
Efficient Techniques for Document Sanitization

Venkatesan T.
Chakaravarthy

IBM India Research Lab
vechakra@in.ibm.com

Himanshu Gupta
IBM India Research Lab

higupta8@in.ibm.com

Prasan Roy
Aster Data Systems, USA

prasan.roy@asterdata.com

Mukesh K. Mohania
IBM India Research Lab

mkmukesh@in.ibm.com

ABSTRACT
Sanitization of a document involves removing sensitive information
from the document, so that it may be distributed to a broader au-
dience. Such sanitization is needed while declassifying documents
involving sensitive or confidential information such as corporate
emails, intelligence reports, medical records, etc. In this paper,
we present the ERASE framework for performing document sani-
tization in an automated manner. ERASE can be used to sanitize a
document dynamically, so that different users get different views of
the same document based on what they are authorized to know. We
formalize the problem and present algorithms used in ERASE for
finding the appropriate terms to remove from the document. Our
preliminary experimental study demonstrates the efficiency and ef-
ficacy of the proposed algorithms.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access

General Terms
Algorithms, Performance, Security

Keywords
Sanitization, Redaction, Anonymization

1. INTRODUCTION
Sanitization (syn.redaction) of a document involves removing

sensitive information from the document, in order to reducethe
document’s classification level, possibly yielding an unclassified
document [16].

A document may need to be sanitized for a variety of reasons.
Government departments usually need to declassify documents be-
fore making them public, for instance, in response to Freedom of
Information requests. In hospitals, medical records are sanitized to
remove sensitive patent information (patient identity information,
diagnoses of deadly diseases, etc.). Document sanitization is also
critical to companies who need to prevent malafide or inadvertent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

disclosure of proprietary information while sharing data with out-
sourced operations.
Example. Figure 1 shows an example U.S. government document
that has been sanitized prior to release [16]. This sanitized docu-
ment gives limited information (such as the purpose and the fund-
ing amount) on an erstwhile secret medical research project, while
hiding the names of the funding sources, principal investigators and
their affiliation.

Figure 1: A sanitized document

Traditionally, documents are sanitized manually by qualified re-
viewers. However, manual sanitization does not scale as thevol-
ume of data increases. The US Department of Energy’s OpenNet
initiative [15], for instance, needs to sanitize millions of documents
each year. Given the amount of effort involved and limited supply
of qualified reviewers, this is a tall order.

In this paper, we propose ERASE,1 a system for performing doc-
ument sanitization automatically. Highlights of the system include:

• ERASE can sanitize documents efficiently, making it possi-
ble to scale up to large data volumes. The low sanitization
latency also enables processing of emails and dynamic web-
pageson-the-fly.

• The extent of sanitization performed by ERASE can be con-
figured to adapt to the access privileges of an intended reader,
so that different users can get different sanitized versions of
the document based on their current authorization status.

1Efficient RedAction for Securing Entities

• ERASE can be configured to integrate seamlessly with the
existing authentication mechanisms (database access-control
lists) in an organization to determine the access privileges of
an user.

• ERASE makes an effort to sanitize a document while causing
the least distortionto the contents of the document. Minimal
content distortion has been considered as one of the principal
requirements of document sanitization [14].

Contributions. Our specific contributions in this paper are as fol-
lows.

• We present a principled approach to sanitization of unstruc-
tured text documents. While sanitization of structured re-
lational databases has been addressed earlier [13, 8], we be-
lieve ERASE is the first work to provide a principled solution
in an unstructured free-text domain.

• We device an algorithm that sanitizes a document while re-
moving the minimum number of terms. We propose nontriv-
ial pruning strategies that make the search practical.

• We present an alternative algorithm that achieves very rea-
sonable performance even for large documents; the improve-
ment in efficiency is achieved by relaxing the least-distortion
property. We show that this alternative approach, in practice,
is similar to the optimal algorithm in terms of the quality of
the result.

• We present a preliminary experimental study that shows that
the proposed techniques are practical on realistic data.

Overview. ERASE models public knowledge as a database of enti-
ties (persons, products, diseases, etc.). Each entity in this database
is associated with a set of terms related to the the entity; this set is
termed thecontextof the entity. For instance, the context of a per-
son entity could include the firstname, the lastname, the day, month
and year of birth, the street and city of residence, the employer’s
name, spouse’s name, etc. This database could be structuredor un-
structured – wikipedia, a directory of employees and projects in an
organization, a compendium of diseases, etc. all fit in the proposed
notion of an entity database. The only requirement is that the data-
base is able to provide the context of a given entity, and the set of
entities containing a given term in their context. This context data-
base need not be compiled manually – it can be a existing database,
or can be extracted automatically using an information extraction
system such as Snowball [1].

Some of the entities in the database are consideredprotected;
these are the entities that need to be protected against identity dis-
closure. For instance, in a database of diseases, certain diseases
(such as AIDS) can be marked as protected – we are interested in
protecting the disclosure of these diseases, it does not matter if the
any other disease (such as Influenza) is revealed. The set of pro-
tected entities is derived according to the access privileges of the
adversary. The set of entities that need to be hidden from thead-
versary are declared protected.

ERASE assumes an adversary that knows nothing about an entity
apart from what appears in the entity’s context, and has bounded in-
ference capabilities. Specifically, given a document, the adversary
can match the terms present in the document with the terms present
in the context of each of the protected entities. If the document
contains a group of terms that appear together only in the context
of a particular entity, then the adversary gets an indication that the

“ Let’s look at the immediate facts. You have a number
of symptoms, namelyweight loss, insomnia, sweating, fa-
tigue, digestive problemsand headaches. These may or
may not be related tosexually transmitted diseases, but
you know you have been exposed togonorrhoea and you
know you may have been exposed tohepatitis B and HIV .
Your symptoms are significant and need full investigation in
the near future. ”

Figure 2: Illustrative Example

entity is being mentioned in the given document. We term thisa
disclosure.2

ERASE attempts to prevent disclosure of protected entitiesby
removing certain terms from the document – these terms need to
be selected such that no protected entity can be inferred as being
mentioned in the document by matching the remaining terms with
the entity database.3

A simplistic approach is to locate “give-away” phrases in the
document and delete them all. To the best of our knowledge, most
prior work on document sanitization has followed this approach,
and has focused on developing more accurate ways of locating
such phrases in the document’s text [12, 6, 14]. We believe this
is an overkill. For instance, in an intelligence report, removing all
names, locations, etc. would probably leave the report withno use-
ful content at all.

In contrast, ERASE makes an effort to sanitize a document while
causing theleast distortionto the contents of the document; indeed,
this is considered one of the principal requirements of document
sanitization [14]. Towards this goal, ERASE identifies themini-
mumnumber of terms in the document that need to be removed in
order for the document to be sanitized.
Illustrative Example. We illustrate our approach using an anecdo-
tal real-life example. We created a database of 2645 diseases ob-
taining information from the websitewrongdiagnosis.4 Each dis-
ease is an entity with the associated context consisting of symp-
toms, tests, treatments and risk factors. The website offers a clas-
sification of the diseases. We declared as protected entities the
diseases under the following categories: sexual conditions, seri-
ous conditions (conditions related to heart, thyroid, kidney, liver,
ovary), cancer conditions, and mental conditions. The number of
protected entities were 550. The privacy parameterK was set to 10
(see Section 3 for the semantics of this parameter).

We created a document by taking a paragraph out of a communi-
cation between a doctor and a patient from another website.5 The
document is shown in Figure 2, where the relevant terms foundin
the entity contexts are shown in bold.

The document was sanitized using ERASE; the terms deleted as
a result are shown underlined in Figure 2. Observe that the saniti-
zation has differentiated between the generic symptoms andsymp-
toms specific to the kind of diseases that appear in the protected
entity set, and deleted the latter. Furthermore, though sweating is a
common symptom associated with hundreds of diseases, the com-
bination of sweating, weight loss and fatigue reveals a protected en-

2Adversaries such as automatednamed-entity taggers[5, 4] and
keyword-based search engines fit the assumptions well. Our future
work involves considering richer adversaries [9].
3Note that the adversary does not know which entities in the data-
base are protected, otherwise the adversary can focus only on the
protected entities whenever sanitization is present.
4www.wrongdiagnosis.com
5www.netdoctor.co.uk

tity (in this case, HIV) and so, one of these terms must be deleted to
sanitize the document; consequently, the system removed the term
“sweating”. We note that a different protected entity set might re-
move a different set of symptoms.
Organization. The rest of the paper is organized as follows. We
discuss the related work in Section 2. The document sanitization
is formalized in Section 3, and its complexity is discussed in Sec-
tion 4. Next, in Section 5, we discuss algorithms for computing
optimal solutions. Section 6 presents efficient greedy heuristics.
This is followed by a preliminary experimental study in Section 7.
Finally, in Section 8, we present our conclusions and directions for
future work.

2. RELATED WORK
Prior work on automatically sanitizing free-text medical records

[12, 6, 14] has focused largely on locating phrases representing
name, address and other “identifiers” in the document’s free-flow
text and removing them; this removal happens irrespective of the
context in which such phrases appear. Moreover, such systems
are only as good as the underlying parser that tries to locatesuch
phrases; in case the parser fails to locate certain identifiers (which
could happen due to bad grammar and punctuation, noisy text,and
other problems which hinder accurate parsing), then the identifier
is not removed at all. In contrast, ERASE works by finding terms
common in the entities’ context and the document, and does not
rely on a parser. Since ERASE distinguishes the protected entities
from the rest, it is able to selectively retain certain harmless terms.
Further, ERASE does not remove a term just because it is a name
or an address – it considers other terms that co-occur with itin the
document and tries to take a globally optimal decision.

Sidebar [10], a recent initiative at Xerox PARC attempts to pro-
vide a user-friendly platform to perform document sanitization; the
platform enables a user to specify rules that limit the type of infor-
mation (name, address, etc.) to disclose to different typesof users.
These rules, however, need to be specified manually and the sys-
tem, overall, suffers from the same drawbacks as the sanitization
systems mentioned above.

The sanitization criterion in ERASE is similar in spirit toK-
anonymization, introduced by Sweeney [13] for structured data. K-
anonymization based sanitization of structured relational databases
has been addressed by LeFevre et al. [8]. However, the problem for-
mulation considered in the above setup and ERASE are different.
While the goal in theK-anonymization is to anonymize a given
database, in ERASE, the aim to sanitize a single document. Saygin
et al. [11] propose and motivate K-anonymization based document
sanitization, but focus on the special case of sanitizing against au-
thorship detection.

There have been a few other proposals to automate document
sanitization, for instance as a part of the US DOE OpenNet initia-
tive (e.g. [15]), but these have not been reported in the technical
literature and thus it is not possible to compare them with ERASE
in a fair manner.

3. PROBLEM FORMULATION
In this section, we formalize the notion of document sanitization

and present a precise statement of the problem.
Let E denote the set of entities. We associate each entitye ∈ E

with a set of termsC(e) which collectively represent the entire
knowledge the adversary has about the entity;C(e) is called the
contextof the entitye. Unknown to the adversary, we are also pro-
vided with a flag that identifies the subsetP of protectedentities
from among the entitiesE; these are the entities that need to be

protected against disclosure. For instance, consider a compendium
of diseases. Each disease is an entity, and its context includes the
symptoms and the drugs used to cure the disease. The setE con-
tains all the diseases in the database, and the setP is the subset
containing, say, terminal diseases such as AIDS and cancer whose
disclosure in a declassified patient record (the document) is not de-
sirable.

Further, letD be the input document; in ERASE, a document is
modeled as a set of terms. Without loss in generality, we assume
thatD contains only the terms that are present in the context of at
least one protected entity, i.e.D ⊆

�
e∈P

C(e); any other term
present inD is harmless and need not be removed.

Now, suppose there exists a subsetS ⊆ D such thatS appears
in the context of a protected entitye ∈ P ; this setS indicates to
the adversary that the protected entitye might be associated with
the document. The extent of the seriousness of this indication de-
pends upon how many entities inE, other thane, containS in their
context as well – since the adversary has no further knowledge, it
cannot be sure betweene and these other entities. We quantify the
adversary’s dilemma by considering a tunable parameterK, and
say that the adversary decides thatS is associated withe if the
number of entities inE, other thane, that also containS in their
context is less thanK; the subsetsS ⊆ D having this property are
considered dangerous. Clearly, a sanitized document must not con-
tain terms that form a dangerous set with respect to any protected
entitye. The discussion is formalized below.

Definition 3.1 (K-safety). Let T ⊆ D be a set of terms. For
a protected entitye ∈ P , let AT (e) be the number of entities other
thane that containC(e)∩ T in their context. The set of termsT is
said to beK-safewith respect to a protected entitye, if AT (e) ≥
K. The setT is said to beK-safe, ifT is K-safe with respect to
every protected entity.

The document sanitization problem being addressed can now be
stated as follows:
Problem Statement. We assume a fixed database consisting of a
set of entitiesE, where each entitye is associated with a set of
termsC(e) forming its context. A subset of entitiesP ⊆ E are
flagged as protected. Given a documentD and the parameterK as
input, the problem is to find the maximum cardinality subset of D
that isK-safe.
Example 1: Consider an entity setE = {e1, e2, e3, e1, e2, e3, e4};
with protected entitiesP = {e1, e2, e3}. The entity contexts are as
follows:

C(e1) = {t1, t2, t3} C(e1) = {t1, t2, t4, t7}
C(e2) = {t2, t4, t5, t6} C(e2) = {t3, t5, t6}
C(e3) = {t1, t4, t7} C(e3) = {t2, t7}

C(e4) = {t1, t2, t3, t5, t6, t7}

Now, consider a documentD = {t1, t2, t4, t5, t6, t7}. Suppose
K = 2. The subsetT1 = {t2, t4, t7} is notK-safe, because for the
protected entitye2, the setC(e2)∩T1 = {t2, t4} is contained in the
context of only one other entity (namely,e1) and hence,AT1

(e2) =
1. On the other hand, the subsetT2 = {t1, t5, t6, t7} is K-safe as
can be verified below:

e1: C(e1) ∩ T2 = {t1} Contained ine3, e1, e4

e2: C(e2) ∩ T2 = {t5, t6} Contained ine2, e4

e3: C(e3) ∩ T2 = {t1, t7} Contained ine1, e4

Thus, we see that for all1 ≤ i ≤ 3, C(ei) ∩ T2 is contained
in the context of at least two entities (other thanei) and hence,
AT2

(ei) ≥ 2. So,T2 is K-safe. It can be verified thatD (which of
size 5) is not aK-safe set. Hence,T2 is an optimal solution.

4. HARDNESS RESULTS
A reduction from the maximum independent set problem [7],

shows that document sanitization problem is NP-hard.

Theorem 4.1. The document sanitization problem is NP-hard,
even when the security parameterK is fixed to be 1.

PROOF. We present a reduction from the maximum independent
set problem. LetG be the input graph havingm edges over a set
of n verticesV . Construct a database containingm + n entities.
For each edge(u, v), add an entityeuv with the associated context
C(euv) = {u, v}. For each vertexv, add an entityev with the
associated contextC(ev) = {v}. The entities corresponding to the
edges are declared protected. LetD = V be the document. Set the
parameterK = 1.

We observe that a setT ⊆ V is an independent set if and only if
T is K-safe. To see this, supposeT is an independent set. Leteuv

be a protected entity with the associated contextC(euv) = {u, v},
where(u, v) is some edge inG. Since,T is an independent set it
cannot contain bothu andv. Thus,C(euv) ∩ T is one of{u} or
{v} or ∅. In all the three cases, we see thatAT (euv) ≥ 1. Thus,
T is K-safe. On the other hand, supposeT is not an independent
set. Then,T contains some verticesu andv such that(u, v) is an
edge inG. Let euv be the corresponding protected entity having
contextC(euv) = {u, v}. Then,C(euv)∩T = {u, v} and this set
is contained in the context of onlyeuv and not in the context of any
other entity. So,AT (euv) = 0. We see thatT is notK-safe. We
have shown thatT is an independent set if and onlyT is K-safe.

From the above observation, it follows that finding the maximum
independent set inG is equivalent to finding the largestK-safe
subset ofD. We conclude that the sanitization problem is NP-
hard.

Further, a known inapproximability result for the independent set
problem [17] implies the following strong inapproximability result
for the sanitization problem.

Corollary 4.2. For any ε > 0, if sanitization problem can be
approximated within a factor of ofn1−ε, then NP=P. Here,n de-
notes the size of the input document. The result is true, evenif the
parameterK is fixed to be 1.

5. COMPUTING OPTIMAL SOLUTIONS
A naive way of computing the optimal solution is to enumer-

ate all theK-safe subsets of the given document and pick the one
with the maximum cardinality. In this section, we describe more
efficient algorithms.

5.1 A Levelwise Algorithm
It is easy to see that a set of terms isK-safe only if all its subsets

areK-safe. In other words, theK-safe subsets of a documentD
satisfy the apriori criterion [2, 3]. Thus, a levelwise algorithm can
be used to enumerate the maximalK-safe subsets of the given doc-
ument, and consequently to find the maximum cardinalityK-safe
subset.

The algorithm proceeds in a levelwise manner. Starting withsafe
subsets of cardinalityr = 1, in each iteration it generates the can-
didate subsets of cardinalityr + 1 based on theK-safe subsets of
cardinalityr found in the previous iteration; a subset of cardinality
r+1 is a candidate only if all it subsets of cardinalityr areK-safe.
The algorithm terminates after none of the subsets considered in an
iteration are found to beK-safe, or afterr = |D|. This algorithm
can be readily instrumented to output, on termination, a maximum
cardinality safe subset ofD (the last candidate subset that was suc-
cessfully flagged as safe).

ProcedureBestFirst()
Input: A documentD and parameterK.
Output: An optimalK-safe subset ofD.
Begin

Let T = {〈∅, 0〉}
While (not terminated)

// Remove the pair having the maximum upperbound
Let 〈s, r〉 = argmax〈s′,r′〉∈T UB(〈s′, r′〉)
Remove〈s, r〉 from T
If r = n then output(s) and halt
Add 〈s, r + 1〉 to T
If the sets′ = s ∪ {tr+1} is K-safe then

Add 〈s′, r + 1〉 to T .
End

End
Figure 3: The BestFirst Algorithm

Observe that when all entities are protected, this algorithm is es-
sentially the apriori algorithm for frequent itemset mining [2] on
the entity database with minimum supportK. Frequent itemset
mining is a well-studied problem [3] and any of the several al-
ternative algorithms for the problem can be readily appliedto the
document sanitization problem. The drawback with this frequent-
itemset mining approach, as applied to document sanitization, is
that it computes all the maximalK-safe subsets, which is not nec-
essary; for document sanitization, it is sufficient to find one of the
maximum safe subsets. In the next section, we present a more ef-
ficient branch and bound strategy that systematically prunes may
choices and converges on an optimal solution quickly.

5.2 A Best-First Search Algorithm
Given a documentD containingn terms, our goal is to find the

optimal solution (the largestK-safe subset ofD). Consider a com-
plete binary tree of depthn such that each level represents a term
and each root-to-leaf path represents a subset ofD. The BestFirst
algorithm performs a pruned-search over this tree by expanding the
most promising thread in each iteration. The algorithm is briefly
discussed below.

Let D = t1t2 . . . tn be the sequence of terms in the given docu-
ment. Fori ≤ j, we useDi,j to denote the substringtiti+1 . . . tj .
Of particular interest are the prefixesD1,r, for r ≤ n. The al-
gorithm maintains a collectionT of K-safe subsets of the pre-
fixes of the document: each element inT is a pair〈s, r〉 such that
s ⊆ D1,r .

We say that aK-safe setT ⊆ D extends〈s, r〉, if T ∩D1,r = s.
Along with each pair〈s, r〉, the algorithm keeps an upper-bound
UB(〈s, r〉) on the largestK-safe subset extending〈s, r〉. In the
next section, we present mechanisms for computing these upper-
bounds; for now, notice that an element〈s, n〉 cannot be extended
any further and so, the largest subset extending〈s, n〉 is simplys it-
self – thus, without loss of generality, we assume thatUB(〈s, n〉) =
|s|.

The algorithm, shown in Figure 3, proceeds iteratively as fol-
lows. In each iteration, it picks the pair〈s, r〉 in T having the maxi-
mum upperbound valueUB(〈s, r〉), and considers the two possible
ways of extending it: (i) including the termtr+1, or (ii) excluding
the termtr+1. In the first case, the algorithm checks whether the
sets′ = s∪{tr+1} is K-safe and if so, it adds the pair〈s′, r+1〉 to
the collectionT . In the second case,s is guaranteed to beK-safe
and so, it directly adds the pair〈s, r + 1〉 to the collectionT . The
algorithm terminates when the chosen pair is of the form〈s, n〉,
and outputs the sets as the solution.

Theorem 5.1. The algorithm BestFirst outputs an optimalK-
safe subset of the input document.

PROOF. Let T ∗ be the set output by the algorithm. This means
that the pair chosen in the last iteration is〈T ∗, n〉. Consider any
K-safe subsetT ⊆ D and we shall show that|T ∗| ≥ |T |. First,
observe that in any iteration,T contains a pair of the form〈s′, r′〉
such thatT extends〈s′, r′〉. Consider the last iteration and let〈s, r〉
be the pair inT such thatT extends〈s, r〉.

SinceUB(〈s, r〉) is an upperbound on the size of anyK-safe
subset achievable by extending〈s, r〉, we have:UB(〈s, r〉) ≥ |T |.
Also, since the algorithm chooses the pair having the maximum
upperbound, we further have:UB(〈s, r〉) ≤ UB(〈T ∗, n〉). Com-
bining these observations with our assumption thatUB(〈T ∗, n〉) =
|T ∗|, we get|T ∗| ≥ |T |, proving the theorem.

The BestFirst algorithm essentially performs an exhaustive search.
In the worst case, its running time is exponential in the sizeof the
input document.

5.2.1 Computing Upper-bounds
Let E∗(〈s, r〉) denote the size of the largestK-safe set that ex-

tends〈s, r〉; in this section we show how to compute a non-trivial
upper-boundUB(〈s, r〉) onE∗(〈s, r〉).

Any set that extends the pair〈s, r〉 includes the sets, by def-
inition, and can at most include all ofDr+1,n. This leads to the
following naive upperbound:

UBnaive(〈s, r〉) = |s| + (n − r).

Clearly,UBnaive(〈s, r〉) ≥ E∗(〈s, r〉) and thus,UBnaive(〈s, r〉)
is an upperbound onE∗(〈s, r〉). This upperbound, however, is very
weak and is not likely to provide significant pruning of the search
space. We now derive a stronger upper-bound onE∗(〈s, r〉).

For r ≤ n, let A∗(Dr,n) denote the size of the optimalK-
safe subset of the suffixDr,n. Notice that for any pair〈s, r〉,
E∗(〈s, r〉) ≤ |s| + A∗(Dr+1,n). Below, we discuss an approach
for computing upperbounds onA∗(Dr,n) for every suffixDr,n

and thereby obtain the required upperbounds onE∗(〈s, r〉). The
approach is based on relaxing the notion ofK-safety tolocal K-
safety.

Fix an integerL ≤ n. Forr ≤ n − L + 1, we call the sequence
of L consecutive termsDr,r+L−1 as anL-window. A set of terms
T ⊆ D is said to beL-local K-safe, if T is K-safe with respect
to everyL-window, i.e., for allr, the setT ∩ Dr,r+L−1 is K-safe.
While the notion ofK-safety imposes a constraint with respect to
the whole document, the notion ofL-localK-safety is a relaxation
that considers only theL-windows. The two notions coincide when
L = n.

DefineA∗
L(D) to be the size of the largestL-localK-safe subset

of D. Similarly, let A∗
L(Dr,n) denote the size of the largestL-

local K-safe subset of the suffixDr,n. Every K-safe subset is
alsoL-local K-safe; this implies that for anyr ≤ n − L + 1,
A∗(Dr,n) ≤ A∗

L(Dr,n). Thus, for any pair〈s, r〉, with r ≤ n−L,
E∗(〈s, r〉) ≤ |s|+A∗

L(Dr+1,n). Thus, we get the following upper-
bound onE∗(〈s, r〉):

UBL(〈s, r〉) = |s| + A∗
L(Dr+1,n)

Clearly,UBL is a much tighter upper-bound thanUBnaive.
Moreover,A∗

L(Dr,n) for all r ≤ n − L + 1 can be computed
efficiently (in time linear inn) for small L using a dynamic pro-
gramming strategy, presented next.

Efficiently ComputingA∗
L(Dr,n)

We now present a dynamic programming algorithm that runs in
O(2Ln) steps and computesA∗

L(Dr,n), for all r ≤ n − L + 1.
The algorithm is efficient whenL is small.

For eachr ≤ n − L + 1 andx ⊆ Dr,r+L−1, let A∗
L(Dr,n|x)

denote the size of the largestL-localK-safe subset ofDr,n, among
those setsT ⊆ Dr,n satisfyingT ∩ Dr,r+L−1 = x. If x is notK-
safe, thenA∗

L(Dr,n|x) is not well-defined and we declare it to be
−∞.

Let us consider the two consecutiveL-windowsDr,r+L−1 and
Dr+1,r+L. Now, for eachT ⊆ Dr,n such thatT ∩Dr,r+L−1 = x,
we can either haveT ∩ Dr+1,r+L = x − tr, or T ∩ Dr+1,r+L =
(x − tr) ∪ tr+L. This leads to the following:

A∗
L(Dr,n|x) = |x ∩ {tr}| + max

�
A∗

L
(Dr+1,n|x − tr),

A∗
L
(Dr+1,n|(x − tr) ∪ tr+L) �

The algorithm first computesA∗
L(Dn−L+1,n|x) for eachx ⊆

Dn−L+1,n, as follows. Ifx isK-safe, then setA∗
L(Dn−L+1,n|x) =

|x|, else setA∗
L(Dn−L+1,n|x) = −∞. Based on the above recur-

rence relation, it then computesA∗
L(Dr,n|x) for all 1 ≤ r ≤ n−L

andx ⊆ Dr,r+L−1. Finally,A∗
L(Dr,n) is computed as:

A∗
L(Dr,n) = max

x⊆Dr,r+L−1

A∗
L(Dr,n|x)

Clearly, there is a trade-off in choosingL. Larger values ofL
lead to a tighter upper-bound, and therefore better search-space
pruning in the BestFirst algorithm. However, the complexity of
computing the upper-bounds on the other hand, the would be take
more time. We shall discuss how to chooseL in the experimental
section.

5.2.2 Testing forK-safety.
Recall that the BestFirst algorithm (ref. Figure 3) needs tocheck

for K-safety of a set in each iteration. A simple-minded imple-
mentation theK-safety of a setS would involve checking, for each
protected entitye, whetherC(e) ∩ S appears in the context of at
leastK other entities. This can be expensive for largeS.

However, the BestFirst algorithm invokes theK-safety tester on
sets of the forms = s′ ∪ {t}, wheres′ is aK-safe set andt is a
new term. Thus, it is sufficient to only focus on protected entities
containingt. To efficiently retrieve all entities containingt in their
context, we exploit an inverted index. This index maps each term
to the set of entities that contain the term, and is created ina pre-
processing step.

6. GREEDY HEURISTICS
In this section, we present an efficient heuristic that scales well

with increase in document size. The heuristic aims to ensurethat
only a minimum number of terms are removed to sanitize the docu-
ment, but occasionally removes a larger number of terms. Theidea
is to iteratively delete terms from the document until it isK-safe,
where the term to delete in each iteration is chosen by estimating
the amount of progress made by deleting a term. Towards that end,
we first discuss a simple characterization of a setX such that delet-
ing X from D yields aK-safe set; i.e., we characterize setsX such
thatD − X is K-safe.

For an entitye, let CD(e) = C(e) ∩ D denote the context of
e restricted to the terms in the documentD. Consider a protected
entity e. For any other entitye, we call the setCD(e) − CD(e)
a blockerof e; informally, the setCD(e) − CD(e) “blocks” the
entitye from becoming a subset ofe. LetB(e) denote the set of all
blockers ofe:

B(e) = {CD(e) − CD(e) : e ∈ E ande 6= e}.

Consider a setX ⊆ D. From the definition ofK-safety, the set
D−X is K-safe with respect to a protected entitye, if CD(e)−X
is contained in the context of at leastK other entities; equivalently,

X must contain at leastK blockers ofe. We say thatX covers
a blockerb, if b ⊆ X. Then, the above observation leads to the
following proposition.

Proposition 6.1. LetX ⊆ D. The setD − X is K-safe if and
only if for every protected entitye, X covers at leastK blockers of
e (i.e., |{b : b ∈ B(e) and b ⊆ X}| ≥ K).

PROOF. Consider a setX ⊆ D. SupposeD − X is K-safe.
So, by the definition ofK-safety, for any protected entitye, the set
CD(e) − X is contained in the context of at leastK other entities.
For any entitye, the setCD(e) − X can be contained inC(e) if
and only ifCD(e) −CD(e) ⊆ X; in other words,X must contain
the blockerCD(e)−CD(e). It follows that for any protected entity
e, X contains at leastK blockerse.

The converse direction is proved in a similar way. SupposeX
contains at leastK blockers of any protected entitye. Consider
any protected entitye. If X contains the blockerCD(e) − CD(e),
for some entitye, then it means thatCD(e) − X ⊆ CD(e). It
follows thatCD(e) − X is contained in the context of at leastK
entities (other thane). Notice thatCD(e)∩(D−X) = CD(e)−X.
So,D − X is K-safe with respect toe. We conclude thatD − X
is K-safe.
Example 2: We continue Example 1 (see Section 3) and illustrate
the notion of blockers. The blockers for the three protectedentities
(with respect to the documentD) are shown in Figure 4. In the
table, the entry[ei, e] gives the blockerCD(ei) − CD(e). Write
T1 = D − X1, so thatX1 = {t1, t5, t6}. Notice that for the
protected entitye2, X1 contains only one blocker ofe2 and hence,
T1 is notK-safe. On the other hand, the setT2 can be written as
D − X2, whereX2 = {t2, t4}. The setX2 contains at least two
blockers of each protected entityei. So,T2 is K-safe.

Our goal is to construct a small setX that covers at leastK
blockers for each protected entity. We start with an empty set X
and iteratively include terms inX until the set has the required
property. In each iteration, the main task lies in choosing asuitable
term for including inX. This is done by assigning a score for each
term that estimates the amount of progress made by includingthe
term; then, the term with the highest score is chosen. In the next
section, we consider different scoring functions.

6.1 Term Scoring Functions
We start with a simple scoring approach and then, propose re-

finements that lead to solutions of better quality. In the following,
E is the set of all entities in the entity database, andP ⊆ E is the
set of protected entities.

6.1.1 Frequency Based Scoring (BFreq)
When we choose a termt, we make some progress towards cov-

ering any blocker that containst. A simple scoring function is to
count the number of blockers in which a termt appears, and use
this count as the score fort. Formally:

BFreq(t) =�
e∈P

| { b : b ∈ B(e) andt ∈ b} |.

This results in the heuristic of iteratively picking a term that appears
in the maximum number of blockers.

A drawback with BFreq is that it only considers the number of
blockers hit by a term, but not the size of the blockers. A termt
hitting a large blockerb does not help much in covering the blocker,
as we also need to choose all the remaining terms inb to cover
it. Based on this intuition, we obtain our next scoring function by
refining BFreq.

6.1.2 Blocker Size Based Scoring (BSize)
In BFreq, a termt gets a score of one for hitting a blockerb,

irrespective of the size of the blocker. Instead, we need to assign
higher score to a term that hits smaller blockers and a lower score
to a term that hits larger blockers. One straightforward approach to
achieve this scoring is to assign the term a weight of1/|b| for each
blockerb hit by t.

However, consider two blockers containing the termt – one with
ten terms, none of which have been chosen earlier, and another with
fifteen terms, five of which have been chosen earlier – clearly, both
should be assigned the same weight. LetX̂ denote the set of terms
not deleted so far. Our next scoring function considers onlythe
terms inX̂ and also takes into account the sizes of the blockers:

BSize(t) =�
e∈P

�
b:b∈B(e),t∈b

1

|b ∩ X̂|

Note that unlike BFreq, this has the overhead of having to main-
tain the scores at the end of each iteration.

6.1.3 Scoring Based on TopK Blockers (BTop)
The scoring function BSize takesall the blockers inB(e) into

account. This would be fine ifX was required to cover all the
blockers; however,X is required to cover onlyK blockers. Clearly,
whenK is much less thanE, BFreq and BSize may be quite off
the mark.

A more sophisticated scoring function should take the parameter
K into account as well. Instead of considering all the blockers of a
protected entitye containing the given termt, the idea is to consider
a blockerb ∈ B(e) only if (a) b containst, and (b)|b∩X̂ | is among
the smallestK among all the blockers inB(e) that containt. Let
the set of such blockers be denoted byB̂(e, t).

Another drawback of BSize is that it considers a protected entity
even afterK blockers inB(e) have already been covered in̂X.
This is clearly unnecessary, and can lead to removal of more terms
than required from the document. Instead of considering theentire
set of protected entitiese, BTop considers only those protected en-
tries for whom less thanK blockers are covered bŷX. Let the set
of such protected entries be given byP̂ .

Based on the preceding discussion, the scoring function BTop
can be defined as:

BTop(t) =�
e∈P̂

�
b:b∈B̂(e,t)

1

|b ∩ X̂ |

As with BSize, the terms scores computed with BTop need to be
maintained aŝX changes at the end of each iteration.

Our experimental study shows that BTop performs significantly
better in terms of quality than the other two scoring functions and
moreover, outputs near-optimal solutions. So, for the remainder of
this section we focus on BTop, and discuss efficient mechanisms
for implementing the heuristic.

6.2 Efficiently Implementing BTop
We start with some simple observations:

• Any protected entitye ∈ P that does not contain any term
from D (i.e.,C(e)∩D = ∅) can be ignored, since any subset
of D is K-safe with respect to such an entity.

• Any term t ∈ D that appears in less thanK entities should
always be deleted fromD, because such a term cannot be
part of anyK-safe set. Henceforth, we assume that such
terms are deleted andD contains only the remaining terms.

Entity ei e1 e2 e3 e1 e2 e3 e4

B(e1) - {t1} {t2} ∅ {t1, t2} {t1} ∅
B(e2) {t4, t5, t6} - {t2, t5, t6} {t5, t6} {t2, t4} {t4, t5, t6} {t4}
B(e3) {t4, t7} {t1, t7} - ∅ {t1, t4, t7} {t1, t4} {t4}

Figure 4: Blockers in Example 2

• A protected entity having only one term fromD in its context
can be ignored; under the assumption above, all the terms in
D have frequency at leastK. Similarly, we can also ignore
non-protected entities having at most one term from the doc-
ument.6

The first and third observations above typically result in significant
pruning of the entity set on real-life documents; this is expected
since most documents are expected to focus on a few entities.The
second observation results in pruning of the document as well. Let
E′ andP ′ denote the set of entities and the set of protected entities
after this pruning.7

As for BestFirst, we build an inverted index over the database
that maps each termt to the set of all entities containingt in their
context. We exploit the above index to compute the setsE′ andP ′.
Next, for eache ∈ P ′, we compute the blockers ofe with respect
to the entitiese ∈ E′.

For eache ∈ E′, each termt and eachi ≤ |D|, we maintain
the collectionB′(e, t, i) consisting of all blockers ofe of size i
that contains the termt. We also maintainR(e), the number of
blockers that need to be additionally covered; the valueR(e) is
initialized to K and keeps decreasing as and when blockers get
covered. These collections help us in computingP̂ and in finding
the smallest blockerŝB(e, t) at the end of each iteration. We now
consider the issue of maintainingB′(·) andR(·) in each iteration.
We consider two approaches: a naive approach (Naive-BTop) and
an optimized approach (Fast-BTop).

6.2.1 Naive Approach: Naive-BTop
Suppose a termt is chosen and deleted from the document. We

iterate through all the protected entitiese ∈ P ′ and perform the
necessary updates. First, there may be blockers ofe that contain
only the termt; these are present in the collectionB′(e, t, 1). As
we have chosent, these blockers are covered and so, we update
R(e) = R(e) − |B′(e, t, 1)|. Next, for each termt and number
i, we select all the blockers inB(e, t, i) that contain the termt.
These blockers have shrunk in size by one; so , we move them to
the collectionB(e, t, i − 1). Suitable indices are maintained to
perform the above operation quickly.

6.2.2 Optimized Approach: Fast-BTop
The update operations in Naive-BTop are costly and inefficient.

We can improve the performance by conducting the updates in a
lazy manner. The main idea is that a blockerb of large size does
not contribute the score of any term, until sufficiently manyof its
terms are deleted and it becomes one of theK smallest blockers.
And so, we can delay updating such blockers. We present a brief
sketch of the implementation.

Suppose a termt is deleted. Lett be therth term to be deleted, so
that we are in therth iteration. Consider a protected entitye ∈ P ′.
6Some extra book-keeping is required, however, to keep account
of this pruning to avoid terms involved to be considered as unsafe
after the deletion
7This pruning step is effective for both BestFirst and Fast-BTop;
our implementation of BestFirst also exploits this pruning.

For a termt′ ∈ C(e)∩D, let`t′ denote the size of theKth smallest
blocker ofe, among those blockers containing the termt′. Let `
denote the maximum of̀t′ over all termst′ ∈ C(e) ∩ D. Notice
that among the blockers ofe, only those blockers having size at
most` may contribute to the score any term. A blockerb of size
s > ` cannot contribute untils − ` terms are deleted. We process
and update the collectionsB′(e, t′, j), for j ≤ `+ r and ignore the
collections containing larger blockers. Extensions of theabove idea
lead to further improvements; we omit the details for the sake of
brevity. Fast-BTop refers to an implementation of the BTop scoring
function based on these ideas.

7. EXPERIMENTAL STUDY
In this section, we present a preliminary experimental study to

evaluate the different algorithms presented in the paper.
Metrics. The evaluation involves two natural metrics:quality,
measured in terms of the number of terms in the sanitized output
document, andefficiency, measured in terms of the running time of
the algorithm.
Purpose.The purpose of this evaluation is to show that:

• The BTop heuristic outperforms BFreq and BSize in solution
quality; therefore, the extra effort involved in implementing
BTop is useful. Further, BTop often produces solutions of
size close to the optimal solution.

• For smaller sized documents, the BestFirst algorithm is effi-
cient; whereas, for larger documents, BTop is the algorithm
of choice.

• The optimizations proposed for implementing BTop (i.e., Fast-
BTop) offers significant performance gains over the naive
implementation (Naive-BTop).

• BTop scales well with increase in various parameters such as
document size, number of protected entities andK.

Platform. The implementation was done in Java with J2SE v1.4.2
(approx. 1000 lines of code) and executed on a 2.4 GHz Ma-
chine with 3.62 GB of RAM running Windows XP SP1. The term-
to-entity set index (ref. Section 5.2, Section 6.2) was built using
Lucene.8

Entity Set. The dataset was generated synthetically. We used a
universe of 200 terms to generate the entities. A collectionC of
100 base-setsof size 50 each was generated at random. We take
each base-sets ∈ C and generate 30 different entities by appending
50 more random terms. Thus, the total number of entities is|E| =
3000; each entitye has 100 terms in its context (|C(e)| = 100), of
which a subset of 50 terms overlap with 29 other entities and the
remaining set of 50 terms may have random partial overlaps. We
see that the contexts of the entities overlap in complex ways. Thus,
the above process provides us with a fairly challenging dataset to
test the algorithms. We randomly selected 450 entities and declared
them as protected.

8http://lucene.apache.org

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45 50

Q
ua

lit
y

of
 O

ut
pu

t S
ol

ut
io

n

Document Size

Quality of Solutions of Various Candidate Algorithms

BFreq
BSize
BTop

BestFirst
LowerBound

Figure 5: Quality: Effect of document size|D|

Recall that our algorithms, in a pre-processing step, drastically
prune the set of entities (see Section 6.2). In our setup, because
of the way the entity set and documents are generated, every entity
in the dataset is relevant for each document; as such, it is fair to
consider the entity set in each experiment below as the set obtained
after the pruning. Thus, while the number of entities per document
appears small, it is probably more than what one may expect in
real-life documents.
Document Generation. The efficiency and effectiveness of any
algorithm depends on how many terms must be deleted to make
the documentK-safe. For instance, in one extreme are theK-safe
documents; if the input documentD is alreadyK-safe, we need
not delete any terms and so, these are easy to handle. The situation
becomes more challenging when the optimalK-safe subset ofD
is of smaller size, where we need to carefully choose the terms to
delete. Thus, it is natural to evaluate the proposed algorithms on
documents of varying inherent quality.

Towards this goal, our document generation procedure takesas
input as an additional parameter calledgoodness, which roughly
measures the size of the optimal solution of the generated docu-
ment. Given a lengthn and a valueα ≤ 1, the method generates a
documentD of sizen and goodnessα, as described below. Choose
one of the base setss ∈ C at random. Then, randomly selectαn
many terms froms and add(1 − α)n random terms not belonging
to s. The resulting setD is output.

Notice thatD∩s is contained in the context of at least 30 entities.
And thus, forK ≤ 30, D ∩ s is K-safe. We have|D ∩ s| = α|D|
and so,α|D| is a lowerbound on the size of the optimal solution.
Parameters.There are three parameters that need to be considered
in out experimental study: (i) Document size|D|; (ii) Sanitization
parameterK; (iii) Goodness used in document generationα. In any
specific experiment, we shall fix two of these parameters and vary
the remaining parameter and study its effect. When the parameters
|D|, |K|, α are not varied, their value is fixed as follows:D = 50,
K = 10, andα = 0.8.

In the next section, we compare the quality of the solution pro-
duced by the various heuristics. An experimental study on effi-
ciency of the algorithms is presented in the subsequent section.

7.1 Comparison of Solution Quality
In this section, we study the quality of solutions produced by the

proposed heuristics against the optimal solution producedby the
optimal BestFirst algorithm.

7.1.1 Effect of Document Size|D|

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30

Q
ua

lit
y

of
 O

ut
pu

t S
ol

ut
io

n

K

BFreq
BSize
BTop

LowerBound

Figure 6: Quality: Effect of sanitization parameter K

In this experiment, we studied the effect of varying the docu-
ment size|D| from 5 to 50, in a setup withK = 10 andα = 0.8.
For each|D|, we generated 20 documents and averaged the solu-
tion quality of each heuristic. The result is plotted in Figure 5, and
contains a curve for each of the three heuristics and the BestFirst
algorithm. The curve for BestFirst runs only upto|D| = 40; the
algorithm was too slow for documents of a larger size. (We have
also plottedα|D|, termedlowerbound, which is a lowerbound on
the optimal solution size, as pointed out earlier; this is for valida-
tion, because in the later sections (which are for|D| = 50, we will
be usingαn as an approximation for the optimal.)

For small document sizes, the heuristics perform close to the op-
timal; however, as the document size increases, there is a significant
degradation in the quality of the solutions returned by BFreq and
BSize. The little difference for small documents is expected be-
cause given the small number of terms, the difference in terms in
the solution produced by the different algorithms is small as well.
For larger documents, we see that BTop is very close to the opti-
mal, while BSize performs about 15-20% worse and BFreq about
20-25% worse. This validates the decisions to differentiate between
the blockers, and having the scoring function intelligently exploit
the parameterK. The near-optimal performance of BTop further
asserts that any further optimization of BTop is not crucialto sani-
tization quality.

7.1.2 Effect of Sanitization ParameterK

In this experiment, we studied the effect of varying the saniti-
zation parameterK from 1 to 30, in a setup withD = 50 and
α = 0.8.

For eachK, we generated 20 documents and averaged the solu-
tion quality of each heuristic. The result appears in Figure6, and
contains a curve for each of the three heuristics. Since running the
optimal BestFirst algorithm was not feasible for|D| = 50, we use
αn, which is actually alowerboundinstead (any solution below
this watermark is certainly suboptimal).

ForK = 1, all approaches perform equally well; this is because
it turns out that no term in the document belongs to exactly one
entity (this is an artifact of how the entity set and the documents
are generated from the base sets, as discussed earlier), andso nei-
ther of the approaches removes any term from the document. The
results forK > 1 are interesting – we see that BFreq and BSize
degrade very drastically with increasingK, BFreq degrading even
faster than BSize. BTop performs extremely well in comparison;
it stays well above the lowerbound watermark throughout andit
seems reasonable to assume that it is actually very close to the op-

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
ua

lit
y

of
 O

ut
pu

t S
ol

ut
io

n

Goodness of D

BFreq
BSize
BTop

LowerBound

Figure 7: Quality: Effect of goodness parameterα

timal (extrapolating from the behaviour for smaller document sizes,
demonstrated in the previous experiment). Overall, the substantial
difference between BTop and the rest reaffirms the appropriateness
of the BTop scoring function in the greedy heuristic.

7.1.3 Effect of Goodness Parameterα

In this experiment, we studied the effect of varying the document
goodness parameterα from 0.1 to 1.0, in a setup withD = 50 and
K = 10. For eachα, we generated 20 documents and averaged the
solution quality of each heuristic. The result appears in Figure 7.
Again, as in the previous experiment, since it was not feasible to run
the optimal algorithm BestFirst on this document size, we plotted
the lowerbound on the optimal,α|D| as an approximation.

First, notice that all approaches perform equally well (optimally)
for α = 1.0. This is again an artifact of our implementation – the
document generated forα = 1.0 contains only terms from a given
base set, and each term is present in at least 30 entities by design.
For K = 30, therefore, the document generated isK-safe and no
term needs to be deleted from the document. The result is interest-
ing, however, forα < 1.0, and we see that BTop, again, performs
very close to the optimal throughout. Again, there is a vast differ-
ence between BTop and the other two heuristics, BSize and BFreq.
It is interesting to note that the difference in performanceof the
three approaches widens significantly in the middle values of α;
this is the region where the number of possible sanitizationoptions
increase, and the impact of the decisions in refining the scoring
functions from BFreq to BSize to BTop shows very clearly.

7.2 Efficiency
The previous section compared the three different heuristic ap-

proaches, and showed that BTop significantly outperforms the other
two. This was the motivation behind the effort to speed up theBTop
algorithm; in Section 6.2, we discussed the naive approach (Naive-
BTop) and an optimized approach (Fast-BTop). In this section, we
compare Fast-BTop, Naive-BTop and BestFirst, and show thatin
contrast to the other two, Fast-BTop scales very reasonablywith
increasing document size, sanitization parameter as well as docu-
ment complexity.

We also show that for a tuned value of the window sizeL (=12),
BestFirst is more efficient than the heuristic approaches for small
document sizes. For small documents (short email messages,etc.),
this tuned version of BestFirst could actually be the approach of
choice. To demonstrate the impact of tuning, we compare the tuned
version of BestFirst with a naive version (L=1), which roughly cor-
responds to choosingUBnaive instead ofUBL (ref. Section 5.2).

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

T
im

e
T

ak
en

 (
s)

Document Size

Naive-BTop
Fast-BTop

BestFirst(L=1)
BestFirst(L=8)

BestFirst(L=12)

Figure 8: Efficiency: Effect of document size|D|

7.2.1 Effect of Document Size|D|

In this experiment, we studied the effect of varying the document
size|D| from 5 to 50, in a setup withK = 10 andα = 0.8. For
each|D|, we generated 20 documents and averaged the time taken.
The result is plotted in Figure 8, and contains a curve for each of
Naive-BTop, Fast-BTop, BestFirst (L = 1), BestFirst (L = 8) and
BestFirst (L = 12).

The results verify that BestFirst has low pre-processing over-
heads, but does not scale with increasing document size; theheuris-
tics (Naive-BTop and Fast-BTop) have a much higher setup over-
head due to the preprocessing involved in computing the block-
ers, but scale very well. We see that for small document sizes
(|D| < 14), even the untuned BestFirst (L = 1) turns out to be
more efficient than the heuristics; the difference increases dramat-
ically as the document size is decreased. The experiment also re-
veals that the value ofL must be chosen carefully. A low value for
L such asL = 8 does not significantly alter the performance of the
BestFirst algorithm. The difference is more pronounced between
BestFirst (L = 1) and BestFirst (L = 12). Recall that the value
of L involves a tradeoff: larger the value ofL, the upperbounds
are better leading to a better search-space pruning in the BestFirst
algorithm; on the other hand, it takes more time to compute these
upperbounds (see Section 5.2.1). The results confirm the above an-
alytical conclusion. When the document size increases beyond a
threshold, BestFirst(L = 12) outperforms BestFirst(L = 1), since
the overhead involved in computing the upperbounds compensates
by the way proving tighter upperbounds. Also, as expected, Fast-
BTop is more efficient than Naive-BTop.

The experiments suggest that the BestFirst is the algorithmof
choice, if the document size is smaller and Fast-BTop is the better
choice for larger documents. Of course, when running time isnot a
criterion and optimal solution is desired, BestFirst algorithm should
be used. While using BestFirst algorithm, the parameterL should
be tuned suitably. The best choice ofL will mainly depend on the
document size, but other parameters such asK and the nature of
the data-set may also play a role. A more detailed experimental
evaluation is required to arrive at thumb rules for setting the value
of L. This is deferred as future work.

7.2.2 Effect of Sanitization ParameterK

In this experiment, we studied the effect of varying the sani-
tization parameterK from 1 to 30, in a setup with|D| = 50
andα = 0.8. Since BestFirst does not scale up to our choice of
|D| = 50, we consider only Naive-BTop and Fast-BTop in this
experiment.

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30

T
im

e
T

ak
en

 (
s)

K

Naive-BTop
Fast-BTop

Figure 9: Efficiency: Effect of sanitization parameterK

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

T
im

e
T

ak
en

 (
s)

Goodness of D

Naive-BTop
Fast-BTop

Figure 10: Efficiency: Effect of goodness parameterα

For eachK, we generated 20 documents and averaged the time
taken. The result appears in Figure 9, and contains a curve for each
of Naive-BTop and Fast-BTop. We see that Fast-BTop significantly
outperforms Naive-BTop for all values ofK. WhenK is small,
the optimal solution is large and hence, only a few terms needto be
deleted to make the documentK-safe. As a result, the difference in
the performance of the two implementations is smaller for smaller
values ofK. With the increase in the value ofK, the optimal so-
lution size decreases and so more terms need to be deleted in this
case. Thus, we see that gap in the performance increases. Clearly,
the extra effort involved in the Fast-BTop implementation makes it
more efficient than Naive-BTop.

7.2.3 Effect of Goodness Parameterα

In this experiment, we studied the effect of varying the document
goodness parameterα from 0.1 to 1.0, in a setup withD = 50 and
K = 10. Again, since BTop does not scale up to our choice of
|D| = 50, we consider only Naive-BTop and Fast-BTop in this
experiment.

For eachα, we generated 20 documents and averaged the time
taken by each approach. The result appears in Figure 10, and con-
tains a curve for each of Naive-BTop and Fast-BTop.

The graph shows that Fast-BTop is faster than the Naive-BTop
by a factor of 1.5 for documents with low goodness. As the good-
nessα increases, the difference between the two implementation
decreases. Nevertheless, Fast-BTop outperforms Naive-BTop for
all values of goodness. The reason for the decrease in the differ-

ence for largerα is similar to the one explained in Section 7.2.2.
Namely, whenα increases, the size of the optimal solution is large
and so, only a few terms need to be deleted. As a result, the number
of iterations decreases and hence, the difference in the running time
also decreases.

8. CONCLUSION
In this paper, we presented ERASE, a framework for performing

sanitization of unstructured text documents automatically. We pre-
sented a approach to address the document sanitization problem,
and devised effective algorithms to perform the sanitization auto-
matically. To the best of our knowledge, this is the first workthat
addresses the document sanitization problem in a formal manner
and present principled approaches to solve the same. This work
is an attempt to bring automated anonymization techniques,which
have been so far studied and exploited extensively for structured
data, to the domain of unstructured free-text documents.

9. REFERENCES
[1] E. Agichtein, L. Gravano, J. Pavel, V. Sokolova, and

A. Voskoboynik. Snowball: A prototype system for extracting
relations from large text collections. InSIGMOD, 2001.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in large databases. InVLDB, 1994.

[3] A. Ceglar and J. F. Roddick. Association mining.ACM Comput.
Surv., 38(2), 2006.

[4] V. Chakaravarthy, H. Gupta, P. Roy, and M. Mohania. Efficiently
linking text documents with relevant structured information. In
VLDB, 2006.

[5] A. Chandel, P. Nagesh, and S. Sarawagi. Efficient batch top-k search
for dictionary-based entity recognition. InICDE, 2006.

[6] M. Douglass, G. Clifford, A. Reisner, W. Long, G. Moody, and
R.G.Mark. De-identification algorithm for free-text nursing notes. In
Computers in Cardiology, 2005.

[7] M. R. Garey and D. S. Johnson.Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
1979.

[8] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: Efficient
full domain k-anonymity. InSIGMOD, 2005.

[9] A. McCallum. Information extraction: distilling structured data from
unstructured text.ACM Queue, 3(9):48–57, 2005.

[10] PARC. Xerox unveils technology that blocks access to sensitive data
in documents to prevent security leaks, 2007.
http://www.parc.com/about/pressroom/news/2007-10-15-
redaction.html.

[11] Y. Saygin, D. Hakkani-Tur, and G. Tur. Sanitization and
anonymization of document repositories. InWeb and Information
Security, 2005.

[12] L. Sweeney. Replacing personally-identifying information in
medical records, the srub system. InJournal of the Americal
Medical Informatics Association, 1996.

[13] L. Sweeney. K-anonymity: A model for protecting privacy. Intl
Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
10(5), 2002.

[14] A. Tveit. Anonymization of general practitioner medical records. In
HelsIT’04, Trondheim, Norway, 2004.

[15] U.S. Department of Energy. Department of energy researches use of
advanced computing for document declassification.

[16] Wikipedia. Sanitization (classified information) — wikipedia, the
free encyclopedia, 2008.

[17] D. Zuckerman. Linear degree extractors and the inapproximability of
max-clique and chromatic number. InSTOC, 2006.

