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Abstract The mild cognitive impairment (MCI) stage of Alzheimer’s disease (AD) may be optimal for clin-
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ical trials to test potential treatments for preventing or delaying decline to dementia. However, MCI is
heterogeneous in that not all cases progress to dementia within the time frame of a trial and some may
not have underlying AD pathology. Identifying those MCIs who are most likely to decline during a
trial and thus most likely to benefit from treatment will improve trial efficiency and power to detect
treatment effects. To this end, using multimodal, imaging-derived, inclusion criteria may be espe-
cially beneficial. Here, we present a novel multimodal imaging marker that predicts future cognitive
and neural decline from [F-18]fluorodeoxyglucose positron emission tomography (PET), amyloid
florbetapir PET, and structural magnetic resonance imaging, based on a new deep learning algorithm
(randomized denoising autoencoder marker, rDAm). Using ADNI2 MCI data, we show that using
rDAm as a trial enrichment criterion reduces the required sample estimates by at least five times
compared with the no-enrichment regime and leads to smaller trials with high statistical power,
compared with existing methods.
� 2015 The Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
Keywords: Clinical trials; Sample enrichment; Deep learning; Alzheimer’s disease
1. Background

Recent clinical trials designed to evaluate new treat-
ments and interventions for Alzheimer’s disease (AD) at
the mild-to-moderate dementia stage have largely been un-
successful, and there is growing consensus that trials
should focus on the earlier stages of AD such as mild
cognitive impairment (MCI) or even the presymptomatic
stage [1,2], if such stages can be accurately identified in
individual subjects [3–5]. However, MCI is a clinical
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syndrome with heterogeneous underlying etiology that
may not be readily apparent from a clinical workup,
posing a major challenge in reliably identifying the most
probable beneficiaries of a putative effective treatment
[6]. For example, MCI patients may have clinical but not
biomarker evidence of incipient AD, may have biomarker
evidence in some modalities but not others, or may despite
biomarker presence not show symptomatic progression
during the trial period. An efficient MCI trial would ideally
include “only” those patients most likely to benefit from
treatment; who possess AD pathology based on a constel-
lation of amyloid, tau, and neural injury biomarker assess-
ments; and who are most likely to progress clinically to
symptomatic AD. The typical annual conversion rate to
ights reserved.
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dementia among MCI due to AD is 3%–20% across several
studies [7], where the relatively lower rates are observed in
population-based cohorts and higher rates in clinical set-
tings. The implication is that over a 2-year trial, at best
only 40% of participants would have naturally progressed
and the ability to detect the true efficacy of the intervention
is perhaps diminished.

To this end, several ongoing AD trials “enrich” their pop-
ulation by using one or more disease markers as inclusion
criteria [2,8]. The general framework here is to effectively
screen out subjects who are weak decliners (i.e., MCI who
may not convert to AD) [9]. Unless there is a natural phase
change (i.e., an elbow) in the distribution for distinguishing
the at-risk and not-at-risk subjects on this scale, a fixed frac-
tion of the total cohort is filtered out based on the study
design. Imaging-based markers (e.g., fluorodeoxyglucose
[FDG], hippocampal, and ventricular volume) and cerebro-
spinal fluid (CSF) profiles have been shown to be effective
in screening out low-risk subjects, owing to the fact that dis-
ease manifests much earlier in imaging data compared with
cognition [1,2]. However, these markers are unimodal while
several studies have shown the efficacy of multimodal data
[10,11]. Furthermore, CSF cannot be used in practice as a
screening instrument because assays typically need to be
performed in a single batch and are highly laboratory
specific [12]. To this end, several recent studies have used
support vector machines (SVMs) and other machine
learning models to design such multimodal markers
[8,13–16]. Although most of these approaches use
longitudinal data, a practical enrichment criterion should
only use baseline (trial start-point) data. We argue that exist-
ing approaches to trial enrichment, including state-of-the-art
machine learning-based techniques, cannot guarantee the
optimal enrichment behavior which is to optimally correlate
with the spectrum of dementia with high confidence, while
simultaneously ensuring small intrastage variance.

In this work, we report the design of a novel multimodal
imagingmarker that is especially tuned to yield accurate pre-
dictions of future decline to AD at the level of individual
subjects with small intrastage variance. This new disease
marker (which we refer to as randomized denoising autoen-
coder marker, rDAm) is a machine learning module based on
certain extensions of recent ideas in “deep learning” that
yield state-of-the-art results in computer vision, natural lan-
guage processing, and machine learning [17,18]. We provide
extensive empirical evidence that this newmarker efficiently
filters out low-risk subjects from the MCI population and
consequently requires much smaller sample sizes per arm
(for detecting a given treatment effect at some desired po-
wer) compared with any of the existing imaging-based
markers. The main contributions of the article are as follows:
(1) We design a novel predictive multimodal imaging-based
disease marker, based only on baseline acquisitions, that cor-
relates very strongly with future decline (i.e., disease pro-
gression); (2) We show via extensive analyses using
imaging, cognitive, and clinical data that this newmarker re-
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sults in efficient clinical trials when used as a trial inclusion
criterion.
2. Methods

2.1. Theoretical approach
2.1.1. Randomized denoising autoencoders
Our multimodal imaging marker attempts to capture, i.e.,

learn from a set of training images, the pattern of differences
across different dementia stages. Clearly, in the neuroimag-
ing literature, such an objective has been tackled by
numerous studies in the AD setting using well-known ma-
chine learning methods such as SVMs [10,11,19]. But
using such SVM approaches for clinical trials has
limitations (additional details provided in the following);
instead, we present a method that differentiates various
stages of AD (i.e., correlates with the dementia spectrum),
while simultaneously obtaining a small intrastage
prediction variance (the prediction variance is simply the
variance of the predictions given by the trained machine
learning model). Such an approach gives results which are
competitive with SVM-based methods (in terms of accu-
racy) but aligns much better with our final goal of using these
ideas for clinical trials design. The basic statistical behavior
of our model is a reduction in the variance at no cost of
approximation bias (or accuracy). To do this, we adapt the
so-called deep learning architectures that have been shown
to yield state-of-the-art performance in several computer
vision and machine learning applications [17,18,20,21].
The main methodological challenge we overcome is to
make deep architectures “generalize” well (i.e., yield
accurate predictions on previously unseen subjects/images)
in this application, which is important due to the high
dimensionality of neuroimaging data accompanied by
smaller training data set sizes (at most a few hundred
subjects).

We first provide a very brief overview of our model,
which we call randomized denoising autoencoders (rDA)
[22]. Please refer to the Appendix, available online, for a
complete description and additional mathematical details.
Our solution consists of first constructing simple deep
learning architectures (referred to as weak learners). Each
such weak learner is a neural network learned according to
a new deep learning algorithm called stacked denoising au-
torncoders (SDA) [20]. Because the number of dimensions
(voxels) is large, each such weak learner corresponds to in-
specting only a small portion (e.g., 3D local neighborhood)
of the image and/or using different model hyperparameters
(the network architecture and learning parameters of SDAs
[20]; refer to Section 2 in the Appendix). Although the issue
of scaling to high dimensions is handled by learning only
small portions of the image, these weak learners by them-
selves are not useful. However, using a large number of these
weak learners, each of which is learned from different
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portions of the image, we can generate an “ensemble” which
is much more expressive in modeling the targets/outputs
compared with the weak learners themselves [23]. The
ensemble outputs can correspond to uniform or weighted
combination of the outputs from this suite of weak learners
and are known to be less sensitive to model hyperparameters
[23]. Such an ensemble learner also comes with guarantees
in terms of reducing the variance of model outputs without
any loss in approximation bias (i.e., overall output is unbi-
ased whenever the weak learners are unbiased).

Our new model rDA is then constructed by the following
procedure. First, the set of voxels are divided into B number
of blocks (given a priori) by randomly assigning each voxel
to one or more of the B blocks. Second, within each block, T
different SDAs (again, given a priori) are constructed by
randomly sampling T different hyperparameters. The BxT
different SDA outputs are finally combined using ridge
regression. This two-level “randomization” over voxels
and hyperparameters motivates the name “randomized”
denoising autoencoders. The expressive power of deep ar-
chitectures ensures that rDA can successfully learn complex
concepts, which provide the ability to differentiate multiple
stages of AD, while forcing the output variance to be as
small as possible due to the ensemble structure [23]. The
framework of rDA can be extended to multiple modalities
by generating weak learners specific to each imaging modal-
ity and combining them across all the modalities. The rDA
outputs are guaranteed to lie between 0 and 1 [20]. Hence,
by training a rDA with healthy controls labeled as 1 and
AD subjects as 0, we can project the scale of dementia to
0,1. These projections then serve directly as imaging-
derived continuous predictors of the disease, referred to as
rDA markers (rDAm), that provide the confidence of the
learning model that a given subject is close to “healthy” or
“diseased.” In particular, rDAm values closer to 0, on previ-
ously unseen MCI subjects, are expected to convey a stron-
ger sign of dementia than those that are closer to 1. Please
refer to the Sections 1–2 in the Appendix for additional de-
tails about the rDA model (including the required back-
ground on SDAs), its training, and the calculation of rDAm.

2.1.2. rDAm for sample enrichment
Sample enrichment in AD clinical trials entails filtering

out those subjects who are “not” expected to have a higher
risk of progressing to dementia. In other words, enrichment
entails including only the strong decliners who are most
likely to benefit from the treatment. To formalize the charac-
teristics of a “good” sample enricher, consider the setting
where wewant to design a 2-year clinical trial on aMCI pop-
ulation using a certain outcome measure. Let d denote the
mean longitudinal change on this outcome measure due to
disease. We intend to induce the treatment and reduce this
change to hd, whereh is the hypothesized induced treatment
effect. Within this setting, the number of subjects required
per arm is computed by applying a two-sample t test, which
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tests for the difference of mean outcome between the treat-
ment and placebo groups [24], as follows,

s 5
2ðZa2Z12bÞ2s2

ð12hÞ2d2

where s2 denotes the pooled variance of the outcome i.e.,
average of the variances at baseline and 2-year trial end
point. h is the hypothesized induced treatment effect (i.e.,
12h denotes the expected percentage of reduction in the
outcome measure). The null hypothesis then corresponds
to no difference between the two groups. For a fixed a and
b, the mentioned equation shows that the sample estimates
increase with s2 and decrease with a large d. If the trial
cohort includes subjects at low risk of decline (weak de-
cliners), then d is expected to be small. Enrichment entails
removing such weak decliners, thereby increasing d. How-
ever, this might have the undesirable effect of increasing
s2 because the latter is the pooled variance of the outcome.
Hence, one must ensure that the enriched cohort has smaller
variance (with respect to some outcome) but also has large
d i.e., we need to recognize the pool of very strong decliners
whose outcomes have smaller variance.

The natural way of ensuring small s2 with large d is by
designing an outcome with precisely these characteristics.
However, the trial outcomes are generally cognitive scores,
or may be individual image or CSF measures whose statisti-
cal properties may not be altered readily. But recall that the
multimodal imaging marker, rDAm, is explicitly designed to
ensure smaller variance while yielding prediction scores that
correlate well with existing cognitive measures, which are
used as the basis for defining multiple stages of dementia:
from healthy to early/late MCI to completely demented.
Therefore, using rDAm at baseline (trial start-point) as an in-
clusion criterion to remove the probable weak decliners, we
expect the enriched cohort to have large d and smaller vari-
ance s2 with respect to any outcome measure that may be
desired. This directly follows from the ability of rDAm to
predict many of these scores (outcomes) with high confi-
dence. Section 3 of the Appendix presents more details on
reducing sample sizes by designing enrichers with strong
correlation to dementia spectrum and small prediction vari-
ance. Note that we use the word prediction variance because
rDA is trained on ADs and controls (CNs) and offers predic-
tion scores on MCIs. Ideally, and to be practically deploy-
able, this enrichment must be performed “only” at baseline
or the trial start-point. Hence, our first sanity check in terms
of the efficacy of rDAm and using it as enricher will focus
on whether rDAm computed at baseline correlates with
cognitive and other imaging-derived disease biomarkers
[25,26]. If the correlations turn out to be significant, this
is evidence of convergent validity, and using baseline
rDAm as an inclusion criterion for enriching a clinical
trial population is, at minimum, meaningful. Observe that
the scale of rDAm (closer to 0 corresponds to higher
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confidence that a subject will decline) implies that the trial
population can be enriched by screening in subjects whose
baseline rDAm is smaller than some cutoff. If the
enrichment threshold is denoted by t (0 , t , 1), then the
enriched cohort would include “only” those subjects
whose baseline rDAm is smaller than t. One way to choose
such a threshold t is by comparing the mean longitudinal
change of some disease markers (mini mental state
examination [MMSE], CDR, and so on) for the enriched
cohort as t goes from 0 to 1. An alternative is to include a
fixed fraction (e.g., one-fourth or one-third) of the whole
population whose baseline rDAm is closest to 0.
2.2. Experimental setup
2.2.1. Participant data and preprocessing
Imaging data including [F-18]Florbetapir amyloid PET

(AV45) singular uptake value ratios (SUVR), FDG PET
SUVRs, and gray matter tissue probability maps derived
from T1-weighted magnetic resonance imaging (MRI)
data, and several neuropsychological measures and CSF
values from 516 individuals enrolled in Alzheimer’s disease
Neuroimaging Initiative-II (ADNI2) (The ADNI was
launched in 2003 by the National Institute on Aging, the Na-
tional Institute of Biomedical Imaging and Bioengineering,
the Food and Drug Administration, private pharmaceutical
companies, and nonprofit organizations, as a $60 million,
5-year public-private partnership. The primary goal of
ADNI has been to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of MCI and early AD) were used
in our evaluations. Of these 516 persons, (age 72.46 6 6.8,
female 38%), 101 were classified as AD (age 75.5 6 5.1),
148 as healthy controls (age 70.75 6 7), and 131 and 136
as early and late MCI (age 74.3 6 7.1 and 75.9 6 7.7),
respectively, at baseline. (There was a significant age differ-
ence across the four groups with F .10 and P , .001.)
Among the MCI subjects, 174 had positive FH for dementia
and 141 had at least one APOE ε4 allele. CSF measures were
only available at baseline, and three time point data (base-
line, 12, and 24 months) was used for the rest.

The imaging protocols follow the standards put forth by
ADNI. MRI images are MP-RAGE/IR-SPGR from a 3T
scanner. PET images are 3D scans consisting of four 5-
minute frames (http://adni.loni.usc.edu/methods/documents/
mri-protocols/; http://adni.loni.usc.edu/methods/pet-analy
sis/pet-acquisition/) from 50 to 70 minutes postinjection
for [F-18]Florbetapir PET, and six 5-minute frames from
30 to 60 minutes postinjection for FDG PET. Modulated
gray matter tissue probability maps were segmented from
the T1-weighted MRI images (other tissue maps are not
used in our experiments) using the SPM8 New Segment
function. The segmented map was then normalized to MNI
space, smoothed using 8-mm Gaussian kernel, and the re-
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sulting map was thresholded at 0.25 to compute the final
gray matter image. All PET images were first coregistered
to the corresponding T1 images and then normalized to the
MNI space. Manually constructed masks of pons, vermis,
and cerebellum were then used to scale these PET maps
by the average intensities in pons and vermis (FDG PET
SUVR) and cerebellum (florbetapir PET SUVR). All prepro-
cessing was done in SPM8.

2.2.2. Evaluations
We train the rDA model using only baseline imaging

data (from all the three modalities, MRI, FDG PET, and
florbetapir PET) for AD and CN (cognitively normal) sub-
jects where the AD class is labeled as 0 and the CN class is
labeled as 1. When tested on MCI subjects, the trained
model outputs a multimodal rDAm, which is a marker rep-
resenting the confidence of the learning model that a given
MCI subject is (or is not) likely to decline. We only use
baseline imaging data for training (hence making the
model deployable in practice), whereas the predictions
can be performed on MCIs at baseline or future time
points. Within this setup, our evaluations are twofold. We
first evaluate the premise whether rDAm is a good disease
progression marker. We demonstrate this by computing the
dependence of well-known outcome measures including
MMSE, Alzheimer’s disease assessment scale (ADAS
cognition 13), Montreal cognitive assessment (MOCA),
Rey auditory verbal learning test (RAVLT), neuropsycho-
logical summary score for memory (PsyMEM), summary
score for executive function (PsyEF), hippocampal volume,
clinical dementia rating sum of boxes (CDR-SB), conver-
sion from MCI to AD (0 – no conversion, 1 – conversion;
denoted by DxConv hereafter), CSF levels (CSF tau [t],
CSF phospho-tau [pt], amyloid beta-42 [Ab42], ratio of
CSF tau and amyloid beta-42 [t/Ab42], and ratio of CSF
phospho-tau and amyloid beta-42 [pt/Ab42]), and APOE
ε4 and maternal/paternal FH, on rDAm computed at base-
line. We used the Spearman rank order correlation coeffi-
cient to assess these dependencies and accepted as
significant those statistics where the P value was ,.05.
Note that we are interested in evaluating the predictive power
of baseline rDAm, i.e., we report the correlations of baseline
rDAm with these markers at say, 12 and 24 months, and also
the longitudinal changes providing evidence that whenever
rDAm is closer to 0, the subject’s longitudinal changes are
in fact steeper. Once this construct is appropriately validated,
it is meaningful to evaluate the use of baseline rDAm for
sample enrichment. To this end, we compute the sample sizes
required when using the mentioned cognitive, neuropsycho-
logical, diagnostic and other imaging-based outcome mea-
sures with (and without) rDAm-based enrichment. We also
compute the performance improvement given by rDAm rela-
tive to alternative imaging-derived enrichers (including re-
gion of interest [ROI] summaries from FDG and florbetapir
images; FDG ROIs include left angular lobe, right angular
lobe, left temporal lobe, right temporal lobe, and cingulate.
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AV45ROIs include frontal lobe, temporal lobe, parietal lobe,
and cingulate gray matter. The corresponding ROI measures
are summed up to obtain single global summary for each of
FDG and AV45), with particular attention to the current
state-of-the-art imaging-based summary measure which we
refer to as MKLm [10]. MKLm is based on multi-kernel
SVM (MKL) [10], which tries to harmonize contributions
from multiple imaging modalities for deriving a maximum
margin classifier in the concatenated Hilbert spaces. That
is, a linear combination of kernels is used unlike traditional
SVMs that use one single kernel, and MKL solves for both
the weights on the kernels as well as the normal to the
hyper-plane concurrently. Similar to rDA, MKL is trained
using AD and CN subjects, and the corresponding predic-
tions on MCIs is referred to as the MKL measure
(MKLm). Please refer to the Appendix (Section 4) for
more details. For better interpretation of the estimates from
the perspective of a practitioner, we estimate the effect
size as a function of rDAm enrichment cutoff for a given
(fixed) sample size. Note that all results (correlations and
the sample size calculations) only use rDAms from MCI
subjects; no AD and CN subjects are included in these
calculations because they were used to train the rDA model
itself.
Table 1

Predictive associations of baseline rDAm: Testing for dependency of baseline rDAm

12 months and 24 months

Biomarker Baseline

Cross-sectional

12 mo 24

MMSE 0.39, P ,, 1024 0.49, P ,, 1024 0.4

ADAS 20.56, P ,, 1024 20.58, P ,, 1024 20

MOCA 0.48, P ,, 1024 0.51, P ,, 1024 0.5

RAVLT 0.49, P ,, 1024 0.52, P ,, 1024 0.5

PsyMEM 0.56, P ,, 1024 0.57, P ,, 1024 0.5

PsyEF 0.52, P ,, 1024 0.57, P ,, 1024 0.4

HippoVol 0.72, P ,, 1024 0.74, P ,, 1024 0.7

CDR-SB 20.33, P ,, 1024 20.49, P ,, 1024 20

DxConv NA 21, P ,, 1024 31,

t 20.39, P ,, 1024 NA NA

pt 20.40, P ,, 1024 NA NA

Ab 0.55, P ,, 1024 NA NA

t/Ab 20.52, P ,, 1024 NA NA

pt/Ab 20.52, P ,, 1024 NA NA

APOE 3.47, P 5 .0006 NA NA

FH 2.16, P 5 .03 NA NA

Abbreviations: NA, not applicable; MCI, mild cognitive impairment; AD, Alzhe

Ab, amyloid beta-42; t/Ab, ratio of CSF Tau and amyloid beta-42; pt/Ab, ratio of

ized denoising autoencoder marker.

NOTE. Outcomes included cognitive and neuropsychological scores (MMSE, m

(cognition 13 scale); MOCA, Montreal cognitive assessment; RAVLT, Rey audito

PsyEF, neuropsych summary score for executive function), hippocampal volume, C

MCI to AD), CSF levels (t, pt, Ab, t/Ab, and pt/Ab), and APOE and family his

statistic (with its P value) are reported for continuous and categorical (DXConv, F

*Observations with P,, .0001 are bold and P, .001 are italic. Column 2 show

are correlations of baseline rDAmwithmarkers themselves at 12 and 24months, res

(i.e. difference) in the markers from baseline to 12 and 24 months. Note that CSF le

are marker “NA.” Same is the case with DxConv at baseline because baseline dia
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3. Results

Table 1 corresponds to the predictive power of baseline
rDAm. It shows the Spearman correlations and t-statistics
of rDAm at baseline with cross-sectional (baseline, 12
and 24 months) scores and longitudinal change (12 and
24 months) in other disease markers. Negative correlations
indicate that the corresponding markers (ADAS errors, t,
pt, t/Ab42, and pt/Ab42) increase with progression of
the disease. Large correlations (r .0.5 and P ,, 1024)
were observed with baseline summary measures (column
2, Table 1), specifically with ADAS, neuropsychological
(memory and executive function) composite scores, hippo-
campal volume and CSF levels involving Ab42. FH
(t 5 2.16, P 5 .03) had a smaller influence on baseline
rDAm compared with APOE (t 5 3.47, P 5 .0006). All
the cross-sectional correlations (columns 2–4, Table 1)
were significant (r .0.48 and P ,, 1024). The correla-
tions of baseline rDAm with longitudinal change (columns
5 and 6, Table 1) were significant (r .0.21, P , .001) for
all the measures, except PsyEF and MOCA at 12 months
time. Beyond predictive accuracy of baseline rDAm in
Table 1, Fig. 1 evaluates its relevance for enrichment.
Each plot corresponds to the mean longitudinal change of
scores (computed onMCI subjects) on several disease markers at baseline,

Longitudinal change

mo 12 mo 24 mo

5, P ,, 1024 0.21, P 5 .0008 0.33, P 5 .0003

.53, P ,, 1024 0.21, P 5 .0007 20.53, P ,, 1024

9, P ,, 1024 0.06, P . .1 0.59, P 5 1024

7, P ,, 1024 0.13, P 5 .04 0.57, P 5 .0008

9, P ,, 1024 0.28, P , 1024 0.42, P 5 .001

6, P ,, 1024 0.15, P 5 .02 0.26, P 5 .05

9, P ,, 1024 0.33, P ,, 1024 0.47, P ,, 1024

.55, P ,, 1024 20.36, P ,, 1024 20.53, P ,, 1024

P ,, 1024 21, P ,, 1024 31, P ,, 1024

NA NA

NA NA

NA NA

NA NA

NA NA

NA NA

NA NA

imer’s disease; CSF, cerebrospinal fluid; t, CSF Tau; pt, CSF phospho-Tau;

CSF phospho-Tau and amyloid beta-42; FH, family history; rDAm, random-

ini mental state examination; ADAS, Alzheimer’s disease assessment scale

ry verbal learning test; PsyMEM, neuropsych summary score for memory;

DR-SB (clinical dementia rating sum of boxes), DxConv (conversion from

tory risk factors. Spearman correlations (coefficient and P value) and t test

H, and APOE) data respectively.*

s correlations of baseline rDAm with markers at baseline. Columns 3 and 4

pectively. Columns 5 and 6 are correlations of baseline rDAmwith “change”

vels, FH, and APOE do not have any meaning in column 5 and 6, and hence

gnosis of all subjects considered here is MCI.
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Fig. 1. Mean longitudinal “change” of several disease markers as a function of baseline rDAm enrichment threshold. Each plot corresponds to one disease

marker (which includes MMSE, ADAS, RAVLT, MOCA, PsychMEM, PsychEF, hippocampal volume, CDR-SB, and DxConv; refer to Section 3.1 for details

about these markers). The x-axis represents the baseline rDAm enrichment cutoff (t). For each t, the subjects who have baseline rDAm.. t are filtered out, and

the mean of within subject change in the disease marker is computed on the remaining unfiltered subjects. Dots represent actual values, and lines are the cor-

responding linear fit. Blue and black represent changes from baseline to 12 and 24 months, respectively. Abbreviations: rDAm, randomized denoising autoen-

coder marker; MMSE, mini mental state examination; ADAS, Alzheimer’s disease assessment scale (cognition 13 scale); MOCA, Montreal cognitive

assessment; RAVLT, Rey auditory verbal learning test; PsyMEM, neuropsych summary score for memory; PsyEF, neuropsych summary score for executive

function; HippoVol, hippocampal volume; CDR-SB, clinical dementia rating sum of boxes; DxConv, conversion from MCI to AD.
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some disease marker after the total MCI population is en-
riched by removing weak decliners (subjects with baseline
rDAm above certain cutoff t, which is shown on the x-
axis). The plots show that MMSE, CDR-SB, and DxConv
have large changes when weak decliners are progressively
removed. Specifically, the changes are much steeper for
24 months compared with baseline and 12 months (black
and blue colored lines in each plot). RAVLT and PsyEF re-
sulted in irregular changes at different time points. Supple-
mentary Fig. 6 at the end of the Appendix presents the
means of the disease markers (in contrast to the mean
change as shown in Fig. 1), and the trends support the ob-
servations in Fig. 1.
FLA 5.2.0 DTD � JALZ2006_proof
Tables 2 and 3 present samples estimated using rDAm as
a sample enricher at 80% statistical power (significance level
of .05) and inducing a treatment effect of 25%. Recall that
higher rDAm implies closer to being healthy. Hence,
enrichment entails filtering out all subjects with baseline
rDAm above some cutoff. Results show that compared to
the no-enrichment regime (column 2, Table 2), the sample
estimates from rDAm enrichment are significantly smaller,
with more than five times reduction when using bottom 20
and 25 percentiles (columns 3 and 4, Table 2). In particular,
MMSE, CDR-SB, and DxConv give consistently smaller es-
timates (200–600) across all columns (the four different per-
centiles). ADAS and PsychEF still required very large sizes
� 16 July 2015 � 10:19 am � ce



Table 2

Baseline rDAm for sample enrichment: Results of sample enrichment using

baseline rDAm (constructed using all the three imaging modalities T1 MRI,

FDG, and florbetapir) in a 2-year trial with outcomemeasures beingMMSE,

ADAS, MOCA, RAVLT, PsychMEM, hippocampal volume, CDR-SB, and

DxConv

Outcome

measure

No

enrichment

Bottom

20% rDAm

�0.41

Bottom

25% rDAm

�0.46

Bottom

33% rDAm

�0.52

Bottom

50% rDAm

�0.65

MMSE 1367 200 239 371 566

ADAS .2000 775 945 .2000 .2000

MOCA .2000 449 674 960 1919

RAVLT .2000 591 1211 .2000 .2000

PsyMEM .2000 420 690 786 1164

PsyEF .2000 .2000 .2000 .2000 .2000

HippoVol .2000 543 1504 1560 1675

CDR-SB 1586 281 317 430 433

DxConv 895 230 267 352 448

Abbreviations: rDAm, randomized denoising autoencoder marker; FDG,

fluorodeoxyglucose; MMSE, mini mental state examination; ADAS, Alz-

heimer’s disease assessment scale (cognition 13 scale); MOCA, Montreal

cognitive assessment; RAVLT, Rey auditory verbal learning test; PsyMEM,

neuropsych summary score for memory; PsyEF, neuropsych summary score

for executive function; HippoVol, hippocampal volume; CDR-SB, clinical

dementia rating sum of boxes; DxConv, conversion from MCI to AD;

MCI, mild cognitive impairment; AD, Alzheimer’s disease.

NOTE. All estimates at significance level of .05 and 80% statistical power

with treatment effect of 0.25. The second column shows sample estimates

with no enrichment (i.e. all clinically diagnosed MCI subjects included),

followed by using MCI subjects from bottom 20, 25, 33, and 50 percentiles

on rDAm scores, respectively. For each percentile, the cutoff on rDAm scale

is shown, and sample sizes smaller than 700 are in bold.
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(774 and.2000, respectively) even at 20% enrichment. Us-
ing extra covariate information in the form of FH and APOE
(we slightly abuse the term covariate here in the sense that
we explicitly “filter” out those MCI subjects who are “not”
FH and/or APOE-positive “before” performing baseline
rDAm enrichment), in tandemwith baseline rDAm, the sam-
ple estimates further decrease as shown in Table 3 (last three
columns). APOE as a covariate resulted in smallest possible
Table 3

Baseline rDAm 1 FH and/or APOE for enrichment: Using already enriched subje

and further screening out subjects with negative FH and/or APOE.

Outcome measure No enrichment FH only APOE only r

MMSE 1367 1668 1015

ADAS .2000 .2000 .2000

MOCA .2000 .2000 .2000

RAVLT .2000 .2000 .2000

PsyMEM .2000 .2000 .2000

PsyEF .2000 .2000 .2000 .
HippoVol .2000 .2000 .2000

CDR-SB 1586 1787 763

DxConv 895 932 509

Abbreviations: rDAm, randomized denoising autoencoder marker; FH, family h

assessment scale (cognition 13 scale); MOCA,Montreal cognitive assessment; RAV

for memory; PsyEF, neuropsych summary score for executive function; HippoVo

DxConv, conversion from MCI to AD.

NOTE. Second column to last columns are results with no enrichment, FH

rDAM 1 both, respectively. The best estimates from rDAM 1 FH and/or APOE

FLA 5.2.0 DTD � JALZ2006_proof
estimates (,350 per arm) across all the outcomes except
PsyEF (last two columns in Table 3), although the last col-
umn represents using both APOE and FH as covariates.
DxConv as an outcome with rDAm 1 APOE enrichment
yields a sample size of 170. Fig. 2 shows the detectable effect
sizes as rDAm enrichment cutoff is varied, for a fixed sample
size of 500 per arm. The detectable effect size (12h) de-
creases as more weak decliners are filtered out. This can
be seen by the “increase” of h (y-axis) as rDAm cutoffs
(x-axis) decrease, specifically for MMSE, CDR-SB, and
DxConv outcomes. Finally, Table 4 compares rDAm with
other imaging-derived inclusion criteria (the cutoff for all
the enrichers corresponds to including the strongest 20% de-
cliners in their respective scales). rDAm consistently outper-
formed other alternatives, with up to two times smaller
estimates than MKLm (multimodal generalization of
SVM), and much larger reductions compared with unimodal
summaries (hippocampal volume, FDG ROIs, and florbeta-
pir ROIs).
4. Discussion

The ability to design clinical trials with smaller sample
sizes but sufficient statistical power will enable the imple-
mentation of affordable, tractable and, hopefully, conclusive
trials. Efficiency is seriously compromised in trials where
there is poor biomarker specificity of disease progression
and when the outcomes contain relatively high amounts of
error variance. Determining whether promising treatments
are effective in the MCI phase of AD requires accurate iden-
tification and inclusion of only those MCI participants most
likely to convert to AD and selection of outcomes that are
both disease related and possess optimal measurement prop-
erties. We have shown that the sample size required to detect
a treatment effect can be substantially reduced using the pro-
posed inclusion strategy. The central message of our empir-
ical evaluations is that the baseline rDAm has good
cts from the bottom 20 percentile on rDAm scale (third column of Table 2)

DAm only rDAm 1 FH rDAm 1 APOE rDAm 1 both

200 182 240 186

775 574 328 271

449 516 326 334

591 394 484 332

420 481 310 333

2000 .2000 1337 721

428 391 274 246

281 255 217 225

230 244 170 192

istory; MMSE, mini mental state examination; ADAS, Alzheimer’s disease

LT, Rey auditory verbal learning test; PsyMEM, neuropsych summary score

l, hippocampal volume; CDR-SB, clinical dementia rating sum of boxes;

alone, APOE alone, rDAm alone, rDAM 1 FH, rDAM 1 APOE, and

are shown in bold.
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Fig. 2. Detectable drug effect h as a function of baseline rDAm enrichment cutoff. Recall that h is the hypothesized induced treatment effect where (12h)

denotes the expected percentage of reduction in the outcome measure. Each plot corresponds to using one of the nine disease markers (MMSE, ADAS, RAVLT,

MOCA, PsychMEM, PsychEF, hippocampal volume, CDR-SB, and DxConv; refer to Section 3.1 for details about thesemarkers) as an outcomemeasure. The x-

axis represents the baseline rDAm enrichment cutoff (t). For each t, y-axis shows the effect size detectable at 80% power and significance level of 0.05 using 500

samples per arm. As with the results in Table 3, each plot also shows improvements when using FH and/or APOE information in tandem with baseline rDAm

enrichment. Blue, green, black, and red correspond to rDAm, rDAm1APOE, rDAm1 FH, and rDAm1 APOE1 FH enrichment, respectively. Abbreviations:

rDAm, randomized denoising autoencoder marker; MMSE, mini mental state examination; ADAS, Alzheimer’s disease assessment scale (cognition 13 scale);

MOCA,Montreal cognitive assessment; RAVLT, Rey auditory verbal learning test; PsyMEM, neuropsych summary score for memory; PsyEF, neuropsych sum-

mary score for executive function; HippoVol, hippocampal volume; CDR-SB, clinical dementia rating sum of boxes; DxConv, conversion fromMCI to AD; FH,

family history.
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predictive power in identifying future disease progression as
shown in Table 1 and Fig. 1. Together with rDA’s capacity to
reduce prediction variance, we see smaller sample estimates
compared with existing imaging-derived enrichers as shown
in Table 4.

Table 1 supports the general consensus that imaging data
capture disease progression [10,26]. This can be seen from
the very strong correlations of baseline rDAm with
longitudinal change in several cognitive scores (last four
columns in Table 1). It should be noted that high correlations
with hippocampal volume (across all time points) are ex-
pected because T1 MRI image at baseline is used in the con-
FLA 5.2.0 DTD � JALZ2006_proof
struction of baseline rDAm. Although hippocampus voxels
are used in the rDA model, its inclusion (as an outcome)
in our experiments is primarily for completeness. That is,
hippocampal volume has been used extensively in previous
AD imaging studies [14,16,25,26], and including it ensures
continuity with this literature. Interestingly, FH had a
lower dependence on rDAm which might be because its
influence is superseded by actual neurodegeneration once
a subject reaches MCI stage (i.e., FH may play a much
stronger role in the asymptomatic phase). Note that we did
not correct for age (and other covariates such as brain
volume) because the markers reported in Table 1 are used
� 16 July 2015 � 10:19 am � ce



Table 4

Baseline rDAm versus other imaging-derived sample enrichers

Sample enricher

Outcome measure

MMSE ADAS MOCA RAVLT PsyMEM HippoVol CDR-SB DxConv

HippoVol 540 .2000 1005 1606 1009 .2000 389 420

FDG 384 1954 579 .2000 832 752 415 371

AV45 224 .2000 875 .2000 826 698 382 443

FAH 296 .2000 705 .2000 826 722 397 402

MKLm 228 874 827 896 487 877 295 284

rDAm 200 775 449 591 420 543 281 230

Abbreviations: rDAm, randomized denoising autoencoder marker; MMSE, mini mental state examination; ADAS, Alzheimer’s disease assessment scale

(cognition 13 scale); MOCA, Montreal cognitive assessment; RAVLT, Rey auditory verbal learning test; PsyMEM, neuropsych summary score for memory;

PsyEF, neuropsych summary score for executive function; HippoVol, hippocampal volume; CDR-SB, clinical dementia rating sum of boxes; DxConv, conver-

sion from MCI to AD; FDG, fluorodeoxyglucose; SUVR, singular uptake value ratios; MKLm, multi-kernal.

NOTE. Comparing rDAm’s estimates to that of using hippocampal volume, FDG ROIs (left temporal, right temporal, left angular, right angular, and bilateral

cingulum), florbetapir SUVR ROIs (frontal, temporal, parietal, and cingulate gray matter), and MKLm as enrichers. FAH corresponds to linear combination of

hippocampal volume, FDG, and AV45 ROIs. All the estimates correspond at bottom 20 percentiles (i.e., high-risk subjects) on the corresponding enricher scale.

The best possible estimate per arm is shown in bold.
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directly with no covariate correction in our later evaluations
on sample enrichment (Tables 2–4). This is based on the
assumption that an actual clinical trial design with
randomized treatment assignment would not need to
correct for the individual’s age to evaluate eligibility, and
rDAm is agnostic to all such variables.

Observe that most classification-based measures which
are used as disease markers are generally unbounded [13].
These include the prediction score from a SVM-based clas-
sification model on a test subject, or summary measures such
as S-score, t-score, F-score, and so forth. Unlike these mea-
sures, rDAm is bounded to 0 and 1, using which we can visu-
alize its predictive power without any post hoc
normalization (as shown in Fig. 1). Except for RAVLT, all
other markers used as outcomes (in Tables 2 and 3) had
steeper changes over time as baseline rDAm decreased,
and in none of the cases was there a clear elbow separating
weak and strong decliners. This shows that the disease
progression is gradual from healthy to AD, and any
classifications (such as early and late MCI) are mostly
artificial. It is interesting to see that rDAm has high
predictive power for DxConv (Table 1 and Fig. 1), implying
that subjects with smaller baseline rDAm (closer to 0) have
very high likelihood of converting from MCI to AD,
providing additional evidence that baseline rDAm is a
good predictive disease marker.

Although there is no phase change (because rDAm is
lower bounded to 0), we can always select a fixed fraction
of subjects that are closest to 0 on the rDAm scale, and claim
that they are the strong decliners we should include in a trial.
The exact value of such fraction would depend on the logis-
tics and size of the intended trial. This is the reason for the
bottom fraction-based enrichment using baseline rDAm as
shown in Tables 2–4. Furthermore, note that the high
predictive power of baseline rDAm solves an important
problem with existing approaches to designing inclusion
criteria which use longitudinal data (e.g., tensor-based
FLA 5.2.0 DTD � JALZ2006_proof
morphometry) [8,13]. Deploying such methods in practice
implies that the trial screening time should be at least a
year or longer, which is not practical. Although
longitudinal signals are much stronger than cross-sectional
ones, the results in Table 1 and Fig. 1 show that the rDAm
marker at trial start-point can still be used with no loss of in-
formation, saving trial resources and reducing the cost of
trial setup.

The first observation from sample estimates in Tables 2
and 3 is that MMSE, CDR-SB, and DxConv outperform
all other alternate outcomes considered here, even in the
no-enrichment regime. This is counter intuitive because of
the simplicity of MMSE compared with other composite
scores such as PsyMEM and PsyEF (neuropsych memory
and executive function composites). It is possible that the
composite nature of these measures increases the outcome
variance, and thereby increases the sample estimates.
Because our population is entirely MCIs, it is expected
that the distribution of rDAms is fairly uniform from 0 to
1, which is not the case as shown from rDAm enrichment
cutoffs at each percentiles (the top row of last four columns
in Table 2). More precisely, the bottom 50% corresponds to a
cutoff of 0.65 and 33% corresponds to 0.52, which indicates
that more than two-thirds of MCIs in the ADNI2 cohort are
healthier (i.e., weak decliners) and also that enrichment is
important. This idea has also been identified by others using
cognitive characteristics [27]. Ideally, we expect to observe a
particular rDAm cutoff (an elbow cutoff) at which there
might be the highest decrease in estimates for all outcomes
in Tables 2 and 3. The elbow cutoff should be a natural
threshold point that separates strong and weak decliners on
baseline rDAm scale. However, the trends in sample
estimates in Table 2 do not seem to suggest such a threshold,
which is not surprising from Fig. 1 and the corresponding
discussion mentioned previously. Specifically, ADAS and
RAVLT seem to have an elbow between 25% and 33%,
whereas for MMSE, CDR-SB, and DxConv, the elbow is
� 16 July 2015 � 10:19 am � ce
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beyond 50%. Because we have 267 MCIs to begin with, a
bottom 20% enrichment (third column, Table 2) corresponds
to a population size of 52, implying that the estimates might
be noisy.

Covariate information (or rather, a preliminary selection
based on a factor such as FH) is almost always helpful in
estimating group effects, which is observed from Table 3
where using FH and/or APOE details as “filters” before
rDAm enrichment reduced the estimates further. It has
been observed that subjects with positive FH (either
maternal or paternal) and/or APOE ε4 positive may have
stronger characteristics of dementia [28]. This implies that
instead of starting off with all MCIs, it is reasonable to
include only those MCIs with positive FH and/or positive
APOE ε4 and then perform the baseline rDAm enrichment
on this smaller cohort. Recall that APOE had a higher depen-
dence on baseline rDAm compared with FH (Table 1), re-
sulting in a higher reduction when using rDAm 1 APOE
or rDAm 1 APOE 1 FH (last two columns) than using
rDAm 1 FH (sixth column) for most all the cases except
MMSE (row 1 in Table 3). Note that Table 3 corresponds
to bottom 20% rDAm enrichment, of which about half
were FH and/or APOE positive. The overall strong perfor-
mance of DxConv resulting in small sample estimates may
be because it summarizes the conversion of MCI to AD us-
ing longitudinal information, where as rDAm tries to predict
this conversion using baseline information alone. Overall,
Tables 2 and 3 support the efficacy of rDAm enrichment;
however, an interesting way to evaluate the strength of
rDAm is by fixing the number of trial-enrolled subjects
and computing the detectable treatment size (h). If in fact
rDAm successfully selects strong decliners, then the trial
should be able to detect smaller expected decrease in disease
(i.e., smaller 12h or larger h, refer to the sample size equa-
tion in Section 2.1 mentioned previously). Fig. 2 shows
exactly this behavior, where h (y-axis) increases drastically
as rDAm cutoffs (x-axis) are decreased (especially for
MMSE, CDR-SB, and DxConv). From the practical perspec-
tive of a practitioner, this gives a tool for evaluating the min-
imum treatment effect that can be deemed significant, from a
fixed cutoff and sample size.

We discussed in Section 1 that although effective
imaging-derived disease markers exist (either based on ma-
chine learning models or directly computed from imaging
ROIs), they may not lead to the best possible clinical trials.
This is supported by the results in Table 4, where rDAm
(which is designed to explicitly reduce the prediction vari-
ance) is compared with existing markers that have been
used as trial inclusion criteria [2,14,16]. For example, ROI
summaries from multiple imaging modalities have often
been used as trial enrichers [1,2] and rDAm significantly
outperforms these baselines (first four rows in Table 4).
Furthermore [14], we used SVM models to design effective
disease marker and used it as an inclusion criterion in trials.
Correspondingly, we compared rDAm to MKLm (which is
FLA 5.2.0 DTD � JALZ2006_proof
based on a multi-kernel SVM), and the results in Table 4
show that baseline rDAm as an enricher outperforms
MKLm, and the improvements are higher for MOCA,
RAVLT, and hippocampal volume as outcomes. Note that
for the present paper, we actually did not adjust any of the
parameters relative to the results reports earlier [10]. These
were the defaults for the MKL code-base provided on
the Web page (http://pages.cs.wisc.edu/whinrichs/MKL_
ADNI/). The necessity of incorporating multimodal infor-
mation in designing any disease markers has been reported
earlier [10,11]. This is further supported by the
improvement of rDAm estimates over unimodal measures
including hippocampal volume, FDG ROI summaries, and
florbetapir ROI summaries. These results also built upon
the work of [1,2] where such unimodal imaging
summaries are used for enrichment. It is possible to
demonstrate that the performance gains of rDAm over
[1,2] is not merely due to using three distinct modalities
but also heavily influenced by the underlying machine
learning architecture that exploits this information
meaningfully. To see this, compare the enricher “FAH” in
Table 4 that corresponds to combining the three unimodal
measures, FDG, florbetapir, and hippocampal volume. Its
sample estimates are still larger than those obtained from
rDAm, implying that the reductions are not merely due to
multimodal data or small population size but due to the effi-
cacy of deep learning methods (i.e., rDAm’s capacity of
picking up strong decliners with high confidence with small
variance) introduced here.

Overall, these results suggest that rDAm enrichment re-
duces sample sizes significantly leading to practical and
cost-effective AD clinical trials. The rDA model by itself
is expressive that scales to very large dimensions, uses
only a small number of instances, and can be easily incorpo-
rated to design robust multimodal imaging markers. It
should be noted that, the framework can be improved further,
particularly in terms of using a richer pooling strategy
instead of ridge regression (refer to the Appendix) and using
other covariate information (such as age and CSF levels) in
the rDA construction itself. These technical issues are of in-
dependent interest and will be investigated in future work.
All the implementations used in the article will be made
available at http://pages.cs.wisc.edu/wvamsi/rda on article
acceptance.
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RESEARCH IN CONTEXT

1. Systematic review: An efficient trial inclusion crite-
rion should be able to discriminate weak decliners
from the strong ones robustly. Furthermore, the
screened strong decliners should have less variability
if the screening criterion is to result in smaller sample
estimates. These two requirements imply that the
sample enricher needs to learn complex concepts
while reducing the prediction variance. The statisti-
cal framework presented here offers both these fea-
tures and yields substantial improvements over
alternative strategies.

2. Interpretation: First, this work provides strategies for
sample enrichment in Alzheimer’s disease clinical
trials. Second, the results show that randomized
denoising autoencoder marker (rDAm) predicts
strong decliners with high confidence. Third, the
findings show that baseline rDAm inclusion criterion
is the best available imaging-derived enricher, which
leads to smaller trials.

3. Future directions: Improving the randomized denois-
ing autoencoders (rDA) model using richer pooling
strategies and better ensemble generation. Further-
more, using easily available covariate information
(such as family history [FH], APOE, age, and so
forth) in the rDA construction (or training) itself.
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