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2. Multiresolution Matrix Factorization

Explanation for Equation 3: This directly follws from Proposition 1 and 2 in [4].

3. Incremental MMF
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Algorithm 1 adds one extra row/column is to a given MMF, and clearly, the incremental procedure can be repeated as
more and more rows/columns are added. Algorithm 3 summarizes this incremental factorization for arbitrarily large and
dense matrices. It has two components: an initialization on some randomly chosen small block (of size m x m) of the
entire matrix C; followed by insertion of the remaining m — m rows/columns using Algorithm 1 in a streaming fashion The
initialization entails computing a batch-wise MMF on this small block (m > k).

BATCHMMF - EXHAUSTIVE: Note that at each level /, the error criterion can be explicitly minimized via an exhaustive
search over all possible k-tuples from Sy;_ (the active set) and a randomly chosen (using properties of QR decomposition
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Algorithm 3 INCREMENTAL MMF(C)
Output: M(C)
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[7]) dictionary of k*" order rotations. If the dictionary is large enough, the exhaustive procedure would lead to the smallest
possible decomposition error. However, it is easy to see that this is combinatorially large, with an overall complexity of
O(n*) [5] and will not scale well beyond & = 4 or so. Note from Algorithm 1 that the error criterion £(-) in this second
stage which inserts the rest of the m — m rows is performing an exhaustive search as well.

Other Variants: The are two alternatives that avoid this exhaustive search.

e BATCHMMF - EIGEN: Since Q’’s job is to diagonalize some k rows/columns.one can simply pick the relevant k x k
block of C* and compute the best O (for a given ¢¢). Hence the first alternative is to bypass the search over O, and simply
use the eigen-vectors of sz, 4o for some tuple t. Nevertheless, the search over S,_; for ¢ still makes this approximation
reasonably costly.

o BATCHMMF - RANDOM: Instead, the k-tuple selection may be approximated while keeping the exhaustive search over
O intact [5]. Since diagonalization effectively nullifies correlated dimensions, the best k-tuple can be the k& rows/columns
that are maximally correlated. This is done by choosing some s; ~ Sy_1 (from the current active set), and picking the rest
by

- (e)Ten)
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This second heuristic has been shown to be robust [5], however, for large k it might miss some k-tuples that are vital to the
quality of the factorization. Depending on m, and the available computational resources at hand, these alternatives can be
used instead of the earlier proposed exhaustive procedure for the initialization.



4. Experiments
4.0. Data
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Figure 1. Symmetric matrices from six different toy datasets.

We used multiple different toy and real data sets for our experiments. The evaluations in Section 4.1 used 6 different
toy/example datasets as shown in Figure 1. These cover a wide-variety of structures in typical symmetric matrices.
The evaluations in Section 4.2 uses two different datasets as described below.

o PET-ADNI Positron Emission Tomographic brain images from approximately 1300 subjects are used to extract summaries
corresponding to 80 region-of-interests (ROI). This data is publicly available from Alzheimer’s Disease Neoruimaging
Initiatice [1]. These 80 ROIs are used as predictors (or independent) variables in the evaluations in Section 4.2. The
subject age, the corresponding disease status (a discrete ordinal variable) and the genotype for the disease characteristic
(binary) are used as the responses (or dependent) variables.

o Early-Alzheimers This data comes from healthy middle-aged adults (collected as a part of a local Alzheimer’s disease re-
search center). The features include a total of 78 different brain ROI summaries, age, cognitive scores, vascular summaires
(like body mass index, cholesterol etc.), demographic information, family history for Alzheimer’s disease and genetic sta-
tus for Apolipoprotein 4E. Here, unlike the PET-ADNI case, from all the available covariates (a total of 140), the subject
age, the family history and genotype (both are binary), the disease summary (discrete ordinal) and cumulative cognitive
summary (discrete ordinal) are used as responses, while the remaining are the predictors.

The four models Mdl1-MdI4 that were used in Figure 3 from Section 4.2 of the main paper correspond to PET-ADNI and
Early-Alzheimers with disease-status and age as predictors respectively.

The experiments in Section 4.3 uses the learned deep networks — AlexNet [6] and VGG-S [3]. The networks were learned

on ImageNet data [8], and we will be using the corresponding hidden representations from an overall 55 different classes —
coming from the popular synsets listed on the ImageNet repository [2]. These 55 different categories as as follows; and they
will also be listed out appropriately via the visualizations (both in this document and the parent webpage).
55 classes: bag, ball, basket, basketball, bathtub, bench, blackboard, bottle, box, building, chalkboard, edifice, saute, mar-
garine, bannock, chapati, pita, limpa, shortcake, strawberry, salad, ketchup, chutney, salsa, puppy, green lizard, garden spider,
ptarmigan, kangaroo, possum, cow, insectivore, killer whale, hound, male horse, warhorse, pony, mule, zebra, bison, sheep,
goat, blackbuck, deer, elk, pot, rack, roller coaster, rule, sail, sheet, ski, couch, racket, stick, table, toilet seat.



4.1. Incremental vs. Batch MMF
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Figure 2. Incremental versus Batch MMFs on Toyl dataset [ERROR]: Comparing factorization errors between the exhaustive batch
version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), exhaustive
initialization step (b) and eigen insertion step (c). Confusion matrix of factorization errors between the 9 versions of incremental MMFs —
three initilizations and three insertions (exhaustive, random and eigen).
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Figure 3. Incremental versus Batch MMFs on Toy1 dataset [SPEED-UP]: Comparing factorization speed-ups between the exhaustive
batch version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), ex-
haustive initialization step (b) and eigen insertion step (c). Confusion matrix of factorization times between the 9 versions of incremental
MMFs — three initilizations and three insertions (exhaustive, random and eigen).
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Figure 4. Incremental versus Batch MMFs on Toy2 dataset [ERROR]: Comparing factorization errors between the exhaustive batch
version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), exhaustive
initialization step (b) and eigen insertion step (c). Confusion matrix of factorization errors between the 9 versions of incremental MMFs —
three initilizations and three insertions (exhaustive, random and eigen).
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Figure 5. Incremental versus Batch MMFs on Toy2 dataset [SPEED-UP]: Comparing factorization speed-ups between the exhaustive
batch version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), ex-
haustive initialization step (b) and eigen insertion step (c). Confusion matrix of factorization times between the 9 versions of incremental
MMFs — three initilizations and three insertions (exhaustive, random and eigen).
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Figure 6. Incremental versus Batch MMFs on Toy3 dataset [ERROR]: Comparing factorization errors between the exhaustive batch

version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), exhaustive
initialization step (b) and eigen insertion step (c). Confusion matrix of factorization errors between the 9 versions of incremental MMFs —
three initilizations and three insertions (exhaustive, random and eigen).
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Figure 7. Incremental versus Batch MMFs on Toy3 dataset [SPEED-UP]: Comparing factorization speed-ups between the exhaustive
batch version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), ex-
haustive initialization step (b) and eigen insertion step (c). Confusion matrix of factorization times between the 9 versions of incremental
MMFs — three initilizations and three insertions (exhaustive, random and eigen).
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Figure 8. Incremental versus Batch MMFs on Toy4 dataset [ERROR]: Comparing factorization errors between the exhaustive batch
version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), exhaustive
initialization step (b) and eigen insertion step (c). Confusion matrix of factorization errors between the 9 versions of incremental MMFs —
three initilizations and three insertions (exhaustive, random and eigen).
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Figure 9. Incremental versus Batch MMFs on Toy4 dataset [SPEED-UP]: Comparing factorization speed-ups between the exhaustive
batch version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), ex-
haustive initialization step (b) and eigen insertion step (c). Confusion matrix of factorization times between the 9 versions of incremental
MMFs — three initilizations and three insertions (exhaustive, random and eigen).
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Figure 10. Incremental versus Batch MMFs on Toy5 dataset [ERROR]: Comparing factorization errors between the exhaustive batch
version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), exhaustive
initialization step (b) and eigen insertion step (c). Confusion matrix of factorization errors between the 9 versions of incremental MMFs —
three initilizations and three insertions (exhaustive, random and eigen).
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Figure 11. Incremental versus Batch MMFs on ToyS dataset [SPEED-UP]: Comparing factorization speed-ups between the exhaus-
tive batch version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a),
exhaustive initialization step (b) and eigen insertion step (c). Confusion matrix of factorization times between the 9 versions of incremental
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Figure 12. Incremental versus Batch MMFs on Toy6 dataset [ERROR]: Comparing factorization errors between the exhaustive batch
version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a), exhaustive
initialization step (b) and eigen insertion step (c). Confusion matrix of factorization errors between the 9 versions of incremental MMFs —
three initilizations and three insertions (exhaustive, random and eigen).
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Figure 13. Incremental versus Batch MMFs on Toy6 dataset [SPEED-UP]: Comparing factorization speed-ups between the exhaus-
tive batch version and different versions of incremental versions (a—c), including incremental MMFs with exhaustive insertion step (a),
exhaustive initialization step (b) and eigen insertion step (c). Confusion matrix of factorization times between the 9 versions of incremental
MMFs — three initilizations and three insertions (exhaustive, random and eigen).



4.2. MMF Scores
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Figure 14. Importance Sampling from MMF Scores (black) vs. Leverage Scores (blue) — F'-statistic: The F'-statistic of the linear
model ‘fitted’ using the features (ROIs) from PET-ADNI data, selected according to the MMF Score (black) or Leverage Score (blue)
importance samplers. The response is the disease status. The z-axis denotes the fraction of such features selected. The errorbars on the
plots correspond to 10 repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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Figure 15. Importance Sampling from MMF Scores (black) vs. Leverage Scores (blue) — R%: The R? of the linear model “fitted’ using
the features (ROIs) from PET-ADNI data, selected according to the MMF Score (black) or Leverage Score (blue) importance samplers.
The response is the disease status. The z-axis denotes the fraction of such features selected. The errorbars on the plots correspond to 10
repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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importance samplers. The response is the age. The x-axis denotes the fraction of such features selected. The errorbars on the plots
correspond to 10 repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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Figure 17. Importance Sampling from MMF Scores (black) vs. Leverage Scores (blue) — R%: The R? of the linear model “fitted’ using
the features (ROIs) from PET-ADNI data, selected according to the MMF Score (black) or Leverage Score (blue) importance samplers.
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correspond to 10 repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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Figure 19. Importance Sampling from MMF Scores (black) vs. Leverage Scores (blue) — R%: The R? of the linear model “fitted’ using
the features (ROIs) from PET-ADNI data, selected according to the MMF Score (black) or Leverage Score (blue) importance samplers.
The response is the genotype. The z-axis denotes the fraction of such features selected. The errorbars on the plots correspond to 10
repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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model ‘fitted’ using the features from Early-Alzheimers data, selected according to the MMF Score (black) or Leverage Score (blue)
importance samplers. The response is the disease status. The x-axis denotes the fraction of such features selected. The errorbars on the

plots correspond to 10 repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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The response is the disease status. The z-axis denotes the fraction of such features selected. The errorbars on the plots correspond to 10

repetitions of the linear model. Each plot corresponds to different order of the MMFs (k

= 6 to 20 at steps of 2).
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Figure 22. Importance Sampling from MMF Scores (black) vs. Leverage Scores (blue) — F'-statistic: The F'-statistic of the linear
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model ‘fitted’ using the features from Early-Alzheimers data, selected according to the MMF Score (black) or Leverage Score (blue)

importance samplers.

The response is the age. The z-axis denotes the fraction of such features selected. The errorbars on the plots

correspond to 10 repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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Figure 23. Importance Sampling from MMF Scores (black) vs. Leverage Scores (blue) — R>
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.
.

the features from Early-Alzheimers data, selected according to the MMF Score (black) or Leverage Score (blue) importance samplers.
The response is the age. The x-axis denotes the fraction of such features selected. The errorbars on the plots correspond to 10 repetitions

of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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importance samplers. The response is the genotype. The x-axis denotes the fraction of such features selected. The errorbars on the plots

correspond to 10 repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).

02
0

= ©
S =1 > 3 ?
S S S S
|opow seaul| Jo paienbs-y

6
4
02
0

S

©
< > 3 3
S S S S

|epow Jeaul| Jo palenbs-y

#Features used

(d) F-stat Comp; k = 12

#Features used

#Features used
(c) F-stat Comp; k = 10

(b) F-stat Comp; k = 8

#Features used

(a) F-stat Comp; k = 6

——LevScore

——MMFScore

© 0.08

0.04

20.02

@
S
=1

El

S o
|epou Jeaul| jo pasen

2002

-d

#Features used

(h) F'-stat Comp; k = 20
The R? of the linear model “fitted’ using

#Features used

(g) F-stat Comp; k = 18

#Features used

(f) F-stat Comp; k = 16

#Features used

(e) F-stat Comp; k = 14
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axis denotes the fraction of such features selected. The errorbars on the plots correspond

the features from Early-Alzheimers data, selected according to the MMF Score (black) or Leverage Score (blue) importance samplers.
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to 10 repetitions of the linear model. Each plot corresponds to different order of the MMFs (k
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Figure 28. Importance Sampling from MMF Scores (black) vs. Leverage Scores (blue) — F'-statistic: The F'-statistic of the linear
model ‘fitted’ using the features from Early-Alzheimers data, selected according to the MMF Score (black) or Leverage Score (blue)
importance samplers. The response is the family history. The x-axis denotes the fraction of such features selected. The errorbars on the
plots correspond to 10 repetitions of the linear model. Each plot corresponds to different order of the MMFs (k = 6 to 20 at steps of 2).
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Figure 29. Importance Sampling from MMF Scores (black) vs. Leverage Scores (blue) — R?: The R? of the linear model ‘fitted” using
the features from Early-Alzheimers data, selected according to the MMF Score (black) or Leverage Score (blue) importance samplers.
The response is the family history. The z-axis denotes the fraction of such features selected. The errorbars on the plots correspond to 10
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4.3. MMF Graphs
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Figure 30. Hierarchical Compositions from 5‘"-order MMF constructed on VGG-S Network representations: Each plot corresponds
to the representations coming from different layers of the VGG-S network (conv denotes convolutional, and F'C' denotes fully-connected).

The compositions are for the 12 classes considered in Figure 4 of the main paper.
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Figure 31. Hierarchical Compositions from 4¢h-order MMF constructed on VGG-S Network representations: Each plot corresponds
to the representations coming from different layers of the VGG-S network (conv denotes convolutional, and F'C' denotes fully-connected).
The compositions are for the 12 classes considered in Figure 4 of the main paper.
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Figure 32. Hierarchical Compositions from 3"%-order MMF constructed on VGG-S Network representations: Each plot corresponds
to the representations coming from different layers of the VGG-S network (conwv denotes convolutional, and F'C denotes fully-connected).
The compositions are for the 12 classes considered in Figure 4 of the main paper.



Hierarchical Agglomerative Clustering: The following figure shows the dendrogram corresponding to the agglomerative
clustering (based on mean distance of the clusters) on the FFC6 and F'C7 representations of the 12 classes from Figures

30-

32. Observe that the categories like bannok and chapati, or saute and salad are closer to each other here in hierarchical

clustering. However, the compositional relationships inferred from the MMF graphs, see Figures 30-32, especially in the
F(C7 and FC6 layers, are not apparent in these dendrogram outputs (also see Section 4.3.2 in the main paper). Similar such
cluster trees can be produced using other layers’ representations, where in the compositions from MMF based graphs are
much more informatice and contextual.
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Figure 33. Hierarchical clustering (Dendrograms) constructed on VGG-S Network representations: Plots correspond to the repre-
sentations coming from F'C'6 and F'C7 layers of the VGG-S network (F'C denotes fully-connected). The clustering is for the 12 classes
considered in Figure 4 of the main paper (and Figures 30-32 above).
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