
Resource Allocation for Covering Time Varying
Demands

Venkatesan T. Chakaravarthy1, Amit Kumar2, Sambuddha Roy1, and
Yogish Sabharwal1

1 IBM Research - India, New Delhi
2 Indian Institute of Technology, New Delhi

{vechakra, sambuddha, ysabharwal}@in.ibm.com; amitk@cse.iitd.ac.in

Abstract. We consider the problem of allocating resources to satisfy
demand requirements varying over time. The input specifies a demand
for each timeslot. Each resource is specified by a start-time, end-time,
an associated cost and a capacity. A feasible solution is a multiset of
resources such that at any point of time, the sum of the capacities of-
fered by the resources is at least the demand requirement at that point
of time. The goal is to minimize the total cost of the resources included
in the solution. This problem arises naturally in many scenarios such as
workforce management, sensor networks, cloud computing, energy man-
agement and distributed computing. We study this problem under the
partial cover setting and the zero-one setting. In the former scenario, the
input also includes a number k and the goal is to choose a minimum cost
solution that satisfies the demand requirements of at least k timeslots.
For this problem, we present a 16-approximation algorithm; we show
that there exist “well-structured” near-optimal solutions and that such
a solution can be found in polynomial time via dynamic programming.
In the zero-one setting, a feasible solution is allowed to pick at most
one copy of any resource. For this case, we present a 4-approximation
algorithm; our algorithm uses a novel LP relaxation involving flow-cover
inequalities.

1 Introduction

We consider the problem of allocating resources to satisfy demand requirements
varying over time. We assume that time is uniformly divided into discrete times-
lots. The input specifies a demand for each timeslot. Each resource is specified
by its start-time, end-time, the capacity of the resource that it offers during this
interval and its associated cost. A feasible solution is a set of resources satisfying
the constraint that at any timeslot, the total sum of the capacities offered by
the resources is at least the demand required at that timeslot, i.e. the selected
resources must cover the demands.

The above problem is motivated by applications in workforce management.
For instance, consider the problem of scheduling employees in call centers. Typi-
cally, in these settings, we have a reasonably accurate forecast of demands which

will arrive at any timeslot and for each employee, we know the time interval in
which they can work. Employees have proficiencies (or capacities) determining
the number of calls they can attend on an average in a timeslot. They also have
cost or wages associated with them. The goal is to choose a minimum cost set of
employees whose schedule meets the demand at all the timeslots. The problem
framework is quite general and captures many other situations arising in sensor
networks, cloud computing, energy management and distributed computing (see
[12, 7, 4]).

Motivated by such applications, Chakaravarthy et al. [4] studied the above
problem. They considered the version (called MultiResAll) wherein the solu-
tion is allowed to pick multiple copies of a resource by paying as many units of
the associated cost. In the context of workforce management, employees can be
classified based on their proficiency and the shifts they work in. Choosing multi-
ple units of a single resource corresponds to selecting multiple employees of the
same class. They presented a 4-approximation algorithm for the MultiResAll
problem. In this paper, we consider two generalizations of the MultiResAll
problem.

The first variant (called partialMultiResAll) considers the partial covering
scenario, wherein the input also specifies a number k and a feasible solution is
only required to satisfy the demand for at least k timeslots. In the workforce
management setting, this corresponds to the concept of service level agreements
(SLA’s), which stipulates that the requirements of a large fraction of timeslots
are satisfied.

The second variant considers a more natural bounded availability setting,
wherein for each resource, the input specifies a bound on the maximum number
of copies that can be selected. In this paper, we shall study the version (called
(0,1)-ResAll) in which a solution can pick a resource at most once. Note that
the bounded setting can be reduced to the zero-one setting, by duplicating the
resources (albeit at an increased running time). We now formally define these
problems.

Problem Definitions: We first define the MultiResAll problem. We con-
sider time to be uniformly divided into discrete units ranging from 1 to T . We
refer to each integer t in the range [1, T] as a timeslot. The input specifies a
demand profile d : [1, T] → Z; here d(t) (also denoted by dt) is the demand
at timeslot t for t ∈ [1, T]. The input further consists of a set of resources (or
intervals) I. Each resource i ∈ I is specified by an interval Ii = [si, ei], where
si and ei are the start-time and the end-time of the resource i; we assume that
si and ei are integers in the range [1, T]. The resource i is also associated with
a capacity (or height) hi and a cost ci. We say that the resource i is active at
a timeslot t, if t ∈ Ii. For a timeslot t, let A(t) denote the set of all resources
active at timeslot t.

Let S be a multiset of resources. For a resource i ∈ S, let fS(i) denote the
number of times i appears in S. The multiset S is said to cover a timeslot t, if
the sum of the capacities of the resources from S active at the timeslot t is at
least dt, i.e.,

∑
i∈A(t) fS(i) · hi ≥ dt. The multiset S is said to be a full cover, if

2

S covers all the timeslots t ∈ [1, T]. The cost of the multiset S is defined to be
cost(S) =

∑
i∈S fS(i) · ci (where the summation is over distinct intervals in S).

• MultiResAll Problem: In this problem, the goal is to find a full cover
having the minimum cost.

• Partial MultiResAll Problem: In this problem, the input also includes an
integer k. A multiset S is said to be a k-partial cover, if S covers at least k
timeslots. The goal is to find a minimum cost k-partial cover.

• (0,1)-ResAll Problem: In this problem, a feasible solution is allowed to pick
each resource at most once. The goal is to find a minimum cost full cover.

Prior Work: As mentioned earlier, a 4-approximation algorithm for the Mul-
tiResAll problem was presented in [4]. The algorithm was based on the primal
dual approach.

The special case of the (0,1)-ResAll problem wherein there is only a single
timeslot (T = 1) corresponds to the classical minimum knapsack cover problem
(MKP). It is well known that the problem is NP-hard and that it admits a
FPTAS [11]. En route to proving more general results, Carnes and Shmoys [3]
gave a 2-approximation algorithm based on the primal dual approach.

The (0,1)-ResAll problem is related to the well-studied unsplittable flow
problem on line (UFP). In the (0,1)-ResAll problem, we need to select a set
of intervals covering a given demand profile. In the UFP problem, the goal is
to select a set of intervals that can be packed within a given bandwidth pro-
file. Thus, while UFP is a packing problem, (0,1)-ResAll is its analogous
covering version. Bansal et al.[1] presented a quasi-PTAS for the restricted
case of the UFP problem, when all the capacities and demands are quasi-
polynomial. In a recent breakthrough, Bonsma et al. [2] designed a polynomial
time (7 + ϵ)-approximation algorithm. Under the so called “no-bottleneck as-
sumption”, Chekuri et al. [6] presented a (2+ ϵ)-approximation algorithm. Prior
work have addressed partial versions of many other covering problems, such as
vertex cover [8], multicut [10] and spanning trees [9].

Chakrabarty et al.[5] studied the more general version of the (0,1)-ResAll
problem called column restricted covering integer programs. Their framework
yields a 40-approximation algorithm for the (0,1)-ResAll problem. Indepen-
dent of our work, Korula obtained a 4-approximation algorithm for the (0,1)-
ResAll problem (see [5]). To the best of our knowledge, partial versions of the
MultiResAll and (0,1)-ResAll problems have not been studied.
Our Results and Techniques: The main results of this paper are as follows:

• We present a 16-approximation algorithm for the partial MultiResAll
problem.

• For the special case, of the partial MultiResAll problem, where the input
demands are uniform, our approach can be fine tuned to yield an improved
2-approximation algorithm. The details of this result will be presented in the
full version of the paper.

• Our next result is a 4-approximation algorithm for the (0,1)-ResAll prob-
lem. This result generalizes the known 4-approximation algorithm for the
MultiResAll problem [4].

3

Our techniques do not extend to the partial version of the (0,1)-ResAll problem.
Obtaining a constant factor approximation for this problem remains open.

The 4-approximation algorithm for the MultiResAll problem [4] is based
on the primal-dual approach applied to a natural LP formulation. In the case of
(0,1)-ResAll, the corresponding natural LP has an unbounded integrality gap.
We circumvent the issue by strengthening the LP with “flow-cover inequalities”,
à la the approach that Carnes and Shmoys [3] adopt for the MKP problem.
An additional advantage of the new LP is that it admits a simpler primal-
dual analysis, while matching the approximation factor of the MultiResAll
problem.

We now discuss two approaches that have been widely successful for solving
partial covering problems (such as vertex cover) and briefly outline the difficulties
in applying either of them to our problem. One of the approaches typically starts
with the natural LP relaxation, which may have unbounded integrality gap. It
turns out that that by augmenting it with some extra information, the integrality
gap can be brought down to a constant (see for instance: partial vertex cover
[8], k-MST [9]). In the MultiResAll problem, it is not clear how to construct
such a strengthened LP.

A second approach goes via Langrangian relaxations [13] and has been suc-
cessful applied to problems such as such as multicut [10] and k-MST [9]. Under
this paradigm, one first designs a primal-dual approximation algorithm for the
prize collecting version with certain additional properties, which is then used to
solve the partial covering problem. We do not know how to design such an algo-
rithm for the prize collecting version of the MultiResAll problem; however, we
note that our techniques discussed below yield a constant factor approximation
for prize collecting version.

Our algorithm for the partial MultiResAll problem builds on two main
insights regarding the MultiResAll problem. The first insight is that there
always exists a near-optimal solution satisfying the following simple structural
property: for every timeslot, there exists an interval in the solution whose copies
are enough to cover the demand at the timeslot (without the aid of other in-
tervals). The second main insight is that among all the solutions satisfying the
above property, the optimal one can be found in polynomial time using dynamic
programming. Combining the two ideas, we get an alternative constant factor
approximation algorithm for the MultiResAll problem. We show that both
the steps extend to the partial cover setting and thereby we get a constant factor
approximation algorithm for the partialMultiResAll problem. It is interesting
to note that the recent (7 + ϵ)-approximation algorithm for the UFP problem
[2] also uses a similar strategy of first showing the existence of solutions with
special properties and then invoking dynamic programming.

4

2 Approximating the Partial MultiResAll Problem

In this section, we present a 16-approximation algorithm for the partial Mul-
tiResAll problem. The notion of single resource assignment (SRA) covers,
defined next, is useful for this purpose.

Single Resource Assignment (SRA) Solution: Let S be a multiset of resources.
The multiset S is said to cover a timeslot t ∈ [1, T] in an SRA fashion, if we can
find a single resource i ∈ S such that the demand at t can be covered by the
copies of i alone i.e., there exists i ∈ S such that fS(i) · hi ≥ dt. The multiset S
is said to be an SRA full cover, if S covers all the timeslots in an SRA fashion.
A k-partial cover S is said to be an SRA k-partial cover, if S covers at least k
timeslots in an SRA fashion.

Let Opt and pOpt denote the optimal full cover and k-partial cover, respec-
tively. Similarly, let Ôpt and p̂Opt denote the optimal SRA full cover and SRA
k-partial cover, respectively. Our constant factor approximation algorithm is
based on the following two theorems and the subsequent corollaries.

Theorem 1. There exists an SRA full cover Ŝ such that cost(Ŝ) ≤ 16·cost(Opt).

Theorem 2. Given an instance of the MultiResAll problem, we can find the
optimal SRA full cover in polynomial time.

Corollary 1. There exists an SRA k-partial cover Ŝ such that cost(Ŝ) ≤ 16 ·
cost(pOpt).

Corollary 2. Given an instance of the partial MultiResAll problem, we can
find the optimal SRA k-partial cover p̂Opt in polynomial time.

We note that an alternative proof of Theorem 2 is given in [5]. However,
our proof is significantly simpler. By combining the two corollaries, we obtain
a constant factor approximation algorithm for the partial MultiResAll prob-
lem, as follows. Our overall algorithm simply runs the algorithm claimed in
Corollary 2 and outputs the SRA k-partial cover p̂Opt. Corollary 1 implies that
cost(p̂Opt) ≤ cost(Ŝ) ≤ 16 · cost(pOpt). We have established the main result
of the section: the partial MultiResAll problem can be approximated within
a factor of 16.

2.1 Existence of Good SRA covers

In this section, we first prove Theorem 1 and then derive Corollary 1. In proving
Theorem 1, even though it suffices to show only the existence of Ŝ, we shall in
fact present a polynomial time algorithm for producing the claimed SRA full
cover. The algorithm goes via the primal-dual approach.

Let us first consider a naive LP formulation. We associate a variable xi

with each i ∈ I, which specifies the number of copies of the resource i in the
solution. For each timeslot t, we will have a constraint that enforces the coverage
requirement for the timeslot (

∑
i∈A(t) hi · xi ≥ dt). However, it is not hard to

5

show that this LP has an unbounded integrality gap. For instance, consider a
single timeslot t (i.e., T = 1) with dt = 1 and let there be a single resource i
of cost ci = 1, with height hi = B (for some B). Then, the optimal integral
solution will have cost 1. On the other hand, the LP can set xi = 1/B and get a
cost of 1/B. One can easily handle the issue via adjusting heights as follows. For

a resource i ∈ I and a timeslot t where i is active, denote h̃i(t) = min{hi, dt}.
We obtain a strengthened LP formulation by utilizing the adjusted heights h̃.

min
∑
i∈I

xi · ci∑
i∈A(t)

h̃(i, t) · xi ≥ dt for all time-slots t

xi ≥ 0 for all i ∈ I

Each integral primal feasible solution x corresponds to a full cover multiset S;
similarly, every full cover S corresponds to a primal integral feasible solution x,
given by xi = fS(i). In our discussion, we shall use the viewpoint of multisets.

The dual of the LP is shown next. It has a variable yt for each timeslot t.

max
∑

t∈[1,T]

yt · dt∑
i∈A(t)

yt · h̃(i, t) ≤ ci for all i ∈ I

yt ≥ 0 for all t

We will produce a primal integral solution Ŝ and a dual feasible solution y
such that the complementary slackness conditions are satisfied approximately:
(i) Primal slackness conditions: for any i ∈ I, if fŜ(i) > 0 then the corresponding
dual constraint is tight: ∑

t:i∈A(t)

yt · h̃(i, t) = ci. (1)

(ii) Approximate dual slackness conditions: for any timeslot t, if yt > 0 then the
corresponding primal constraint is tight within a factor of 16:∑

i:i∈A(t)

fŜ(i) · h̃(i, t) ≤ 16 · dt. (2)

Using well-known arguments via complementary slackness and weak duality, we
can show that the above conditions imply cost(Ŝ) ≤ 16 ·cost(Opt). This would
prove Theorem 1. We now present the algorithm meeting the above requirements.

The algorithm runs in three phases, a construction phase, a deletion phase
and a doubling phase. In the construction phase, we shall construct a dual fea-
sible solution y and also obtain an SRA full cover A. In the deletion phase, we
delete certain carefully chosen intervals from A and obtain a multiset S′. The

6

set S′ may not be a full cover, but it will satisfy at least half the demand at each
timeslot in an SRA fashion. In the final doubling phase, we simply double the
number of copies each interval in S′ and obtain an SRA full cover B. We shall
argue that the primal feasible solution Ŝ = B and the dual feasible solution y
satisfy the slackness conditions (1) and (2).
Construction Phase: We employ an greedy procedure for constructing a dual
feasible solution y having high objective value (i.e.,

∑
t yt · dt). The algorithm

runs in multiple iterations, wherein each iteration we greedily choose the dual
variable yt that potentially gives us the maximum benefit; thus, we choose the
timeslot t having the maximum demand dt. The algorithm is formally described
next. To start with all the timeslots are marked as alive. Consider any iteration
j ≥ 0. Let tj be the timeslot having the highest demand dtj among all the
currently alive timeslots. We raise the dual variable ytj to the maximum possible
value until some dual constraint, say corresponding to an interval ij , becomes

tight. We add ⌈dtj/h̃(ij , tj)⌉ copies of ij in our solution A. We call tj the main
timeslot of ij . The interval ij then marks as dead all the timeslots in its span
that are currently alive. We say that the main timeslot tj along with all the other
timeslots marked dead by ij are associated with ij . We proceed in this manner
until our solution A covers all the timeslots. This completes the construction of
y and A.

Each interval i ∈ A covers all the timeslots associated with it in an SRA
fashion and hence,A is an SRA full cover. Let ℓ be the number of main timeslots,
given as t1, t2, . . . , tℓ. For each interval i chosen by A, let the collection of copies
of i be called the bundle of i. For an interval i and a timeslot t, let H̃(i, t) denote

the adjusted bundle height at t, given by H̃(i, t) = fA(i) · h̃(i, t). The solution A
satisfies the following property.

Lemma 1. Let i be any interval chosen in A and t∗ be any main timeslot within
the span of i. Then, H̃(i, t∗) ≤ 2dt∗ .

Proof. Let t be the main timeslot associated with i. By definition, H̃(i, t∗) =
⌈dt/hi⌉ · min{hi, d

∗
t }. We see that dt ≤ dt∗ (for otherwise t∗ cannot a main

timeslot). A simple calculation yields the lemma. ⊓⊔

Deletion Phase: In the deletion phase, we delete certain redundant intervals
from A and obtain a multiset S′. Consider the main timeslots in an arbitrary
order, say the original order t1, t2, . . . , tℓ. Let t∗ be any main timeslot in this
ordering. Lemma 1 shows that for any i ∈ A(t∗), H̃(i, t∗) ≤ 2dt∗ . We partition
the set A(t∗) of intervals active at t∗ in a geometric fashion into a set of bands
as follows. Let m = ⌈log(2dt∗)⌉. For 1 ≤ j ≤ m, define the band Bj to be

Bj = {i ∈ A ∩A(t∗) : 2dt∗/2
j < H̃(i, t∗) ≤ 2dt∗/2

j−1}.

For each band Bj , let i1 be the interval in Bj extending farthest to the left
(i.e., having the minimum start-time); similarly, let i2 be the interval active at
t∗ extending farthest to the right (i.e., having the maximum end-time). We shall

7

retain these two interval (bundles) and delete all the other interval (bundles) of
Bj from A. Let the constructed multiset be S′.

We note that S′ need not be an SRA full cover (it may not even be a full
cover). However, we can make the following claim about S′ that at every timeslot
t, the solution S′ covers at least half the demand at t in an SRA fashion. The
lemma is proved as follows. If i, the interval covering t in A, got deleted while
considering a main timeslot t∗, then either the leftmost or the rightmost interval
appearing in the same band as i cover at least half the demand at t.

Lemma 2. For any timeslot t, there exists an interval i′ ∈ S′ such that i′ is
active at t and fS′(i′)hi′ ≥ dt/2.

Proof. Let i be the interval associated with t. Clearly, if i is included in S′, then
fS′(i)hi ≥ dt and we can take i′ = i. Now suppose i got deleted while considering
a main timeslot t∗. With respect to t∗, let Bj be the band to which i belongs
and let i1 and i2 be the leftmost and rightmost intervals that were retained
for this band. Then, at least one of these two intervals (say i1) is also active

at t. Since i1 is in the same band as i, H̃(i1, t
∗) ≥ H̃(i, t∗)/2. First consider

the case where hi ≤ dt∗ . In this case, H̃(i, t∗) = fS′(i) · hi ≥ dt. It follows

that fS′(i1) · hi1 ≥ H̃(i1, t
∗) ≥ dt/2. Now suppose hi ≥ dt∗ . This implies that

H̃(i, t∗) ≥ dt∗ and so, i belongs to the band B1 (corresponding to the range

[dt∗ , 2dt∗]). Since i1 also belongs to the same band as i, H̃(i1, t
∗) ≥ dt∗ , which

implies that fS′(i1) · hi1 ≥ dt∗ . Notice that dt∗ ≥ dt′ , where t′ is main timeslot
of i; otherwise, t′ would have been considered earlier than t∗ and so, i would
have marked t∗ as dead and so, t∗ could not be a main timeslot. Notice that
dt′ ≥ dt; otherwise t′ cannot be the main timeslot of i. It follows that dt∗ ≥ dt.
This implies that that fS′(i1) · hi1 ≥ dt. Thus, we can take i′ = i1. ⊓⊔

Doubling Phase: In this phase, we transform S′ into an SRA full cover B, by
simply doubling the number of copies of every interval in S′. Lemma 2 implies
that the solution B is an SRA full cover.
Complementary Slackness Conditions: We now argue that the comple-
mentary slackness conditions (1) and (2) are satisfied by the solutions y and B.
First notice that the primal slackness conditions (1) are automatically satisfied
after the construction phase; in the latter two phases, we do not change the
dual solution y. Let us now focus on the dual slackness condition (2). The dual
variable yt > 0 only for main timeslots t. The lemma below proves the slackness
condition for all these main timeslots.

Lemma 3. For any main timeslot t∗,∑
i∈A(t∗)

fB(i)h̃(i, t
∗) ≤ 16 · dt∗ .

Proof. We first derive a bound on the quantity W =
∑

i∈A(t∗) fS′(i)h̃(i, t∗).
Consider the bands B1, B2, . . . , Bm corresponding to the timeslot t∗. At the
end of the deletion phase, only two intervals were retained in S′ for each band

8

Bj : they contribute at most 2 · (2dt∗/2j−1) to the quantity W . So, the total
contribution across all the bands can be computed as:

W ≤
m∑
j=1

2 · (2dt∗/2j−1) ≤ 8 · dt∗ .

The doubling procedure implies that for any interval i ∈ S′, fB(i) = 2 · fS′(i).
This means the LHS of the inequality in the lemma is at most 2W ≤ 16 ·dt∗ . ⊓⊔

This completes the proof of Theorem 1.
Proof of Corollary 1: Note that the proof of Theorem 1 generalizes to the
following partial covering scenario. Given a subset of timeslots X ⊆ [1, T], the

primal-dual algorithm can produce a solution Ŝ such that Ŝ covers all the times-
lots in X in an SRA fashion and cost(Ŝ) ≤ 16 · Opt(X), where Opt(X) is the
optimum solution covering all the timeslots in X. The optimum partial k-cover
pOpt covers a subset of timeslots Z with |Z| ≥ k. We focus on only the times-
lots in Z and ignore the rest. By invoking the generalization (with X = Z), we

can get an SRA k-partial cover Ŝ such that cost(Ŝ) ≤ 16 · cost(pOpt) (since
Opt(Z) = pOpt).

2.2 Computing Optimal SRA Covers

Here, we first prove Theorem 2 and then derive Corollary 2. The algorithm goes
via a reduction to a problem that we call the layered interval covering problem
(LIC), defined next.
Layered Interval Covering Problem (LIC): The input consists of a set
of intervals I over timeslots [1, T]. Each interval is specified by its range [si, ei],
where si is the start-time and ei is the end-time) and a cost ci. The input includes
a set of colors L = {1, 2, . . . , L} and specifies a color χ(i), for each interval i ∈ I
and each timeslot t ∈ [1, T]. An interval i is said to cover a timeslot t, if i is
active at t and χ(i) ≥ χ(t). A feasible solution S is a set of intervals such that for
each timeslot t ∈ [1, T], at least one interval i covers t. The goal is to compute
a feasible solution of minimum cost.
Reduction: It is not hard to reduce the problem of finding the optimal SRA full
cover to the LIC problem. Let A be the input SRA full cover problem instance
and we will produce a LIC problem instance B. The number of timeslots for B
is declared to be the same as that of A (i.e., T is retained as such). Let D be the
set of all distinct demand values (i.e., D = {dt : t ∈ [1, T]}) and let L = |D|.
Notice that L ≤ |T |. Let a1, a2, . . . , aL be the values in D sorted in the increasing
order. We declare the number of colors in B to be L, so that each aj corresponds
to a color j. For each interval i ∈ A we introduce at most i in B as follows. For
each 1 ≤ j ≤ L, let r be the smallest integer such that aj ≤ rhi < aj+1; if such
an r does not exist, we ignore this j; otherwise, we introduce a copy i′ of i in
B with color χ(i′) = j and cost ci′ = rci (where ci is the cost of i in A). This
completes the reduction. It is easy to see that any feasible solution S of B can
be transformed into an SRA full cover of A with the same cost and vice versa.

9

Below we show that the LIC problem can be solved optimally in polynomial
time. It follows that optimum SRA full covers can be found in polynomial time,
establishing Theorem 2.

Solving the LIC Problem Optimally: Our polynomial time algorithm is
based on dynamic programming and it builds on a decomposition lemma for
feasible solutions. The lemma needs the notion of time-cuts, defined next.

Let S be a set of intervals that cover all the timeslots in some range [a, b] ⊆
[1, T]. Let S1 and S2 be a partition of the set S and t be a timeslot satisfying
a ≤ t ≤ b − 1. Then the triplet ⟨S1, S2, t⟩ is said to be a time-cut for S, if S1

covers all the timeslots in the range [a, t] and S2 covers all the timeslots in the
range [(t + 1), b]. Intuitively, some intervals in S1 may span (and even cover)
some timeslots in [(t+ 1), b], but S2 is responsible for covering all the timeslots
in this range (and vice versa). The decomposition lemma says that we can always
find a time-cut, but for an exceptional scenario. The restriction that t ≤ b − 1
ensures that the time-cut is non-trivial.

Lemma 4. Let S be a set of intervals covering all the timeslots in some range
[a, b]. Then, at least one of the following conditions holds: (i) there exists a time-
cut for S; (ii) there exists an interval i ∈ S spanning the entire range [a, b].

Proof. Consider any timeslot t ∈ [a, b]. Among all the intervals in S active at t,
let i be the one having the maximum color; we say that i is responsible for t. Let
i∗ be any interval active at the initial timeslot a. If i∗ spans the range [a, b] then
the (ii) is satisfied and we are done. So, assume that ei∗ ≤ b − 1. Let t∗ be the
maximum timeslot for which i∗ is responsible. Define S1 to be the set consisting
of i∗ and all intervals i ∈ S having end-time ei ≤ t∗ − 1 and let S2 = S − S1.
We claim that the triple ⟨S1, S2, t

∗⟩ is a time-cut. To see this first consider any
timeslot t ∈ [(t∗+1), b] and we will argue that some interval in S2 covers t. Since
i∗ is not responsible for any timeslot in [(t∗ + 1), b], there must exist an interval
i ̸= i∗ covering t. Therefore, such an interval i belongs to S2. Now consider any
timeslot t ∈ [a, t∗] and let us argue that some interval in S1 covers t. Let i be
any interval i ∈ S covering t; so, χ(i) ≥ χ(t). If i belongs to S1, we are done.
Hence, consider the case where i ∈ S2. We see that i is active at t∗, because i is
active at t and has end-time ei ≥ t∗. Since i∗ is responsible for t∗, we have that
χ(i∗) ≥ χ(i). Hence, i∗ also covers t. Finally, notice that t∗ ≤ b− 1. ⊓⊔

Lemma 4 can easily be generalized to the partial setting as follows.

Corollary 3. Let [a, b] be a range of timeslots and let S a set of intervals cover-
ing all the timeslots in a subset X ⊆ [a, b]. Then, at least one of the following is
true: (i) there exists a partition of S into S1 and S2, and a timeslot t ∈ [a, b− 1]
such that S1 covers all the timeslots in X ∩ [a, t] and S2 covers all those in
X ∩ [t+ 1, b]; (ii) there exists an interval i ∈ S spanning all the timeslots in X.

For a range of timeslots [a, b] ⊆ [1, T] and a color p, let U([a, b], p) denote
all the timeslots t ∈ [a, b] such that χ(t) ≥ p. Let DP([a, b], p) be the cost of

10

the optimum set of intervals covering all the timeslots in U([a, b], p). Corollary 3
establishes the following recurrence relation: DP([a, b], p) = min{Q1, Q2}, where

Q1 = min
a≤t≤b−1

{DP([a, t], p) + DP([t+ 1, b], p)}

Q2 = min
i spans U([a,b],p)

{ci +DP([a, b], χ(i) + 1)}.

The quantity Q1 corresponds to the situation where (i) in Corollary 3 applies.
In Q2, we try all the possible intervals i spanning U([a, b], p). Any such i can
cover all the timeslots t with p ≤ χ(t) ≤ χ(i) and so the recursive component
focuses on U([a, b], χ(i) + 1).
Proof of Corollary 2: We now focus on the partial version of the LIC problem;
here the input also includes an integer k and the goal is to find an optimum
solution that covers at least k timeslots. We can extend the recurrence relation
used in solving LIC to the partial cover setting. For a range of timeslots [a, b],
a color p and a number r, let pDP([a, b], p, r) be the cost of the optimum set
of intervals covering at least r of the timeslots in U([a, b], p). Using Corollary
3, we can write a recurrence relation for pDP([a, b], p, r). For a color q ≥ p,
let λ([a, b], [p, q]) be the number of timeslots t such that p ∈ [a, b] and χ(t) ∈
[p, q]. Corollary 3 establishes the following recurrence relation: pDP([a, b], p, r) =
min{Q1, Q2), where

Q1 = min
a≤t≤b−1

r1≤r

{pDP([a, t], p, r1) + pDP([t+ 1, b], p, r − r1)}

Q2 = min
i spans U([a,b],p)

{ci + pDP([a, b], χ(i) + 1, r − λ([a, b], [p, χ(i)]))}.

In Q1, in addition iterating over all possible cuts t, we also iterate over r1, which
symbolizes the number of timeslots that would be covered in the first range. In
Q2, we try all the possible intervals i spanning U([a, b], p), while keeping count of
the timeslots that got covered by the choice of i (i.e., λ([a, b], [p, χ(i)]). Based on
the above recurrence relation, we can write an dynamic program based algorithm;
the final solution corresponds to the entry pDP([1, T], 1, k)). The running time of
the algorithm is O(km4); here m = max{n, T}, where k is the number timeslots
required to be covered, n is the total number of intervals and T is the total
number of timeslots. The problem of finding the optimum SRA k-partial cover
can be reduced to the partial LIC problem, thereby establishing Corollary 2.

3 Approximation algorithm for the (0,1)-ResAll problem

In this Section, we present a primal-dual based 4-approximation algorithm for
the (0,1)-ResAll problem.
The IP Formulation: As indicated in the introduction, we consider the
strengthened LP augmented with so called flow-cover inequalities. We associate
a variable xi with each i ∈ I; this variable is an indicator variable for whether
the resource i is selected in the solution. There will be a constraint for every set

11

S ⊆ I of intervals: given that the set S is already chosen, the solution must pick
enough intervals from the remaining intervals in I, such that the residual demand
is covered. With this goal in mind, given a set S, let dt(S) denote the residual

demand, i.e. dt(S) = dt −
∑

i∈S∩A(t) hi. We define h̃(i, t, S) = min{hi, dt(S)}.
Then, the IP is as follows.

min
∑
i∈I

xi · ci∑
i∈A(t),i ̸∈S

h̃(i, t, S) · xi ≥ dt(S) for all time-slots t and all subsets S ⊆ I

xi ∈ {0, 1} for all i ∈ I

One could have written simpler IP with hi replacing h̃(i, t, S) in the constraints
above. However, it can be shown that the corresponding LP also has an un-
bounded integrality gap.

We will consider the LP corresponding to the above IP , formed by relaxing
the integrality constraints xi ∈ {0, 1} to xi ≥ 0. The dual of the LP is as follows:
the dual has variables z(S, t) corresponding to the primal constraints.

max
∑
(S,t)

z(S, t) · dt(S)

∑
(S,t):i∈A(t),i ̸∈S

h̃(i, t, S) · z(S, t) ≤ ci for every interval i

z(S, t) ≥ 0 for all (S, t) : S ⊆ I

Note that the primal LP has exponentially many constraints, one for each
(S, t) pair; thus the dual has exponentially many variables. However, in the
primal dual algorithm that we describe in the following we shall set only poly-
nomially many variables in the dual to non-zero values.

Our primal-dual algorithm runs in two phases, a forward phase and a delete
phase. The forward phase produces a dual feasible solution z and a primal inte-
gral feasible solution A. The second phase outputs an arbitrary minimal feasible
solution B contained within A.
Forward Phase: Our goal is to produce a dual feasible solution z having high
objective value (max

∑
(S,t) z(S, t) · dt(S)). Towards that goal we will raise the

dual variables z(S, t) one by one in a greedy fashion. In each step, we shall raise
the variable z(S, t) that gives us the highest benefit (while maintaining feasibility
of the solution).

Let S0 = ∅. The procedure runs in multiple iterations. For j ≥ 1, the jth
iteration is as follows. Let tj be the timeslot t having the highest residual demand
dt(Sj−1). Raise the dual variable z(Sj−1, tj) till some dual constraint becomes
tight; let the interval in the primal corresponding to this constraint be ij . Set
Sj = Sj−1 ∪{ij}. Repeat this procedure until the set Sj covers all the timeslots.
Let the final set obtained by the procedure be A = {i1, i2, . . . , iℓ}, where ℓ is
the number of iterations.

12

Note that the set A is a feasible solution to our problem and z is a feasible
solution for the dual. Moreover, this pair satisfies the primal complementary
slackness condition:

i ∈ A =⇒
∑

(S,t):i∈A(t),i̸∈S

h̃(i, t, S) · z(S, t) = ci

Delete Phase: In this phase, we keep deleting intervals (in an arbitrary order)
from A while maintaining feasibility of the solution; the process produces a
minimal feasible solution B contained within A.
Analysis: We shall show that the solutions B and z satisfy the complemen-
tary slackness conditions approximately. Notice that the delete phase did not
modify the dual solution z. Thus, the primal complementary slackness condi-
tions remain satisfied. The following lemma shows that B and z satisfy the dual
complementary slackness conditions approximately.

Lemma 5. The solution B and z satisfy:

z(S, t) > 0 =⇒
∑

i∈A(t)
i∈B−S

h̃(i, t, S) ≤ 4 · dt(S) (3)

Proof. The only dual variable with non-zero values are (S0, t1), (S1, t2),. . .,
(Sℓ−1, tℓ). Fix any r ≥ 0 and let us argue that the slackness condition holds
for the pair (Sr, tr+1). Let t

∗ = tr+1 and let X = {ir+1, . . . , iℓ}∩A(t∗). We need
to show: ∑

i∈X

h̃(i, t∗, Sr) ≤ 4 · dt∗(Sr)

Arrange the intervals from X in the increasing order of their start-times,
say u1, u2, . . . , us, where s = |X|. From this ordering, keep picking intervals i

until the sum of their adjusted heights h̃(i, t∗, Sr) exceeds dt∗(Sr). Let X1 be
the set of chosen intervals. Let t1 be the start-time of the last interval picked.
Similarly, arrange the intervals fromX in the decreasing order of their end-times,
say v1, v2, . . . , vs. From this ordering, keep picking intervals i until the sum of
their adjusted heights h̃(i, t∗, Sr) exceeds dt∗(Sr). Let X2 be the set of chosen
intervals. Let t2 be the end-time of last interval picked. The sets X1 and X2 need
not be disjoint. We claim that X = X1 ∪ X2. By contradiction, suppose there
exists some other interval i ∈ X. Then, i must be contained in the range [t1, t2].
The interval i can be removed from our solution B without violating feasibility
of B. To see this, notice that at any timeslot t ∈ [t1, t

∗] where i is active, the sum
of heights of intervals in X1 exceeds dt∗(Sr). Similarly, at any timeslot t ∈ [t∗, t2]
where i is active, the sum of heights of intervals in X2 exceeds dt∗(Sr). Also it
is true that dt∗(Sr) ≥ dt(Sr), because of the choice of t∗ in the iteration r + 1
in the forward phase. Therefore, i is redundant and can be removed. Given that
B is a minimal feasible solution, such an i cannot exist. This proves the claim
that X = X1 ∪X2.

13

Consider the quantity W1 =
∑

i∈X1
h̃(i, t∗, Sr). The quantity W1 is at least

dt∗(Sr), but it cannot exceed 2dt∗(Sr), because every interval i ∈ X1 satisfies

h̃(i, t∗, Sr) ≤ dt∗(Sr). Similarly, the quantity W2 =
∑

i∈X2
h̃(i, t∗, Sr) satisfies

W2 ≤ 2dt∗(Sr). It follows that∑
i∈X

h̃(i, t∗, Sr) ≤ 4 · dt∗(Sr) ≤ W1 +W2 ≤ 4 · dt∗(Sr).

⊓⊔
Lemma 5 and the primal slackness property together imply that the solution

B constructed by the algorithm satisfies cost(B) ≤ 4 · cost(Opt), where Opt is
the optimum solution.

References

1. N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A quasi-PTAS for un-
splittable flow on line graphs. In STOC, 2006.

2. P. Bonsma, J. Schulz, and A. Wiese. A constant factor approximation algorithm
for unsplittable flow on paths. In FOCS, 2011.

3. T. Carnes and D. Shmoys. Primal-dual schema for capacitated covering problems.
In IPCO, 2008.

4. V. Chakaravarthy, A. Kumar, G. Parija, S. Roy, and Y. Sabharwal. Minimum cost
resource allocation for meeting job requirements. In IPDPS, 2011.

5. D. Chakrabarty, E. Grant, and J. Könemann. On column-restricted and priority
covering integer programs. In IPCO, 2010.

6. C. Chekuri, M. Mydlarz, and F. Shepherd. Multicommodity demand flow in a tree
and packing integer programs. ACM Transactions on Algorithms, 3(3), 2007.

7. A. Dhesi, P. Gupta, A. Kumar, G. Parija, and S. Roy. Contact center scheduling
with strict resource requirements. In IPCO, 2011.

8. R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial
covering problems. J. Algorithms, 53(1):55–84, 2004.

9. N. Garg. Saving an ϵ: a 2-approximation for the k-MST problem in graphs. In
STOC, pages 396–402, 2005.

10. D. Golovin, V. Nagarajan, and M. Singh. Approximating the k-multicut problem.
In SODA, 2006.

11. O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM, 22:463–468, October 1975.

12. A. Ingolfsson, F. Campello, X. Wu, and E. Cabral. Combining Integer Program-
ming and the Randomization Method to Schedule Employees. European J. Oper-
ations Research, 202(1):153–163, 2010.

13. K. Jain and V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation.
J. ACM, 48(2):274–296, 2001.

14

