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Background

Deep Learning — Neural Networks

Typical choices of o(+): o(-): No.nlinear
x: inputs, Sigmoid or Hyperbolic Tangent __ Monotonic
Depth L | Non-convex

.................

Non-smooth
h' ) j Vi_1,h'?)

Rectified Linear Unit (ReLU)

Laye Layer L
J
) ) = (TL(WL, thl)
Convolution + Sub-sampling
7

o=l
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Background

Deep Learning — Neural Networks

Non-convex

Learning Objective: min By o xL(x,y; W)

W .= {W]_ ...,WL}

Stochastic Gradients are used
Gradient backpropagation J
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(o Appropriate Nonlinearities

ReLU, Log-sigmoid, Max-pooling etc.

e |nitializations

Pretrain (Warm-start) the network layers

— Using unlabeled data — Unsupervised Pretraining
e Learning mechanisms

Stochastically learn parts of network

— Dropout, DropConnect

o Large Dataset sizes
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Background

Deep Learning — Neural Networks

Attractive empirical success
. some interesting theoretical results
Arora et. al. 2013, Dauphin et. al. 2014, Patel et. al. 2015

Theme of most works

— Analyze a given architecture/structure
the depth L, hidden layer lengths (di,...,d;—1)
hidden layer activations are known

— Existence of some network structure is proven
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Motivation
The Problem

What is the best possible network for the given task?

The answer is 42!
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Background Motivation

The Motivating Application

Deep Network Send to trial
@ e Predictor \/

Do not send to trial

The probability of disease in future

Amyloid PET Images
Collected from Middle-aged Adults

Bottleneck on the available #instances
Brain image acquisition is costly!
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Amyloid PET Images
Collected from Middle-aged Adults

e Cheapest — #computations, $cost

Dollar value associated per hour of computation
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Background Motivation

The Motivating Application

Deep Network Send to trial
@ a Predictor \/

Do not send to trial

The probability of disease in future

Amyloid PET Images
Collected from Middle-aged Adults

Some false-positives allowed
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Background Motivation

The Motivating Application

Deep Network Send to trial
@ 6 Predictor \/

Do not send to trial

The probability of disease in future

Amyloid PET Images
Collected from Middle-aged Adults

A non-expert is going to setup the learning
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The Problem — reformulated

We need informed or systematic design strategies
for the choosing network structure
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The Solution strategy

What is the best possible network for the given task?
Need informed design strategies

Part |
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by
The Solution strategy

What is the best possible network for the given task?
Need informed design strategies

Part |

Construct the relevant bounds
e Gradient convergence + Learning Mechanism + Network/Data Statistics

Part I

Construct design procedures using the bounds

e For the given dataset, a pre-specified convergence level
Find the depth, hidden layer lengths, etc.
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The Solution strategy — This work

What is the best possible network for the given task?
Need informed design strategies

Part |
Construct the relevant bounds

e Gradient convergence + Learning Mechanism + Network/Data Statistics

v
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— The activation functions (o1,...,07)
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SN
The Interplay

Gradient convergence +
mv\iln f(W) :=Eyxy~xL(x,y; W)

— L :=¥> Loss

Stochastic Gradients W e RY

OR

Projected Gradients W € Q := Box-constraint [—w, w]?
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Train faster, generalize better:
Stability of stochastic gradient descent
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February 9, 2016
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Ideally interested in generalization

Train faster, generalize better:
Stability of stochastic gradient descent
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The Interplay — Gradient Convergence

Ideally interested in generalization

Train faster, generalize better:
Stability of stochastic gradient descent

Moritz Hardt* Benjamin Recht! Yoram Singer?

{Control on last/stopping iteration}

Convergence instead?

R : Last iteration — In general, training time is fixed apriori
The expected gradients A := Eg || Vwf(WF)|?

Under mild assumptions, A can be bounded when-
ever R is chosen randomly [Ghadimi and Lan 2013]
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The Interplay — Gradient Convergence

Gradients backpropagation
_l’_
randomly stop after some iterations
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The Interplay — Gradient Convergence

Single-layer Network
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The Interplay — Gradient Convergence

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes v = 2 (p > 0) and
Pr(k) = v*(1 — 0.757*), we have

Dr
AL |—+V
Hn
V.
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D¢
A< |—4+V
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)\

the stopping distribution
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the stopping distribution
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Expected Gradients

For 1-layer network with stepsizes v = % (p > 0) and
Pr(k) = v%(1 — 0.757%), we have

D¢
A<|—+VY
_<HN+ )

Df‘ ~ f(Wl)

Hn ~ 0.2yGenHar(N, p)
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The Interplay — Gradient Convergence

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes v = % (p > 0) and
Pr(k) = v%(1 — 0.757%), we have

D¢
A<|—+VY
_<HN+ )
szf(Wl)

Hy ~ 0.2yGenHar(N, p) {Goodness of fit — Influence of W
N : Maximum allowable iterations
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The Interplay — Gradient Convergence

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes v = % (p > 0) and
Pr(k) = v%(1 — 0.757%), we have

D¢
A<|—+VY
_<HN+ )

Ds ~ f(W1)
Hy ~ 0.2yGenHar(N, p) {Goodness of fit — Influence of W
N : Maximum allowable iterations | ® Sublinear decay vs. N
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The Interplay — Gradient Convergence

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes v = % (p > 0) and
Pr(k) = v¥(1 — 0.75+%), we have

Dy
AL |—+V
_<HN+ )

v~ qdodl’y

B
(0.05 < g < 0.25)
dodi := #unknowns
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Expected Gradients

For 1-layer network with stepsizes v = % (p > 0) and
Pr(k) = v¥(1 — 0.75+%), we have

Dy
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W%qdodl’y
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The Interplay — Gradient Convergence

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes v = % (p > 0) and
Pr(k) = v¥(1 — 0.75+%), we have

Dy
A< |—+V
_<HN+ )
\U%qdod”

(0.05 < g <0.25) | Influence of 7#free parameters (degrees of freedom)
Bias from mini-batch size

dod; := #unknowns
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The Interplay — Gradient Convergence

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes v = 2 (p > 0) and
Pr(k) = v*(1 — 0.75%), we have

D¢
A<L<|—+VY
_<3"lN+ )

e Ideal scenario:  Large #samples; Small network
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The Interplay — Gradient Convergence

Single-layer Network

Expected Gradients

For 1-layer network with stepsizes v = % (p > 0) and
Pr(k) = v*(1 — 0.75%), we have

D¢
A<L<|—+VY
_<HN+ )

e Ideal scenario:  Large #samples; Small network
e Realistic scenario:

Reasonable network size;  Large B with long training time
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The Interplay — Gradient Convergence

for small p i.e, slow stepsize decay

Pr(k) approaches a uniform distribution
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The Interplay — Gradient Convergence

for small p i.e, slow stepsize decay

Pr(k) approaches a uniform distribution

5D¢
A< |—+V
N<N'VJr )

when p = 0 i.e., constant stepsize
Pr(k) := UNIF[1, N|
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The Interplay — Gradient Convergence

for small p i.e, slow stepsize decay

Pr(k) approaches a uniform distribution

A5<5Df+w>

N~
when p = 0 i.e., constant stepsize {Uniform stopping may not }
Pr(k) := UNIF[L, N] be interesting!
Dy
AL |—+V
- (N’Y * )
Network structure vs. convergence
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The Interplay — Gradient Convergence

Single-layer Network + Customized Pg(k)
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The Interplay — Gradient Convergence

Single-layer Network + Customized Pg(k)

Push R to be as close as possible to

Step Stopping Dist
008 rep Stopping Dis

0.025
002 PR,(kj =0
0015

o1

Pr(k) =g

nnnnn

(X0

Expected Gradients + Pg(-) from above example

For 1-layer network with constant stepsize ~, we have

5D¢
A< — V¥
_V(/V7+ >
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Single-layer Network + Customized Pg(k)

Push R to be as close as possible to

Step Stopping Dist
008 rep Stopping Dis

v Pr(k) =0 \

(X0

nnnnn

Expected Gradients + Pg(-) from above example

For 1-layer network with constant stepsize ~, we have

5D¢
A< — V¥
_V(/V7+ >

require Pr(k) < Pr(k +1)
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Single-layer Network + Customized Pg(k)

Push R to be as close as possible to

008 Step Stopping Dist

v Pr(k) =0 \

Pr(k) =g

nnnnn

(X0

{Foru>>1,R—>N }

Expected Gradients + Pg(-) from above example

For 1-layer network with constant stepsize ~, we have

5D¢
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The Interplay — Gradient Convergence

Single-layer Network + Customized Pg(k)

Push R to be as close as possible to

008 Step Stopping Dist

v Pr(k) =0 \

; {Fory>>1,R—>N }
Prk) =g

(X0

bound too loose

nnnnn

Expected Gradients + Pg(-) from above example

For 1-layer network with constant stepsize ~, we have

5D¢
A< — V¥
_V(/V7+ >

require Pr(k) < Pr(k +1)
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The Interplay — Gradient Convergence

Single-layer Network

Using T independent random stopping iterations
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The Interplay — Gradient Convergence

Single-layer Network
Using T independent random stopping iterations

Large deviation estimate
Lete >0and 0 < d < 1.
An (e, d)-solution guarantees Pr (mint [ Vwf(WFR)|? < e) >1-9
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The Interplay

Learning Mechanism

Multi-layer Neural Network

L — 1 single-layer networks put together

Typical mechanism

e Initialize (or Warm-start or Pretrain) each of the layers sequentially

x — % (w.p. 1 —¢, the jt unit is 0)

(UW-Madison)

Network structure vs. convergence

Sep 28, 2016

28 / 41



ST
The Interplay

Learning Mechanism

Multi-layer Neural Network
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The Interplay

Learning Mechanism

Multi-layer Neural Network
L — 1 single-layer networks put together

Typical mechanism

e Bring in the ys; perform backpropagation
Use stochastic gradients; start at L*-layer
Propagate the gradients

— Dropout
Update only a fraction (¢) of all the parameters

(UW-Madison) Network structure vs. convergence Sep 28, 2016

29 / 41



The Interplay — Learning Mechanism

Multi-layer Neural Network

(UW-Madison) Network structure vs. convergence Sep 28, 2016 30/ 41



The Interplay — Learning Mechanism

Multi-layer Neural Network

The new mechanism — Randomized stopping strategy at all stages

(UW-Madison) Network structure vs. convergence Sep 28, 2016 30/ 41



The Interplay — Learning Mechanism

Multi-layer Neural Network

The new mechanism — Randomized stopping strategy at all stages

e L — 1 layers are initialized to («a, d,) solutions
« : Goodness of pretraning

(UW-Madison) Network structure vs. convergence Sep 28, 2016

30 / 41



The Interplay — Learning Mechanism

Multi-layer Neural Network
The new mechanism — Randomized stopping strategy at all stages

e L — 1 layers are initialized to («a, d,) solutions
« : Goodness of pretraning

e Gradient backpropagation is performed to a (e, d) solution
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The Interplay — The most general result

Multi-layer Neural Network

For L-layered network with dropout rate ¢ and constant stepsize v,
pretrained to (o, d,), we have

Dr¢
A< (ZE4n
Ne
y
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First known result for multi-layer deep networks
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. to convergence and estimation
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Multi-layer Neural Network

For L-layered network with dropout rate ¢ and constant stepsize v,
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Dr¢
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_<NejL )

[A : Expected projected gradientsj
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Multi-layer Neural Network

For L-layered network with dropout rate ¢ and constant stepsize ,
pretrained to (o, d,), we have

Dr¢
A<|—+1
_</\/e+>

Dr ~ f(W?) (after pretraining)
N: Backpropagation iterations

e = (%g(a, v, w)
Encodes the influence of pretraining, stepsize and box-constraint
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For L-layered network with dropout rate ¢ and constant stepsize v,
pretrained to (o, d,), we have

Dr
A<|—4+0N
B (Ne * )
e Usefulness of the representations

i.e., is hy_1 already good-enough in predicting y
e Noise added by dropout
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Multi-layer Neural Network

For L-layered network with dropout rate ¢ and constant stepsize ,
pretrained to (o, d,), we have

Dy
A< |(—+1
B (Ne " )
M:N(a, ¢, v, B, w, #freedom) Complex interplay of
POIynomial in d07 PR dL and L Learning modules &
Linear in o, Polynomial in ¢ Network hyper-parameters
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Small @« = ( ~ 1 (Faster convergence)
Large « = ( ~ 0 (Slower convergence)
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The Interplay — Some Implications

Multi-layer Neural Network

D¢
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_<Ne+>

Interesting trends/outcomes (First theoretical results)

A tall-lean network is equivalent to short-fat one
Depth hurts — but may be not too much

Short-fat network asks for large sample size
Small networks on small samples may be a bad combination

Family of networks that guarantee the same convergence
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The Interplay — Experiments
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Discussion

The Interplay — Experiments

X h! h?
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h? h? v
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—--do
25 ——dl=d4
e T3 —a—d2
g 2 ] ——da3
@ @ ---d5
o o
‘éﬂ,s 'é’z __________
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Designs given L
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Conclusions & Ongoing Work

Conclusions

Gradient Convergence + Learning Mechanisms + Network/Data structure
— Small tweaks to existing procedures

— Theoretical understanding for many existing empirical studies

— New trends/outcomes
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Conclusions

Gradient Convergence + Learning Mechanisms + Network/Data structure
— Small tweaks to existing procedures

— Theoretical understanding for many existing empirical studies

— New trends/outcomes

Ongoing Work
— Extensions to non-smooth o(+)s and complex Q(W)

— Part |l
Find the best network for the given task
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The end...

Thank you!
Questions?

NIH AG040396, NSF CAREER 1252725, NSF CCF 1320755, the UW grants ADRC AG033514, ICTR 1UL1RR025011 and CPCP Al117924
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