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ABSTRACT
For many years, the highest energy cost in processing has been
data movement rather than computation, and energy is the limiting
factor in processor design [21]. As the data needed for a single
application grows to exabytes [56], there is clearly an opportunity
to design a bandwidth-optimized architecture for big data compu-
tation by specializing hardware for data movement. We present the
Data Processing Unit or DPU, a shared memory many-core that
is specifically designed for high bandwidth analytics workloads.
The DPU contains a unique Data Movement System (DMS), which
provides hardware acceleration for data movement and partition-
ing operations at the memory controller that is sufficient to keep
up with DDR bandwidth. The DPU also provides acceleration for
core to core communication via a unique hardware RPC mecha-
nism called the Atomic Transaction Engine. Comparison of a DPU
chip fabricated in 40nm with a Xeon processor on a variety of data
processing applications shows a 3× - 15× performance per watt
advantage.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
Special purpose systems;

KEYWORDS
Accelerator; Big data; Microarchitecture; Databases; DPU; Low
power; Analytics Processor; In-Memory Data Processing; Data
Movement System

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123985

ACM Reference format:
Sandeep RAgrawal, Sam Idicula, Arun Raghavan, Evangelos Vlachos, Venka-
traman Govindaraju, Venkatanathan Varadarajan, Cagri Balkesen, Georgios
Giannikis, Charlie Roth, Nipun Agarwal, and Eric Sedlar. 2017. A Many-core
Architecture for In-Memory Data Processing. In Proceedings of MICRO-50,
Cambridge, MA, USA, October 14–18, 2017, 14 pages.
https://doi.org/10.1145/3123939.3123985

1 INTRODUCTION
A large number of data analytics applications in areas varying
from business intelligence, health sciences and real time log and
telemetry analysis already benefit from working sets that span
several hundreds of gigabytes, and sometimes several terabytes of
data[9]. To cater to these applications, in recent years, data stores
such as key-value stores, columnar databases and NoSQL databases,
have moved from traditional disk-based storage to main-memory
(DRAM) resident solutions [1, 9, 40]. However, today’s commodity
hardware solutions, which serve such applications employ powerful
servers with relatively sparse memory bandwidth—a typical Xeon-
based, 2U sized chassis hosts 8 memory channels (4 channels per
socket).

For applications which scan, join and summarize large volumes
of data, this hardware limit on memory bandwidth translates into
a fundamental performance bottleneck [8, 35, 49, 62]. Furthermore,
several features which contribute to server power, such as paging,
large last-level caches, sophisticated branch predictors, and double-
precision floating point units, have previously been found to be
unutilized by applications which rather rely on complex analytics
queries and fixed-point arithmetic [2, 9]. The work presented in
this paper captures a subset of a larger project which explores the
question: How can we perform analytics on terabytes of data in
sub-second latencies within a rack’s provisioned power budget? In
particular, this paper focuses on optimizing the memory bandwidth
perwatt on a single, programmable data processing unit (DPU). This
scalable unit then allows packing up to ten times as many memory
channels in a rack-able chassis as compared to a commodity server
organization.

https://doi.org/10.1145/3123939.3123985
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To identify on-chip features essential for efficient execution, we
analyzed the performance of complex analytics on large volumes
of data like traditional TPC-H query benchmarks, and also more
contemporary text and image processing operations applied when
ingesting and querying data from memory. Firstly, a large portion
of the power in present systems is spent in bringing data closer to
the cores via large cache hierarchies [34]. Secondly, these queries
need to be broken down into simple streaming primitives, which
can then be efficiently parallelized and executed [48]. Thirdly, the
variety of operations performed by these queries raises the need
for the cores to be easily programmable for efficiency.

We examined alternate commodity low-power chip architectures
for such applications. GPUs have been increasingly popular in data
centers for their significant compute capabilities and memory band-
width [3, 4, 29, 30]. However, their SIMT programming model is
intolerant to control flow divergence which occurs in applications
such as parsing, and their dependence on high bandwidth GDDR
memory to sustain the large number of on-die cores severely con-
strains their memory capacity.

We also considered FPGA based hardware subroutines to of-
fload functions, reviewed contemporary work on fixed-function
ASIC units for filtering, projecting, partitioning data and walking
hash-tables ( [36, 41, 61, 62]), and experimented with large, net-
worked clusters of wimpy general-purpose cores similar to prior
research[5, 38]. We found that while ASIC units could significantly
reduce power over off-the-shelf low-power cores by optimizing data
movement, very specific fixed function units separated from the
instruction processing pipeline impeded application development.

We therefore opted to engineer a customized data processing unit
which integrates several programmable, low-power dpCores with
a specialized, yet programmable data movement system (DMS) in
hardware. Each dpCore contains several kilobytes of scratchpad
SRAM memory (called DMEM) in lieu of traditional hardware man-
aged caches. Software explicitly schedules data transfers via the
DMS to each dpCore’s DMEM through the use of specialized instruc-
tions called descriptors. Descriptors enable individual dpCores to
schedule extremely efficient operations such as filter and projection,
hash/range partitioning and scatter-gather operations at close to
wire-speed. Each DPU also consists of a dual-core ARM A9 Osprey
macro and an ARM M0 core to host network drivers and system
management services.

Each dpCore is capable of fixed-function arithmetic, full 64-bit
addressability, and can communicate and synchronize with other
dpCores using a custom Atomic Transaction Engine (ATE) as an
alternative to hardware-based cache coherence. The extremely low
power design (50mW per dpCore and 6W for the entire DPU in the
40nm node) allows us to scale this unit, attached to every DRAM
channel across a whole rack. Our initial prototype consists of 1440
DPUs, each with 32 dpCores and an 8GB of DDR3 memory, pro-
viding an aggregate memory bandwidth of >10TB/s and a memory
capacity of >10TB in a full-sized (42U) rack.

As noted by previous studies of analytics workloads [22], (i)
execution-time is dominated by stalls in application code and oper-
ating system, with long-latency memory accesses contributing to
a bulk of the stalls, and (ii) there is little sharing of data between
processors. Hence we design our software runtime to schedule

application code without pre-emption on the dpCores and over-
lap data movement via the DMS. We also abstract inter-dpCore
communication and synchronization routines over the ATE to al-
low porting of common parallel programming paradigms such as
threads, task queues, and independent loops. These runtime hard-
ware abstractions enable large scale, efficient, in-memory execution
of heavyweight applications including SQL processing offloaded
from a commercial database on our prototype system.

The following sections describe our experiences with design-
ing, fabricating, and programming the DPU chip. In particular, we
highlight the following contributions:

• The low-power hardware architecture of the DPU (Section 2)
• The microarchitecture and software interface of our novel
data movement system (Section 3)

• The ISA extensions and programming environment which
allow relatively straightforward software development on
the DPU (Section 4)

• Example parallel applications which achieve 3× - 15× im-
provement in performance per watt over a commodity Xeon
socket when optimized for the DPU hardware (Section 5).

2 DPU ARCHITECTURE
The primary goal of the Data Processing Unit (DPU) is to optimize
for analytic workloads [22, 47, 58] characterized by (i) large data
set sizes [63] (in the order of tens of TB), (ii) data parallel com-
putation, and (iii) complex data access patterns that can be made
memory bandwidth-bound using software techniques. A typical
analytic workflow involves partitioning the working set into sev-
eral data chunks that are independently analyzed, followed by a
final result aggregation stage [47]. Hence an ideal architecture for
such a memory-bound workload would aim to compute at memory-
bandwidth.

Such computation at memory bandwidth requires keeping the
workload memory-resident, with DRAM memory channels feeding
data into the processing units. With a practical memory channel
bandwidth of 10 GBps (DDR3-1600), to scan a nominal workload
size of 10 TB in under a second, we require ≈1000 channels per
rack. This results in 3KW (at 3W per channel) budgeted for main
memory leaving only 17W (considering 20KW per rack [5]) for the
rest of the system (per channel) including networking between the
DPUs. A standard PCIe controller consumes a minimum of 10W,
leaving a power budget of < 7W for the processor.

Two principles therefore guide the DPU’s architecture: (i) spe-
cialize hardware to optimize for data movement, and (ii) replace
power-hungry hardware features which are not performance criti-
cal for data parallel applications with low power hardware assists
which allow software to implement the feature.

2.1 Data Movement
Efficiently moving data from memory to the computation unit is a
key challenge for our data-intensive workloads. Commodity pro-
cessors utilize hardware prefetchers to keep data close to cores.
Besides being large and power-hungry, such structures may also
fail to learn irregular data access patterns [22]. Instead we utilize a
software-programmable data movement engine called Data Move-
ment System (DMS) in conjunction with a small (32KB) software
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managed scratchpad SRAM called DMEM to feed the processing
cores. Unlike conventional DMA engines, the DMS supports com-
plex access patterns that involve data partitioning and projection
while transferring data. Although the idea of using specialized data
movement engines particularly for partitioning data has been pro-
posed in the past [61], our proposed DMS directly places data in
DMEM making it immediately available for consumption for the
processing cores.

A task running on the data processing unit programs the DMS us-
ing a simple data movement specification called a descriptor which
instructs the DMS engine to move data in and out of the DMEM.
The power of DMS descriptors is exemplified by the fact that 16MB
of data can be streamed through a DMEM of 32KB at line speeds
with just three DMS descriptors (detailed in Section 3). Our experi-
ments achieve a maximum bandwidth greater than 10 GBps—near
peak bandwidth on a DDR3 channel.

2.2 Data Processing
With energy-intensive data movement offloaded to the DMS, the
data processing cores (called dpCore) demand a simpler, low-power
design. The dpCore features a 64-bit MIPS-like ISA for general pur-
pose compute. To accelerate common analytic query operations
like filters and joins, the ISA provides single-cycle instructions like
bit-vector load (BVLD), filter (FILT) and CRC32 hashcode genera-
tion. For example, in conjunction with efficiently loading data into
DMEM, the BVLD and FILT instructions could be repeatedly used
to efficiently filter through a sparsely populated column. These
instructions help with accelerating common data summarizations
like population counts and scatter-gather masks.

The dpCore implements a simple dual-issue pipeline, one for the
ALU and the other for the LSU pipe. The ALU supports a low-power
multiplier that stalls the pipeline for multiple cycles and has no
native support for floating point arithmetic. In addition, the dpCore
uses a simple conditional branch predictor that predicts backward
branches as taken. The memory model is relaxed, with instructions
to fence-off pending loads and stores.

The dpCore has no memory management unit and programs
directly address physical memory. Hence all programs running on
the dpCore share the same address space. To support basic soft-
ware debugging and simple address space protection, the dpCore
provides a few instruction and data watchpoint registers that raise
an exception on any address boundary violation.

Overall, there are 32 low-power dpCores organized into 4 macros
(shown in Figure 1) where some DMS logic private to the dpCores
(shown as DMAD in the figure) is replicated along with the dpCores.
The 32 dpCores cooperatively work on large datasets in DRAM
exploiting any data-parallelism. The 4 dpCore macros together with
the DMS form the dpCore Complex that does the bulk of all the
work in the larger SoC (more details in Section 2.4).

2.3 On-Chip Communication
Although the majority of a workload’s data accesses go through the
DMEM using the DMS, the dpCore also supports a general-purpose
cache hierarchy, which includes core-private 16KB L1-D and 8KB L1-
I caches and a 256KB last level (L2) cache shared between dpCores
in a macro. To reduce chip complexity and power, hardware does

Figure 1: Block diagram of a dpCore Macro

not manage coherency between caches. Instead, the ISA provides
cache flush and invalidate instructions to enable software-managed
coherence.

A hardware block called the Atomic Transaction Engine or ATE
allows communication between the dpCores. The ATE block com-
prises of a 2-level crossbar—one crossbar connecting 8 dpCores in
a macro and one between the 4 macros, and hardware to manage
messaging with guaranteed point-to-point ordering over this inter-
connect. The ATE software registers space in each dpCore’s DMEM
for use by the ATE hardware block. On each dpCore, the hardware
ATE engine manages the DMEM pointers and delivers messages
and interrupts.

The ATE hardware interprets certain messages as remote proce-
dure calls to be performed by hardware on the receiving dpCore.
The message types and payload can request for a load, store, atomic
fetch and add, or an atomic compare-and-swap operation to be
performed on any address in DDR or DMEM space at the remote
dpCore (ATE Hardware RPCs). Upon receipt, the ATE engine in
the remote core decodes and injects the operation in the dpCore
pipeline. Although such an operation appears as stalls in the remote
dpCore’s instruction stream, it does not generate an interrupt or
perturb the instruction cache. The ATE supports more complex
atomic operations in the form of software remote procedure calls
(ATE Software RPCs). When the ATE hardware dequeues messages
of this type, it interrupts the software on the remote core and jumps
to a pre-installed software handler which then executes to comple-
tion. Hardware RPCs are similar to x86 atomics, except that they
allow a dpCore to operate on another dpCore’s DMEM directly.

Hardware RPCs enable efficient synchronization primitives such
as mutexes and barriers, while software RPCs allow an environment
to flush, invalidate and mutate shared address ranges. For remote
procedure calls which expect return values (such as fetch-and-add),
the ATE hardware ensures atomicity, FIFO ordering through the
interconnect, and stalls the requesting dpCore until the value is
received. Software on the dpCore may issue one outstanding ATE
request at a time, after which it can choose to process regular
instructions before eventually blocking for response from the ATE
hardware. Figure 2 shows measured response times for typical
ATE requests; by scheduling independent instructions for such
duration between ATE requests and waiting for response, software
can optimize for throughput.
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Figure 2: Performance of ATE remote procedure calls

Figure 3: Block diagram of a DPU

2.4 SoC Organization
Putting it altogether, the DPU is a System-on-a-Chip that features
the above described low-power specialized dpCore complex op-
timized for data-parallel analytic workloads. In addition to the
dpCore complex, the SoC also includes a Power Management Unit
(PMU or M0), an ARM Cortex-A9 dual core processor, a MailBox
Controller (MBC) and some peripherals (including PCIe and DRAM
controllers). A schematic depiction of the DPU SoC is shown in
Figure 3.

The M0 processor manages the dpCore’s power modes (supports
4 states) and enables power gating of individual dpCore macros.
The A9 processors serve as a networking endpoint and provides a
high bandwidth interface to peer DPUs by running an Infiniband
network stack on Linux.

The MBC is a hardware queue [37, 54, 59], providing a simple
communication interface that connects the dpCores, A9 cores and
the M0 processor. Its goal is to facilitate quick exchange of light-
weight messages (i.e., sending a pointer to a buffer in memory),
while the bulk of the data is communicated through main memory.
It maintains a total of 34 mailboxes, one for every dpCore, one
for the A9 cores and one for the M0. The MBC maintains a set
of memory mapped (RD/WR) control and data registers for each
mailbox that can be used to send (WR) and receive (RD) on that

Figure 4: dpCore processor implementation

Figure 5: DPU power breakdown (Total power = 5.8 W)

mailbox. Each mailbox also controls an interrupt line that is used to
notify the corresponding destination core on arrival of a message.

2.5 Fabrication
We fabricated the DPU using a 40 nm process, with a silicon area
of 90.63 mm2 and 540 millions transistors, of which 268 million
transistors are used for memory cells. Figure 4 shows the implemen-
tation of a single dpCore. We went through an extensive physical
design and verification process, the details of which are beyond
the scope of this paper. We used formal verification techniques as
well, and almost 16% of our RTL bugs were found via formal tools.
We design the DPU for a provisioned power of 5.8W, and Figure
5 shows the power breakdown of the 40 nm DPU from the post
silicon flow. Over 37% of our power goes towards leakage, since
we use high leakage circuits to meet timing constraints. Each dp-
Core consumes 51 mW of dynamic power at 800 MHz, highlighting
our focus on low power design and efficiency. We optimize this
design for provisioned power, not dynamic power, since our aim is
to minimize rack-scale provisioning costs.

We also designed a variation of the DPU architecture for the 16
nm process node. This process shrink allows us to increase dpCore
density to 160 dpCores on a die, and the number of transistors to
3 Billion. To avoid additional design costs, we replicate 5 copies
of the existing 32 dpCore complex on the new DPU. These com-
plexes share an upgraded DDR4-3200 main memory unit providing
76 GB/s of memory bandwidth/DPU allowing us to maintain our
memory-compute design point. This also increases the TDP of a
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Figure 6: Data Movement System (DMS)

DPU to 12W, however with a 5× increase in compute and mem-
ory bandwidth, each DPU becomes 2.5× more efficient in terms of
performance/watt.

3 DATA MOVEMENT SYSTEM
DMS is the cornerstone of the DPU that is critical to achieving
our design goals: 1) optimize for data movement at memory band-
width and 2) low power design. Particularly, in this section we
will highlight three main characteristics of DMS that directly stem
from these design principles. First, the DMS is designed to acceler-
ate common data movement in analytics processing like scanning,
data partitioning and projection (Section 3.1). Second, the DMS mi-
croarchitecture is designed to fully utilize available system memory
bandwidth using well-known techniques like FIFO flow control,
buffering and pipelining (Section 3.2). Finally, the DMS exposes
this advanced data movement functionality with a novel software
interface (Section 3.3) that completely decouples the core from data
movement with infrequent and low overhead interactions. Similar
to prior work [61, 62], the DMS is hence able to accelerate common
data analytics operations (Section 3.4).

3.1 Architecture Overview
The DMS is a specialized hardware unit that directs data transfer
between DDR memory and DMEM attached to each dpCore. Inter-
nally, the DMS hardware implements several functions to interpret
memory traffic as fixed-width tuples: (i) stride over, scatter, and
gather data across DMEM into and from contiguous DRAM address
ranges, (ii) partition data into different dpCore’s DMEMs based on
programmable hash, radix and range comparisons , (iii) buffer and
move intermediate results in internal SRAMmemories, (iv) perform
flow control and manage portions of DMEM without intervention
from the dpCores. Software programs these functions by issuing

Figure 7: DMS descriptor chain used in the DMS example.

commands to the DMS in the form of 16B DMS descriptors, that
enable pipelining movement and restructuring of data while run-
ning independently of more complex operations executing on the
dpCores. The DMS architecture organization is shown in Figure 6.

dms_descriptor* desc0 = dms_setup_ddr_to_dmem(256,
src_addr, dest_addr, event0);

dms_descriptor* desc1 = dms_setup_ddr_to_dmem(256,
src_addr, dest_addr + 1024, event1);

dms_descriptor* loop = dms_setup_loop(desc0, 8191);
dms_push(desc0);
dms_push(desc1);
dms_push(loop);
count = 0; buffer_index = 0;
dms_event events[] = {event0, event1};
do {
dms_wfe(events[buffer_index]);
consume_rows();
clear_event(events[buffer_index]);
buffer_index = 1 - buffer_index; // toggle index

} while (++count != 16384);

Listing 1: DMS Programming Example

DMS Interface and Execution Model. Software constructs the
descriptor in DMEM and issues a push instruction identifying the
DMEM pointer and one of two DMS channels on the dpCore’s
DMS interface (typically segregating read and write operations). A
hardware unit called the DMAD per-dpCore (DMA DMEM unit) en-
queues descriptors on to an active list per channel. The DMAD links
(i.e., chains) together descriptors issued on the same channel. Soft-
ware may issue a special loop control descriptor to point back to a
previous descriptor and indicate a fixed iteration count. The DMAD
manages such descriptor lists and loops without intervention from
dpCores. It also has source and destination address registers to
support auto-increment functionality within DMS loops (refer ex-
ample). Descriptors from each of the 32 read and write active lists
then arbitrate via a crossbar (DMAX) into a central DMA controller
(DMAC). Read and write engines in the DMAC schedule DDR trans-
fers over a standard 128-bit AXI interface. Data received from DDR
may be transfered into a receiving DMEM via the DMAX (in case of
read or gather). The DMAC also performs address calculations (e.g.,
source and destination increments and wrap-arounds) to enable
successive data transfers. After completing the data transfer the
DMS signals back to the dpCore using a novel asynchronous event
notification interface. The software checks for any such outstanding
event by using a Wait-For-Event or wfe instruction.
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Figure 8: DMAC Block Diagram.

To help demonstrate the utility of the DMS interface, we will use
a simple data move from DDR to DMEM as a running example. The
program shown in Listing 1 transfers 16MB of contiguous data from
DRAM to DMEM. The two DMS descriptors (desc0 and desc1) are
programmed to write 256 4B elements into DMEM on execution,
with each descriptor identifying a unique buffer in DMEM. The
DMAD links the descriptors and the loop descriptor completes
the chain (Figure 7), enabling consecutive iterations to operate on
alternate buffers with auto-increment source address, while the
dpCore is free to consume the buffer filled in the previous iteration.
DMS Partitioning. To do complex data movement like range par-
titioning, data from DDR can alternatively be buffered internally
in the DMAC in specially dedicated SRAM banks called column
memories (CMEM). Descriptors issued to the DMAC can further
process data in column memories. A hash and range engine can
apply a CRC32 checksum to the elements of the column memories
and stage the result in another dedicated internal memory called
CRC memory. The engine can be programmed to inspect radix
bits of the resulting hashed column (or alternatively the original
key column) and generate a dpCore ID for each result (hash radix
partitioning). The DMAC can also generate dpCore IDs by match-
ing each column memory item against one of 32 pre-programmed
ranges (range partitioning). The dpCore IDs thus generated are also
stored in dedicated SRAM banks (CID memory). As a final stage in
partitioning, descriptors instruct the DMAC partitioning and store
engines to write the resulting data into specified locations in each
dpCore’s DMEM. A fourth class of internal memory is dedicated
for storing bit vectors which are typically used as scatter-gather
masks when moving data. In all, the DMAC has about 42.5 KB of
dedicated SRAM, banked so that the internal pipeline may be fully
utilized (more later). Figure 8 shows the organization of the DMAC
unit.
Flow control and synchronization. The DMS associates with
each dpCore a list of 32 binary events. Descriptors typically encode
the setting or clearing of a particular event to signal waiting (pre-
condition) and notification (post-processing). In the example, desc0
and desc1 are associated with event0 and event1 respectively to
signal to the dpCore that the corresponding DMEM buffers have
been filled. The DMAX supports FIFO flow control between the

DMS Operations
Data
Movement
Direction:
Source→Dest.
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Main Purpose

DDR↔DMEM X X X
Direct data
read/write to/from
memory

DMS→DMS
Move data
between the DMS
internal memories

DMS→DMEM X X
Partition pipeline
and store to
DMEM

DMEM→DMS X
Transfer RID/BV
data for
Scatter/Gather

DDR→DMS X X load key/data for
partitioning

DMS→DDR X Store hash/CID
memory to DDR

Table 1: DMS Data Descriptor Types and Supported Opera-
tions.

DMS to DMEM buffers which to coordinate the data transfer. On
rate mismatch—for example if the dpCore is unable to process
buffers at DRAM bandwidth, the DMAC hardware thus applies
back pressure to restore flow control.

From the DMAC interface, a maximum of 4 descriptors may be
outstanding to the DMAC at any instant. On the DRAM interface,
the AXI bus provides 128-bit read and write data paths, and a
maximum of 256B can be requested per transfer request. Hence
larger DMS transfers are broken by the DMAC into multiple AXI
transactions.

3.2 DMAC Microarchitecture
The three core operations of the DMAC—(a) loading from DDR to
DMS memory, (b) hashing and computing core/partition IDs, and
(c) storing partitions from DMS memory to DMEMs, are pipelined
in hardware to allow for maximal throughput. The DMAC receives
descriptors from DMAD via one of the four DMAX complexes (one
DMAX per macro). Hence there are four load/store engines in the
DMAC. To support scatter and gather in parallel, the internal bit
vector memory is hence also banked four ways (4KB per bank). To
fully sustain the three stage pipeline, the load/store engines stage
the column data in three banks of column memory (each bank is
8KB).

The hash engine computes the hash on the column memory and
writes to the CRC memory, while the radix stage computes core
IDs based on the contents of the CRC memory. Double-buffering
the CRC memory in two separate banks (each bank is 1KB) allows
these stages to proceed in parallel. Finally, the CID memory is
also double buffered (256B per buffer) to allow the DMS to create
and consume partitions in parallel. Figure 9 illustrates how the
hash partition pipeline is implemented. Although this organization
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Figure 9: DMS Hash Partitioning Pipeline in DMAC.

Word0 Word1 Word2 Word3

Type[31:28], Notify[25:21],
Wait[20:16], LinkAddr[15:0]

ColWidth[30:28], GatherSrc[25], ScatterDst[24], RLE[23],
SrcAddrInc[17], DstAddrInc[16], DDRAddr[3:0]

Rows[31:16],
DMEMAddr[15:0]

DDR
Addr[35:4]

Table 2: Layout of DDR to DMEM Data Descriptor.

Figure 10: Three Stage Pipelining of DMSHash Partition Op-
eration: Here each key and data columns are loaded into one
of the three column memories (one per stage), with appro-
priate event wait control descriptors to do flow control.

makes pipelining partitioning possible, the rich interface of the
DMS descriptors is essential for exposing it to the software.

3.3 DMS Descriptors
TheDMS interface is designed to enable a complex software pipeline
that fully overlaps stages of compute over data movement stages
in analytics applications. As mentioned earlier, DMS descriptors
are macro instructions that compactly encode the DMS operations,
source address, destination address and other control information
such as events. There are two classes of DMS descriptors: data and
control. The data descriptors, as the name suggests, help encode
source/ destination address and data operations among others. Ta-
ble 1 lists all types of data descriptors and supported operations in
the DMS. An example DDR→DMS data descriptor layout is shown
in Table 2. The control descriptors help program loops (as shown in
the example), hash and range engine, and also to provide complex
event operations like waiting (or set) on one or more events.

Figure 11: Bandwidth achieved across 32 dpCores for read-
ing and reading+writing data via the DMS.

To illustrate the richness of the descriptor interface, a program-
mer can pipeline the hash partitioning operation (pictorially rep-
resented in Figure 10) using a combination of data and control de-
scriptors. For lack of space the complete pseudocode is not shown
here. We show that this pipelining ability achieves our ultimate
goal of supporting hash partitioning at DDR memory bandwidth
in the next section.

3.4 DMS Performance
In this section we highlight the raw performance and efficiency of
DMS in doing common data analytics operations by using appro-
priate microbenchmarks.
DMS Read and Write Bandwidth.We start with measuring the
read and write performance achieved using the DMS. Each dpCore
reads (R) and reads/writes (RW) a table with 4K rows in memory
stored in column-major format. We measure the achieved DMS
bandwidth across all dpCores by varying the number of columns
per row (1-32), size of each column (1, 4, 8B) and tile size in DMEM
(64, 128, 256B) used by the dpCores to R/W.

Figure 11 shows the results of this experiment (for column width
= 4B). For brevity, we do not show other column widths as they
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Figure 12: Bandwidth achieved across 32 dpCores for the
bitvector gather operation using the DMS.

show similar trends. We would like to call out three interesting
observations. First, we observe a slight decrease in bandwidth as
the number of columns increases. As DMS fetches one column
at a time, it observes a small latency overhead in fetching non-
contiguous DRAM pages. Second, large buffer sizes amortize fixed
DMS configuration overheads resulting in higher bandwidths. Fi-
nally, DMS achieves a bandwidth of > 9 GB/s for a buffer size of 8
KB(128 rows/buffer, 4 columns, 4B column widths) which is about
75% of the peak DDR3 bandwidth, and this is also the bandwidth
we observe in many real applications (Section 5).
DMS Gather. We test a common analytic usecase that require
the DMS’s gather functionality. Here, we program the DMS to
gather rows from DRAM to DMEM corresponding to set bits in a
dense (0xF7) and a sparse (0x13) bitvector. The DMS is designed to
perform gather at line speeds, however, due to an RTL bug, the first
version of our chip could not utilize the DMS to its full potential
(results shown in Figure 12). In brief, when all 32 cores issue gather
operations, a FIFO that holds the bitvector counts in the DMAC
overflows causing the DMAD units to stall indefinitely. We use a
software workaround that ensures only a single dpCore issues a
gather operation at a time, hence the low gather bandwidth.
Hardware Partitioning.Asmentioned earlier, data partitioning is
an integral part of any large-scale analytics. To measure the achiev-
able bandwidth during DMS partitioning, we use a microbenchmark
that uses the DMS to do a 32-way partition of an large input re-
lation with four 4B columns. As before, the table is stored in the
column-major format. We program the DMS to fully utilize the
three stage pipeline illustrated earlier.

Figure 13 shows the effective bandwidth achieved with different
partition schemes available in the DMS. Radix partitioning uses 5
bits from a key column to partition the data into 32 ways. In all the
partitioning schemes, the DMS achieves 9.3 GB/s and outperforms
the previous published state-of-the-art hardware accelerator for
partitioning [61], where the partitioning throughput for a 32-way
partitioning is 6 GB/s. In fact, as the DMS helps decouple parti-
tion completely from the dpCores, we can sustain a 9 GB/s for an
additional 32 way software partition in parallel (i.e. a 1024 way
partitioning). Note at higher power budget conventional systems

Figure 13: Bandwidth achieved with DMS partitioning en-
gine

can achieve throughput higher than 9 GB/s using other techniques
like multi-threading or SMT [49].

4 SOFTWARE SYSTEM
The 32 dpCores, ARM cores, and firmware, each implement ISAs tar-
geted by off-the-shelf compilers (gcc cross-compiled on a familiar
development platform in case of this article). Each dpCore executes
the same binary executable image, linked with common system
utilities for hardware abstraction and concurrency primitives (for
example, remote cache flush/invalidation, atomics). Applications
are co-operatively scheduled to completion: only occasional inter-
rupts from a well-known set of sources (software remote procedure
calls via ATE, network messages over the mailbox, or a timer) cause
control to temporarily switch away from the application thread.
A two-level heap allocator similar to Hoard or TCMalloc [11, 24]
allows efficient, dynamic management of most of DRAM space.

void* dpu_serialized(core_id_t _id, void(*rpc)(void*),
void* args, visitor_fp args_visitor, visitor_fp
return_visitor);

When programming the non-coherent system, developers need
to be conscious about data placement, sharing patterns and data
ownership at any given point of execution. As a programming
practice, most shared data structures are pinned to a single owner
dpCore, and all manipulators are forced via a serialized interface
to the ATE’s remote procedure calls (see listing). The programmer
identifies the memory region pointed by any argument or return
parameters (visitors); the underlying software: (a) flushes the argu-
ment objects on the issuing core, (b) invalidates the same on the
remote core, (c) invokes the RPC with the function (the shared data
manipulator) on the remote dpCore, (d) flushes the return address
objects on the remote core, and (e) invalidates the remote regions
when the RPC returns to the sending dpCore. The use of common/-
physical address pointers on all cores (data as well as functions)
allows concisely encoding all information in the ATE message.

We developed debugging tools that identify data races and co-
herence violations, ranging from simulator extensions that monitor
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Workload Domain Applications
Support Vector
Machines

Machine Learn-
ing

Classification problems in healthcare [64][52],
document classification [32], handwriting
recognition [7]

Similarity Search Text Analytics Web search[13], Image Retrieval[12, 55]
SQL Operations SQL Analytics Queries on Structured Data
HyperLogLog NoSQL Analytics Spam Detection[10], Mining of massive

datasets[25], Database operations (COUNT
DISTINCT)

JSON Parsing NoSQL Analytics Dynamic webpages[60], Web services, Data ex-
change formats

Disparity Machine Vision Robotics[44], Pedestrian tracking[26]

Table 3: Our list of DPU Applications

code execution at instruction level to a static binary instrumenta-
tion tool that monitors code execution on the DPU at runtime. We
modified the compiler to align each global variable to cache-block
boundaries to avoid false sharing. Programmers tended to conser-
vatively flush/invalidate to avoid coherence errors which penalized
performance; we hence developed a tool to identify and quantify
redundant cache operations.

Apart from the dpCores, the firmware and ARM cores run es-
sential services such as network drivers (PCIe and Infiniband to
message other DPUs, mailbox driver to message dpCores or other
ARM cores within the same DPU), and system health reporting (e.g.,
thermal trips, memory faults). Within each DPU SoC, less than 1GB
of DRAM suffices to host the operating systems, driver, and user
code for the ARM cores, and the binary executable for the dpCores.
Such system services allowed us to scale several of the applications
in Section 5 across 500+ DPU clusters.

5 CO-DESIGN APPLICATIONS FOR DPU
We designed the DPU to be able to perform in-memory analytics at
peak memory bandwidth and corresponding power efficiency, and
we look at applications spanning a variety of domains (Table 3) on
our hardware. In this section, we describe how we used the unique
features of our hardware to implement each of these applications
efficiently; for comparison, we use x86 implementations that employ
state of the art algorithms.

We compare our numbers to a Xeon server, with two Intel Xeon
E5-2699 v3 18C/36T processors and 256GB DDR4 DRAM running
at 1600 MHz. For our DPU experiments, all datasets were converted
to 10.22 software fixed point. There has been a increasing amount
of research on using fixed point for machine learning algorithms
[28][17], and we observed negligible loss in accuracy while com-
paring with a floating point implementation. A simple 10.22 fixed
point approach works due to the fact that most machine learning
algorithms require data normalization, which constrains the range
of the numbers involved, leaving 22 bits to handle precision. To
compute performance/watt, we assume a TDP of 145W for the
Xeon, and 6W for the DPU. Figure 14 shows the performance/watt
gains of the 40nm implementation of the DPU for applications that
we looked at normalized to an optimized x86 implementation. The
power numbers correspond to provisioned SoC power for both the
DPU and x86.

Figure 14: DPU Efficiency gains for several applications

5.1 Support Vector Machines
Given a set of training samples, the Support Vector Machine (SVM)
problem aims to learn an optimal decision boundary in the sam-
ple space by iteratively solving a convex quadratic programming
problem. We implement a variation of the Parallel SMO algorithm
proposed by Cao et. al [14] on the DPU. Each iteration of the SMO
algorithm involves computing the maximum violating pair across
all training samples, and the algorithm converges when no such
pair could be found. We distribute the computation of the max-
imum violating pair across all dpCores, and each core sends its
local violating pair to a designated master core using the ATE. The
master then computes the error on the global pair, and broadcasts
the updated values to all dpCores using the ATE as well. We use
the DMS to read and write the samples and coefficients arrays at
line speeds, further improving efficiency.

We compare the DPU version with a multicore LIBSVM [16]
implementation on x86. We use 128K samples from the HIGGS [39]
dataset for evaluation. Optimal parameters are chosen for LIBSVM
(100MB kernel cache, 18 OpenMP threads) empirically. The DPU
version generates kernels on the fly, since we found generating and
maintaining a kernel cache for the entire dataset to be much slower.
A side-effect of our fixed point implementation is that the DPU
converges in 35% fewer iterations, with no loss in classification
accuracy, while being over 15× more efficient than LIBSVM.

5.2 Similarity Search on Text
The similarity search problem involves computing similarities be-
tween a group of queries and a set of documents indexed using
the tf-idf scoring technique, and coming up with topk matches for
each query. Computing cosine similarities for a group of queries
against an inverted index of documents can be formulated as a
Sparse Matrix-Matrix Multiplication problem (SpMM)[3]. We lever-
age recent research on optimizing SpMM on the CPU [46] and
the GPU [3] and implement these algorithms on x86 and the DPU.
Each query independently searches across the index, making the
problem easily parallelizable across multiple threads/dpCores. We
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Figure 15: Performance on a dpCore for the filter primitive

search across 4M pages in the English Wikipedia, using page titles
as queries, similar to [3].

A SpMM operation (C = A × B) relies on a simple principle,
accumulate rows of B corresponding to non-zero columns of A into
C. A and B are stored in the Compressed Sparse Row (CSR) for-
mat. Contemporary SpMM algorithms [3][46] rely on tiling (range-
partitioning) B and C, allowing working sets to fit in the LLC. The
CSR format makes DMS access to a tile challenging, since we cannot
know when a tile ends without actually reading the tile. Naively
using the DMS involves fetching a buffer containing a tile, utilizing
the tile, and discarding the rest of the buffer. This generates an
effective bandwidth of only 0.26 GB/s across 32 dpCores. We use
a novel technique for SpMM, where we fetch a buffer containing
multiple tiles into DMEM, and track state corresponding to the end
of each tile. Dynamically forming tiles allows us to consume all
data in DMEM, improving the effective bandwidth to 5.24 GB/s
on the DPU and a 3.9× improvement in performance/watt over
a optimized Xeon implementation (effective bandwidth across 36
cores - 34.5 GB/s).

5.3 SQL Operations
We implement a SQL processing engine on the DPU, and use it to
benchmark several common analytic operations as well as some
TPCH queries. We omit the design of this engine for brevity, and
focus on architectural features of the DPU that allow us to accelerate
this class of applications.

Filter. This is a basic SQL operation used to select rows that
satisfy a given condition. In our evaluation of filter, we program the
DMS to fetch a single column of data, and vary the tile size. TheDMS
fetches a tile of the requested size into DMEM; double-buffering
in DMEM is used to pipeline this with the dpCores’ execution of
BVLD and FILT instructions to generate a bitvector representing
the rows that satisfy the condition. A single dpCore achieves a
bandwidth of 482 Mtuples/second (Figure 15), which translates to
1.65 cycles/tuple, and a peak memory bandwidth of 9.6 GB/s for 32
dpCores.

Grouping and Aggregation (SQL Group-By). This SQL op-
eration consists of grouping rows based on the values of certain

columns (or, more generally, expressions) and then calculating ag-
gregates (like sum and count) within each group. It can be efficiently
processed using a hash table as long as the number of distinct groups
is small enough [20]. Since the access pattern is random and the
hash table size grows linearly with the number of distinct groups,
ensuring locality of access is very important for performance, espe-
cially on the DPU architecture.

Our query processing software is designed around careful parti-
tioning of the data to ensure that each partition’s data structures
(like a hash table, in the case of group-by) fit into the DMEM. This
also guarantees single-cycle latency to access any part of the hash
table, unlike a cache.

The process begins with the query compiler where the DMEM
space is allocated among input/output buffers, metadata structures
and the hash table in a way that maximizes performance. Typically,
each input/output buffer doesn’t benefit much from more than
0.5 KB and hence a large part of the DMEM space is allocated to
the hash table. Then the number of partitions needed to achieve
that hash table size per partition is calculated. The partitioning
needs to be performed using a combination of hardware and/or
software partitioning. Software partitioning internally uses DMEM
buffers for each partition and column; so, based on the number
of columns involved, we can calculate the maximum number of
software partitions that can be achieved in one "round" (round-
trip through DRAM, reading data in and writing it out as separate
partitions) at a rate that is close to memory bandwidth. The number
of rounds of partitioning required is then calculated and partition
operators are added to the query plan before the grouping operator.

At runtime, if the size of a partition is larger than estimated,
the execution engine can re-partition the data for that partition as
needed. In the last round, if the number of partitions is less than
the number of cores, only hardware partitioning is needed; this is
especially useful for moderately sized hash tables (which are larger
than DMEM but not larger than the combined size of all the cores’
DMEM) since no extra round-trip through DRAM is needed.

Partitioning also provides a natural way to parallelize the op-
eration among the cores, since each core can usually operate on
a separate partition. But when the number of distinct groups is
low, partitioning is not necessary or useful; in this case, the input
data is equally distributed among the cores and a merge operator
is added to the query plan after the grouping operator. Since the
merge operator only works on aggregated data, its overhead is very
low.

We evaluate Group-by for both low and high number of dis-
tinct values (Low-NDV and High-NDV cases in Figure 14). In the
Low-NDV case, both x86 and DPU platforms are able to process the
operation at a rate close to memory bandwidth; so the improvement
(6.7×) is primarily due to the DPU’s higher memory bandwidth per
watt. However, in the high-NDV case, the data needs to be first
partitioned on both platforms. Due to the DMS’s hardware parti-
tioning feature the DPU only needs to do one round of partitioning,
whereas x86 needs two rounds; so the improvement (9.7×) is higher
in this case.

TPCH Queries. We also implemented other SQL operations
like Join and Top-k using partitioning techniques similar to those
described above.We connected our SQL engine running on the DPU
to a widely used commercial database with in-memory columnar
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Figure 16: DPU Efficiency gains for TPCH queries

query execution capability on X86 and offloaded the execution
of SQL queries from the database to the DPU. We compared the
performance of TPCH queries running on the DPU to X86. We
achieved an overall (geometric mean) improvement of 15× (Figure
16) in terms of performance/watt over x86.

5.4 HyperLogLog
The HyperLogLog (HLL) algorithm [23] provides an efficient way
to approximately count the number of distinct elements (the car-
dinality) in a large data collection with just a single pass over the
data. HyperLogLog relies on a well behaving hash function which is
used to build a most likelihood estimator by counting the maximum
number of leading zeros (NLZ) in the hashes of each data value.
This estimation is coarse-grained, and the variance in this approach
can be controlled by splitting the data into multiple subsets, com-
puting the maximum NLZ for each subset, and using a harmonic
mean across these subsets to get an estimate for the cardinality of
the whole collection. This also makes the algorithm easily paral-
lelizable, each core computes the maximum NLZs for its subsets,
followed by a merge phase at the end.

We optimize our implementation by using a key observation,
that the properties of the hash function remain the same if we count
number of trailing zeros (NTZ) instead of NLZ. The NTZ operation
takes only 4 cycles on a dpCore as compared to 13 cycles for a
NLZ due to hardware support for a popcount instruction. Instead
of a static schedule, we partition the input set into multiple chunks
and implement work stealing on the across cores using the ATE
hardware atomics. The variable latency multiplier on the dpCores
makes this dynamic scheduling essential to avoid long tail latencies.
We also use the DMS to read and write buffers at peak bandwidth.
We further optimize the x86 version by using atomics for synchro-
nization and SIMD intrinsics. The hash function is at the heart
of the HyperLogLog algorithm, and we compare the performance
of the DPU for 2 common hash functions, Murmur64 and CRC32.
The DPU has hardware acceleration for CRC32, making the CRC
implementation almost 9× better than the x86 implementation. The
Murmur64 implementation does poorly on the DPU due to the high
latency multiplier.

5.5 JSON Parsing
The JavaScript Object Notation (JSON) is an increasingly popu-
lar format among many applications that store and analyze large

Figure 17: The three types of data access pattern in the dis-
parity computer vision workload.

amounts of data. After evaluating open source C/C++ implementa-
tions of JSON (JSON11, RAPIDJSON, SAJSON) we selected SAJSON
[6] as our best performing, portable baseline. For a benchmark, we
populate JSON records with keys corresponding to the TPCH line
items table. The data types hence consist of a mixture of integers,
strings, dates and populate approximately 1GB of records. For this
workload, SAJSON is able to parse the input data at 5.2 GB/s on
our x86 machine, achieving an IPC of 3.05. However, on the RAPID
DPU, it only achieves a throughput of 645 MB/s. The switch-case
anatomy emits a large number of instructions, and lack of hard-
ware branch prediction on the simple dpCores results in a high 13.2
cycles per byte.

Instead of a nested branching structure, we coerce a jump-table
by first loading the next byte in the input token stream, and branch-
ing conditionally based on the loaded character. Given JSON’s rel-
atively small grammar ( 12 states), the parse table size fits within
23 KB. To allow concurrent processing on all dpCores, the JSON
file (in memory) is split into per-core chunks. To further avoid syn-
chronization that would be required if a JSON record straddled the
chunk boundary between two dpCores, each dpCore allocates and
reads an extra chunk. During parsing, the extra bytes are parsed
as the last bytes of the dpCore processing the previous chunk and
ignored by the dpCore which encounters them in its first chunk.
The efficiency of prefetching buffers using the DMS makes this
overhead is negligible. The DMS also triple-buffers the data in 8 KB
chunks, with a padding size of 1 KB to avoid the chunk-straddling
issue mentioned above. These optimizations allow our DPU im-
plementation to process the above dataset at 1.73 GB/s using 32
dpCores, with an improvement of 8× in terms of performance/watt
over SAJSON.

5.6 Disparity
A Disparity map[42] provides detailed information on the relative
distance and depth between objects in the image from two stereo
images each taken with slightly different camera angles. This in-
volves computing the pixel-wise difference between the two images
by shifting one of the images by X pixels, where X varies from 0
to a given max_shift parameter. This well-studied computer vi-
sion workload is known to be data intensive [57] whose memory
accesses need to be carefully orchestrated to efficiently utilize the
available memory bandwidth. The vision kernels in disparity in-
volve three distinct data-access patterns as shown in Figure-17.
The most challenging data-access patterns are the columnar and
pixelated-pattern. The software-managed DMEM via DMS makes
orchestrating these access patterns significantly easier on the DPU.
For instance, the pixelated access pattern is reduced to gathering
pixels with two different strides into two sections of the DMEM.
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In order to efficiently parallelize the disparity computation across
multiple cores, we experimented with both fine-grained and coarse-
grained parallelization approaches each with different trade-offs.
Under the fine-grained approach, we split the input images into
distinct chunks or tiles of pixels, one for each dpCore, where they
cooperatively compute the disparity kernel in lockstep. This ap-
proach requires non-trivial amounts of system-wide barriers for
synchronization between the computer vision kernels. On the other
hand, the coarse-grained approach splits the work of computing
disparity by independently computing disparity for a distinct pixel
shift per core with a final result aggregation stage across cores.
This reduces the amount of synchronization across cores, but does
not efficiently utilize the available memory bandwidth. The low-
latency synchronization via ATE and a rich DMS interface enabled
an efficient fine-grain parallel disparity implementation with 8.6×
better performance/watt relative to an OpenMP-based parallel im-
plementation on x86.

6 RELATEDWORK
The Q100 architecture [62] is the closest related work to our system.
It consists of a collection of heterogeneous accelerator tiles which
are used in conjunction with a coarse-grained instruction set that
corresponds to basic SQL operations and processes streams of data.
In contrast, our ISA is more general-purpose and fine-grained; we
provide generic acceleration features (e.g.: for asynchronous data
movement and partitioning) that can be used along with our ISA
to accelerate many analytic workloads other than SQL. We have
also fabricated our DPU and performed experiments with software
running on a real chip as opposed to a simulation.

HARP [61] is fundamentally different from our DMS in several
ways. Firstly, its model of operation is different in that it cannot
partition the input data stream to all cores and requires a high-
functionality partitioning engine for every core. Our system decou-
ples the number of high-functionality engines from the number of
cores (thus reducing complexity, cost and power), and can partition
the input data to all cores (thus requiring no separate synchro-
nization between cores). Secondly, it requires the core to execute
instructions for every 64 bytes of data, keeping the core busy. In
contrast, our system uses an asynchronous interface that allows the
DMS to partition several KBs of data while the core processes data
that has already been partitioned. Thirdly, HARP does not allow the
core to immediately use the partitioned data for further processing.
Instead, the partitioned data has to be written to DRAM before the
cores can load and process it.

DeSC [27] aims to improve the performance of hardware accel-
erator equipped systems by addressing the memory bottlenecks
appearing when traditional cores have to communicate data to
the accelerators. CoRAM [19] is a scalable memory hierarchy ar-
chitecture that connects kernels implemented on reconfigurable
fabrics with the external memory interface available in FPGA-based
systems. In contrast, our DMS is specifically designed to acceler-
ate data movement and partitioning between DRAM and dpCores
while allowing the cores to concurrently process the incoming data.

Using a similar power envelope (250W) and process node (16nm),
21 DPUs are equivalent to a single Tesla P100 GPU [45]. A P100
provides 732 GB/s of peak memory bandwidth, whereas 21 DPUs

provide 1612 GB/s of aggregate memory bandwidth. The DPUs also
provide > 4TB DDR4 memory capacity, with a similar number of
compute cores. Aside from coherence issues andDMS optimizations,
there is a direct mapping between multi-core CPU code and DPU
code, whereas GPUs require specialized SIMD kernels, making
DPUs much easier to program.

Specialized compute engines for different domains have been
studied [2, 15, 18, 36, 43, 50, 51, 53] ; while these aim to acceler-
ate operations in specific domains, our aim is to improve perfor-
mance/watt for a wide range of analytic workloads by identifying
and accelerating operations common to all of them.

The IBM Cell Broadband Engine (BE) [33] had similar design
choices as our DPU architecture such as low power processing units
each with a DMA-controlled local software managed memory. In
contrast to the DPU, the Cell’s DMA engine is tightly integrated
with the processor’s pipeline and provides very limited functional-
ity. The Cell BE is also not designed to be a scale out architecture;
it does not scale to more than 8 SPUs per SoC.

Wimpy node clusters [5, 31, 38] target energy efficiency and
do not provide acceleration for data movement, partitioning or
core-to-core communication/synchronization, thus lowering their
efficiency for complex analytic workloads.

7 CONCLUSION
We learned several lessons in our efforts to architect and program
the DPU efficiently. The DMS is a key enabler of performance in
most of our workloads, however, it adds an additional layer of com-
plexity in the software stack. Traditional algorithms do not reason
about data movement, however, we find it to be critical for efficient
terascale processing. Programming the DPU was more challenging
than a commodity x86 core, but easier than the significant algo-
rithm redesign needed for a SIMT based programming model of a
GPU, or a sub-word SIMD based CPU. We show efficiency gains of
3× - 15× across a variety of applications on a fabricated 40nm DPU
chip. The 16nm shrink of our hardware further boosts efficiency by
2.5×. The DPU architecture focuses on a balanced design between
memory and compute bandwidth/watt, and between performance
and programmability.
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