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A Clinical Trial – The work flow
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Setting up a clinical trial – My work

Who is participating in the trial?
Clinical Trial Enrichment

How to differentiate control from intervened?
Trial Outcome Design
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Clinical Trial Enrichment

How to differentiate control from intervened?
Trial Outcome Design

trials aimed for Alzheimer’s Disease
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Alzheimer’s Disease

Destroys memory and cognition
Irreversible. Strongest risk factor is age
Diagnosis ← { Age, Family History, Cognitive/Neuropsych/Physical

Exams, Brain Scans }
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Landscape of AD Clinical Trials

Clinicaltrials.gov lists 485 recruiting studies
225 in US; 147 in Europe;
68 are in Phase III and IV

Very little success . . . more than 550 trials since 2002 (Cummings 2014)

AD diagnosis itself is messy
→ Early diagnosis is much harder
→ CN vs. MCI ≈ 70%

< 20% of MCIs convert to AD
=⇒ 8 out of 10 trial subjects are not-eligible!!
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. . . but there is light

Imaging to the rescue
Cognitive decline follows atypical brain scans
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Population enrichment

Worsening Disease

Healthy AD

(Enrichment Criterion)

Enrichment Cut-Off

IncludedDiscarded

Good enrichment criterion ⇐⇒ High correlation with disease

Practical enrichment criterion ⇐⇒ High predictive power
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Designing a good enricher

Given some marker
δ : Longitudinal change
σ : Pooled Variance
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Designing a good enricher

Given some marker
δ : Longitudinal change
σ : Pooled Variance

Low-Variance

Un-Biased

+
An Ensemble

Neural Networks

+

Optimal Enricher
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Randomized deep networks for enrichment
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Randomized deep networks for enrichment
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Randomized deep networks for enrichment
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Randomized deep network Markers – rDm

Training baseline rDm
Inputs
→ MRI and PET Images
Labels
→ AD – 0, healthy – 1

rDm at test time
Predict on MCI

Choose a cut-off t ∈ [0, 1] & filter out
subjects with rDm prediction > t
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Predictive power of baseline rDm

Baseline rDm versus change (12 and 24 months) in outcomes
Spearman correlation coefficient (and p-value)

Marker 12m 24m
MMSE 0.2123, p = 0.0008 0.3311, p = 0.0003
ADAS 0.2139, p = 0.0007 –0.5300, p < 10−4

MOCA 0.0568, p > 0.1 0.5952, p = 10−4

RAVLT 0.1285, p = 0.04 0.5702, p = 0.0008
PsyMEM 0.2811, p < 10−4 0.4207, p = 0.001
HippoVol 0.3262, p � 10−4 0.4744, p � 10−4

CDR-SB –0.3643, p � 10−4 –0.5344, p � 10−4

DXConv1 > 20, p � 10−4 > 20, p � 10−4

Very strong correlations across all markers

1ANOVA test results are reported since this variable is categorical
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Predictive power of baseline rDm

Mean longitudinal change in MMSE & CDR
Important trial outcomes
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Baseline rDm vs. alternate enrichers

Sample sizes per arm
80% power, 25% improvement from treatment

Sample Outcome measure
enricher MMSE ADAS MOCA RAVLT PsyMEM HipVol CDR-SB DxConv
HipVol 500 >2000 1005 1606 1009 >2000 389 420
FDG 384 1954 579 >2000 832 752 415 371
AV45 224 >2000 875 >2000 826 698 382 443
FAH 296 >2000 705 >2000 826 722 397 402

MKLm 2 228 874 827 896 487 877 295 284
rDm 200 775 449 591 420 543 281 230

2MKLm is the current state-of-the-art based on SVMs
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The proposed enricher – AD Spectrum
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Normal/Healthy Dementia
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Cognitive
Impairment

(MCI)

Preclinical

Label 1 Label 0

Training Regimes

Testing Regime

Two Issues
Disease spectrum is continuous
→ Labels somewhat artificial – Supervised models are sensitive
Bio-markers interact differently in preclinical vs. AD

Can we instead select subjects without
information transfer from AD stage?
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An alternate View – Sampling

Select atypical subjects
The more unique a subject is
→ . . . the more information they contribute to trial
Some typical points also needed

AD Imaging Features AD Clinical/Neuropsych Scores

Very Rich Block (Hierarchical) Structure
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Thank you . . . Questions?

I., V. Singh, O. C. Okonkwo, S. C. Johnson, A predictive multi-modal imaging marker for
designing efficient and robust AD clinical trials, Clinical Trials on Alzheimer’s Disease (CTAD),
2014
I., V. Singh, S. C. Johnson, Randomized deep learning methods for clinical trial enrichment and
design in Alzheimer’s disease, Deep Learning for Medical Image Analysis (1st Edition) ISBN:
9780128104088; Chapter 15
I., V. Singh, O. C. Okonkwo, R. J. Chappell, N. M. Dowling, S. C. Johnson, Imaging based
enrichment criteria using deep learning algorithms for efficient clinical trials in MCI, Alzheimer’s
and Dementia, 2015
I., R. Kondor, S. C. Johnson, V. Singh, The Incremental Multiresolution Matrix Factorization
Algorithm, Computer Vision and Pattern Recognition (CVPR), 2017
http://pages.cs.wisc.edu/~vamsi/publications.html
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