

7

8 9

10 11 12

13 14 15

16 17 18

19 20 21

Study Setup Two distinct accounts: proxy for victim and attacker 6 placement variables # victim & attacker VMs, delay b/w launches, time of day, day of week, datacenter, cloud providers Small instance type (EC2: 12.small, GCE: g1.small, Azure: Standard-A1) Values for these variables form a launch strategy Execute a launch strategy from a workstation detect and log co-location 9 samples per strategy with 3 runs per time of day & 2 days of week (weekday/weekend)

23

24

Other Interesting Results

- · We always achieved co-location in smaller datacenter
 - · GCE: europe-west1-b and EC2: us-west-1 (CA)
- In EC2, launching attacker VMs early morning (2 to 10am PST) has a higher success rate.
- · In Azure we could co-locate 16 VMs on a single host
- · Brief experiments with platform-as-a-service, H heroku
- · ... and many more in the paper

27

29

31 32 33

37 38 39

43 44 45

References

- Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., & Swift, M. M. Resourcefreeing attacks: improve your cloud performance (at your neighbor's expense). ACM CCS 2012
- Varadarajan, V., Ristenpart, T., & Swift, M. Scheduler-based defenses against crossym side-channels. In Usenix Security 2014.
- (3) Varadarajan, V., Zhang, Y., Ristenpart, T., & Swift, M. A placement vulnerability study in multi-tenant public clouds. In Usenix Security 2015.
- (4) Farley, B., Juels, A., Varadarajan, V., Ristenpart, T., Bowers, K. D., & Swift, M. M. More for your money: exploiting performance heterogeneity in public clouds. ACM SoCC 2012.
- (5) Volos, H., Nalli, S., Panneerselvam, S., Varadarajan, V., Saxena, P., & Swift, M. M.. Aerie: Flexible file-system interfaces to storage-class memory. ACM Eurosys 2014.

51

49

50

51

Backup Slides

52

53

- 1. Although an exhaustive study
- results limited to small instance type, three clouds, 9 runs per configuration, two user accounts etc.
- 2. Positive co-residency signal != exploitable
 - may share only a small set of resources (e.g., memory, network)
- 3. A result of an unlucky placement policy settings?

"A Placement Vulnerability Study in Multi-tenant Public Clouds", Usenix Security 2015

55

56 57

Some Strategies Work Better than Others

Example strategies on EC2

Launch Strategy	vxa	Cost in Cloud	Cost under Random Placement*	Success rate norm. w/ random*
Launch 10 VMs in less popular datacenter	10x10	\$0.26	\$113.87	1/0.1 (=10)
Launch 30 VMs 1 hour after victim VM launches	30x30	\$1.56	\$32.75	1/0.6 (=1.67)
Launch more than 20 VMs 4 hours after victim VM launches	20x20	\$0.52	\$53.76	1/0.33 (=3.03)

*Random Placement of VMs on N hosts, $v \times a$ launch strategy has a probability of collision: 1 - $(1 - v/N)^a$

Resource Freeing Attacks

- 1) Send targeted requests to victim
- 2) Shift resources use from target to a bottleneck

Can we mount RFAs when target resource is CPU cache?

Shared CPU Cache:

- · Ubiquitous: Almost all workloads need cache
- · Hardware controlled: Not easily isolated via software
- · Performance Sensitive: High performance cost!

Case Study: Cache vs. Network

- Victim: Apache webserver hosting static and dynamic (CGI) web pages
- Beneficiary: Synthetic cache bound workload (LLCProbe)
- · Target Resource: Cache
- No cache isolation:

 3x slower when sharing cache with webserver

58 59 60

61 62 63

67 68 69