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An Example Cross-VM Attack: Side-channels

Prime Probe

cache sets

Steal secret key and read secure email
communications within ~6 hours!

Ref: Zhang, Juels, Reiter, Ristenpart, “Cross-VM Side-channels ...”, CCS'12
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Problem: Cross-VM Attacks

Two steps:
1. Place VM on the same host as victim, and
2. Exploit sharing and lack of isolation to,

- Steal secrets,

— e.g., side-channel attacks — L1 D/I cache, TLB, Branch Predictors,
LLC, memory ...

+ Affect performance,
— e.g., performance degradation, DoS attacks.
Isolation:

“two user tasks are isolated if one cannot know about the
execution of the other due to resource sharing.”

Placement & Isolation in Public Clouds

l loud API ’ i

Cou‘i (1) Controls co-location
)Intemet
L

- Co-location Attack
[Ristenpart’09, Zhang'14,
Varadarajan’15, Xu’15]

(2) Provides isolation

- Cross-VM side- & covert-
channels [Ristenpart’09, Xu'11,
Wu’12, Zhang’12, Yarom’14,

| Hypervisor  Zhang'14, Liu'15, Inci15]

- Resource-stealing, DoS
[Zhou’11, Varadarajan’12]
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In my dissertation

i Cloud API ’
N

) Internet 1. Is co-location practical in

modern clouds?
f Cluster Scheduler
Placement Policy 2. Are there unique opportunities

for malicious users to exploit the
lack of isolation for performance
gains?

Practice of multi-tenancy demands stronger
isolation between VMs in public clouds.

3. Can isolation be improved
without compromising the
efficiency?

1. Is Co-location Practical in Modern Clouds?

I Cloud API l Let’s assume 50,000 servers and a

randomized placement policy,
)\ntemet

With 30 target VMs.
y
‘ Cluster Scheduler
Placement Policy

How many VMs do you need to
launch to achieve a successful co-
location 50% of the time?

~ 1000 to 3000 VMs|

Think about its cost ($$ and time)

My work: can achieve co-location with > 90%

chance for a minimum of 74 cents with 10-30 VMs!

2. Malicious use of Performance Interference

3x-6x Performance loss
M

IS
a
3

@
<)

Performance Degradation (%)
©
8
8

2 packages each

My work: A greedy oustomer‘ could improve his
performance by interfering with neighbors

VM
Machine |Intel Xeon E5430,
2.66 Ghz
CPU
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3. Improving Isolation w/o Compromising Efficiency

Prime

Shared
resource

Hard-isolation
No sharing: ® isolation
» efficiency

cache sets

My work: Design principle soft-isolation to defend
against cross-VM side-channels

*Zhang, Juels, Reiter, Ristenpart, “Cross-VM Side-channels ...", CCS'12

12




Dissertation Summary

( Cloud API , Practice of multi-tenancy demands stronger
S isolation between VMs in public clouds.
A

Cluster Scheduler Is c -Iopation attacks
@ possible, cheap?
Placement Policy [Security’15]

Better isolation in CPU
schedulers to prevent

side-channels [Security’14]

Prior Work on Co-location: 2009 Study

6 years old

New countermeasures
Cluster Scheduler (e.g, virtual private clouds)

Placement Policy
Increased scale of clouds

Only on Amazon EC2

modern clouds? 0o

Co-location

Our Work:
Exploring Co-location Attacks in Modern Clouds

1. Finding Launch Strategy

launch parameters to
increase chances of co-
location

Cluster Scheduler

Placement Policy

2. Detecting Co-location

+ with any target victim
A\
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Co-residency Detection

1. Read shared state
on two VMs
e.g., private IP addresses,
shared TSC counters.

2. Correlate performance
of shared resources

e.g., network round-trip times,
cache-based covert-channels.

n/w pings or
covert-channels

A memory-based covert-channel* can cause
3x-4x degradation

* Wu et al. “Whispers in the Hyper-space: High-speed Covert Channel Attacks in the Cloud.”, Usenix Security'12 16

Background: Memory Covert-Channel

Sender: Receiver:
; Observe () {
Signal() { s = start_time
repeat repeat N
atomic_op (ua_addr) mem access ()
done o

} e = end_time
bw = N/ (e-s)

}

“Victim” VM must cooperate with attack VM

O.K. for measurement studies
But not useful for real attacks in the wild

* Wu et al. “Whispers in the Hyper-space: High-speed Covert Channel Attacks in the Cloud.”, Usenix Security12 17
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Detect co-location

Steps in achieving co-location:

15

Co-residency Detection on Uncooperative Victim

Receiver() Send large # requests Sender()
& measure avg. latency

EEE - Data
O Balancer [lES store
‘ m part of a cloud app,
& e.g., web server,

background load Target Victims key-value stores

Realistic victim setting: modern multi-tier cloud app.

A way to detect co-location when VMs are behind a
load-balancer in presence of background traffic
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Co-residency Detection on Uncooperative Victim

" Non-coresident " Co-resident
1000

Social networking
application (Olio):

2 HAProxy LB +
- 3 Web servers +
GE’ 100 1 mysql server
E - 45x
73
8 e
2o
gL
v
o 10
j=J
o
2
<
idle 100 250 500 750 1000

Background Load (# concurrent users)

Our Work:
Exploring Co-location Attacks in Modern Clouds

Steps in achieving co-location:
1. Finding Launch Strategy
launch parameters to

increase chances of co-
location

Cluster Scheduler

Placement Policy

2. Detecting Co-location

with any target victim

Big Picture: Placement Vulnerability Study

Fix Placement Variables

e.0. # VMs, when you
launch, datacenter, \ i {

VM type, etc.
Placement Policy

Observe Placement
Behavior

Study spanning 3 months, exploring 6 placement variables,
spending more than $200 per cloud

§ amazon [EC2 & Microsoft Azure

Websevices
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Study Setup

- Two distinct accounts: proxy for victim and attacker

+ 6 placement variables
- # victim & attacker VMs, delay b/w launches, time of day,
day of week, datacenter, cloud providers @
+ Small instance type
(EC2: t2.small, GCE: g1.small, Azure: Standard-A1)
- Values for these variables form
a launch strategy

anzzon [EC2
BR Microsoft Azure
+ Execute a launch strategy from a workstation

+ detect and log co-location

+ 9 samples per strategy with 3 runs per time of day &
2 days of week (weekday/weekend)

How hard should it be to achieve co-location?

[ Gloud API l + Random placement policy
| S———
* N= 50,000 machines [retinvent’14]
[ Cluster Scheduler
Placement Policy

<j>

v - victims and a - attacker VMs

Probability of Collision:
c=1-(1-VvNg

10
For a modest 50% success rate with 10-30
victims we need to launch ~3000 VMs

~——" ~ £

Results: Varying Number of VMs

EC2 GCE Azure

Success Rate

0.25

0
Co-location is possible with as low as 10 VMs and
always achieve co-location with 30 VMs

22
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Results: Varying Delay between Launches

W Zero M One hour

Cost of a Launch Strategy

W EC2 W GCE W AZURE
$6.00

EC2 GCE Azure s
8
k]
g 135 $4.50
5 £ =
3 %
R SE w 8§ $3.00
b4 e c
i =g
g 5
8 ® 45 I $1.50
3 2
S
) E IJ 1
= 0 s000 m—H W
70, <, 0, 70, 2, %,
v %, 3 c,, v G 2 %, L é v ‘?03
The cheapest launch strategy costs as low as 14 cents
=

Other Interesting Results

+ We always achieved co-location in smaller datacenter
regions,

+ GCE: europe-west1-b and EC2: us-west-1 (CA)

In EC2, launching attacker VMs early morning (2 to 10am
PST) has a higher success rate.

In Azure we could co-locate 16 VMs on a single host

heroku

Brief experiments with platform-as-a-service,

... and many more in the paper

Outline

Practice of multi-tenancy in public clouds demands stronger
isolation between VMs in the presence of malicious users.

1. s co-location practical in modern Placement Vulnerability
clouds? [Security’15]

‘ 2. Are there unique opportunities for

malicious users to exploit the lack
of isolation for performance gains?

[ 3. Can isolation be improved without CPU Schsdular-based\

Resource Contention in Public Clouds

3x-6x Performance loss =  Higher cost

600

Work-conserving
50 scheduling

IS

Local Xen Testbed

Machine |Intel Xeon E5430,
266 Ghz

Performance Degradation (%)
- @
o &
3 3

CPU 2 packages each

0 with 2 cores
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What can a tenant do?

L. .. CPU Net Disk Cache
compromising the efficiency? defenses [Security'14] Cache Size|6MB per package
Non-work-conserving
» CPU scheduling »

Ask provider for better isolation
... requires overhaul of the cloud

Pack up VM and move

(see our SOCC 2012 paper)

... but, not all workloads cheap
to move

This work: Greedy customer can recover
m performance by interfering with other tenants

Resource-Freeing Attack

30




The Setting

— One or more VMs

— Public interface (eg, http)
Beneficiary:

— VM whose performance we want to improve
Helper:

— Mounts the attack

Beneficiary and victim fighting over a target
resource

Helper

Example: Network Contention

Beneficiary &

+ Apache webservers hosting static
and dynamic (CGl) web pages

- Target Resources: Network
Bandwidth

&l

- Work-conserving scheduler
— half the bandwidth

What can you do?

Local Xen Test bed

Recipe for a Successful RFA

Shift resource away from the target resource
towards the bottleneck resource

A
[CPU intensive dynamic pages

Shift resource usage
|} via public interface
— —
Limits

Static pages
S

Proportion of CPU usage

Push towards CPU bottleneck

Proportion of Network usage

€
Reduce target resource usage

31 32
An RFA in Our Example Summary: Resource Freeing Attacks
In our testbed: CPU Utilization 1) Send targeted requests to victim by

Increases beneficiary’s share of
bandwidth

No RFA: 1800 page requests/sec
W/ RFA: 3026 page requests/sec

50% —>85%

share of bandwidth

Clients

2) Shift resources use from target to a bottleneck

Similar RFA on other resources exists, e.g. CPU Cache
Bandwidth

On EC2, we reduced contention by 66.5% =
performance improvement of 3-13%

“Resource-Freeing Attacks: Improve Your Cloud Performance
(at Your Neighbor’s Expense)”, ACM CCS 2012

33

What did we learn from RFAs?

34

35

1. Work-conserving vs. Non-work-conserving

g
>
Q
I}
3
@
]
2
5
@

L Q_) Non work-conserving

Isolation
2. Effects of simple pay-per-hour pricing model

Efficiency

+ § per unit time != $ per useful work-done
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Outline Problem: Cache-based Side-channels’ Requirements for Successful Side-channel

CRYPTO_FUNCTION(s): Prime CRYPTO_FUNCTION(s):

Prime 7Probe § & secretbit 7Probe S & secret bit
Practice of multi-tenancy in public clouds demands stronger L core: n - “ [ - core: [
isolation between VMs in the presence of malicious users. = Secret @ — Secret
- T 7 Time if(s=0) { C = 77T Time ifs=0)
. ) ) VM | | OPERATION_A VM || OPERATION_A
1. Is co-location practical in modern \cach 3 )
5 N = -cache if(s=1)¢ = if(s=1){
clouds? OPERATION_B Q > OPERATION_B
} preemptio i
2. Are there unique opportunities for ; d
. . Resource-Freeing
malicious users to exploit the lack Attacks [CCS12] eso
of isolation for monetary gains? cache sets

cache sets
Attacker Timing
Profile

Attacker Timing
Profile

3. Can isolat‘io.n be imprpyed without CPU Scheduler-based
compromising the efficiency? defenses [Security"14]

h Extract secret h Extract secret
b *Zhang, luels, Reiter, Ristenpart, oS Sidehannels 7 ccs12 information ® *Zhang, Juels, Reiter, Ristenpart, oM St thannals 7, ccs12 information *
37 38 39
Defenses against Side-channels Our Solution: Soft Isolation Requirement for Quick Preemptions

Prime Probe

\

1. Sharing
Resource Partitioning [NoHype'10]
Specialized Hardware [RPcache’07]

CRYPTO_FUNCTION(s):
s € secret bit

Allow sharing but limit frequency of

Core:
dangerous cross-VM interactions -

if(s=0){

()
L]

RRA

OPERATION_A
Software-based partitioning [StealtiMem'12] @ @ Pfﬁ‘et:'rs::’" b -
2. Access to high-resolution timers Goals: : g H -
Reduce resolution Mmewarp12] : 1. Secure: Controlled information leakage Core
Removing timing channel [stopwatch'13) @ 2. Commodity: Easy t? adopt Private Caches i
No countermeasures deployed by providers! 8. Efficient: Allow sharing, low overhead (per core state) cche et Next subsequent code/task
... with simple changes to Hypervisor’s CPU scheduler

No prior work!

3. Quick cross-VM preemptions ]

w0 " Rate of preemption > Rate of event to measure

40 41 42



Why do schedulers allow quick preemptions?

Interactive VMs

Latency-oriented:
. Benefits from quick
T 'wakeups ,
BOOST priority

'Throughput-oriented: i.
Benefits from longer
_—

scheduler timeslices _

State-of-art
CPU schedulers

. Core: ‘ \Z v
Malicious L
Prime-probe attacker: M — —
Abuses BOOST priority, Time

using interrupts. —
< 10ps

Soft-Isolation: Ratelimit Preemptions

Core: v ‘ ‘ v @
T Time

Interrupt Vi
(boosted)

Min. runtime
(scheduler parameter)

a8

LA

Available in Xen (and KVM)

ratelimit us (and sched min granularity ns)

Reduces VM-switches =  Boosts batch-workload’s
performance

Minimum RunTime (MRT) guarantee > soft-isolation

43
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MRT Guarantee and Open Questions

1.] Can MRT defend against
MRT value Cross-VM Side-channels?

_— (security evaluation)
Core: ‘ Vv \ ‘
Jime

T l 2. Trade-off between security
delayy ————————— and performance?
(performance overhead)

Security Evaluation : Prime-Probe Timing Profile

i-cache access timing Alternating usage pattern

10000
9800
9600

9400

Sample probe (time series)
(0to 200 cycle range)

9200

Cache Timing per iCache set probe

9000

20 40 60 80 100 120 O 20 40 60 80 100 120

I-cache set number

Idle Victim VM

I-cache set number

Simple Victim VM
Under Zero-MRT

Security Evaluation : Prime-Probe Timing Profile

Side-channel not discernible

Alternating usage pattern

10000

9800

9600

9400

(010 200 cycle range)

9200

Sample probe (time series)

[ ]
Cache Timing per iCache set probe

9000
0O 20 40 60 8 100 120 o 20 40 60 80 100 120

I-cache set number

Simple Victim VM
Under 1ms MRT

|-cache set number

Simple Victim VM
Under Zero-MRT
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More details in the paper ...

Detailed Performance and Security Analysis e
20+ graphs in the paper

Per-core State-Cleansing
Interactive VMs may still leak information
MRT + State-cleansing incur low overhead

It is cheap and easy to deploy!

“Scheduler-based Defenses against Cross-VM Side-channels”,
Usenix Security’14
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Conclusion

1. Is co-location practical in modern
clouds? Yes, and surprisingly cheap! [Security’15]

2. Exploiting the lack of isolation for
performance gains? Yes, reduce
contention by gaming schedulers.

Resource-Freeing
Attacks [CCS'12]

Placement Vulnerability

Practice of multi-tenancy in public clouds demands stronger
isolation between VMs in the presence of malicious users.

3. Improving isolation w/o compromising e IR el o]
efficiency? Soft-Isolation defenses [Security'14]

Thanks to ...

-}
£
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Backup Slides

Results: Co-residency Detection in Public Clouds

Il Non-coresident [l Co-resident
Google Compute Engine (GCE) Amazon EC2 (EC2)

20 20 2%
o 15 15
‘T
a
=
s
5 10 10
o3
8
5
S
Z s 5
o |||||I|| , Wy s ol o
e P & g
% 2 © e 9 G % T 9 G A ¥ % B Y% T Y
Performance Degradation Performance Degradation 5

Co-residency Detection in Public Clouds (contd.)

W mprobe-NC [l mlock-NC
I mprobe-C B miock-C

Heterogeneity at play on

18 Azure AMD machines
o 185 + Requiring two receivers
g to detect co-residency
§ . Memoryfprobllng or
é memory-locking:

45 J l J > 1.5x degradation

o 1

0% 7 ety s e e T
Performance Degradation 5
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Limitations

1. Although an exhaustive study

— results limited to small instance type, three clouds, 9
runs per configuration, two user accounts etc.

2. Positive co-residency signal = exploitable

— may share only a small set of resources (e.g., memory,
network)

3. Aresult of an unlucky placement policy settings?

“A Placement Vulnerability Study in Multi-tenant Public Clouds”, Usenix Security 2015
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-
Challenge 1: Placement Policy a w
+ An unknown placement policy (_(;'0““ API ’
places VM on a host Q::::)
Internet

+ Variables may influence VM frst fitr e (= -
placement : Placement Policy

best fit?
— Parameters: type of VM, time of
launch, # VMs launched,
datacenter region, etc.

— Environment variables: time of

day, day of week, # machines,
etc.

55
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Some Strategies Work Better than Others

Example strategies on EC2

Cost in Cost under Success rate
et Strategy Random Placement™

Launch 10 VMs in less

popular datacenter 10x10  $0.26 $113.87 1/0.1 (=10)

Launch 30 VMs 1 hour after -
Cilsiin VY] Ve 30x30 $1.56 $32.75 1/0.6 (=1.67)
Launch more than 20 VMs 4
hours after victim VM 20x20 $0.52 $53.76 1/0.33 (=3.03)

launches

*Random Placement of VMs on N hosts,
v x a launch strategy has a probability of collision: 1 - (1 - v/N)?

Resource Freeing Attacks

1) Send targeted requests to victim

2) Shift resources use from target to a bottleneck

Can we mount RFAs when target
resource is CPU cache?

Shared CPU Cache:
Ubiquitous: Almost all workloads need cache
Hardware controlled: Not easily isolated via software
Performance Sensitive: High performance cost!

58
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-
Challenge 2: Co-residency Detection “ w

- No explicit co-residency information ((cioua e ]
p Y ey

from cloud provider
Cblntemet
‘ Placement Policy

+ Multiple layers of strong isolation

X X Detecting
— Virtual machine — co-residency

e.g. hardware virtualization
— Network — e.g. Amazon VPC

— Modern hardware, etc.
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Case Study: Cache vs. Network

+ Beneficiary: Synthetic cache bound workload

* Target Resource: Cache

- No cache isolation:

- Victim : Apache webserver hosting static and
dynamic (CGlI) web pages

(LLCProbe)

Clients

~3x slower when sharing
cache with webserver

Local Xen Test bed

60




Cache vs. Network Cache vs. Network w/ RFA RFA: Performance Improvement

l RFA intensities — time in ms per second

Victim webserver frequently RFA helps in two ways:

) 20000
interrupts, pollutes the cache . o 18000 60%

1. Webserver loses its priority. L6000 B

— Reason: Xen gives higher ) . 7 B Improvement
priority to VM consuming 2. Reducing the capacity of % 14000 |+
less CPU time webserver. £ 12000F
-~ . , E w000 p
Beneficiary starts to run Beneficiary starts to run § t‘-:‘ 8000 +
g £ 6000 |
Il Ainnn Il Jinan ol

2000 |

W, Cache state time line " " rﬂ[‘g 0 TR —
Webserver Heavily loaded wibserver zjavil/ loaddd ?Iper" ‘Web Server Request Rate (rps)
i er tsipder RFA

receives a web server F
request 8 request & &
Experiments on Amazon EC2 mcf from SPEC-CPU Experimental Methodology
Multiple Accoun
. VM
g Co-resident VMs from our accounts: 3% performance improvement = 35% Two VMs: : ’
Stand-ins for victim and beneficiary 56 reduction in performance loss _ 1. Attacker VM
— I\(»RFF{}) —
. 519 m— -
= / ” Bascline 2. Victim Hypervisor
wm =
o) - - P .
; o 5 Setting similar to public clouds (e.g. EC2) Core
y b 52
amazon = i
ebservices: = ww E 51 Xen Configuration Machine Configuration
_ i | envesion | _____a21 |

- Xen Version 421

| Separate instances for helper 49 Irtel Xeon E5645, 2.4GHz, 6

/" and web clients | Scheduler Credit Scheduler 1 cores, single package

B 5507- E5507-6 E5507-7 E 8 E5507-9 Configuration 409 cap on DomU VCPUs -
CErTD r— No direct interact with any (Non-work conserving) with equal weight Memory Private 32KB L1 (I- and D-
other : Hierarchy  Cache), 256KB unified L2, 12MB.
0 Indirect interaction akin to SR (A e [ e 44 Hums ¢ shared L3 & 16GB DDR3 RAM.
1

i Goe] ot oor E5507 Wi VB G normal usage cases N across all SPEC workloads! . #VCPUs per VM 2 »

64 65 66



MRT Guarantee and Open Questions

1.] Can MRT defend against

MRT value Cross-VM Side-channels?
— (security evaluation)
Core: ‘ \Z i \' ‘T'
1 l 'Me 2. Trade-off between security
delay —— > and performance?

(performance overhead)

Measuring Performance Overhead

workload-mix

Measured workload: «_\
1. Interactive > memcached,

cassandra, etc. and VCPU ‘ VCPU ‘ VCPU
2. Batch > graph500, spec)BB, etc.

oot +——
microbenchmarks = highly C C
cache-thrashing + (interactive or batch) el ore

Core Core

Measuring Performance Overhead

<7% At 5ms MRT

17 4 overhead

14

11

lping memcachedcassandral mcf specjbb graphsool

Normalized to Zero-MRT

i
Avg. 95t Percentile Latency Avg. Runtime
(interactive workloads) (batch workloads)

«
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