Efficient Techniques for Document Sanitization

Venkatesan T. Himanshu
Chakaravarthy
IBM India Research Lab

vechakra@in.ibm.com

IBM India Research Lab
higupta8@in.

Gupta Prasan Roy
Aster Data Systems, USA

ibm.com prasan.roy@asterdata.com

Mukesh K. Mohania
IBM India Research Lab
mkmukesh@in.ibm.com

ABSTRACT

Sanitization of a document involves removing sensitiverinfation
from the document, so that it may be distributed to a broader a
dience. Such sanitization is needed while declassifyirgydents
involving sensitive or confidential information such aspate
emails, intelligence reports, medical records, etc. Is fiaper,
we present the ERASE framework for performing document-sani
tization in an automated manner. ERASE can be used to saaitiz
document dynamically, so that different users get diffevégws of

the same document based on what they are authorized to knew. W
formalize the problem and present algorithms used in ERABE f
finding the appropriate terms to remove from the documentt Ou
preliminary experimental study demonstrates the effigiemd ef-
ficacy of the proposed algorithms.

Categories and Subject Descriptors
K.6.5 [Security and Protectior]: Unauthorized access

General Terms
Algorithms, Performance, Security

Keywords

Sanitization, Redaction, Anonymization

1. INTRODUCTION

Sanitization (synredaction) of a document involves removing
sensitive information from the document, in order to redtloe
document’s classification level, possibly yielding an assified
document [16].

A document may need to be sanitized for a variety of reasons.
Government departments usually need to declassify docisrben
fore making them public, for instance, in response to Freedb
Information requests. In hospitals, medical records ang&izad to
remove sensitive patent information (patient identityomfation,
diagnoses of deadly diseases, etc.). Document sanitizitialso
critical to companies who need to prevent malafide or inddwer

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM'08, October 26-30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

disclosure of proprietary information while sharing datéhvout-
sourced operations.

Example. Figure 1 shows an example U.S. government document
that has been sanitized prior to release [16]. This saditiiteEu-
ment gives limited information (such as the purpose and uhd-f

ing amount) on an erstwhile secret medical research prajdite
hiding the names of the funding sources, principal investigs and
their affiliation.

1. Subproject 8 is being set up as a means to continue the !
present work in the general f£ield of L.S.D. at I
untdl 11 Soptembor 195%.

2 This project will include & continuation of a study of the
bl dcal, neurophysiological, sociological, and clinical psychiatrie
A:rpeetu of L.8.D., and also a study of L,S.D, antagonists and dxugs
..related to L.S.D., such as L.AE. A detailed vapo..al in nttochcd
The principle MNntignmu v:lll contsmm w be D .

&,
-5 ad

3. The estimated budget of the project at
13 $39,500.00. The

will serve as o
cut-out a:ua cover ror thh pmject end will furnish the above funds
to the Lot . ¥

i ot S TEig 09 o philanthropie t for V53
medical re..earc: -en'sce c}mrge of $790.00 (2% of the cotizated
dudget) i3 to be po!.d. to the for this eervice. ,5

A %. Thus the total charges “cr this project vnl not.exceed -
-M,290 00 for o iod endi ..cprtc:bcr 1, 195%.

houpl.\.l) orc clcnrcé through TOP S2CRET uxxl are sware of the true
purpose of the project.

Figure 1: A sanitized document

Traditionally, documents are sanitized manually by quedifie-
viewers. However, manual sanitization does not scale asdhe
ume of data increases. The US Department of Energy’s OpenNet
initiative [15], for instance, needs to sanitize milliorfddocuments
each year. Given the amount of effort involved and limitedpu
of qualified reviewers, this is a tall order.

In this paper, we propose ERASH, system for performing doc-
ument sanitization automatically. Highlights of the systaclude:

e ERASE can sanitize documents efficiently, making it possi-
ble to scale up to large data volumes. The low sanitization
latency also enables processing of emails and dynamic web-
pageson-the-fly

e The extent of sanitization performed by ERASE can be con-
figured to adapt to the access privileges of an intended reade
so that different users can get different sanitized vessi
the document based on their current authorization status.

!Efficient RedAction for Securing Entities

e ERASE can be configured to integrate seamlessly with the
existing authentication mechanisms (database acces®icon
lists) in an organization to determine the access priviege
an user.

ERASE makes an effort to sanitize a document while causing
theleast distortiorto the contents of the document. Minimal
content distortion has been considered as one of the paihcip
requirements of document sanitization [14].

Contributions. Our specific contributions in this paper are as fol-
lows.

e \We present a principled approach to sanitization of unstruc
tured text documents. While sanitization of structured re-
lational databases has been addressed earlier [13, 8],-we be
lieve ERASE is the first work to provide a principled solution
in an unstructured free-text domain.

We device an algorithm that sanitizes a document while re-
moving the minimum number of terms. We propose nontriv-
ial pruning strategies that make the search practical.

We present an alternative algorithm that achieves very rea-
sonable performance even for large documents; the improve-
ment in efficiency is achieved by relaxing the least-digtort
property. We show that this alternative approach, in pcacti

is similar to the optimal algorithm in terms of the quality of
the result.

We present a preliminary experimental study that shows that
the proposed techniques are practical on realistic data.

Overview. ERASE models public knowledge as a database of enti-
ties (persons, products, diseases, etc.). Each entitysid#iiabase
is associated with a set of terms related to the the entity;set is
termed thecontextof the entity. For instance, the context of a per-
son entity could include the firstname, the lastname, therdagth
and year of birth, the street and city of residence, the eyap®
name, spouse’s hame, etc. This database could be structuned
structured — wikipedia, a directory of employees and ptsjétan
organization, a compendium of diseases, etc. all fit in tbpg@sed
notion of an entity database. The only requirement is thatitita-
base is able to provide the context of a given entity, and ¢hefs
entities containing a given term in their context. This esthdata-
base need not be compiled manually — it can be a existing aseab
or can be extracted automatically using an informationaetion
system such as Snowball [1].

Some of the entities in the database are considpret&cted
these are the entities that need to be protected againsitydeis-
closure. For instance, in a database of diseases, certgnsgis
(such as AIDS) can be marked as protected — we are interested i
protecting the disclosure of these diseases, it does no¢mnifsthe
any other disease (such as Influenza) is revealed. The seb-of p
tected entities is derived according to the access prigdenf the
adversary. The set of entities that need to be hidden fronadhe
versary are declared protected.

ERASE assumes an adversary that knows nothing about ay entit
apart from what appears in the entity’s context, and hasdediin-
ference capabilities. Specifically, given a document, theeesary
can match the terms present in the document with the terrsemire
in the context of each of the protected entities. If the doenim
contains a group of terms that appear together only in théegbn
of a particular entity, then the adversary gets an indicdtiat the

“ Let's look at the immediate facts. You have a num
of symptoms, namelyeight loss insomnia, sweating fa-
tigue, digestive problemsand headaches These may o
may not be related tsexually transmitted diseases but
you know you have been exposedytmorrhoea and you
know you may have been exposedhépatitis B and HIV .
Your symptoms are significant and need full investigatio
the near future. ”

per

N in

Figure 2: lllustrative Example

entity is being mentioned in the given document. We term ahis
disclosure?

ERASE attempts to prevent disclosure of protected entitjes
removing certain terms from the document — these terms reed t
be selected such that no protected entity can be inferre@iag b
mentioned in the document by matching the remaining ternis wi
the entity database.

A simplistic approach is to locate “give-away” phrases ie th
document and delete them all. To the best of our knowledgst mo
prior work on document sanitization has followed this ajgig
and has focused on developing more accurate ways of locating
such phrases in the document’s text [12, 6, 14]. We belieige th
is an overkill. For instance, in an intelligence report, azing all
names, locations, etc. would probably leave the report mothse-
ful content at all.

In contrast, ERASE makes an effort to sanitize a documeriewhi
causing théeast distortiorto the contents of the document; indeed,
this is considered one of the principal requirements of dwent
sanitization [14]. Towards this goal, ERASE identifies thai-
mumnumber of terms in the document that need to be removed in
order for the document to be sanitized.
lllustrative Example. We illustrate our approach using an anecdo-
tal real-life example. We created a database of 2645 disedse
taining information from the websiterongdiagnosié¢ Each dis-
ease is an entity with the associated context consistingrops
toms, tests, treatments and risk factors. The websitesofferas-
sification of the diseases. We declared as protected enthie
diseases under the following categories: sexual conditiseri-
ous conditions (conditions related to heart, thyroid, kigniver,
ovary), cancer conditions, and mental conditions. The rermob
protected entities were 550. The privacy paramétevas setto 10
(see Section 3 for the semantics of this parameter).

We created a document by taking a paragraph out of a communi-
cation between a doctor and a patient from another websitee
document is shown in Figure 2, where the relevant terms faund
the entity contexts are shown in bold.

The document was sanitized using ERASE; the terms deleted as
a result are shown underlined in Figure 2. Observe that thiéi-sa
zation has differentiated between the generic symptomsamgb-
toms specific to the kind of diseases that appear in the pestec
entity set, and deleted the latter. Furthermore, thouglasagis a
common symptom associated with hundreds of diseases, the co
bination of sweating, weight loss and fatigue reveals agutet] en-

2Adversaries such as automatedmed-entity taggergs, 4] and
keyword-based search engines fit the assumptions well. (wnef
work involves considering richer adversaries [9].

Note that the adversary does not know which entities in tha-da
base are protected, otherwise the adversary can focus ortlyeo
protected entities whenever sanitization is present.
“www.wrongdiagnosis.com

Swww.netdoctor.co.uk

tity (in this case, HIV) and so, one of these terms must betelel®
sanitize the document; consequently, the system remoeettm
“sweating”. We note that a different protected entity segimire-
move a different set of symptoms.

Organization. The rest of the paper is organized as follows. We
discuss the related work in Section 2. The document satidiza
is formalized in Section 3, and its complexity is discusse&éc-
tion 4. Next, in Section 5, we discuss algorithms for commuuti
optimal solutions. Section 6 presents efficient greedy ibtcs.
This is followed by a preliminary experimental study in Sewct7.
Finally, in Section 8, we present our conclusions and divestfor
future work.

2. RELATED WORK

Prior work on automatically sanitizing free-text medicatords
[12, 6, 14] has focused largely on locating phrases reptegen
name, address and other “identifiers” in the document’s-flieee
text and removing them; this removal happens irrespectitae
context in which such phrases appear. Moreover, such sgstem
are only as good as the underlying parser that tries to |eatk
phrases; in case the parser fails to locate certain idastifiehich
could happen due to bad grammar and punctuation, noisyateat,
other problems which hinder accurate parsing), then thetifikr
is not removed at all. In contrast, ERASE works by finding term
common in the entities’ context and the document, and does no
rely on a parser. Since ERASE distinguishes the protectétiesn
from the rest, it is able to selectively retain certain hasslterms.

protected against disclosure. For instance, consider @eodium
of diseases. Each disease is an entity, and its contextdiesltne
symptoms and the drugs used to cure the disease. THe cen-
tains all the diseases in the database, and thé’dstthe subset
containing, say, terminal diseases such as AIDS and carfuesev
disclosure in a declassified patient record (the documsmi)t de-
sirable.

Further, letD be the input document; in ERASE, a document is
modeled as a set of terms. Without loss in generality, werassu
that D contains only the terms that are present in the context of at
least one protected entity, i.&2 C |J,.p, C(e); any other term
present inD is harmless and need not be removed.

Now, suppose there exists a subSe€ D such thatS appears
in the context of a protected entityc P; this setS indicates to
the adversary that the protected entitynight be associated with
the document. The extent of the seriousness of this indicate-
pends upon how many entities &) other thare, contains in their
context as well — since the adversary has no further knowledg
cannot be sure betweerand these other entities. We quantify the
adversary’s dilemma by considering a tunable paramg&teand
say that the adversary decides tl$ats associated witle if the
number of entities inF, other thare, that also contairf in their
context is less thai; the subset$ C D having this property are
considered dangerous. Clearly, a sanitized document musbn-
tain terms that form a dangerous set with respect to any gisate
entity e. The discussion is formalized below.

Definition 3.1 (K -safety). LetT C D be a set of terms. For

Further, ERASE does not remove a term just because it is a namea protected entitg € P, let Ar(€) be the number of entities other

or an address — it considers other terms that co-occur wiittlite
document and tries to take a globally optimal decision.

Sidebar [10], a recent initiative at Xerox PARC attemptsrm-p
vide a user-friendly platform to perform document santtag the
platform enables a user to specify rules that limit the typiafor-
mation (name, address, etc.) to disclose to different tgpesers.
These rules, however, need to be specified manually and ghe sy
tem, overall, suffers from the same drawbacks as the satiitiz
systems mentioned above.

The sanitization criterion in ERASE is similar in spirit f§-
anonymization, introduced by Sweeney [13] for structurathdK-
anonymization based sanitization of structured relatidatabases
has been addressed by LeFevre et al. [8]. However, the pndble
mulation considered in the above setup and ERASE are differe
While the goal in theK-anonymization is to anonymize a given
database, in ERASE, the aim to sanitize a single documemgirsa
et al. [11] propose and motivate K-anonymization based ohacu
sanitization, but focus on the special case of sanitizirajres au-
thorship detection.

There have been a few other proposals to automate document

sanitization, for instance as a part of the US DOE OpenN&aini
tive (e.g. [15]), but these have not been reported in thenieah
literature and thus it is not possible to compare them witAER

in a fair manner.

3. PROBLEM FORMULATION

In this section, we formalize the notion of document saatton
and present a precise statement of the problem.

Let £ denote the set of entities. We associate each entityF
with a set of termC(e) which collectively represent the entire
knowledge the adversary has about the entitye¢) is called the
contextof the entitye. Unknown to the adversary, we are also pro-
vided with a flag that identifies the subs@tof protectedentities
from among the entitie&’; these are the entities that need to be

thane that containC(e) N T in their context. The set of terrfisis
said to beK -safewith respect to a protected entigy if Ar(e) >
K. The sefl is said to beK-safe, ifT is K-safe with respect to
every protected entity.

The document sanitization problem being addressed can aow b
stated as follows:
Problem Statement. We assume a fixed database consisting of a
set of entitiesE/, where each entity is associated with a set of
termsC(e) forming its context. A subset of entitiés C F are
flagged as protected. Given a documénand the parametek” as
input, the problem is to find the maximum cardinality subsebo
that is K -safe.
Example 1: Consider an entity séf = {€1,2,€3,€e1, e2,€3,€e4};
with protected entitie®® = {€1, €., e3}. The entity contexts are as
follows:

C(e1) = {t1,ta2,t3}
C(e2) = {t2,ta, 15,16}
C(es) = {t1,ta,t7}

Now, consider a documerd® = {t1,t2, 4,15, t6,t7}. Suppose
K = 2. The subsel = {t2, t4,t7} is not K-safe, because for the
protected entit¥,, the seC'(e2)NT1 = {¢2,t4}is contained in the
context of only one other entity (namedy,) and henceAr, (e2) =

1. On the other hand, the sub&et = {t¢1,ts, ts, t7} is K-safe as
can be verified below:

Cer)NTe = {t1}
C(Eg) NT, = {tf},te}
C(es) NTy = {t1,t7}

Contained ires, e1, es
Contained ires, e4
Contained ire, e4

Thus, we see that for all < ¢ < 3, C(e;) N T is contained
in the context of at least two entities (other than and hence,
Ar, (€) > 2. So,T>» is K-safe. It can be verified thd® (which of

size 5) is not & -safe set. Hencd; is an optimal solution. []

4. HARDNESS RESULTS

A reduction from the maximum independent set problem [7],
shows that document sanitization problem is NP-hard.

Theorem 4.1. The document sanitization problem is NP-hard,
even when the security paramef€ris fixed to be 1.

PROOF We present a reduction from the maximum independent
set problem. Letz be the input graph having: edges over a set
of n verticesV. Construct a database containing+ n entities.
For each edgéu, v), add an entity.,,, with the associated context
C(eww) = {u,v}. For each vertex, add an entitye, with the
associated context(e,) = {v}. The entities corresponding to the
edges are declared protected. [et= V' be the document. Set the
parametes = 1.

We observe that a sét C V is an independent set if and only if
T is K-safe. To see this, suppo%eis an independent set. Let,
be a protected entity with the associated cont@d..,) = {u, v},
where(u, v) is some edge id. Since,T" is an independent set it
cannot contain both andv. Thus,C(ew,) N T is one of{u} or
{v} or (. In all the three cases, we see thbt(e.,) > 1. Thus,

T is K-safe. On the other hand, suppdBés not an independent
set. Then,I" contains some verticasandv such that(u, v) is an
edge inG. Lete,, be the corresponding protected entity having
contextC(ewv) = {u,v}. Then,C(ew,)NT = {u, v} and this set

is contained in the context of ondy,,, and not in the context of any
other entity. SoAr(ewv) = 0. We see thaf’ is not K-safe. We
have shown thdl" is an independent set if and orilyis K -safe.

From the above observation, it follows that finding the maxim
independent set i7 is equivalent to finding the largedt’-safe
subset ofD. We conclude that the sanitization problem is NP-
hard. [

Further, a known inapproximability result for the indepentset
problem [17] implies the following strong inapproximabjlresult
for the sanitization problem.

Corollary 4.2. For anye > 0, if sanitization problem can be
approximated within a factor of of' ¢, then NP=P. Heren de-
notes the size of the input document. The result is true, iétlea
parameterK is fixed to be 1.

5. COMPUTING OPTIMAL SOLUTIONS

A naive way of computing the optimal solution is to enumer-

ate all theK'-safe subsets of the given document and pick the one

with the maximum cardinality. In this section, we describeren
efficient algorithms.

5.1 A Levelwise Algorithm

Itis easy to see that a set of termdidssafe only if all its subsets
are K-safe. In other words, th&'-safe subsets of a documeht
satisfy the apriori criterion [2, 3]. Thus, a levelwise aligom can
be used to enumerate the maximi&lsafe subsets of the given doc-
ument, and consequently to find the maximum cardindiitgafe
subset.

The algorithm proceeds in a levelwise manner. Starting séfle
subsets of cardinality = 1, in each iteration it generates the can-
didate subsets of cardinality+ 1 based on thd(-safe subsets of
cardinalityr found in the previous iteration; a subset of cardinality
r+1is a candidate only if all it subsets of cardinalitare K -safe.
The algorithm terminates after none of the subsets coresidaran
iteration are found to bé& -safe, or after = |D|. This algorithm
can be readily instrumented to output, on termination, aimam
cardinality safe subset @b (the last candidate subset that was suc-
cessfully flagged as safe).

Procedure BestFirst()
Input: A documentD and parametekK'.
Output: An optimal K -safe subset aD.
Begin
LetT = {(0,0)}
While (not terminated)
/I Remove the pair having the maximum upperbound
Let(s,r) = argmax y .1 e7 UB({s', 7))
Remove(s, r) from T
If » = n then output§) and halt
Add (s,r+1)to T
If the sets’ = s U {¢,+1} is K-safe then
Add (s',r +1)to 7.
End
End

Figure 3: The BestFirst Algorithm

Observe that when all entities are protected, this algorithes-
sentially the apriori algorithm for frequent itemset migif2] on
the entity database with minimum suppdtt Frequent itemset
mining is a well-studied problem [3] and any of the several al
ternative algorithms for the problem can be readily apptiethe
document sanitization problem. The drawback with this desd-
itemset mining approach, as applied to document santizats
that it computes all the maximd{'-safe subsets, which is not nec-
essary; for document sanitization, it is sufficient to fine afi the
maximum safe subsets. In the next section, we present a rfiore e
ficient branch and bound strategy that systematically rumay
choices and converges on an optimal solution quickly.

5.2 A Best-First Search Algorithm

Given a documenD containingn terms, our goal is to find the
optimal solution (the largedt’-safe subset ab). Consider a com-
plete binary tree of depth such that each level represents a term
and each root-to-leaf path represents a subsél.ofhe BestFirst
algorithm performs a pruned-search over this tree by expgrite
most promising thread in each iteration. The algorithm isflyr
discussed below.

Let D = tits ... t, be the sequence of terms in the given docu-
ment. Fori < j, we useD; ; to denote the substringt+1 .. .t;.

Of particular interest are the prefixds, .., for r < n. The al-
gorithm maintains a collectiol” of K-safe subsets of the pre-
fixes of the document: each elementZinis a pair(s, r) such that
S Q Dl,r-

We say that d(-safe sef” C D extendss,r), if TND1, = s.
Along with each pair(s,), the algorithm keeps an upper-bound
UB((s,r)) on the largest-safe subset extending,). In the
next section, we present mechanisms for computing theserupp
bounds; for now, notice that an elemértn) cannot be extended
any further and so, the largest subset extending) is simply s it-
self —thus, without loss of generality, we assume tha{ (s, n)) =
|s].

The algorithm, shown in Figure 3, proceeds iteratively ds fo
lows. In each iteration, it picks the pdi¢,) in 7 having the maxi-
mum upperbound valuéB((s, r)), and considers the two possible
ways of extending it: (i) including the terita 1, or (ii) excluding
the term¢,.11. In the first case, the algorithm checks whether the
sets’ = sU{t,+1} is K-safe and if so, it adds the pdis’, 7+ 1) to
the collection7. In the second case,is guaranteed to b& -safe
and so, it directly adds the pas, » + 1) to the collectionZ. The
algorithm terminates when the chosen pair is of the fdgnm),
and outputs the satas the solution.

Theorem 5.1. The algorithm BestFirst outputs an optimal-
safe subset of the input document.

PROOF LetT™ be the set output by the algorithm. This means
that the pair chosen in the last iteration(i8*, n). Consider any
K-safe subsel” C D and we shall show tha?™*| > |T'|. First,
observe that in any iteratioff; contains a pair of the forns’, r*)
such thafl” extendgs’, r’). Consider the last iteration and lgt)
be the pair inZ such thafl” extends(s,).

SinceUB((s,r)) is an upperbound on the size of ah{safe
subset achievable by extendifg r), we have:UB((s,r)) > |T.
Also, since the algorithm chooses the pair having the maximu
upperbound, we further havéIB((s,r)) < UB((T™",n)). Com-
bining these observations with our assumption tha{ (7, n)) =
|T™|, we get|T*| > |T|, proving the theorem.

The BestFirst algorithm essentially performs an exhaestarch.
In the worst case, its running time is exponential in the sizihe
input document.

5.2.1 Computing Upper-bounds

Let E*((s,r)) denote the size of the largekt-safe set that ex-
tends(s, r); in this section we show how to compute a non-trivial
upper-bound/ B((s, 7)) on E*({s, r)).

Any set that extends the pafg, r) includes the set, by def-
inition, and can at most include all d?,1,,. This leads to the
following naive upperbound:

UBnaive(<57r>) = |5| + (n — ’f’).

Clearly, UByaive ((s,7)) > E*({(s,r)) and thusUBaive ({s, 7))

is an upperbound o™ ((s, r)). This upperbound, however, is very
weak and is not likely to provide significant pruning of theusdn
space. We now derive a stronger upper-bound?6((s, r)).

Forr < n, let A*(D,,,) denote the size of the optima -
safe subset of the suffi,,,. Notice that for any pairs,r),
E*({s,7)) < |s| + A*(Dr+1,n). Below, we discuss an approach
for computing upperbounds oA*(D,.,,) for every suffix D;.,
and thereby obtain the required upperbound<sfii(s, r)). The
approach is based on relaxing the notionfofsafety tolocal K-
safety

Fix aninteger < n. Forr < n — L + 1, we call the sequence
of L consecutive term®, ;1 as anL-window A set of terms
T C D is said to beL-local K-safe if T is K-safe with respect
to everyL-window, i.e., for allr, the setl’ N D;. 41 is K-safe.
While the notion ofK-safety imposes a constraint with respect to
the whole document, the notion éflocal K -safety is a relaxation
that considers only thB-windows. The two notions coincide when
L=n.

Define A7 (D) to be the size of the largestlocal K -safe subset
of D. Similarly, let A7 (D~) denote the size of the largest
local K-safe subset of the suffiD,,,. Every K-safe subset is
also L-local K-safe; this implies that forany < n — L + 1,
A*(Drn) < A7(Drrn). Thus, for any pais, r), withr < n—L,
E*((s,r)) < |s|+A%(Drs1,n). Thus, we get the following upper-
bound onE* ({s,r)):

UBL((s,)) = |s| + AL(Dr+1,n)

Clearly,U By, is a much tighter upper-bound th&B,,4;ve.

Moreover, A7 (D,) for all < n — L + 1 can be computed
efficiently (in time linear inn) for small L using a dynamic pro-
gramming strategy, presented next.

Efficiently Computingt; (D)

We now present a dynamic programming algorithm that runs
O(2%n) steps and computes} (D,.,), forallr < n — L + 1.
The algorithm is efficient whe# is small.

n

Foreachr <n— L+ 1andz C D, ,yr—1, let A} (Drn|z)
denote the size of the largestlocal K -safe subset ab,. ,, among
those set§” C D, ,, satisfyingT’ N Dyryr—1 = . If z is notK-
safe, thenA} (D, |x) is not well-defined and we declare it to be
—0OQ.

Let us consider the two consecutifewindows D,. .41, —1 and
Dy i1,7+1. Now, for eachl” C D,.,, suchthal’ N D, ,11-1 = z,
we can either hav®€ N Dy 1,ry =2 — tr, O T N Drj1pqn =
(z —t,) Utr+r. This leads to the following:

A (Drale) = e e max | g GECTE G)

The algorithm first computed} (Dy—r+1,»|x) for eachz C
Dy _1+1,n, asfollows. Ifx is K-safe, then setl}, (Dn—r+1,n|2) =
|z|, else setd} (Dn—r+1,n|x) = —o0. Based on the above recur-
rence relation, it then computely (D, »|z) foralll <r <n—L
andz C Dy r4+r1—1. Finally, A7 (D) is computed as:

A*L(Dr,n) == © A*L(Dr,n|m)

max
CDyrpL—1

Clearly, there is a trade-off in choosidg Larger values ofl
lead to a tighter upper-bound, and therefore better sesyabe
pruning in the BestFirst algorithm. However, the complexf
computing the upper-bounds on the other hand, the wouldKkee ta
more time. We shall discuss how to chodsén the experimental
section.

5.2.2 Testing for-safety.

Recall that the BestFirst algorithm (ref. Figure 3) needshieck
for K-safety of a set in each iteration. A simple-minded imple-
mentation thek'-safety of a sef would involve checking, for each
protected entitye, whetherC'(e) N .S appears in the context of at
leastK other entities. This can be expensive for lafge

However, the BestFirst algorithm invokes thesafety tester on
sets of the forms = s’ U {t}, wheres’ is a K-safe set and is a
new term. Thus, it is sufficient to only focus on protectedterg
containingt. To efficiently retrieve all entities containingn their
context, we exploit an inverted index. This index maps eacimt
to the set of entities that contain the term, and is createdpre-
processing step.

6. GREEDY HEURISTICS

In this section, we present an efficient heuristic that scelell
with increase in document size. The heuristic aims to enthae
only a minimum number of terms are removed to sanitize the-doc
ment, but occasionally removes a larger number of terms.iddze
is to iteratively delete terms from the document until itissafe,
where the term to delete in each iteration is chosen by estigha
the amount of progress made by deleting a term. Towards ttidiat e
we first discuss a simple characterization of aefuch that delet-
ing X from D yields aK-safe set; i.e., we characterize s&tsuch
thatD — X is K-safe.

For an entitye, let Cp(e) = C(e) N D denote the context of
e restricted to the terms in the documdnt Consider a protected
entitye. For any other entity, we call the seCp(e) — Cp(e)

a blocker of g; informally, the setCp(e) — Cp(e) “blocks” the
entitye from becoming a subset ef Let B(€) denote the set of all
blockers ofe:

B(e) ={Cp(e) — Cp(e) :

Consider a seK C D. From the definition of-safety, the set
D — X is K-safe with respect to a protected eniityf Cp () — X
is contained in the context of at ledstother entities; equivalently,

e € E ande # €}.

X must contain at leask” blockers ofe. We say thatX covers 6.1.2 Blocker Size Based Scoring (BSize)
a blockerb, if b C X. Then, the above observation leads to the | BFreq, a termt gets a score of one for hitting a blockir
following proposition. irrespective of the size of the blocker. Instead, we needssiga
N]] higher score to a term that hits smaller blockers and a loa@res
Proposition 6.1. LetX C D. The setD — X is K-safe if and to a term that hits larger blockers. One straightforwardragagh to
only if for every protected enti®, X covers at leasK blockers of achieve this scoring is to assign the term a weighit /36| for each

e(i.e,[{b : b€ B(€)and b C X}| > K). blockerb hit by ¢.
)) However, consider two blockers containing the teéraone with
PrROOF. Consider a seX C D. SupposeD — X is K-safe. ten terms, none of which have been chosen earlier, and arvathe
So, by the definition of<-safety, for any protected entigythe set fifteen terms, five of which have been chosen earlier — clgolh
Cp(€) — X is contained in the context of at ledstother entities. should be assigned the same weight. Ketienote the set of terms
For any entitye, the setCp(€) — X can be contained it’(e) if not deleted so far. Our next scoring function considers diny

and only ifCp(€) — Cp(e) € X in other words X must contain terms inX and also takes into account the sizes of the blockers:
the blockerCp (€) — Cp(e). It follows that for any protected entity

€, X contains at leask blockerse. BSize(t) = Z Z ;

The converse direction is proved in a similar way. Supplise 2P vvenB@ e 0N X]
contains at leask’ blockers of any protected entig; Consider])))
any protected entitg. If X contains the blocke€'p (€) — Cp (e), _Note that unlike BFreq, this has_the o_verhead of having toymai
for some entitye, then it means that’p () — X C Cp(e). It tain the scores at the end of each iteration.
follows thatC'p(€) — X is contained in the context of at leakt .
entities (othertfiaﬁ). Notice thatCp (e)N(D—X) = Cp(e)—X. 6.1.3 Scoring Based on TapBlockers (BTop)
So,D — X is K-safe with respect t&. We conclude thaD — X The scoring function BSize takesdl the blockers inB(e) into
is K-safe. [J account. This would be fine iX was required to cover all the
Example 2: We continue Example 1 (see Section 3) and illustrate blockers; howeverX is required to cover only blockers. Clearly,
the notion of blockers. The blockers for the three proteetgtities when K is much less thad’, BFreq and BSize may be quite off
(with respect to the documeid®) are shown in Figure 4. Inthe the mark.
table, the entnyje;,] gives the blockeCp (e;) — Cp(e). Write A more sophisticated scoring function should take the patam
T1 = D — Xi, so thatX, = {t1,¢s,t¢}. Notice that for the K into account as well. Instead of considering all the bloskara
protected entity,, X; contains only one blocker @ and hence, protected entitg containing the given terr) the idea is to consider

T: is not K-safe. On the other hand, the §&tcan be written as ablocker € B(e) only if (a) b containg, and (b)bN X | is among
D — X2, whereX, = {to,t4}. The setX» contains at least two the smallestX among all the blockers if3(€) that contairt. Let
blockers of each protected entity. So,T; is K-safe. [the set of such blockers be denoted®¥, t).

Our goal is to construct a small sat that covers at leask’ Another drawback of BSize is that it considers a protectéitiyen
blockers for each protected entity. We start with an emptyXSe even afterK blockers inB(e) have already been covered i.
and iteratively include terms itX until the set has the required This is clearly unnecessary, and can lead to removal of neonast
property. In each iteration, the main task lies in choosisgitable than required from the document. Instead of consideringitiee
term for including inX. This is done by assigning a score for each set of protected entitias BTop considers only those protected en-
term that estimates the amount of progress made by inclutlimg tries for whom less thai blockers are covered h¥ . Let the set
term; then, the term with the highest score is chosen. Inéxé n of such protected entries be given By
section, we consider different scoring functions. Based on the preceding discussion, the scoring functiorpBTo

. . can be defined as:
6.1 Term Scoring Functions 1

We start with a simple scoring approach and then, propose re- BTop(t) = Z Z o
finements that lead to solutions of better quality. In théofeing, ecP b:beB(e,t) N X
E is the set of all entities in the entity database, #hd. F is the

set of protected entities. As with BSize, the terms scores computed with BTop need to be

maintained ast changes at the end of each iteration.

6.1.1 Frequency Based Scoring (BFreq) Our_experimental stydy shows that BTop perfqrms sigr_1iﬂyant
better in terms of quality than the other two scoring funasi@and
moreover, outputs near-optimal solutions. So, for the rede of
this section we focus on BTop, and discuss efficient mechamnis
for implementing the heuristic.

When we choose a teripwe make some progress towards cov-
ering any blocker that contairis A simple scoring function is to
count the number of blockers in which a tetnappears, and use
this count as the score for Formally:

6.2 Efficiently Implementing BTop

BFreq(t) = b:be B(e)andt € b} |.
(® Z It ® . We start with some simple observations:

ecP

This results in the heuristic of iteratively picking a tefnat appears e Any protected entityfe € P that does not contain any term
in the maximum number of blockers. from D (i.e.,C(e)ND = () can be ignored, since any subset

A drawback with BFreq is that it only considers the number of of D is K-safe with respect to such an entity.
blockers hit by a term, but not the size of the blockers. A term
hitting a large blockeb does not help much in covering the blocker, e Any termt € D that appears in less thds entities should
as we also need to choose all the remaining termis tim cover always be deleted fronD, because such a term cannot be
it. Based on this intuition, we obtain our next scoring fioictby part of any K-safe set. Henceforth, we assume that such

refining BFreq. terms are deleted and contains only the remaining terms.

Entity €; €1 €2 €3 e1 (D) es eq
B(e1) - {t:} {t2} 0 {t1,ta} {t1} 0
B(ez) | {ta,ts,t6} - {to,t5,t6} | {ts,te} | {t2,ta} | {ta,ts,t6} | {ta}
B(Eg) {t4,t7} {t17t7} - @ {t17t47t7} {t17t4} {t4}

Figure 4: Blockers in Example 2

e A protected entity having only one term frafin its context
can be ignored; under the assumption above, all the terms in
D have frequency at leagt. Similarly, we can also ignore
non-protected entities having at most one term from the doc-
ument®

The first and third observations above typically result gngficant
pruning of the entity set on real-life documents; this iseptpd
since most documents are expected to focus on a few entfities.
second observation results in pruning of the document ds lnel

E’ and P’ denote the set of entities and the set of protected entities
after this prunind.

As for BestFirst, we build an inverted index over the databas
that maps each termto the set of all entities containingin their
context. We exploit the above index to compute the 8tand P'.
Next, for eacte € P’, we compute the blockers afwith respect
to the entities € F'.

For eache € E’, each termt and eachi < |D|, we maintain
the collectionB’ (e, t,7) consisting of all blockers o€ of size:
that contains the term We also maintain?(e), the number of
blockers that need to be additionally covered; the vak{e) is
initialized to K and keeps decreasing as and when blockers get
covered. These collections help us in computihgnd in finding
the smallest blocker8 (e, ¢) at the end of each iteration. We now
consider the issue of maintainirg/ (-) and R(-) in each iteration.
We consider two approaches: a naive approach (Naive-BTap) a
an optimized approach (Fast-BTop).

6.2.1 Naive Approach: Naive-BTop

Suppose a termis chosen and deleted from the document. We
iterate through all the protected entitiesc P’ and perform the
necessary updates. First, there may be blockeEstbét contain
only the termt; these are present in the collectidti(e, ¢,1). As
we have chosen, these blockers are covered and so, we update
R(e) = R(e) — |B'(e,t,1)|. Next, for each ternt and number
i, we select all the blockers iB(e, t,7) that contain the term.
These blockers have shrunk in size by one; so , we move them to
the collectionB(e, ¢, — 1). Suitable indices are maintained to
perform the above operation quickly.

6.2.2 Optimized Approach: Fast-BTop

The update operations in Naive-BTop are costly and inefftcie
We can improve the performance by conducting the updates in a
lazy manner. The main idea is that a blockeof large size does
not contribute the score of any term, until sufficiently manfyits
terms are deleted and it becomes one of shemallest blockers.
And so, we can delay updating such blockers. We present & brie
sketch of the implementation.

Suppose atermis deleted. Let be ther*" term to be deleted, so
that we are in the'” iteration. Consider a protected entityc P’.

5Some extra book-keeping is required, however, to keep atcou
of this pruning to avoid terms involved to be considered asafm
after the deletion

"This pruning step is effective for both BestFirst and FaSof
our implementation of BestFirst also exploits this pruning

Foraterm’ € C(g)ND, letl,, denote the size of th&'th smallest
blocker ofe, among those blockers containing the teffmLet ¢
denote the maximum df., over all termst’ € C(e) N D. Notice
that among the blockers @ only those blockers having size at
most/ may contribute to the score any term. A blockeof size

s > ¢ cannot contribute unti§ — ¢ terms are deleted. We process
and update the collectio3' (e, ', j), for j < £+ r and ignore the
collections containing larger blockers. Extensions ofeaheve idea
lead to further improvements; we omit the details for theesak
brevity. Fast-BTop refers to an implementation of the BTogring
function based on these ideas.

7. EXPERIMENTAL STUDY

In this section, we present a preliminary experimental \stiod
evaluate the different algorithms presented in the paper.
Metrics. The evaluation involves two natural metricguality,
measured in terms of the number of terms in the sanitizedubutp
document, anéfficiency measured in terms of the running time of
the algorithm.
Purpose. The purpose of this evaluation is to show that:

e The BTop heuristic outperforms BFreq and BSize in solution
quality; therefore, the extra effort involved in implemiegt
BTop is useful. Further, BTop often produces solutions of
size close to the optimal solution.

e For smaller sized documents, the BestFirst algorithm is effi
cient; whereas, for larger documents, BTop is the algorithm
of choice.

e The optimizations proposed for implementing BTop (i.estFa
BTop) offers significant performance gains over the naive
implementation (Naive-BTop).

e BTop scales well with increase in various parameters such as
document size, number of protected entities &hd

Platform. The implementation was done in Java with J2SE v1.4.2
(approx. 1000 lines of code) and executed on a 2.4 GHz Ma-
chine with 3.62 GB of RAM running Windows XP SP1. The term-
to-entity set index (ref. Section 5.2, Section 6.2) wasthusing
Lucene®

Entity Set. The dataset was generated synthetically. We used a
universe of 200 terms to generate the entities. A collectioof

100 base-set®f size 50 each was generated at random. We take
each base-sete C and generate 30 different entities by appending
50 more random terms. Thus, the total number of entiti¢g js=
3000; each entitye has 100 terms in its conteXi{(e)| = 100), of
which a subset of 50 terms overlap with 29 other entities &ed t
remaining set of 50 terms may have random partial overlaps. W
see that the contexts of the entities overlap in complex wakss,

the above process provides us with a fairly challengingsdatto

test the algorithms. We randomly selected 450 entities anthced
them as protected.

8http://lucene.apache.org

Quality of Solutions of Various Candidate Algorithms

45 T T T
BFreq ——

L BSize - -k

40 BTop --o--
L BestFirst &
LowerBound ---#--

Quality of Output Solution

5 10 15 20 25 30 35 40 45 50
Document Size

Figure 5: Quality: Effect of document size|D|

Recall that our algorithms, in a pre-processing step, it
prune the set of entities (see Section 6.2). In our setuppusec
of the way the entity set and documents are generated, enty e
in the dataset is relevant for each document; as such, ifrisofa
consider the entity set in each experiment below as the $aineiol

50 T
BFreq ——
BSize -

BTop -
45 LowerBound

40

35 -

30 |

Quality of Output Solution

25

Figure 6: Quality: Effect of sanitization parameter K

In this experiment, we studied the effect of varying the docu
ment size D| from 5 to 50, in a setup withi = 10 ando = 0.8.
For each D|, we generated 20 documents and averaged the solu-
tion quality of each heuristic. The result is plotted in Fig, and
contains a curve for each of the three heuristics and theFBsst

afterthe pruning. Thus, while the number of entities per document algorithm. The curve for BestFirst runs only ugto| = 40; the
appears small, it is probably more than what one may expect in algorithm was too slow for documents of a larger size. (Weshav

real-life documents.
Document Generation. The efficiency and effectiveness of any

also plottedn|D|, termedlowerbound which is a lowerbound on
the optimal solution size, as pointed out earlier; this isvalida-

algorithm depends on how many terms must be deleted to maketion, because in the later sections (which are| fof = 50, we will

the documenf-safe. For instance, in one extreme are kheafe
documents; if the input documei? is alreadyK -safe, we need
not delete any terms and so, these are easy to handle. Tagwmitu
becomes more challenging when the optirkalkafe subset oD
is of smaller size, where we need to carefully choose thes¢om
delete. Thus, it is natural to evaluate the proposed algoston
documents of varying inherent quality.

Towards this goal, our document generation procedure takes
input as an additional parameter callgdodnesswhich roughly
measures the size of the optimal solution of the generated-do
ment. Given a length and a valuex < 1, the method generates a
documentD of sizen and goodness, as described below. Choose
one of the base setse C at random. Then, randomly seleet
many terms froms and add(1 — «)n random terms not belonging
to s. The resulting seD is output.

Notice thatDNs is contained in the context of at least 30 entities.

And thus, forK < 30, D N s is K-safe. We havéD N s| = a|D|
and soq| D] is a lowerbound on the size of the optimal solution.

be usingan as an approximation for the optimal.)

For small document sizes, the heuristics perform closegofh
timal; however, as the document size increases, theregsdisant
degradation in the quality of the solutions returned by BjFaiad
BSize. The little difference for small documents is expedbe-
cause given the small number of terms, the difference ingénm
the solution produced by the different algorithms is smalheell.
For larger documents, we see that BTop is very close to the opt
mal, while BSize performs about 15-20% worse and BFreq about
20-25% worse. This validates the decisions to differeattween
the blockers, and having the scoring function intelliggrploit
the parametef(. The near-optimal performance of BTop further
asserts that any further optimization of BTop is not crutiatani-
tization quality.

7.1.2 Effect of Sanitization Parametgr

In this experiment, we studied the effect of varying the sani
zation parameteK from 1 to 30, in a setup witlD = 50 and

Parameters. There are three parameters that need to be consideredy, = 0.8.

in out experimental study: (i) Document sig@|; (ii) Sanitization
parametefs’; (iii) Goodness used in document generatiorin any
specific experiment, we shall fix two of these parameters ang v
the remaining parameter and study its effect. When the peteam
|D|, |K|, o are not varied, their value is fixed as follow: = 50,
K =10, anda = 0.8.

In the next section, we compare the quality of the solutian pr
duced by the various heuristics. An experimental study éin ef
ciency of the algorithms is presented in the subsequeribsect

7.1 Comparison of Solution Quality

In this section, we study the quality of solutions producgdhe
proposed heuristics against the optimal solution produmethe
optimal BestFirst algorithm.

7.1.1 Effect of Document Size)|

For eachK, we generated 20 documents and averaged the solu-
tion quality of each heuristic. The result appears in Fighrand
contains a curve for each of the three heuristics. Sinceimgrthe
optimal BestFirst algorithm was not feasible f@| = 50, we use
an, which is actually dowerboundinstead (any solution below
this watermark is certainly suboptimal).

For K = 1, all approaches perform equally well; this is because
it turns out that no term in the document belongs to exactly on
entity (this is an artifact of how the entity set and the doeuts
are generated from the base sets, as discussed earliego auad
ther of the approaches removes any term from the documest. Th
results forK' > 1 are interesting — we see that BFreq and BSize
degrade very drastically with increasitg, BFreq degrading even
faster than BSize. BTop performs extremely well in compuanjs
it stays well above the lowerbound watermark throughout iand
seems reasonable to assume that it is actually very close top-

50

"BFreq —— 7
45 L BSize - g

BTop --o--
LowerBound ---#--

\-‘o‘

40 |

e

35t
30 o~

25

Quality of Output Solution
X

20 s

5 'I’ L L L L L
0.1 0.2 03 04 05 06 0.7 0.8 0.9 1

Goodness of D

Figure 7: Quality: Effect of goodness parameterx

timal (extrapolating from the behaviour for smaller docuntrsizes,
demonstrated in the previous experiment). Overall, thetsumlbial
difference between BTop and the rest reaffirms the apprtemess
of the BTop scoring function in the greedy heuristic.

7.1.3 Effect of Goodness Parameter

In this experiment, we studied the effect of varying the doent
goodness parametarfrom 0.1 to 1.0, in a setup with = 50 and

Naive-BTop &
Fast-BTop -—o--
BestFirst(L=1) ——
BestFirst(L=8) ~-x*- g
BestFirst(L=12) ----x-x—"""
T 3

1000 -

100

-}

10

!
é?m
<‘?n

%)D
]

Time Taken (s)

0.1

5 10 15 20 25 30 35 40 45 50
Document Size

Figure 8: Efficiency: Effect of document size|D|

7.2.1 Effect of Document Size|

In this experiment, we studied the effect of varying the doent
size|D| from 5 to 50, in a setup witl’ = 10 anda. = 0.8. For
each|D|, we generated 20 documents and averaged the time taken.
The result is plotted in Figure 8, and contains a curve fohezc
Naive-BTop, Fast-BTop, BestFirsL.(= 1), BestFirst { = 8) and
BestFirst . = 12).

The results verify that BestFirst has low pre-processingr-ov

K = 10. For eachy, we generated 20 documents and averaged the heads, but does not scale with increasing document sizbetinis-

solution quality of each heuristic. The result appears guFe 7.
Again, as in the previous experiment, since it was not féasitrun
the optimal algorithm BestFirst on this document size, wetpt
the lowerbound on the optimal| D| as an approximation.

First, notice that all approaches perform equally well ifoptly)

for @ = 1.0. This is again an artifact of our implementation — the

document generated for = 1.0 contains only terms from a given
base set, and each term is present in at least 30 entitiessignde
For K = 30, therefore, the document generatedsissafe and no
term needs to be deleted from the document. The result iesite

ing, however, for < 1.0, and we see that BTop, again, performs

very close to the optimal throughout. Again, there is a vifftrd

ence between BTop and the other two heuristics, BSize anddBFr

It is interesting to note that the difference in performaonéehe
three approaches widens significantly in the middle valifes;o
this is the region where the number of possible sanitizaiftions
increase, and the impact of the decisions in refining theirsgor
functions from BFreq to BSize to BTop shows very clearly.

7.2 Efficiency

The previous section compared the three different hecirégi
proaches, and showed that BTop significantly outperformether
two. This was the motivation behind the effort to speed uBhep
algorithm; in Section 6.2, we discussed the naive appraseivé-
BTop) and an optimized approach (Fast-BTop). In this sactie

compare Fast-BTop, Naive-BTop and BestFirst, and showithat

contrast to the other two, Fast-BTop scales very reasonaibhy
increasing document size, sanitization parameter as welbau-
ment complexity.

We also show that for a tuned value of the window dizg=12),
BestFirst is more efficient than the heuristic approachesiiuall
document sizes. For small documents (short email messaiges,
this tuned version of BestFirst could actually be the apghoaf
choice. To demonstrate the impact of tuning, we compareuttect
version of BestFirst with a naive version (L=1), which rolygtor-
responds to choosingBr.qive instead ofUB, (ref. Section 5.2).

tics (Naive-BTop and Fast-BTop) have a much higher setup-ove
head due to the preprocessing involved in computing thekbloc
ers, but scale very well. We see that for small document sizes
(ID| < 14), even the untuned BestFirst (= 1) turns out to be
more efficient than the heuristics; the difference increakamat-
ically as the document size is decreased. The experimemtels
veals that the value df must be chosen carefully. A low value for
L such agL = 8 does not significantly alter the performance of the
BestFirst algorithm. The difference is more pronouncedvbenh
BestFirst L. = 1) and BestFirst{, = 12). Recall that the value
of L involves a tradeoff: larger the value &f the upperbounds
are better leading to a better search-space pruning in tee-B&t
algorithm; on the other hand, it takes more time to computseh
upperbounds (see Section 5.2.1). The results confirm theeabo
alytical conclusion. When the document size increasesrzbgo
threshold, BestFirst{ = 12) outperforms BestFirsi{ = 1), since
the overhead involved in computing the upperbounds congpess
by the way proving tighter upperbounds. Also, as expectadi-F
BTop is more efficient than Naive-BTop.

The experiments suggest that the BestFirst is the algorithm
choice, if the document size is smaller and Fast-BTop is dieb
choice for larger documents. Of course, when running tinmeisa
criterion and optimal solution is desired, BestFirst aiton should
be used. While using BestFirst algorithm, the paramétshould
be tuned suitably. The best choiceofwvill mainly depend on the
document size, but other parameters sucli{aand the nature of
the data-set may also play a role. A more detailed experahent
evaluation is required to arrive at thumb rules for settimg value
of L. This is deferred as future work.

7.2.2 Effect of Sanitization Parametgr

In this experiment, we studied the effect of varying the sani
tization parametes’ from 1 to 30, in a setup withD| = 50
anda = 0.8. Since BestFirst does not scale up to our choice of
|D| = 50, we consider only Naive-BTop and Fast-BTop in this
experiment.

20

Naive-B‘Top =
18l Fast-BTop --o-- J =
I
i
16
@ o
- 14t
(7]
< [af
©
= 12 F
(]
£ S b
= 10t PNPRREE
o e
o
8 L a
6 L
0 5 10 15 20 25 30
K
Figure 9: Efficiency: Effect of sanitization parameter K
40 T T
Naive-BTop &
Fast-BTop ---
s e
o
a
30
@ a
é 25 -
S o,
I} -0
g 20 M
[= “o. .
15 + N
o,
a
10 + e
o
5 ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Goodness of D

Figure 10: Efficiency: Effect of goodness parametet

For eachK, we generated 20 documents and averaged the time
taken. The result appears in Figure 9, and contains a cuneafd
of Naive-BTop and Fast-BTop. We see that Fast-BTop sigmifiga
outperforms Naive-BTop for all values df. When K is small,
the optimal solution is large and hence, only a few terms hebe
deleted to make the documelitsafe. As a result, the difference in
the performance of the two implementations is smaller foalten
values of K. With the increase in the value &f, the optimal so-
lution size decreases and so more terms need to be deletieid in t
case. Thus, we see that gap in the performance increaseslyCle
the extra effort involved in the Fast-BTop implementatioakes it
more efficient than Naive-BTop.

7.2.3 Effect of Goodness Parameter

In this experiment, we studied the effect of varying the doent
goodness parametarfrom 0.1 to 1.0, in a setup with = 50 and
K = 10. Again, since BTop does not scale up to our choice of
|D| = 50, we consider only Naive-BTop and Fast-BTop in this
experiment.

For eacha, we generated 20 documents and averaged the time
taken by each approach. The result appears in Figure 10,cemd ¢
tains a curve for each of Naive-BTop and Fast-BTop.

The graph shows that Fast-BTop is faster than the Naive-BTop
by a factor of 1.5 for documents with low goodness. As the good
nessa increases, the difference between the two implementation
decreases. Nevertheless, Fast-BTop outperforms Naiwop-B3r
all values of goodness. The reason for the decrease in thee-dif

ence for largery is similar to the one explained in Section 7.2.2.
Namely, whenw increases, the size of the optimal solution is large
and so, only a few terms need to be deleted. As a result, theerum
of iterations decreases and hence, the difference in thmgitime
also decreases.

8. CONCLUSION

In this paper, we presented ERASE, a framework for perfogmin
sanitization of unstructured text documents automaticsle pre-
sented a approach to address the document sanitizatiofeprob
and devised effective algorithms to perform the sanitirafuto-
matically. To the best of our knowledge, this is the first wirét
addresses the document sanitization problem in a formaheran
and present principled approaches to solve the same. This wo
is an attempt to bring automated anonymization technigukih
have been so far studied and exploited extensively for sired
data, to the domain of unstructured free-text documents.

9. REFERENCES

[1] E. Agichtein, L. Gravano, J. Pavel, V. Sokolova, and

A. Voskoboynik. Snowball: A prototype system for extragtin

relations from large text collections. BIGMOD, 2001.

R. Agrawal and R. Srikant. Fast algorithms for miningasation

rules in large databases. W.DB, 1994.

A. Ceglar and J. F. Roddick. Association miniclgM Comput.

Surv, 38(2), 2006.

V. Chakaravarthy, H. Gupta, P. Roy, and M. Mohania. Ediintly

linking text documents with relevant structured inforroatiln

VLDB, 2006.

A. Chandel, P. Nagesh, and S. Sarawagi. Efficient batgtktsearch

for dictionary-based entity recognition. IEDE, 2006.

M. Douglass, G. Clifford, A. Reisner, W. Long, G. Moody)ch

R.G.Mark. De-identification algorithm for free-text nurginotes. In

Computers in Cardiology2005.

M. R. Garey and D. S. JohnsoBomputers and Intractability; A

Guide to the Theory of NP-Completeneds H. Freeman & Co.,

1979.

K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognitdfidient

full domain k-anonymity. IrSIGMOD, 2005.

A. McCallum. Information extraction: distilling striiered data from

unstructured textACM Queug3(9):48-57, 2005.

PARC. Xerox unveils technology that blocks access tsiive data

in documents to prevent security leaks, 2007.

http://www.parc.com/about/pressroom/news/2007-10-15

redaction.html.

Y. Saygin, D. Hakkani-Tur, and G. Tur. Sanitization and

anonymization of document repositories Meb and Information

Security 2005.

L. Sweeney. Replacing personally-identifying infation in

medical records, the srub system.Jburnal of the Americal

Medical Informatics AssociatiQri996.

L. Sweeney. K-anonymity: A model for protecting privaintl

Journal on Uncertainty, Fuzziness and Knowledge-basete®gs

10(5), 2002.

[14] A. Tveit. Anonymization of general practitioner medicecords. In

HelsIT'04, Trondheim, Norway004.

U.S. Department of Energy. Department of energy resess use of

advanced computing for document declassification.

[16] Wikipedia. Sanitization (classified information) —kipedia, the
free encyclopedia, 2008.

[17] D. Zuckerman. Linear degree extractors and the inapmability of
max-cliqgue and chromatic number. 85TOC 2006.

(2]
(3]
(4]

(5]
(6]

(7]

(8]

El

[10]

[11]

(12]

(13]

[15]

