On the interplay of network structure and gradient convergence in deep learning

Vamsi K. Ithapu* Sathya N. Ravi* Vikas Singh^{†,*}

 * Computer Sciences † Biostatistics and Medical Informatics University of Wisconsin Madison

Sep 28, 2016

Overview

- Background
 - Motivation
- Problem
 - Solution strategy
 - Single-layer Networks
 - Multi-layer Networks
- Oiscussion

x: inputs, **h**: hidden representations, **y**: outputs Training data $\{\mathbf{x},\mathbf{y}\}\in\mathcal{X}$

x: inputs, **h**: hidden representations, **y**: outputs Training data $\{\mathbf{x},\mathbf{y}\}\in\mathcal{X}$

x: inputs, **h**: hidden representations, **y**: outputs Training data $\{\mathbf{x},\mathbf{y}\}\in\mathcal{X}$

x: inputs, **h**: hidden representations, **y**: outputs Depth *L* Network

4 / 41

x: inputs, **h**: hidden representations, **y**: outputs Depth L Network

 $\sigma(\cdot)$: Nonlinear Monotonic Non-convex Non-smooth

$$\mathbf{h^1} = \sigma_1(\mathbf{W_1}, \mathbf{h^0})$$

$$\mathbf{h^1} = \sigma_1(\mathbf{W_1}, \mathbf{h^0}) \qquad \ \mathbf{h^{L-1}} = \sigma_{L-1}(\mathbf{W_{L-1}}, \mathbf{h^{L-2}})$$

$$\hat{\mathbf{y}} = \sigma_{\mathbf{L}}(\mathbf{W}_{\mathbf{L}}, \mathbf{h}^{\mathbf{L}-1})$$

Learning Objective:
$$\min_{\textbf{W}} \quad \mathbb{E}_{\textbf{x},\textbf{y}\sim\mathcal{X}}\mathcal{L}(\textbf{x},\textbf{y};\textbf{W})$$

$$\textbf{W}:=\{\textbf{W}_1\ldots,\textbf{W}_L\}$$

Stochastic Gradients are used Gradient backpropagation

5 / 41

Stochastic Gradients are used ... with some tricks!

Appropriate Nonlinearities
 ReLU, Log-sigmoid, Max-pooling etc.

- Appropriate Nonlinearities
- ReLU, Log-sigmoid, Max-pooling etc.
- Initializations
- Pretrain (Warm-start) the network layers
- → Using unlabeled data Unsupervised Pretraining

- Appropriate Nonlinearities
- ReLU, Log-sigmoid, Max-pooling etc.
- Initializations
- Pretrain (Warm-start) the network layers
- → Using unlabeled data Unsupervised Pretraining
- Learning mechanisms
- Stochastically learn parts of network
- → Dropout, DropConnect

- Appropriate Nonlinearities
- ReLU, Log-sigmoid, Max-pooling etc.
- Initializations
- Pretrain (Warm-start) the network layers
- → Using unlabeled data Unsupervised Pretraining
- Learning mechanisms
- Stochastically learn parts of network
- → Dropout, DropConnect
- Large Dataset sizes

Attractive empirical success

Attractive empirical success

... some interesting theoretical results

Arora et. al. 2013, Dauphin et. al. 2014, Patel et. al. 2015

Attractive empirical success

... some interesting theoretical results

Arora et. al. 2013, Dauphin et. al. 2014, Patel et. al. 2015

Theme of most works

Attractive empirical success ... some interesting theoretical results

Arora et. al. 2013, Dauphin et. al. 2014, Patel et. al. 2015

Theme of most works

ightarrow Analyze a *given* architecture/structure the depth L, hidden layer lengths (d_1, \ldots, d_{L-1}) hidden layer activations are known

Attractive empirical success ... some interesting theoretical results

Arora et. al. 2013, Dauphin et. al. 2014, Patel et. al. 2015

Theme of most works

- ightarrow Analyze a *given* architecture/structure the depth L, hidden layer lengths (d_1, \ldots, d_{L-1}) hidden layer activations are known
- → Existence of some network structure is proven

The Problem

What is the best possible network for the given task?

Amyloid PET Images Collected from Middle-aged Adults

Amyloid PET Images Collected from Middle-aged Adults

Deep Network Predictor

The probability of disease in future

Amyloid PET Images Collected from Middle-aged Adults

Amyloid PET Images Collected from Middle-aged Adults

The probability of disease in future

Send to trial

Do not send to trial

Bottleneck on the available #instances Brain image acquisition is costly!

 Cheapest – #computations, \$cost
 Dollar value associated per hour of computation (e.g., using Amazon Web Services)

- Cheapest #computations, \$cost
 Dollar value associated per hour of computation
 (e.g., using Amazon Web Services)
- Richer (Largest) models are desired

Amyloid PET Images Collected from Middle-aged Adults

The probability of disease in future

A non-expert is going to setup the learning

The Problem – reformulated

We need informed or systematic design strategies for the choosing network structure

What is the best possible network for the given task? Need informed design strategies

Part I

What is the best possible network for the given task? Need informed design strategies

Part I

Construct the relevant bounds

• Gradient convergence + Learning Mechanism + Network/Data Statistics

What is the best possible network for the given task? Need informed design strategies

Part I

Construct the relevant bounds

 $\bullet \ \mathsf{Gradient} \ \mathsf{convergence} + \mathsf{Learning} \ \mathsf{Mechanism} + \mathsf{Network}/\mathsf{Data} \ \mathsf{Statistics}$

Part II

What is the best possible network for the given task? Need informed design strategies

Part I

Construct the relevant bounds

ullet Gradient convergence + Learning Mechanism + Network/Data Statistics

Part II

Construct design procedures using the bounds

• For the given dataset, a *pre-specified* convergence level *Find* the depth, hidden layer lengths, etc.

The Solution strategy – This work

What is the best possible network for the given task? Need informed design strategies

Part I

Construct the relevant bounds

ullet Gradient convergence + Learning Mechanism + Network/Data Statistics

Part II

Construct design procedures using the bounds

• For the given dataset, a *pre-specified* convergence level *Find* the depth, hidden layer lengths, etc.

Gradient convergence + Learning Mechanism + Network/Data Statistics

 ${\sf Gradient\ convergence}\ +\ {\sf Learning\ Mechanism}\ +\ {\sf Network/Data\ Statistics}$

ightarrow The depth parameter \emph{L}

 ${\sf Gradient\ convergence}\ +\ {\sf Learning\ Mechanism}\ +\ {\sf Network/Data\ Statistics}$

- ightarrow The depth parameter L
- ightarrow The layer lengths $(\emph{d}_0,\emph{d}_1,\ldots,\emph{d}_{L-1},\emph{d}_L)$

Gradient convergence + Learning Mechanism + Network/Data Statistics

- ightarrow The depth parameter L
- \rightarrow The layer lengths $(d_0, d_1, \dots, d_{L-1}, d_L)$
- \rightarrow The activation functions $(\sigma_1, \ldots, \sigma_L)$

- ightarrow The depth parameter L
- ightarrow The layer lengths $(d_0, d_1, \ldots, d_{L-1}, d_L)$
- \rightarrow The activation functions $(\sigma_1, \dots, \sigma_L)$ Bounded and Smooth; Focus on Sigmoid

- \rightarrow The depth parameter L
- \rightarrow The layer lengths $(d_0, d_1, \dots, d_{L-1}, d_L)$
- \rightarrow The activation functions $(\sigma_1, \dots, \sigma_L)$ Bounded and Smooth; Focus on Sigmoid
- → Average first-moment

${\sf Gradient\ convergence} + {\sf Learning\ Mechanism} + {\sf Network/Data\ Statistics}$

- \rightarrow The depth parameter L
- \rightarrow The layer lengths $(d_0, d_1, \dots, d_{L-1}, d_L)$
- ightarrow The activation functions $(\sigma_1,\ldots,\sigma_L)$
 - Bounded and Smooth; Focus on Sigmoid
- → Average first-moment

$$\mu_{\mathsf{X}} = \frac{1}{d_0} \sum_j \mathbb{E} x_j, \ \tau_{\mathsf{X}} = \frac{1}{d_0} \sum_j \mathbb{E}^2 x_j$$

Gradient convergence + Learning Mechanism + Network/Data Statistics

$$\min_{\mathbf{W}} f(\mathbf{W}) := \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{X}} \mathcal{L}(\mathbf{x}, \mathbf{y}; \mathbf{W})$$

Gradient convergence + Learning Mechanism + Network/Data Statistics

$$\min_{\mathbf{W}} f(\mathbf{W}) := \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{X}} \mathcal{L}(\mathbf{x}, \mathbf{y}; \mathbf{W})$$

$$\rightarrow \mathcal{L} := \ell_2 \mathsf{Loss}$$

Gradient convergence + Learning Mechanism + Network/Data Statistics

$$\min_{\mathbf{W}} f(\mathbf{W}) := \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{X}} \mathcal{L}(\mathbf{x}, \mathbf{y}; \mathbf{W})$$

$$ightarrow \mathcal{L} := \ell_2 \; \mathsf{Loss}$$

Stochastic Gradients $\mathbf{W} \in \mathbb{R}^d$

OR

Projected Gradients $\mathbf{W} \in \Omega := \text{Box-constraint } [-w, w]^d$

Ideally interested in generalization

Ideally interested in generalization

Train faster, generalize better: Stability of stochastic gradient descent

Moritz Hardt*

Benjamin Recht[†]

Yoram Singer[‡]

February 9, 2016

Ideally interested in generalization

Train faster, generalize better: Stability of stochastic gradient descent

Moritz Hardt* Benjamin Recht[†]

Yoram Singer[‡]

February 9, 2016

Convergence instead?

R: Last iteration – *In general*, training time is fixed apriori

Ideally interested in generalization

Train faster, generalize better: Stability of stochastic gradient descent

Moritz Hardt* Benjamin Recht[†]

Yoram Singer[‡]

February 9, 2016

Convergence instead?

R: Last iteration – In general, training time is fixed apriori

The expected gradients $\Delta := \mathbb{E}_{R,\mathbf{x},\mathbf{y}} \|\nabla_{\mathbf{W}} f(\mathbf{W}^R)\|^2$

Ideally interested in generalization

Train faster, generalize better: Stability of stochastic gradient descent

Moritz Hardt*

Benjamin Recht[†]

Yoram Singer[‡]

Control on last/stopping iteration

Convergence instead?

R: Last iteration – In general, training time is fixed apriori

The expected gradients $\Delta := \mathbb{E}_{R,\mathbf{x},\mathbf{y}} \|\nabla_{\mathbf{W}} f(\mathbf{W}^R)\|^2$

Ideally interested in generalization

Train faster, generalize better: Stability of stochastic gradient descent

Moritz Hardt*

Benjamin Recht[†]

Yoram Singer[‡]

Control on last/stopping iteration

Convergence instead?

R: Last iteration – In general, training time is fixed apriori

The expected gradients $\Delta := \mathbb{E}_{R,\mathbf{x},\mathbf{y}} \|\nabla_{\mathbf{W}} f(\mathbf{W}^R)\|^2$

Under mild assumptions, Δ can be bounded whenever R is chosen randomly [Ghadimi and Lan 2013]

Gradients backpropagation + randomly stop after some iterations

Single-layer Network

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k=\frac{\gamma}{k^\rho}$ $(\rho>0)$ and $P_R(k)=\gamma^k(1-0.75\gamma^k)$, we have

$$\Delta \leq \left(\frac{\textit{D}_{\textit{f}}}{\mathcal{H}_{\textit{N}}} + \Psi\right)$$

Decreasing stepsizes

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k = \frac{\gamma}{k^{\rho}}$ ($\rho > 0$) and $P_R(k) = \gamma^k (1 - 0.75 \gamma^k)$, we have

$$\Delta \leq \left(\frac{\textit{D}_{\textit{f}}}{\mathcal{H}_{\textit{N}}} + \Psi\right)$$

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k = \frac{\gamma}{k\rho}$ ($\rho > 0$) and

$$P_R(k) = \gamma^k (1 - 0.75 \gamma^k)$$
, we have

$$\Delta \leq \left(rac{D_f}{\mathcal{H}_N} + \Psi
ight)$$

the stopping distribution $R \in [1, N] \ (N \gg R)$

N: Maximum allowable iterations

Decreasing stepsizes

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k = \frac{\gamma}{k\rho}$ ($\rho > 0$) and

$$P_R(k) = \gamma^k (1 - 0.75 \gamma^k)$$
, we have

$$\Delta \leq \left(\frac{D_f}{\mathcal{H}_N} + \Psi\right)$$

the stopping distribution $R \in [1, N] \ (N \gg R)$

N: Maximum allowable iterations

 Δ : Expected gradients

Decreasing stepsizes

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k=\frac{\gamma}{k^\rho}$ $(\rho>0)$ and $P_R(k)=\gamma^k(1-0.75\gamma^k)$, we have

$$\Delta \leq \left(\frac{D_f}{\mathcal{H}_N} + \Psi\right)$$

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k=\frac{\gamma}{k^\rho}$ $(\rho>0)$ and $P_R(k)=\gamma^k(1-0.75\gamma^k)$, we have

$$\Delta \leq \left(\frac{D_f}{\mathcal{H}_N} + \Psi\right)$$

 $D_f \approx f(\mathbf{W}^1)$

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k=\frac{\gamma}{k^\rho}$ $(\rho>0)$ and $P_R(k)=\gamma^k(1-0.75\gamma^k)$, we have

$$\Delta \leq \left(\frac{D_f}{\mathcal{H}_N} + \Psi\right)$$

 $D_f pprox f(\mathbf{W}^1)$

 $\mathcal{H}_{N} pprox 0.2 \gamma GenHar(N,
ho)$

N: Maximum allowable iterations

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k=\frac{\gamma}{k^\rho}$ $(\rho>0)$ and $P_R(k)=\gamma^k(1-0.75\gamma^k)$, we have

$$\Delta \leq \left(rac{D_f}{\mathcal{H}_N} + \Psi
ight)$$

 $D_f \approx f(\mathbf{W}^1)$

 $\mathcal{H}_{N} \approx 0.2 \gamma GenHar(N, \rho)$

N: Maximum allowable iterations

Goodness of fit - Influence of W1

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k = \frac{\gamma}{k^\rho} \ (\rho > 0)$ and $P_R(k) = \gamma^k (1 - 0.75 \gamma^k)$, we have

$$\Delta \leq \left(rac{D_f}{\mathcal{H}_N} + \Psi
ight)$$

$$D_f \approx f(\mathbf{W}^1)$$

 $\mathcal{H}_{N} \approx 0.2 \gamma GenHar(N, \rho)$

N: Maximum allowable iterations

Goodness of fit - Influence of W1

Sublinear decay vs. N

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k=\frac{\gamma}{k^\rho}$ $(\rho>0)$ and $P_R(k)=\gamma^k(1-0.75\gamma^k)$, we have

$$\Delta \leq \left(\frac{D_f}{\mathcal{H}_N} + \mathbf{\Psi}\right)$$

 $\Psi pprox q rac{d_0 d_1 \gamma}{B} \ (0.05 < q < 0.25) \ d_0 d_1 := \# unknowns$

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k=\frac{\gamma}{k^\rho}$ $(\rho>0)$ and $P_R(k)=\gamma^k(1-0.75\gamma^k)$, we have

$$\Delta \leq \left(\frac{D_f}{\mathcal{H}_N} + \mathbf{\Psi}\right)$$

$$\Psi \approx q \frac{d_0 d_1 \gamma}{B}$$
 $(0.05 < q < 0.25)$

 $d_0d_1 := \#unknowns$

Influence of #free parameters (degrees of freedom)

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k = \frac{\gamma}{k^\rho}$ $(\rho > 0)$ and $P_R(k) = \gamma^k (1 - 0.75 \gamma^k)$, we have

$$\Delta \leq \left(\frac{D_f}{\mathcal{H}_N} + \mathbf{\Psi}\right)$$

$$\Psi \approx q \frac{d_0 d_1 \gamma}{B}$$

 $(0.05 < q < 0.25)$
 $d_0 d_1 := \#$ unknowns

Influence of #free parameters (degrees of freedom) Bias from mini-batch size

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k=\frac{\gamma}{k^\rho}$ $(\rho>0)$ and $P_R(k)=\gamma^k(1-0.75\gamma^k)$, we have

$$\Delta \leq \left(\frac{\textit{D}_{\textit{f}}}{\mathcal{H}_{\textit{N}}} + \Psi\right)$$

Ideal scenario: Large #samples; Small network

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes $\gamma^k = \frac{\gamma}{k^{\rho}} \ (\rho > 0)$ and $P_R(k) = \gamma^k (1 - 0.75 \gamma^k)$, we have

$$\Delta \leq \left(rac{D_f}{\mathcal{H}_N} + \Psi
ight)$$

- Ideal scenario: Large #samples; Small network
- Realistic scenario:
 Reasonable network size; Large B with long training time

for small ρ i.e, slow stepsize decay

 $P_R(k)$ approaches a uniform distribution

for small ρ i.e, slow stepsize decay

 $P_R(k)$ approaches a uniform distribution

$$\Delta \lesssim \left(\frac{5D_f}{N\gamma} + \Psi\right)$$

for small ρ i.e, slow stepsize decay

 $P_R(k)$ approaches a uniform distribution

$$\Delta \lesssim \left(\frac{5D_f}{N\gamma} + \Psi\right)$$

when $\rho = 0$ i.e., constant stepsize

$$P_R(k) := UNIF[1, N]$$

for small ρ i.e, slow stepsize decay

 $P_R(k)$ approaches a uniform distribution

$$\Delta \lesssim \left(\frac{5D_f}{N\gamma} + \Psi\right)$$

when $\rho = 0$ i.e., constant stepsize

$$P_R(k) := UNIF[1, N]$$

$$\Delta \leq \left(\frac{D_f}{N\gamma} + \Psi\right)$$

for small ρ i.e, slow stepsize decay

 $P_R(k)$ approaches a uniform distribution

$$\Delta \lesssim \left(\frac{5D_f}{N\gamma} + \Psi\right)$$

when $\rho = 0$ i.e., constant stepsize

$$P_R(k) := UNIF[1, N]$$

Uniform stopping may not be interesting!

$$\Delta \leq \left(\frac{D_f}{N\gamma} + \Psi\right)$$

Single-layer Network + Customized $P_R(k)$

Single-layer Network + Customized $P_R(k)$

Push R to be as close as possible to N

Single-layer Network + Customized $P_R(k)$

Push R to be as close as possible to N

Single-layer Network + Customized $P_R(k)$

Push R to be as close as possible to N

Expected Gradients + $P_R(\cdot)$ from above example

For 1-layer network with constant stepsize γ , we have

$$\Delta \le \nu \left(\frac{5D_f}{N\gamma} + \Psi \right)$$

Single-layer Network + Customized $P_R(k)$

Push R to be as close as possible to N

Expected Gradients + $P_R(\cdot)$ from above example

For 1-layer network with constant stepsize γ , we have

$$\Delta \le \nu \left(\frac{5D_f}{N\gamma} + \Psi \right)$$

require $P_R(k) \leq P_R(k+1)$

Single-layer Network + Customized $P_R(k)$

Push R to be as close as possible to N

For
$$\nu\gg 1$$
, $R\to N$

Expected Gradients + $P_R(\cdot)$ from above example

For 1-layer network with constant stepsize γ , we have

$$\Delta \le \nu \left(\frac{5D_f}{N\gamma} + \Psi \right)$$

require
$$P_R(k) \leq P_R(k+1)$$

Single-layer Network + Customized $P_R(k)$

Push R to be as close as possible to N

For $\nu \gg 1$, $R \to N$ bound too loose

Expected Gradients + $P_R(\cdot)$ from above example

For 1-layer network with constant stepsize γ , we have

$$\Delta \le \nu \left(\frac{5D_f}{N\gamma} + \Psi \right)$$

require
$$P_R(k) \leq P_R(k+1)$$

Single-layer Network

Using T independent random stopping iterations

Single-layer Network

Using T independent random stopping iterations

Large deviation estimate

Single-layer Network

Using T independent random stopping iterations

Large deviation estimate

Let $\epsilon > 0$ and $0 < \delta \ll 1$.

An (ϵ, δ) -solution guarantees $Pr\left(\min_t \|\nabla_{\mathbf{W}} f(\mathbf{W}^{R_t})\|^2 \le \epsilon\right) \ge 1 - \delta$

Gradient convergence + Learning Mechanism + Network/Data Statistics

Multi-layer Neural Network

L-1 single-layer networks *put together*

 ${\sf Gradient\ convergence} + {\sf Learning\ Mechanism} + {\sf Network/Data\ Statistics}$

Multi-layer Neural Network

L-1 single-layer networks *put together*

Typical mechanism

 ${\sf Gradient\ convergence} + {\sf Learning\ Mechanism} + {\sf Network/Data\ Statistics}$

Multi-layer Neural Network

L-1 single-layer networks *put together*

Typical mechanism

• Initialize (or Warm-start or Pretrain) each of the layers sequentially

Gradient convergence + Learning Mechanism + Network/Data Statistics

Multi-layer Neural Network

L-1 single-layer networks $\it put\ together$

Typical mechanism

• Initialize (or Warm-start or Pretrain) each of the layers sequentially $\mathbf{x} \to \tilde{\mathbf{x}}$ (w.p. $1-\zeta$, the j^{th} unit is 0)

Gradient convergence + Learning Mechanism + Network/Data Statistics

Multi-layer Neural Network

L-1 single-layer networks *put together*

Typical mechanism

• Initialize (or Warm-start or Pretrain) each of the layers sequentially

$$\mathbf{x}
ightarrow \mathbf{ ilde{x}}$$
 (w.p. $1-\zeta$, the j^{th} unit is 0)

$$\mathbf{h}^1 = \sigma(\mathbf{W}^1 \tilde{\mathbf{x}})$$
 $\mathcal{L}(\mathbf{x}, \mathbf{W}) = \|\mathbf{x} - \mathbf{h}^1\|^2$ with $\mathbf{W} \in [-w, w]^d$

Referred to as a Denoising Autoencoder

Multi-layer Neural Network

L-1 single-layer networks put together

Typical mechanism

- Initialize (or Warm-start or Pretrain) each of the layers *sequentially*
 - $\mathbf{x} \to \tilde{\mathbf{x}}$ (w.p. 1ζ , the j^{th} unit is 0)

 $\mathbf{h}^1 = \sigma(\mathbf{W}^1 \tilde{\mathbf{x}})$ $\mathcal{L}(\mathbf{x}, \mathbf{W}) = \|\mathbf{x} - \mathbf{h}^1\|^2$ with $\mathbf{W} \in [-w, w]^d$

Referred to as a Denoising Autoencoder

 \bullet L-1 such DAs are learned

$$\mathbf{x} \to \mathbf{h}^1 \to \dots \mathbf{h}^{L-2} \to \mathbf{h}^{L-1}$$

 ${\sf Gradient\ convergence} + {\sf Learning\ Mechanism} + {\sf Network/Data\ Statistics}$

Multi-layer Neural Network

L-1 single-layer networks *put together*

Gradient convergence + Learning Mechanism + Network/Data Statistics

Multi-layer Neural Network

L-1 single-layer networks *put together*

Typical mechanism

• Bring in the **y**s; perform backpropagation

Gradient convergence + Learning Mechanism + Network/Data Statistics

Multi-layer Neural Network

L-1 single-layer networks *put together*

Typical mechanism

Bring in the ys; perform backpropagation
 Use stochastic gradients; start at Lth-layer
 Propagate the gradients

Gradient convergence + Learning Mechanism + Network/Data Statistics

Multi-layer Neural Network

L-1 single-layer networks put together

Typical mechanism

- Bring in the ys; perform backpropagation
 Use stochastic gradients; start at Lth-layer
 Propagate the gradients
- ightarrow Dropout Update only a fraction (ζ) of all the parameters

Multi-layer Neural Network

Multi-layer Neural Network

The new mechanism – Randomized stopping strategy at all stages

Multi-layer Neural Network

The new mechanism – Randomized stopping strategy at all stages

ullet L-1 layers are initialized to $(lpha,\delta_lpha)$ solutions

 α : Goodness of pretraining

Multi-layer Neural Network

The new mechanism – Randomized stopping strategy at all stages

- L-1 layers are initialized to $(\alpha, \delta_{\alpha})$ solutions α : Goodness of pretraining
- ullet Gradient backpropagation is performed to a (ϵ,δ) solution

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(rac{D_f}{Ne} + \Pi
ight)$$

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

First known result for multi-layer deep networks

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

First known result for multi-layer deep networks Unsupervised pretraining

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \le \left(\frac{D_f}{Ne} + \Pi\right)$$

First known result for multi-layer deep networks Unsupervised pretraining + Dropout learning

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

First known result for multi-layer deep networks Unsupervised pretraining + Dropout learning + Network structure

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

First known result for multi-layer deep networks
Unsupervised pretraining + Dropout learning + Network structure
.... to convergence and estimation

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \le \left(\frac{D_f}{Ne} + \Pi\right)$$

 Δ : Expected *projected* gradients

Multi-layer Neural Network

For L-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Multi-layer Neural Network

For L-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{\textit{Ne}} + \Pi\right)$$

 $D_f \approx f(\mathbf{W}^1)$ (after pretraining)

Multi-layer Neural Network

For L-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{\textit{Ne}} + \Pi\right)$$

 $D_f \approx f(\mathbf{W}^1)$ (after pretraining) N: Backpropagation iterations

Multi-layer Neural Network

For L-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{\textit{Ne}} + \Pi\right)$$

 $D_f \approx f(\mathbf{W}^1)$ (after pretraining)

N: Backpropagation iterations

$$e := \zeta^2 g(\alpha, \gamma, w)$$

Encodes the influence of pretraining, stepsize and box-constraint

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \le \left(\frac{D_f}{Ne} + \Pi\right)$$

 \bullet Usefulness of the representations i.e., is \mathbf{h}_{L-1} already good-enough in predicting \mathbf{y}

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

- ullet Usefulness of the representations i.e., is \mathbf{h}_{L-1} already good-enough in predicting \mathbf{y}
- Noise added by dropout

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

 $\Pi: \Pi(\alpha, \zeta, \gamma, B, w, \# freedom)$

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

 $\Pi: \Pi(\alpha, \zeta, \gamma, B, w, \# freedom)$ Polynomial in d_0, \ldots, d_L and L

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

 $\Pi: \Pi(\alpha, \zeta, \gamma, B, w, \#freedom)$ Polynomial in d_0, \ldots, d_L and LLinear in α , Polynomial in ζ

Multi-layer Neural Network

For *L*-layered network with dropout rate ζ and constant stepsize γ , pretrained to $(\alpha, \delta_{\alpha})$, we have

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

 $\Pi: \Pi(\alpha, \zeta, \gamma, B, w, \# freedom)$ Polynomial in d_0, \ldots, d_L and LLinear in α , Polynomial in ζ

Complex interplay of Learning modules & Network hyper-parameters

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{\textit{Ne}} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{\textit{Ne}} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

→ Dropout Compensates Pretraining

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

→ Dropout Compensates Pretraining

Small $\alpha \implies \zeta \sim 1$ (Faster convergence)

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

 \rightarrow Dropout Compensates Pretraining

Small $\alpha \implies \zeta \sim 1$ (Faster convergence)

Large $\alpha \implies \zeta \sim 0$ (Slower convergence)

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

 \rightarrow Dropout Compensates Pretraining

Small $\alpha \implies \zeta \sim 1$ (Faster convergence)

Large $\alpha \implies \zeta \sim 0$ (Slower convergence)

No control on $\alpha \implies \mathsf{Set}\ \zeta$ to 0.5

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

 \rightarrow Dropout Compensates Pretraining

Small $\alpha \implies \zeta \sim 1$ (Faster convergence)

Large $\alpha \implies \zeta \sim 0$ (Slower convergence)

No control on $\alpha \implies \mathsf{Set}\ \zeta$ to 0.5

Pretraining can be bypassed for small networks

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

 \rightarrow Dropout Compensates Pretraining

Small $\alpha \implies \zeta \sim 1$ (Faster convergence)

Large $\alpha \implies \zeta \sim 0$ (Slower convergence)

No control on $\alpha \implies \mathsf{Set}\ \zeta$ to 0.5

Pretraining can be bypassed for small networks Everything breaks loose for large networks

Multi-layer Neural Network

$$\Delta \le \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

 \rightarrow Dropout Compensates Pretraining

Small $\alpha \implies \zeta \sim 1$ (Faster convergence)

Large $\alpha \implies \zeta \sim 0$ (Slower convergence)

No control on $\alpha \implies \mathsf{Set}\ \zeta$ to 0.5

Pretraining can be bypassed for small networks

Everything breaks loose for large networks

Only restoration is very large datasets and N

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{\textit{Ne}} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

A tall-lean network is equivalent to short-fat one

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{\textit{Ne}} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

A *tall-lean* network is equivalent to *short-fat* one Depth hurts – but may be not too much

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

A *tall-lean* network is equivalent to *short-fat* one Depth hurts – but may be not too much

Short-fat network asks for large sample size

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

A tall-lean network is equivalent to short-fat one

Depth hurts – but may be not too much

Short-fat network asks for large sample size

Small networks on small samples may be a bad combination

Multi-layer Neural Network

$$\Delta \leq \left(\frac{D_f}{Ne} + \Pi\right)$$

Interesting trends/outcomes (First theoretical results)

A *tall-lean* network is equivalent to *short-fat* one Depth hurts – but may be not too much

Short-fat network asks for large sample size

Small networks on small samples may be a bad combination

Family of networks that guarantee the same convergence

The Interplay – Experiments

 $\hat{\Delta}$ vs. L, d_I s

The Interplay – Experiments

The Interplay – Experiments

Conclusions & Ongoing Work

Conclusions

Gradient Convergence + Learning Mechanisms + Network/Data structure

- → Small tweaks to existing procedures
- ightarrow Theoretical understanding for many existing empirical studies
- → New trends/outcomes

Conclusions & Ongoing Work

Conclusions

Gradient Convergence + Learning Mechanisms + Network/Data structure

- → Small tweaks to existing procedures
- \rightarrow Theoretical understanding for many existing empirical studies
- → New trends/outcomes

Ongoing Work

- \rightarrow Extensions to non-smooth $\sigma_I(\cdot)$ s and complex $\Omega(\mathbf{W})$
- \rightarrow Part II

Find the best network for the given task

The end...

Thank you! Questions?

NIH AG040396, NSF CAREER 1252725, NSF CCF 1320755, the UW grants ADRC AG033514, ICTR 1UL1RR025011 and CPCP Al117924

