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Background

Deep Learning – Neural Networks

x: inputs, h: hidden representations, y: outputs
Training data {x, y} ∈ X
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Deep Learning – Neural Networks

x: inputs, h: hidden representations, y: outputs
Depth L Network

x
h1 = σ1(W1,h

0)

h2 = σ2(W2,h
1)

hL−1 = σL−1(WL−1,h
L−2)

Layer 1 Layer 2 Layer L

ŷ = σL(WL,h
L−1)

σ(·) : Nonlinear
Monotonic
Non-convex
Non-smooth

Typical choices of σ(·):
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Background

Deep Learning – Neural Networks

Learning Objective: min
W

Ex,y∼XL(x, y; W)

W := {W1 . . . ,WL}

Non-convex

Stochastic Gradients are used
Gradient backpropagation
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Background

Deep Learning – Neural Networks

Stochastic Gradients are used ... with some tricks!

• Appropriate Nonlinearities
ReLU, Log-sigmoid, Max-pooling etc.

• Initializations
Pretrain (Warm-start) the network layers
→ Using unlabeled data – Unsupervised Pretraining
• Learning mechanisms
Stochastically learn parts of network
→ Dropout, DropConnect
• Large Dataset sizes
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Background

Deep Learning – Neural Networks

Attractive empirical success

... some interesting theoretical results
Arora et. al. 2013, Dauphin et. al. 2014, Patel et. al. 2015

Theme of most works

→ Analyze a given architecture/structure
the depth L, hidden layer lengths (d1, . . . , dL−1)
hidden layer activations are known

→ Existence of some network structure is proven
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Background Motivation

The Problem

What is the best possible network for the given task?
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Background Motivation

The Motivating Application

Amyloid PET Images
Collected from Middle-aged Adults

Deep Network
Predictor

The probability of disease in future

Send to trial

Do not send to trial
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Background Motivation

The Motivating Application

Amyloid PET Images
Collected from Middle-aged Adults

Deep Network
Predictor

The probability of disease in future

Send to trial

Do not send to trial

• Cheapest – #computations, $cost
Dollar value associated per hour of computation
(e.g., using Amazon Web Services)

• Richer (Largest) models are desired
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Background Motivation

The Motivating Application

Amyloid PET Images
Collected from Middle-aged Adults

Deep Network
Predictor

The probability of disease in future

Send to trial

Do not send to trial

Some false-positives allowed
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Background Motivation

The Motivating Application

Amyloid PET Images
Collected from Middle-aged Adults

Deep Network
Predictor

The probability of disease in future

Send to trial

Do not send to trial

A non-expert is going to setup the learning
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Problem

The Problem – reformulated

We need informed or systematic design strategies
for the choosing network structure
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Problem Solution strategy

The Solution strategy

What is the best possible network for the given task?
Need informed design strategies

Part I

Construct the relevant bounds
• Gradient convergence + Learning Mechanism + Network/Data Statistics

Part II
Construct design procedures using the bounds
• For the given dataset, a pre-specified convergence level
Find the depth, hidden layer lengths, etc.
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Problem Solution strategy

The Solution strategy – This work

What is the best possible network for the given task?
Need informed design strategies

Part I
Construct the relevant bounds
• Gradient convergence + Learning Mechanism + Network/Data Statistics

Part II
Construct design procedures using the bounds
• For the given dataset, a pre-specified convergence level

Find the depth, hidden layer lengths, etc.
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Problem Solution strategy

The Interplay

Gradient convergence + Learning Mechanism + Network/Data Statistics

→ The depth parameter L
→ The layer lengths (d0, d1, . . . , dL−1, dL)
→ The activation functions (σ1, . . . , σL)

Bounded and Smooth;

Focus on Sigmoid
→ Average first-moment

µx = 1
d0

∑
j Exj , τx = 1

d0

∑
j E2xj
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Problem Solution strategy

The Interplay

Gradient convergence + Learning Mechanism + Network/Data Statistics

min
W

f (W) := Ex,y∼XL(x, y; W)

→ L := `2 Loss

Stochastic Gradients W ∈ Rd

OR

Projected Gradients W ∈ Ω := Box-constraint [−w ,w ]d
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Problem Solution strategy

The Interplay – Gradient Convergence

Ideally interested in generalization

Convergence instead?
R : Last iteration – In general, training time is fixed apriori

The expected gradients ∆ := ER,x,y‖∇Wf (WR)‖2

Control on last/stopping iteration

Under mild assumptions, ∆ can be bounded when-
ever R is chosen randomly [Ghadimi and Lan 2013]
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Problem Solution strategy

The Interplay – Gradient Convergence

Gradients backpropagation
+

randomly stop after some iterations
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Problem Single-layer Networks

The Interplay – Gradient Convergence

Single-layer Network

Expected Gradients
For 1-layer network with stepsizes γk = γ

kρ (ρ > 0) and
PR(k) = γk(1− 0.75γk), we have

∆ ≤
( Df
HN

+ Ψ

)

Decreasing stepsizes

the stopping distribution
R ∈ [1,N] (N � R)

N: Maximum allowable iterations

∆ : Expected gradients
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Problem Single-layer Networks

The Interplay – Gradient Convergence

Single-layer Network

Expected Gradients
For 1-layer network with stepsizes γk = γ

kρ (ρ > 0) and
PR(k) = γk(1− 0.75γk), we have

∆ ≤
( Df
HN

+ Ψ

)

Df ≈ f (W1)

HN ≈ 0.2γGenHar(N, ρ)
N : Maximum allowable iterations

Goodness of fit – Influence of W1

• Sublinear decay vs. N
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Problem Single-layer Networks

The Interplay – Gradient Convergence

Single-layer Network

Expected Gradients
For 1-layer network with stepsizes γk = γ

kρ (ρ > 0) and
PR(k) = γk(1− 0.75γk), we have

∆ ≤
( Df
HN

+ Ψ

)
Ψ ≈ q d0d1γ

B
(0.05 < q < 0.25)
d0d1 := #unknowns

Influence of #free parameters (degrees of freedom)

Bias from mini-batch size
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d0d1 := #unknowns

Influence of #free parameters (degrees of freedom)
Bias from mini-batch size
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∆ ≤
( Df
HN

+ Ψ

)

• Ideal scenario: Large #samples; Small network

• Realistic scenario:
Reasonable network size; Large B with long training time
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Problem Single-layer Networks

The Interplay – Gradient Convergence

for small ρ i.e, slow stepsize decay
PR(k) approaches a uniform distribution

∆ .
(5Df
Nγ + Ψ

)

when ρ = 0 i.e., constant stepsize
PR(k) := UNIF [1,N]

∆ ≤
(Df
Nγ + Ψ

)

Uniform stopping may not
be interesting!
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Problem Single-layer Networks

The Interplay – Gradient Convergence

Single-layer Network + Customized PR(k)

Push R to be as close as possible to N

PR(k) = 0

PR(k) =
ν
N

Expected Gradients + PR(·) from above example
For 1-layer network with constant stepsize γ, we have

∆ ≤ ν
(5Df
Nγ + Ψ

)
require PR(k) ≤ PR(k + 1)

For ν � 1, R → N

bound too loose
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Problem Single-layer Networks

The Interplay – Gradient Convergence

Single-layer Network

Using T independent random stopping iterations

Large deviation estimate
Let ε > 0 and 0 < δ � 1.
An (ε, δ)-solution guarantees Pr

(
mint ‖∇Wf (WRt )‖2 ≤ ε

)
≥ 1− δ
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Problem Multi-layer Networks

The Interplay

Gradient convergence + Learning Mechanism + Network/Data Statistics

Multi-layer Neural Network
L− 1 single-layer networks put together

Typical mechanism
• Initialize (or Warm-start or Pretrain) each of the layers sequentially

x

→ x̃ (w.p. 1− ζ, the jth unit is 0)
h1 = σ(W1x̃) L(x,W) = ‖x− h1‖2 with W ∈ [−w ,w ]d

Referred to as a Denoising Autoencoder

• L− 1 such DAs are learned
x→ h1 → . . .hL−2 → hL−1
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Problem Multi-layer Networks

The Interplay

Gradient convergence + Learning Mechanism + Network/Data Statistics

Multi-layer Neural Network
L− 1 single-layer networks put together

Typical mechanism
• Bring in the ys; perform backpropagation
Use stochastic gradients; start at Lth-layer
Propagate the gradients

→ Dropout
Update only a fraction (ζ) of all the parameters
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Problem Multi-layer Networks

The Interplay – Learning Mechanism

Multi-layer Neural Network

The new mechanism – Randomized stopping strategy at all stages

• L− 1 layers are initialized to (α, δα) solutions
α : Goodness of pretraning

• Gradient backpropagation is performed to a (ε, δ) solution
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Problem Multi-layer Networks

The Interplay – The most general result

Multi-layer Neural Network
For L-layered network with dropout rate ζ and constant stepsize γ,
pretrained to (α, δα), we have

∆ ≤
(Df
Ne + Π

)

First known result for multi-layer deep networks

Unsupervised pretraining + Dropout learning + Network structure
.... to convergence and estimation
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Problem Multi-layer Networks

The Interplay – The most general result

Multi-layer Neural Network
For L-layered network with dropout rate ζ and constant stepsize γ,
pretrained to (α, δα), we have

∆ ≤
(Df
Ne + Π

)

∆ : Expected projected gradients
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Problem Multi-layer Networks

The Interplay – The most general result

Multi-layer Neural Network
For L-layered network with dropout rate ζ and constant stepsize γ,
pretrained to (α, δα), we have

∆ ≤
(Df
Ne + Π

)

Df ≈ f (W1) (after pretraining)
N: Backpropagation iterations

e := ζ2g(α, γ,w)
Encodes the influence of pretraining, stepsize and box-constraint

(UW-Madison) Network structure vs. convergence Sep 28, 2016 33 / 41



Problem Multi-layer Networks

The Interplay – The most general result

Multi-layer Neural Network
For L-layered network with dropout rate ζ and constant stepsize γ,
pretrained to (α, δα), we have

∆ ≤
(Df
Ne + Π

)
Df ≈ f (W1) (after pretraining)

N: Backpropagation iterations

e := ζ2g(α, γ,w)
Encodes the influence of pretraining, stepsize and box-constraint

(UW-Madison) Network structure vs. convergence Sep 28, 2016 33 / 41



Problem Multi-layer Networks

The Interplay – The most general result

Multi-layer Neural Network
For L-layered network with dropout rate ζ and constant stepsize γ,
pretrained to (α, δα), we have

∆ ≤
(Df
Ne + Π

)
Df ≈ f (W1) (after pretraining)
N: Backpropagation iterations

e := ζ2g(α, γ,w)
Encodes the influence of pretraining, stepsize and box-constraint

(UW-Madison) Network structure vs. convergence Sep 28, 2016 33 / 41



Problem Multi-layer Networks

The Interplay – The most general result

Multi-layer Neural Network
For L-layered network with dropout rate ζ and constant stepsize γ,
pretrained to (α, δα), we have

∆ ≤
(Df
Ne + Π

)
Df ≈ f (W1) (after pretraining)
N: Backpropagation iterations

e := ζ2g(α, γ,w)
Encodes the influence of pretraining, stepsize and box-constraint

(UW-Madison) Network structure vs. convergence Sep 28, 2016 33 / 41



Problem Multi-layer Networks

The Interplay – The most general result

Multi-layer Neural Network
For L-layered network with dropout rate ζ and constant stepsize γ,
pretrained to (α, δα), we have

∆ ≤
(Df
Ne + Π

)

• Usefulness of the representations
i.e., is hL−1 already good-enough in predicting y

• Noise added by dropout
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Problem Multi-layer Networks

The Interplay – The most general result

Multi-layer Neural Network
For L-layered network with dropout rate ζ and constant stepsize γ,
pretrained to (α, δα), we have

∆ ≤
(Df
Ne + Π

)

Π : Π(α, ζ, γ,B,w ,#freedom)
Polynomial in d0, . . . , dL and L
Linear in α, Polynomial in ζ

Complex interplay of
Learning modules &
Network hyper-parameters
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Discussion

The Interplay – Some Implications

Multi-layer Neural Network

∆ ≤
(Df
Ne + Π

)

Interesting trends/outcomes (First theoretical results)

→ Dropout Compensates Pretraining
Small α =⇒ ζ ∼ 1 (Faster convergence)
Large α =⇒ ζ ∼ 0 (Slower convergence)
No control on α =⇒ Set ζ to 0.5

Pretraining can be bypassed for small networks
Everything breaks loose for large networks

Only restoration is very large datasets and N
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The Interplay – Experiments
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Discussion

Conclusions & Ongoing Work

Conclusions
Gradient Convergence + Learning Mechanisms + Network/Data structure
→ Small tweaks to existing procedures
→ Theoretical understanding for many existing empirical studies
→ New trends/outcomes

Ongoing Work
→ Extensions to non-smooth σl (·)s and complex Ω(W)

→ Part II
Find the best network for the given task
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Discussion

The end...

Thank you!
Questions?
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