
Speeding up Permutation Testing

Vamsi Ithapu

http://pages.cs.wisc.edu/~vamsi/pt_fast

November 17, 2013

http://pages.cs.wisc.edu/~vamsi/pt_fast


The paper

I “Speeding up Permutation Testing in Neuroimaging”

I Joint work with Chris Hinrichs 1, Vikas Singh and Qinyuan
Sun

I NIPS 2013 Spotlight

Basic Idea : Traditional permutation testing procedure is
computationally intensive. Our model leverages the structure of
permutation testing matrix, and reduces the computation time by
atleast 50 times without loosing any accuracy in estimating the
null distribution.

1Vamsi and Chris are joint first authors



Background

Consider a study with n subjects from two groups (ex. Diabetic vs.
Non-diabetic). For each subject, a m dimensional
data/measurement is obtained (voxels, ROIs, genes etc.).

Multiple hypothesis testing checks for group difference by

I Computing m univariate hypothesis tests (ex. t test)

I Calculating the corrected p–value by adjusting for multiple
testing issues

Bonferroni method computes the corrected α threshold using union
bound (i.e. averaging over m tests).

Problem : If m is large, Bonferroni’s corrected α � true α



Permutation Testing - Background/Setup

Permutation testing is a random sampling method – a
non–parametric method to estimate the FWER by sampling from
Global/Max Null distribution.

If the two groups donot differ, then I can permute the group/class
labels and end up with approximately same set of t statistics

Given m, n and T (numner of trials/permutations). Repeat T
times

I Randomly “permute” group labels across n subjects –
compute t statistics for m dimensions

– m × T permutation testing matrix (denoted by P).

Compute the max. t statistics for each permutation (column of
P), and estimate the max. Null distribution

Compute p-value of “true” labeling using max. Null



Permutation Testing - continued

For a good estimate of max. Null, T should be very large.

Depending on m, n and T (number of random permutations),
permutation testing is extremely computationally intensive.

I In neuroimaging, typically m ∼ 3× 105, n ∼ 400 and T ∼ 104

I In Bioinformatics, typically m ∼ 1000, n ∼ 103 and T ∼ 103

The computation time can be days, and weeks in some cases!!

Observation:

I P is “highly structured” – a combination of low–rank signal
and high–rank residual.



example P

MRI data. 100 healthy vs. non-healthy. m = 1000, T = 2000



So what?

From a high–level viewpoint, this means

P is “highly structured”

=⇒ Each column looks “similar” to other columns, and each row
looks “similar” to other rows

=⇒ If you give me “sufficiently many” random (i.e. at random
positions) entries of P, I will give you a highly accurate estimate of
the entire matrix P

Mathematically, P = UW + S , U is low rank and S is random
residual – given some entries, I can estimate U, W and S (Matrix
Completion)

Sufficiently many ∼ < 1% sub–sampling !!



Evaluations Setup

Data

I MRI data from 4 studies of cognitively healthy vs.
non-healthy subjects

I n = 40, 50, 55 and 70

I m ∼ 275000 and T = 104

Questions

I Can we recover max. Null ?

I What is the computational speed-up ?

I How stable is the estimated α threshold ?

Baseline computes max Null from sub-sampled data directly (i.e.
no completion of P)



max Null recovery

Recovery measued using DKL (KL Divergence) and DB

(Bhattacharya Distance) in log–scale



max Null recovery

Recovery measued using DKL (KL Divergence) and DB

(Bhattacharya Distance) in log–scale



Computational Speed-up

Time measured in minutes.



Computational Speed-up

Time measured in minutes.



recovery vs. speed-up



Stability of α thresholds

t-statistic thresholds at α = 0.95



Conclusion

I A novel method for estimating permutation testing matrix is
proposed

I A computationl speed-up of > 50 is achieved while recovering
max. Null upto a high degree of accuracy


