N

(36)

Hence, the number of SFO calls per RSG is at least N > (dhdv)
3/2

ε2 for the above probability to make sense. If r > 1

is a constant, then the number of calls per RSG is N = r(dhdv)
3/2

ε2 . Using this identity, and (35) and (36), we get

Pr

(
min
1,...,C

‖∇Wf(WRc)‖2 ≥ εD̄
)
≤

C∏
c=1

1√
r

=
1

rC/2
(37)

To ensure that this probability is smaller than a given δ and noting that C is a positive integer, we have

1

rC/2
≤ δ =⇒ C(r, δ) ≥

log( 1
δ )

log(
√
r)

:=

⌈
log( 1

δ )

log(
√
r)

⌉
(38)

where
⌈
·
⌉

denotes ceiling operation. Note that there is no randomization over the data instances among multiple
instances of RSG (c = 1, . . . , C). That is, each RSG is going to use all the available data instances. Hence, we can
just look at one RSG to derive the sample size required. Let S be the number of data instances, ts be the number of
times sth instance is used in one RSG and t = E(ts) be the average number of times each instance/example is used.
We then have

N =

S∑
s=1

ts =⇒ N ≈ E(N) = SE(ts) =⇒ S =
N

t
≥ r(dhdv)

3/2

tε2
(39)
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The above result shows that the required sample size is O(1/ε2), which is easy to see from the convergence rate
of O(1/

√
N) in (24). The constant r in Corollary 3.5 acts like a trade–off parameter between the number of folds

C(r, δ) and the sample size S(r, ε). Hence, not surprisingly, more folds are needed to guarantee a (ε, δ)-solution for a

smaller S. Note that the minimum possible S is (dhdv)
3/2

tε2 , below this quantity the idea of computing an (ε, δ)-solution
in a large deviation sense is not meaningful (refer to proof of Corollary 3.5 in the supplement).

Remarks. To get a practical sense of (33), consider a DA with dv = 100, dh = 20. According to Corollary 3.5,
the number of data instances for computing a (0.05, 0.05)-solution with t = 103 is at least 0.3 million. Depending
on the structural characteristics of the data (variance of each dimension, correlations across multiple dimensions etc.),
which we do not exploit, the bound from Corollary 3.5 will overestimate the required number of samples, as expected.
Overall, the convergence and sample size bounds in (24) and (33) provide some justification of a behavior which is
routinely observed in practice — large number of unsupervised data instances are required for efficient pre-training
of deep architectures (Chapter 4, Bengio (2009),Erhan et al. (2010)). Note that the results in the convergence bound
in (24) do not differentiate between the visible and hidden layers, implying that the bound is symmetric with respect
to dh and dv . However, there is empirical evidence that the choice of dh would affect the reconstruction error with
oversized networks giving better generalization in general Lawrence et al. (1998); Paugam-Moisy (1997). This can be
seen by recalling that until dh is more than the dimensionality of the low-dimensional manifold on which the input
data lies, the DA setup may not be able to compute good estimates of W. We discuss this issue in more detail when
presenting our experiments in Section 5.

Recall that pre-training is done layer-wise in deep architectures with multiple hidden layers. Hence, the bounds
presented above in (24) and (33) directly apply to stacked DAs with no changes. For stacked DAs the total number
of SFO calls would simply be the sum of the calls across all the layers. The results also provide insights regarding
convolutional neural networks where one-to-two layer neural nets are learned from small regions (e.g., local neighbor-
hoods in imaging data), whose outputs are then combined using some nonlinear pooling operation Lee et al. (2009).
Observe that the sub-linear dependence of convergence rate on the network size (dh.dv) from (24) implies that when-
ever S (and hence N ) is reasonable large, small networks are learned efficiently. This partially supports the evidence
that deep convolutional networks with multiple levels of pooling over large number of small networks are successful
in learning complex concepts Lee et al. (2009); Krizhevsky et al. (2012). With these results in hand, we now consider
the case of distributed synchronous pre-training where small parts of the whole network are learned at-a-time.

4 Distributed DA pre-training
The results in the previous section show that the convergence rate has polynomial dependence on the size of the
network (dhdv), where the number of SFO calls increases as (dhdv)

3/2. Although this is unlikely to happen in
practice because of the redundancies across the input data dimensions (for example, sufficiently strong correlations
across multiple input dimensions, presence of invariant dimensions etc.), the results in Corollaries 3.4 and 3.5 show
that pre-training very large DAs is impractical with smaller sample sizes (and thereby fewer iterations). There is
empirical evidence supporting that this is indeed the case in practice Erhan et al. (2009); Raina et al. (2009). Several
authors have suggested learning parts of the network instead. Recently, Dean et al. (2012) showed empirical results on
how distributed learning substantially improves convergence while not sacrificing test-time performance. Motivated
by these ideas, we extend the results presented in Section 3 to the distributed pre-training setting. We first show that the
objective in (40) lends itself to be distributed in a simple way where the whole network is broken down into multiple
parts, and each such sub-network is learned in a synchronous manner. By relating the corruption probabilities of these
sub-networks to that of the parent DA, we compute a lower bound on the number of sub-networks required. Later, we
present the convergence and sample size results for this distributed DA pre-training setting.

Recall that the objective of DA in (40) involves an expectation over corruptions x̃ where certain visible units are
nullified (set to 0). This implies that the corrupted dimension does not provide any information to the hidden layer.
Since the DA network is bipartite, the objective can then be separated into sub-networks (referred to as sub–DAs)
– while the hidden layer remains unchanged, we use only a subset of all available dv visible units. For each such
sub–DA of size (dτdve, dh), where 0 < τ < 1 is the fraction of the visible layer used, the inputs from all the left
out (dv − dτdve) visible units is zero i.e., their corruption probability is 1. Now, consider the setting where B such
sub–DAs constructed by sampling dτdve number of visible units with replacement. The following result shows the
equivalence of learning these B sub–DAs to learning one large DA of size (dv, dh).
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Lemma 4.1 (Distributed learning of one–layer DA). Consider a DA network of size (dv, dh) with corruption proba-
bility ζ and some 1− ζ < τ < 1 and 0 < φ� 1. Learning this DA is equivalent to learning B > log(φ)

log(1−τ) number of

DAs of size (dτdve, dh) with corruption probability 1 − 1−ζ
τ , whose visible units are a fraction τ (with replacement)

of the total available dv units, where d·e denotes the ceiling operation.

Proof. Recall that the DA objective is

min
W

Ep(x,x̃)‖x− σ(WTσ(Wx̃))‖2 (40)

By considering one term from this expectation, we show that it is equivalent to learning two disjoint DAs of sizes
(dτdve, dh) and (dv − dτdve, dh) synchronously. Without loss of generality, let this term correspond to the last
dv − dτdve visible units be corrupted with probability 1 i.e., are set to 0. For the rest of the proof, any visible unit that
is set to 0 via corruption will be referred to as a ‘clamped’ unit.

Let W1 (of size dh × dτdve) and W2 (of size dh × dv − dτdve) be the matrices of edge weights (i.e., unknown
parameters) from the un-clamped and clamped visible units to all dh hidden units respectively. For some inputs x, let
x1 (of length dτdve × 1) and x2 (dv − dτdve × 1) be the un-clamped and clamped parts. Hence x̄1 = x1 and x̄2 = 0.
Then the hidden activation h, and the corresponding un-clamped and clamped reconstructions, x̂1 and x̂2 have the
following structure,

h = σ(W1x̄1 +W20) = σ(W1x̄1) x̂1 = σ(WT
1 σ(W1x̄1))

x̂2 = σ(WT
2 σ(W1x̄1)) = σ(WT

2 σ(W1x̄1 +W2x̄2))
(41)

The objective for the term considered then simplifies to

‖x− x̂‖2 = ‖x1 − σ(WT
1 σ(W1x̄1))‖2 + ‖x2 − σ(WT

2 σ(W1x̄1 +W2x̄2))‖2 (42)

It is easy to see that the first term from the above summation is exactly minimizing the recovery of x1 with no
corruption applied to it. That is to say, it corresponds to one of the terms in the objective of a smaller DA of size
dτdve, dh. The second term in the summation has similar structure however with an extra W1x̄1 within the inner
sigmoid. If W1 is fixed, then this the second term is minimizing the recovery of x2 with ‘complete’ corruption applied
to all the 1−dτdve dimensions. Hence we can first pre-train the (dτdve, dh) sized sub-DA, and use the learned W1 as
a constant bias, and then learn the (dv − dτdve, dh) sized sub-DA. This strategy can be shown for all the terms in the
objective in (40). With this, we can begin with set of sub-DAs of size (dτdve, dh) each and pre-train then one at-a-time
in a synchronous manner, thereby justifying the distributed setting for DA pre-training.

Now consider such a setup where many such (dτdve, dh) sub–DAs are learned synchronously by randomly sam-
pling different subsets dτdve of the total available visible units. It is easy to see that, in expectation this sequential
distributed learning is equivalent to minimizing all the terms inside the expectation in (40). Hence learning the big
(dv, dh) DA is the same as sequentially learning small DAs of size (dτdve, dh) where the units dτdve are chosen at
random. In practice, this is achieved only if each of the visible unit is included in at least one of the sub–DAs (i.e.,
all unknown parameters are updated at least once). Let B be the number of sub–DAs that are learned sequentially. If
0 < φ� 1 denotes the probability that a given unit is not in all theB sub–DAs (ideally, φ should be small in practice).
Then, it is easy to see that this probability is given by (1− τ)B because the probability that a particular unit is sampled
to be included in one sub–DA is τ . Since 1− τ < 1, we then have

(1− τ)B � φ =⇒ B � log(φ)

log(1− τ)
(43)

We now relate the corruption probabilities of the sub–DAs (denoted by q) to that of the mother DA (ζ). Recall that
clamping is the same as corrupting (i.e., setting the input from that unit to be 0). Given the sampling fraction τ , the
probability that a given visible unit (1, . . . , dv) belongs to one sub–DA is τ . Further, if q is the corruption probability
of this sub–DA, then the un-clamping probability of a given unit is (1 − τ) + τq. If the B sub–DAs are constructed
independently by sampling the visible units with replacement, then the overall corrupting (un-clamping) probability is
(B−τB)+τqB

B = 1− τ + τq. We require this to be equal to ζ, which then gives q = 1− 1−ζ
τ (with 1− ζ < τ < 1).

The above statement (proof in supplement) establishes the equivalence of distributed DA (dDA) pre-training to
the non-distributed case by explicitly considering the DA’s property of using nullified/corrupted inputs (which then
provide no new information to the objective). We remark that Lemma 4.1 is specific for the case of DAs and (unlike
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many other results in this paper) may not be directly applicable for other types of auto-encoders that do not involve an
explicit corruption function. Also, τ and ζ should be chosen carefully so that 1− ζ < τ and 1− 1−ζ

τ does not end up
too close to 1. Specifically, whenever ζ is very small, according to Lemma 4.1, there is very little room for distribution
because τ will be close to 1. This is not surprising because, with small ζ, the DA is allowed to discard visible units very
rarely, pushing τ closer to 1, where the distributed setup tends to behave like the non-distributed case. Although these
requirements seem too restrictive, we show in Section 5 that they can be fairly relaxed in practice. Overall, Lemma
4.1 provides some justification (from the perspective of the autoencoder design itself) for distributing the learning
process. The lower bound on B in Lemma 4.1 ensures that all the unknown parameters are updated in at least one of
the B sub–DAs. Hence, in practice, φ can be chosen to be very small and the sub-DAs can be explicitly sampled to be
“non-overlapping” (i.e., disjoint with respect to the parameters). Once the hyper-parameters τ , ζ and B are fixed, the
recipe is simple. The dDA pre-training setup will involve running B individual RSGs on randomly sampled disjoint
sub-DAs. The B sub-DAs share a common parameter set which holds the latest estimates of W.

Similar to the multi-fold RSG setup in Section 3, we perform M meta-iterations of the dDA pre-training, where
each meta–iteration involves learning B number of sub–DAs. Because sub–DAs are constructed randomly, different
meta-iterations end up with different set of sub–DAs, ensuring low variance in the estimate of W corresponding to the
(ε, δ)-solution (34). It is clear that due to the reduction in the size of the network by a factor of τ , the convergence rate
and required sample sizes (see (24) and (33)) will improve in this distributed case. This observation is formalized in
the two results below. Here, γbk denotes the step size in kth meta–iteration for bth RSG (corresponding to bth sub–DA)
and N is the number of SFO calls for each of the B RSGs. The subscript b in WRb

b represents the updates of bth

RSG where Rb is its stopping iteration.

Corollary 4.2 (Convergence of one–layer dDA). The optimal constant step size γkb is given by

γk
b =

D√
N(τdhdv)3/4

∀b, k; 0 < D ≤
√
N

L′ (τdhdv)
1/4 (44)

By selecting B according to Lemma 4.1, and denoting D̄ =
Df
BD +DL2L′, we have,

E(‖∇Wf(WRb
b )‖2) ≤ D̄ (τdhdv)

3/4

√
N

(45)

Proof. The proof for this theorem emulates the proofs of Lemma 3.2 and Corollary 3.4. First we derive an upper
bound on the expected gradients similar to the one in (8) of Lemma 3.2. Using this bound, we then compute the
optimal stepsizes and the rate of convergence.

In the distributed setting, we haveB number of RSGs running synchronously (or sequentially) and the size of each
of the B sub–DAs is (dτdve, dh). This is the same as a (dv, dh) DA with τdhdv unknowns (for notational convenience
the ceil operator d·e is dropped in the analysis). So, the bounds on the variance of noisy gradients (G(ηk;Wk)) and
the Lipschitz continuity of f(W) change as follows,

Var(G(ηk;Wk)) ≤ τdhdvL2

‖∇Wf(W)−∇Wf(Ŵ)‖ ≤
√
τdhdvL

′‖W − Ŵ‖
(46)

We then have the following inequality for each of the B RSGs based on the analysis in the proof of Lemma 3.2
until (10)

Nb∑
k=1

(
γkb −

√
τdhdvL

′

2
(γkb )2

)
‖f(Wk

b )‖2 ≤ f(W1
b)− f(WNb+1

b )

−
Nb∑
k=1

(
γkb −

√
τdhdvL

′(γkb )2
)
〈∇Wf(Wk

b ), δkb 〉+

√
τdhdvL

′

2

Nb∑
k=1

(γkb )2‖δkb ‖2
(47)

It should be noted that the subscript b indicates bth RSG i.e., Wk
b is the kth update from bth RSG. Nb denotes the

maximum number of iterations of bth RSG. Although the size of W is dh×dv , only τdhdv of the total dhdv are being
updated within a single RSG.
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Now recall that the sequential nature of the B RSGs implies that the estimate of W at the end of bth RSG will be
the starting point for the (b + 1)th RSG. This implies that f(WNb+1

b ) = f(W1
b+1) for all b = 1, . . . , B. Using this

fact, we can then sum up all the B inequalities of the form in (47) to get,

B∑
b=1

Nb∑
k=1

(
γkb −

√
τdhdvL

′

2
(γkb )2

)
‖f(Wk

b )‖2 ≤ f(W1
1)− f(WNB+1

B )

−
B∑
b=1

Nb∑
k=1

(γkb −
√
τdhdvL

′(γkb )2)〈∇Wf(Wk
b ), δkb 〉+

√
τdhdvL

′

2

B∑
b=1

Nb∑
k=1

(γkb )2‖δkb ‖2
(48)

Using the fact that f∗ ≤ f(WNB+1
B ), we then have

B∑
b=1

Nb∑
k=1

(
γkb −

√
τdhdvL

′

2
(γkb )2

)
‖f(Wk

b )‖2 ≤ f(W1
1)− f∗

−
B∑
b=1

Nb∑
k=1

(γkb −
√
τdhdvL

′(γkb )2)〈∇Wf(Wk
b ), δkb 〉+

√
τdhdvL

′

2

B∑
b=1

Nb∑
k=1

(γkb )2‖δkb ‖2
(49)

We now take the expectation of the above inequality over all the random variables involved in the B RSGs, which
include, the B number of stopping criterions Rb, b = 1, . . . , B and the random processes η[Nb]b , b = 1, . . . , B (η[Nb]b is
the random process of η within bth RSG). First, note the following observations about 〈∇Wf(Wk

b ), δkb 〉 and ‖δkb ‖2

E
η
[Nb]

b

(G(ηkb ;Wk
b )) = ∇Wf(Wk

b )) =⇒ 〈∇Wf(Wk
b ), δkb 〉 = 0

E
η
[Nb]

b

‖δkb ‖2 = V ar(G(ηkb ;Wk
b )) ≤ τdhdvL2

(50)

which follow from (46). This implies that after taking the expectation of the inequality in (49), the last two terms on
the right hand side will be,

Eη[N]

[
B∑
b=1

Nb∑
k=1

(
γkb −

√
τdhdvL

′(γkb )2
)
〈∇Wf(Wk

b ), δkb 〉

]

=

B∑
b=1

Nb∑
k=1

(
γkb −

√
τdhdvL

′(γkb )2
)

Eη[Nb](〈∇Wf(Wk
b ), δkb 〉|η1b , . . . , ηkb ) = 0

(51)

Eη[N]

[√
τdhdvL

′

2

B∑
b=1

Nb∑
k=1

(γkb )2‖δkb ‖2
]

=

√
τdhdvL

′

2

B∑
b=1

Nb∑
k=1

(γkb )2Eη[Nb](‖δ
k
b ‖2)

≤ (
√
τdhdv)

3L′L2

2

Nb∑
k=1

(γkb )2

(52)

where η[N ] denotes the composition of the B random processes η[Nb], b = 1, . . . , B. Using (51) and (52) and (49), we
get

B∑
b=1

Nb∑
k=1

(
2γkb −

√
τdhdvL

′(γkb )2
)
Eη[N]‖f(Wk

b )‖2

≤ 2(f(W1
1)− f∗) + (

√
τdhdv)

3L′L2
B∑
b=1

Nb∑
k=1

(γkb )2

(53)

Recall the definition of PR(k) from (7) in Lemma 3.2, which is

PR(k) = Pr(R = k) =
2γk − L′

√
dhdv(γ

k)2∑N
k=1 2γk − L′

√
dhdv(γk)2

k = 1, . . . , N (54)
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Adapting this to the current case of B sequential RSGs, we get

PRb(k) = Pr(Rb = k) :=
2γkb − L′

√
τdhdv(γ

k
b )2∑B

b=1

∑Nb
k=1 2γkb − L′

√
τdhdv(γkb )2

k = 1, . . . , N b = 1, . . . , B (55)

Using this distribution of stopping criterion and taking the expectation of (53) with respect the set of random variables
to Rb, b = 1, . . . , B, we get

E(‖∇Wf(WR
b )‖2) =

B∑
b=1

Nb∑
k=1

(2γkb − L′
√
τdhdv(γ

k
b )2)Eη[N](‖∇Wf(WR

b )‖2)∑B
b=1

∑N
k=1(2γkb − L′

√
τdhdv(γkb )2)

≤
Df + (

√
τdhdv)

3L2L′
∑B
b=1

∑N
k=1(γkb )2∑B

b=1

∑N
k=1(2γkb − L′

√
τdhdv(γkb )2)

(56)

Observe that whenever B is selected as in Lemma 4.1 with sufficiently high φ, each of the dhdv unknowns is updated
in at least one of the B RSGs. Hence, all the unknowns are covered in the left hand side above, see 56.

We now compute the optimal stepsizes and the corresponding convergence rate using the upper bound in (56). At
any given point of time only one of the B RSGs will be running. So, using Lemma 3.4, the optimal constant stepsize
for bth RSG is then given by

γkb = γb =
D√

Nb(τdhdv)3/4
where D ≤

√
Nb
L′

(τdhdv)
1/4

Assuming Nb = N for all b = 1, . . . , B, we then have

γkb = γ =
D√

N(τdhdv)3/4
∀k, b where D ≤

√
N

L′
(τdhdv)

1/4 (57)

With this in hand, we now derive the convergence rate. Using some constant stepsizes γkb = γ for all k, b and
assumption that Nb = N for all b, the upper bound in (56) becomes

E(‖∇Wf(WRb
b )‖2) ≤ Df + (

√
τdhdv)

3L2L′NBγ2

NB(2γ − L′
√
τdhdvγ2)

≤ Df + (
√
τdhdv)

3L2L′NBγ2

NBγ

(58)

where the last inequality uses the fact that (2 − L′
√
τdhdvγ) > 1 (which follows from Lemma 3.3 and was used in

deriving the stepsizes in Lemma 3.4). Substituting for γ from (57) in the above inequality gives,

E(‖∇Wf(WRb
b )‖2) ≤ Df

NBγ
+ (τdhdv)

3/2L2L′γ

=
Df (τdhdv)

3/4

√
NDB

+
DL2L′(τdhdv)

3/4

√
N

(59)

By denoting D̄ =
Df
BD +DL2L′, we finally have

E(‖∇Wf(WRb
b )‖2) ≤ D̄ (τdhdv)

3/4

√
N

(60)

Corollary 4.3 (Sample size estimates of one–layer dDA). The number of meta–iterations (M ) and the number of
data instances (S) required to compute a (ε, δ)-solution in the distributed setting are

M(r, δ) ≥
⌈

log( 1
δ )

log(
√
r)

⌉
; S(r, ε) ≥ r(τdhdv)

3/2

tε2
(61)

where r > 1 is a given constant and t denotes the average number of times each data instance is used within each
sub–DA.
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Proof. First observe that there is no randomization of data instances across the B sub—DAs. Hence we can compute
the sample sizes S from a single sub–DA. Secondly, since B ≥ 1, D̄ in Corollary 4.2 is such that D̄ ≤ Df

D +DL2L′.
Using these two facts, the computation for S then follows the steps in Lemma 3.5 with dhdv replaced by τdhdv . Hence
we have,

S(r, ε) ≥ r(τdhdv)
3/2

tε2
(62)

To compute the bound for M we follow the same steps in the proof of Lemma 3.5, and end up with the following
inequality

Pr
(
‖∇Wf(WRc)‖2 ≥ εD̄

)
≤ (τdhdv)

3/4

ε
√
N

(63)

Since N is the number of calls for each of the B RSGs, we have N = r(τdhdv)
3/2

ε2 using (62). Then we have,

Pr

(
min

1,...,M
‖∇Wf(WRc)‖2 ≥ εD̄

)
≤

M∏
c=1

1√
r

=
1

rC/2
(64)

and hence M(r, δ) ≥ log( 1
δ )

log(
√
r)

=

⌈
log( 1

δ )

log(
√
r)

⌉
.

These results show that, whenever B is chosen as in Lemma 4.1, the convergence rate and sample sizes will
improve by τ3/4 and τ3/2 respectively, if the stepsize is appropriate. The improvements may be much larger whenever
ζ is not unreasonably small (or τ is not too close to 1).

5 Experiments
To evaluate the bounds presented above, we pre-trained a one–layer DA on two computer vision and one neuroimaging
datasets – MNIST digits, Magnetic Resonance Images from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
ImageNet. These will be referred to as mnist, neuro and imagenet. See supplement for complete details about these
datasets, including the number of instances, features and other attributes. Briefly, neuro dataset has stronger correla-
tions across its dimensions compared to others, and imagenet includes natural images and is very diverse/versatile.

Our experiments are two-fold. We first evaluate the non-distributed setting (Corollary 3.4, (24)) by computing
the expected gradients vs. the number of SFO calls (N ) and the network structure (dv, dh). We then evaluate the
distributed setup (Corollary 4.2, (45)) by varying the number of disjoint sub-DAs (B) that constitute the network. The
expectations in (24) and (45) are approximated by the empirical average of gradient norm (last 100 iterations). Since
we are interested in the trends of convergence rates, all plots are normalized/scaled by the corresponding maximum
value of expected gradients. Figure 1 shows these results: the first and second columns correspond to the non-
distributed setting and the last column corresponds to the distributed setting. Each row represents one of the three
datasets considered.

Expected gradients vsN . Figure 1(a,d,g) show that the expected gradients decrease as the number of SFO calls (N )
increases. The three curves (red, black, blue) in each plot correspond to different stepsizes. The expected gradients
decrease monotonically for all the curves in Figure 1(a,d,g), and their hyperbolic trend as N increases supports the
O( 1√

N
) decay rate presented in (24). Unlike mnist and imagenet, neuro has stronger correlations across its features,

and so shows a decay rate seems to be stronger than 1√
N

(the red curve in Figure 1(d)). The gradients, in general,
also seems to be smaller for larger stepsizes (blue and black curves), which is expected because the local minima are
attained faster with reasonably large stepsizes, until the minima are overshot. Supplement shows a plot indicative of
this well-known behavior.

Expected gradients vs dv, dh. The second column (Figure 1(b,e,h)) shows the influence of increasing the length of
the visible layer (dv) for multiple dh’s and fixed N . As suggested by (24), the expected gradients increase as dv
increases. This rate of increase (vs. increasing dv on x-axis) seems to be stronger for smaller values of dh (black and
green curves vs. red and blue curves). Recall that dh should be “sufficiently” large to encode the underlying input
data dependencies Paugam-Moisy (1997); Lawrence et al. (1998); Bianchini & Scarselli (2014). Hence the network
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(a) mnist; Expected gradients vs. N
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(b) mnist; Expected gradients vs. dv , dh
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(c) mnist; Expected gradients vs. B
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(d) neuro; Expected gradients vs. N
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(e) neuro; Expected gradients vs. dv , dh
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(f) neuro; Expected gradients vs. B
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(g) imagenet; Expected gradients vs. N
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(h) imagenet; Expected gradients vs. dv , dh
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Figure 1: Expected gradients. First (a,d,g) column shows the expected gradients vs the number of SFO calls N , for multiple stepsizes γ
(corresponding to red, black and blue colors). Second (b,e,h) column shows the expected gradients vs. the size of visible layer dv for multiple
dhs (corresponding to red, blue and black colors). Third column (c,f,i) presents expected gradients vs. the number of sub-DAs (B > 1) used in a
distributed asynchronous setting (for a fixed iterations N and network size dh.dv). For the results in first and last columns, dv equals the inherent
input data dimensionality (see supplement), and dh is one-tenth of dv . Top row corresponds to mnist, second to neuro and third to imagenet. All
the expected gradients are normalized with the maximum value in the respective plot.

may under-fit for small dh, and not recover inputs with small error. This behavior is seen in Figure 1(b,e,h) where
initially the expected gradients (across all dvs) gradually decrease as dh increases (black, green and red curves). Once
dh is reasonably large, increasing it further tends to increase the expected gradients (as shown by the blue curve which
overlaps the others). dh may hence be chosen empirically (e.g. using cross validation), so that the network still
generalizes to test instances but is not massive (avoids unnecessary computational burden).
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Figure 2: The relative time speed-up achieved by distributed pre-training (vs. non-distributed) as a function of the number of cores (x-axis),
which in this experiment is equal to the number B of sub-DAs (see Lemma 4.1) i.e. each of core works on one sub-DA. Curves correspond to
different number of parameters. Step-sizes are scaled according to 17, while N is fixed for each curve.

Does distributed learning help ? The last column in Figure 1 shows the expected gradients in a distributed setting
where x-axis represents the number of sub-DAs (B) into which the whole network is divided. The number of B’s is
chosen such that dh is no larger than twice the size of dv . Corollary 4.2 presents the bounds with respect to τ which
is the fraction of visible layers used in each of the sub-DAs. The results in Figure 1(c,f,i) are shown relative to the
number of disjoint sub-DAs B, which is chosen to be at least 1/τ and follows the conditions in Lemma 4.1. Observe
that, the expected gradients decay as B increases for all the three datasets considered. For a sufficiently large B, the
decay rate settles down with no further improvement, see Figure 1(f,i). The bounds derived in Section 4 are based on a
synchronous setup. In our experiments a central master holds the current updates of the parameters, and theB different
sub-DAs pre-train independently on as many as 200 cores, communicating with the master via message passing. The
sub-DAs are initialized by running the whole network (in a non-distributed way) for a few hundred iterations.

Figure 2 shows the time speed-up achieved by distributing the pre-training (relative to the non-distributed setting)
on neuro and imagenet. Note that the number of sub-DAs used is equal to the number of cores used, which means one
sub-DA is pre-trained per core. As the number of cores used increases, the speed-up relative to the non-distributed
setting increases rapidly up to a certain limit, and then gradually falls back. This is because for large values of B
the communication time between machines dominates the actual computation time. The speed-up is much higher
for datasets with large number of parameters (> 50mil, red and black curves vs.15mil, blue curve). Note that the
distributed setting gives faster convergence and time speed-up, but does not lose out on generalization error (refer to
the supplement for a plot confirming this behavior). Lastly, these computational (Figure 1(c,f,i)) and time speed-up
(Figure 2) improvements of distributed setup are in agreement with existing observations Raina et al. (2009); Dean
et al. (2012). Overall, the results in Figures 1 and 2, in tandem with existing observations Bengio (2009); Erhan et al.
(2009, 2010); Vincent et al. (2010); Dean et al. (2012) provide strong empirical support to the convergence and sample
size bounds constructed in Sections 3 and 4.

6 Conclusion
We analyzed the convergence rate and sample size estimates of gradient based learning of deep architectures. The
only assumption we make is on the Lipschitz continuity of the loss function. We provided bounds for classical and
distributed pre-training for Denoising Autoencoders, and the experiments support the suggested behavior. We believe
that our results complement a sizable body of work showing the success of empirical pre-training in deep architectures
and identifies a number of interesting directions for additional improvements – both on the theoretical side as well as
the design of practical large scale pre-training.

Appendix (Supplementary Material)
Datasets Description The three datasets that were used, mnist, neuro, imagenet, correspond to the smalld-largen,
larged-smalln and larged-largen setups respectively (d is the number of data dimensions, n is the number of data
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instances).

• mnist: This famous digit recognition dataset contains binary images of hand-written digits (0 − 9). We used
104 of these images which are part of the mnist training data set (http://yann.lecun.com/exdb/mnist/). The
training data contains approximately equal number of instances for each of the ten classes. Each image is 784
pixels/dimensions, and the signal in each pixel is binary. No extra preprocessing was done to the data.

• neuro: This neuroimaging dataset is a prototypical example of dataset with very large number of features,
but small number of instances. It comprises of Magnetic Resonance Imaging (MRI) data from Alzheimer’s
Disease Neuroimaging Initiative study from a total of 534 subjects. Each image is three-dimensional of size
256 × 256 × 176. Each voxel in this 3D space corresponds to water-level intensity in the brain, and the sig-
nal is positive scalar. Standard pre-processing is applied on all the images, which involves stripping out grey
matter and normalizing to a template space (called MNI space). Refer to Statistical Parametric Mapping Tool
(SPM8, http://www.fil.ion.ucl.ac.uk/spm/doc/) for this standardised procedure. The resulting processed images
are sorted out according to the signal variance. For the experiments in thie work, we picked out the top (most
variant) 25% of the features/voxels, which amounted to 3 × 104 features. Even within this setting the number
of features is much larger than the number of instances available (534).

• imagenet: This well-known dataset comprises of natural images from various types of categories collected as
apart of WordNet hierarchy. It comprises of more than 14 Million images, broadly categorized under more
than 20 thousand synsets (http://www.image-net.org/). We used imaging data from five of the largest categories
contained in the imagenet database. This amount to > 7000 synsets/sub-categories and approximately 5 million
images. As a pre-procesing step, we resized all images to 128 × 128 pixels, and centered each of the 16384
dimensions.
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Figure 3: (a) Distributed setup does not lose on generalization error. The four curves correspond to the ratio of test-set reconstruction errors for
distributed pre-training (B > 2) to the non-distributed case. The error-bars correspond to 10 fold cv errors computed using 10 different test-sets.
(b) Expected gradients vs the number of SFO calls N , for multiple stepsizes γ (corresponding to the four different colors). The trends show that
as stepsize increases the expected gradients decrease, and beyond a resonably large stepsize (gree curve) the gradients overshoot local optima (blue
curve).
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