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ISOLATION IN PUBLIC CLOUDS: THREATS, CHALLENGES AND
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Venkatanathan Varadarajan

Under the supervision of
Professor Thomas Ristenpart and Professor Michael Swift

At the University of Wisconsin–Madison

Many applications that are in day-to-day use by customers over the
Internet are hosted in the public clouds. Public infrastructure-as-a-service
clouds, such as Amazon EC2, Google Compute Engine (GCE) and Mi-
crosoft Azure allow clients to run virtual machines (VMs) on shared phys-
ical infrastructure. This practice of multi-tenancy improves efficiency by
multiplexing resources among disparate customers at low costs. Unfortu-
nately, it also introduces the risk of sharing a physical server to run both
sensitive customer applications and VMs that may belong to an arbitrary
and potentially malicious users. Such a scenario uniquely arises because
of multi-tenancy and the openness of public clouds.

The current management infrastructure of these public clouds is driven
towards improving performance and efficiency and the security of these
systems often takes the back seat in this drive forward. As a result it is
unclear what the degree of isolation that these clouds provide against
malicious users. In this dissertation, we focus on one of the main security
threats to public clouds, cross-VM attacks, and evaluate how state-of-the-
art cloud infrastructure fares against these attacks. The thesis of this
dissertation is that, “the practice of multi-tenancy in public clouds demands
stronger isolation between VMs on a single host in the presence of malicious
users.”

Any cross-VM attack involves two steps: placing an adversary con-
trolled VM on the same host as one of the victim VMs, and then breaching
the isolation boundary to either steal sensitive victim information or affect
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its performance for greed or vandalism. In the first part of the disserta-
tion, we start by evaluating the security of public clouds against cross-VM
attacks on two levels: security against VM placement in cluster schedulers
and isolation between multi-tenant VMs at the hypervisor. Amidst several
challenges such as no known working co-residency detection mechanism
and no prior work on analysis of placement policies of public clouds,
we show that EC2, Azure and GCE are all vulnerable to adversarial VM
placement attacks. In addition, we also investigate the repercussions of
performance interference between co-located VMs sharing the same host.
Unlike cross-VM side-channels that steal secrets across VM boundaries,
we discover that a greedy user could also steal resources and benefit from
improved performance at the expense of others. Both these new find-
ings demonstrate that multi-tenancy in public clouds demands stronger
isolation.

In the second part of this dissertation, we venture to improve isolation
between VMs in the hypervisor. A straightforward solution is hard isolation
that strictly partitions hardware resources between VMs. However, this
comes at the cost of reduced efficiency. We investigate the principle of
soft isolation: reduce the risk of sharing through better scheduling. We
demonstrate this design principle by using it to defend against cross-VM
attacks. With extensive experimentation, we show that such a mechanism
not only prevent a dangerous cross-VM attacks, but also incurs negligible
performance overhead.

In summary, this dissertation shows that cross-VM co-location attacks
still remain a problem amidst the deployment of advanced virtualization
techniques in modern clouds, hence demands stronger isolation. We
demonstrate how this stronger isolation be achieved to defend against a
class of cross-VM attack without compromising on efficiency.
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1
Introduction

Public cloud computing has become a cheap, viable alternative for many
small and medium enterprises [25–30, 68] considering the high upfront
cost of setting up and maintaining a private datacenter. Its numerous ben-
efits have also attracted large enterprises to host their workloads [27, 124,
135] on popular Infrastructure-as-a-Service (IaaS) public clouds like Ama-
zon EC2 (EC2) [9], Microsoft Azure (Azure) [37], Google Compute Engine
(GCE) [73], and Rackspace [146]. These public clouds offer a simple inter-
face to create a virtual datacenter with compute (e.g., virtual machines or
VMs), storage and network resources under a flexible pay-per-use pricing
model. This enables any user to scale their virtual datacenter from a few
tens to thousand VMs in matter of seconds for as less as 10-20 cents per
VM per hour, which is impossible in a privately managed infrastructure.
These enticing properties of public clouds are possible because of sharing
the physical infrastructure maintained by a cloud provider with multiple
arbitrary users over the Internet. This practice of multi-tenancy enables
cloud provider to achieve high resource utilization [42, 118], which in turn
drives down service cost for its users. For these reasons public clouds and
the practice of multi-tenancy are here to stay for decades to come.

With the future of many commercial applications depending on the
public clouds, there is one important problem that the cloud providers
ought to solve to make them safe and usable – isolating the use of shared
resources between multi-tenant workloads or tasks. Two user tasks are
perfectly isolated if one task cannot know about the execution of the other
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task and its use of all the shared resources. This is an essential as any
arbitrary user over the Internet with a valid credit card number and an
email address can use the cloud infrastructure. Such an arbitrary user may
also potentially share the same machine that is used to run the VMs that
are part of medical [30, 34, 124], banking [26], e-commerce [25, 28, 68], or
even government applications [33–35] running on these public clouds.

What could go wrong with sharing the same infrastructure with a
potentially malicious user? Without proper isolation, an average user
could inflict performance degradation on a performance-sensitive enter-
prise application, which may lead to huge monetary loss [18]. Apart from
degradation or denial of service attacks, an adversary could surreptitiously
steal sensitive information ranging from trade secrets [152] to private cryp-
tographic keys [93, 187, 191, 192] without the knowledge of the victim
or the cloud provider. We call these attacks as co-location or co-residency
attacks as the adversary uses co-residency to affect either performance or
security guarantees of the co-located tenants.

A successful co-location attack involves two steps: place and breach.
The first step (place) in any co-location attack is placing VMs in the cloud
datacenter such that some key resources are shared with one of the target
victims. A straightforward choice of shared resource is a physical host1.
Hence, we define co-location of two VMs as VMs that share a single
physical host (we also refer to co-located VMs as neighbors). Following
the placement step is breaching the isolation boundary to either affect the
performance guarantees or steal secrets from the co-located target VM.
For instance, it is not impossible for a neighboring VM to do a Denial-of-
Service (DoS) attack on all VMs running on that host by just running a
single machine instruction multiple times [170, 182]2.

This dissertation challenges the security of the state-of-the-art public
1A physical host in a datacenter is equivalent to 1 Rack Unit (or 1U)[42]
2This is a vulnerability in many x86 architectures that indirectly lock the shared

memory bus, severely affecting all applications that depends on memory bandwidth.
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clouds by taking the perspective of a malicious user who aims to use the
strongest suite of public clouds, multi-tenancy against its tenants. The
thesis that we want to address in this dissertation is: “the practice of multi-
tenancy in public clouds demands stronger isolation guarantees between VMs in
the presence of malicious users.” To systematically evaluate this thesis, we
study the two main pieces of software infrastructure, the placement policy
or cluster scheduler [169]3 and the per-host hypervisor [168], and test their
security against co-location attacks.

In the second part, we investigate ways to improve isolation that pre-
vents these co-location attacks. Many straight-forward defense mecha-
nisms require avoiding resource sharing and relinquish all the desirable
efficiency properties along with it or give up on isolation or security alto-
gether. We find that practical secure systems can be designed that hit a
sweet spot that gets the best of both worlds.

1.1 Isolation in Modern Public Clouds

There are two important pieces of cloud software infrastructure (as shown
in Figure 1.1) that ideally should make the co-location attacks hard if not
prevent them in a multi-tenant public cloud. First is the placement algorithm
that places VMs or user tasks on a physical host in a large cluster of hosts
(or datacenter). This placement algorithm controls which tenant VMs
are co-located on the same host (phenomenon is termed as co-residency).
The second piece is the hypervisor that uses virtualization technology to
provide isolation between execution of these multi-tenant VMs sharing
various resources like CPU, CPU caches, memory, disk storage, network,
etc.

3[170] is the full version of this work.
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Figure 1.1: Typical IaaS Public Cloud Architecture. Shows two important
pieces of cloud software infrastructure that are responsible for providing isolation from
malicious users: placement policy and hypervisor. A PaaS or a container-based cloud has
a very similar architecture, but a hypervisor is replaced by an operating system and VMs
by containers. More on this in Chapter 2.

1.1.1 Influencing VM Placement

First step in any co-location attack involves co-locating an adversary con-
trolled VM on the same host as one of the target tenant VMs in the cloud.
Can an adversary influence co-location with cloud interface available to any aver-
age cloud user? This is an important question that needs to be answered to
gauge the security property of the placement algorithm. Current cloud
interfaces do not explicitly provide any control over VM-placement in the
physical infrastructure and only provide interfaces to launch and terminate
VMs.

There are two essential requirements for a successful VM co-location
with a target victim: a launch strategy that increases chance of co-location
and a co-location detection mechanism that detects a successful co-location.
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Although cloud user may not explicitly control the placement policy,
he/she may directly control values for certain input variables that are part
of the cloud API (e.g., type of VM, choice of datacenter, time of launch) and
indirectly control other variables (e.g., churn in the system time of day of
the launch, day of the week). A set of values for these placement variables
form a launch strategy. Note that a successful co-location is useless if it is
impossible for the adversary to detect co-location with a victim VM in the
wild.

In the past there are several studies [152, 182, 190] (some published
in 2009) that found naïve launch strategies that involves launching large
number of VMs until it results in a successful co-location. Further, co-
location detection was also as simple as looking at the publicly accessible
IP addresses of the victim and the attacker VMs. Such simple strategies no
longer work in modern clouds either because of evolving (and unknown)
placement algorithm or because of new countermeasures (e.g., Virtual
Private Clouds) that makes it harder to detect co-location [93, 169]. There
is also the ever increasing scale of the public clouds both in terms of the
datacenter size and the cloud user base that makes it even harder to control
placement by any single cloud user since 2008.

All these aspects of the public cloud seem to promote a false sense
of security against malicious users. Counter-intuitively, we show that
an adversary can influence co-location and sometimes do so at a cost as low as
14 cents in some clouds [169]. We do this study by: (1) enumerating vari-
ous placement variables in the cloud VM launch API that may influence
placement, (2) Assign values to these variable which forms a launch strat-
egy, and (3) execute the launch strategy with two distinct accounts where
one is a proxy for a victim and another the attacker. We repeat this on
three live public clouds (EC2, Azure and GCE) and observe co-location
between the two accounts to measure the placement policies’ degree of
susceptibility to co-location. We then quantify the cost of co-location and
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co-location success rate for each launch strategy. This forms the basis
of our first-of-its-kind placement vulnerability study on public clouds.
We also did brief experiments and found similar results on Platform-as-
a-Service (PaaS) public cloud (e.g., Heroku [86]) that use containers for
isolation as opposed to VMs.

Apart from showing that cheap launch strategies exists, we also show
that an average user could also detect co-location with any victim VM even
when they are part of a large multi-tiered cloud application. We use an
existing covert-channel [182] that uses contention on shared memory bus
for covert communication. But, instead of requiring cooperation from the
victim, which is required in a covert-channel mechanism, we expose this
contention via victim’s application performance. That is just by measuring
victim’s application performance while simultaneously creating memory
contention on the co-located attacker VM, one could reliably detect co-
location without any cooperation from the victim or the cloud provider.
To the best of our knowledge, this is the only uncooperative co-residency
detection mechanism that is known to work in the modern clouds.

These findings reflect the state of the placement policies used in public
clouds and how they may only optimize for efficiency or performance
and that they fail to address security concerns that especially arises in the
public clouds because of their openness and multi-tenancy properties.

1.1.2 Stealing Performance from Neighboring VMs

A poorly designed placement algorithm that is vulnerable to adversarial
VM co-location may still be safe from co-location attacks if the hypervi-
sor multiplexing multi-tenant VMs on a single host provides a strong
VM isolation. Recall our definition of isolation, if one VM cannot know
anything about the execution of other VMs or affect their performance
via shared resources then it is said to be strongly isolated and hence se-
cure from malicious users/VMs. But in reality hypervisors are far from
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providing even moderate levels of isolation between VMs. In fact, a ma-
licious user can steal secret keys used in cryptographically secure proto-
cols [93, 152, 187, 191, 192] by just observing a VM’s use of one or more
shared resources on that host. These are called side-channel attacks, as the
name implies these are unintended communication channels in the system
that may be used to siphon data.

There have been numerous works from security researchers demon-
strating how to steal secrets from co-located VMs. But another intriguing
question is: can a greedy user steal performance from neighboring VMs? This
is also an important question that we seek to answer because in these
public clouds performance often may directly translate to money as it
may benefits one user at the expense of other VMs. This is also uniquely
motivated by fixed pay-per-min or -hour pricing model, where a customer
pays the same cost irrespective of the amount of useful work completed in
a unit time.

Let there be two applications running in two separate VMs but on the
same host and these two applications (or in general the VMs) compete
for a set of resources on that host. It is well known that because of lack
of proper isolation of some shared resources; a VM may perceive varying
performance based on how many other VMs are competing for the same
resource. This subclass of (lack of) isolation is also called (lack of) perfor-
mance isolation. A comprehensive study that we did on a local testbed
revealed that because of poor performance isolation in virtualized systems
a competing VM can slow down the performance of another VM by 3×-6×
compared to when run in isolation [168]. A subset of the results from this
study is shown in Figure 1.2. With such huge performance degradation
for even a short duration of time may translate into huge monetary loss
or poor quality of service while incurring the same cost. Such significant
performance loss may be sufficient to incentivize a greedy cloud user to
workaround and relieve the situation.
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Figure 1.2: Resource Contention in Virtualized Systems. The bar graph
shows the worst-case performance degradation observed when running a microbench-
mark in one VM that stresses a per-core resource (x-axis) with and without the same
microbenchmark on another VM that is scheduled on the same package or socket but on
different core. Note that the observed contention for CPU resource was in fact zero even
when the VMs ran on the same host. This result was gathered on a machine with the
following configuration: 4-core, 2-package 2.66 GHz Intel Xeon E5430 with 6MB of
shared L2 cache per package and 4GB of main memory, with Xen configured on top of it
with guest VM configuration: 1 GB memory, 40% cap and weight 256.

In this dissertation, we found that an aggressive user can interfere with
workloads running in neighboring VMs (victims) such that additional
resources are freed up for his own VM’s (beneficiary) consumption at
no cost. We call such a class of attacks Resource-Freeing Attacks (RFA). A
successful resource-freeing attack aims to shift the resource usage of the
victim(s) away from the target, competing resource that the beneficiary
cares about and towards a bottleneck resource, thus significant reducing
the contention on the target shared resource.

Let us look at an example scenario that demonstrate RFAs. For instance,
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let us assume that two VMs are competing for memory bandwidth and in
addition to the memory bandwidth, let the victim also relies on sequential
disk bandwidth. It is well known that a workload’s performance may rely
on multiple and diverse set of resources. A resource-freeing attack in this
scenario creates a disk bottleneck by periodically issuing random disk
writes, which naturally frees up memory bandwidth as the victim waits
for the disk to complete its sequential accesses. Note that the beneficiary
VM’s performance should not depend on disk bandwidth for a profitable
RFA.

The above example is one of the many instances of RFAs possible in
a poorly isolated system. All these RFAs help point out two important
deficiencies in public cloud systems. First, a poorly designed pricing/-
billing model may negatively incentivize adversaries to commit malicious
activities. This is because a simple pricing model such as the pay per hour
of usage does not account for the performance interference from other
users and end up charging each user the same irrespective of the useful
work done per unit time. Second, using schedulers that permit unlimited
use of idle (or unused) resources (i.e., work-conserving scheduler) increase
the profitability of the RFAs. Thus, this work provides fresh insight into
scheduler design paradigms that improves security.

1.2 Improving Isolation

In the light of the above two new findings that in contrary to traditional
wisdom even large and busy public clouds are vulnerable to co-location
attacks, the demand to improve isolation has never been higher.

A straightforward defense mechanism that can provide perfect iso-
lation between VMs is: avoid any sharing between them. This could be
realized either by strictly partitioning resources between users at the hy-
pervisor or by having dedicated hardware for each tenant VM. Hence we
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call such strict form of isolation as hard isolation. Although this solves all
the problems that arise in the presence of malicious tenants, it does it at a
high cost and is impractical for multiple reasons. One, cloud providers
no longer can multiplex resources and increase the service cost for cus-
tomers [31]. Second, it does not bank on the idea that not all workloads
use 100% of the resources all the time. Thus not sharing resources reduces
the resource utilization of the datacenter [42, 118], which in turn increases
the service cost.

This brings us to the problem of finding a solution that does not give up
the pillars that form the public clouds – openness, multi-tenancy, sharing
and low service cost. In other words, the challenge here is to find a defense
mechanism that hits a sweet spot between efficiency and security. We
investigate a new design principle called soft-isolation: reduce the risk of
sharing through better scheduling.

We demonstrate soft-isolation paradigm by designing a hypervisor
CPU scheduler to defend against one of the most dangerous class of co-
location attacks: the cross-VM side-channel attacks that exploit per-core
shared states to steal secrets from neighboring VMs [93, 191]. A success-
ful cross-VM side-channel attack involves two main steps: (1) frequent
interruption of the execution of a VM sharing the same per-core resource
(e.g. TLB, L1 I/D-cache) and (2) measuring the time taken to access that
shared resource using high precision time stamp counters (TSCs). As these
per-core resources are typically stateful, the measured timing profile of the
shared resource indirectly reveals the resource usage information of the
other VM(s) sharing the same resource. This is the simplified version of a
cross-VM side-channel attack although the actual attack is much more com-
plex involving machine learning and multiple stages of post-processing of
the timing profile.

As noted earlier, one essential requirement for the success of the side-
channel attacks is the frequent preemptions, which were allowed by the
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state-of-the-art hypervisor CPU schedulers for the benefit of interactive
workloads. But an attacker could abuse this scheduler feature to preempt
a victim VM as quick as 10µs. To solve this problem, we adopted the
soft-isolation principle that guides us to ratelimit dangerous cross-VM pre-
emptions instead of avoiding any cross-VM preemptions (hard-isolation),
which may be achieved by pinning each VM to different CPU core. We
achieved this via a simple scheduler primitive we called the Minimum
RunTime (MRT) guarantee. With MRT guarantee, a VM is allowed to run
for a guaranteed time interval (MRT value) irrespective of any outstanding
interrupts or preemptions. We discovered that a modest MRT value of
1-5ms was sufficient to prevent any known attacks [166]. Further extensive
experimentation with microbenchmarks and realistic cloud applications
revealed that a MRT value of 5ms incurs zero overhead on average and
less than 7% overhead on the tail latency of interactive workloads like
memcached [65] and cassandra [111].

1.3 Summary of Contributions

The work presented in this dissertation makes several contributions to the
area of cloud computing security. Some of the major contributions are
listed below.

• We systematically evaluated the placement policies used in public
clouds, quantifying the susceptibility of some launch strategies to-
wards co-location. This is the first-of-its-kind elaborate study that
gives insight into how current efficiency optimized placement algo-
rithms might have other security implications, in this case, cheap
VM placement attack strategies. Apart from quantifying the cost
of co-location and we also designed a framework to compare the
security of placement policies used in distinct clouds against VM
placement attacks. Further the findings also freshly motivate sev-
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eral previously published co-location attacks, as VM co-location is a
prerequisite for the success of many co-location attacks.

• Apart from demonstrating that VM placement can be influenced in a
live and busy public cloud systems, we also showed that co-location
can be detected with any victim VM in a public cloud by just using
quirks in the microarchitecture of current generation X86 machines.

• The comprehensive measurement study on the level of performance
degradation due to resource contention helps gauge the quality of
performance isolation in virtualized systems. The results help bolster
the fact that even in 2015 state-of-the-art hypervisors still poorly
isolate VM executions on a single host.

• We discover and demonstrate a new class of attacks called Resource-
Freeing Attacks that could be used by a greedy customer to relieve
massive contention (3×-6×) on essential shared resources and boast
his performance at the neighbor’s expense. This work exposes prob-
lems in the design of resource schedulers in a public cloud setting
and shows how a flaw in the billing system could incentivize mali-
cious activity in the public cloud.

• We evaluate the ability of system software to mitigate a class of cross-
VM side-channel attacks (Prime+Probe) through scheduling. We
propose a new design principle called soft isolation that aims to re-
duce the risk of sharing by avoiding dangerous cross-VM interactions
when sharing the same processor. With extensive experimental mea-
surements, we demonstrate that such a mechanism can effectively
prevent existing Prime+Probe side-channel attacks at negligible over-
head.



13

1.4 Outline

The rest of this dissertation is organized into the following sections.

• Background. In Chapter 2 we provide a general background to un-
derstand this dissertation, giving an overview of public clouds, virtu-
alization, challenges in providing isolation, and background on cross-
VM attacks in public clouds. That said, any readers who possess
basic understanding of virtualization, public clouds, and cross-VM
attacks can safely skip this chapter.

• Threat model. In Chapter 3 we define our assumptions about the
cloud provider, the attacker and the victim and justify how these
assumptions are valid and reasonable in a modern public cloud
environment.

• Motivation. In Chapter 4 we list three specific problems that we
tackle in this dissertation that we briefly described in this chapter
and also argue why these problems help in validation our thesis
about isolation in public clouds.

• Evaluating and improving isolation in public clouds. Chapters 5,
6 and 7 are the meat of this dissertation, where we go in greater
detail about the three studies that we did about isolation in public
clouds. First, in Chapter 5 we categorically show that targeted VM co-
location is practical even in modern clouds and why researchers and
cloud providers need to worry about co-location attacks. Second,
in Chapter 6 we demonstrate how lack of isolation between VMs
could incentivize new attacks in public clouds. Third, in Chapter 7
we propose a new design paradigm called soft-isolation that aims to
improve isolation between co-resident VMs without compromising
on efficiency. We also demonstrate on how this design principle can
be employed to defend against the dangerous cross-VM side-channel
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attacks in the cloud. We record the results of all the three studies in
their respective chapters.

• Related work. In Chapter 8 we survey many prior and contempo-
rary works that are related to the ideas presented in this dissertation
and compare them with our works.

• Conclusion and lessons learned. Finally, in Chapter 9 we summa-
rize the results of the studies presented and argue how they help
support the thesis of this dissertation. We also present some of the
valuable lessons learned during the research endeavors.
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2
Background

Historically, any enterprise that rely on compute resources to do simple
web hosting invested in physical machine resources starting as a small
cluster of few tens of machines and growing into a large private datacenter
as the enterprise grows. The emergence and popularity of Amazon EC2
that enabled renting a fraction of a machine on-demand and pay only
for the usage (per hour) [9] changed this requirement of an enterprise.
The most challenging aspect of these Infrastructure-as-a-Service (IaaS)
cloud providers is renting out a fraction of a single machine to disparate
customers. This scenario is very similar to what operating systems faced in
the era of mainframes where many users ran tasks on a shared mainframe
computer with the expectation that operating system provided fair share
of resources for every user and to isolated one user’s task execution and
data from another. In this era of cloud computing, instead of a single
mainframe computer there is a cluster of racks with many nodes per racks
that forms the shared infrastructure. The operating system for this cluster
of nodes is responsible for where to place a task (placement) in this cluster,
and isolate the tasks that share the same physical resources (isolation)
among other responsibilities. The shared cloud resources include but
are not limited to the per-node resources like CPU, memory, disk, and
datacenter-wide resources like shared networks that connect different
nodes and to the Internet. The user task is a Virtual Machine (VM), which
is equivalent to a user process in the mainframe era.

In this chapter, we will provide a broad background on this operating
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system that manages the cloud but specifically focusing on how the system
is designed to isolate resource usage of disparate users of the cloud. This
background is essential to understand the new attacks, vulnerabilities
uncovered in this dissertation and defense mechanisms that aim at im-
proving the isolation guarantees in public clouds. Particularly, we will
learn:

• How a cloud user interacts with the cloud and how is one billed?

• What is virtualization and how is it used to provide isolation between
users?

• How does a cluster scheduler work and what is its role in providing
isolation?

• What are some of the security challenges that public clouds face?

2.1 Overview: Public Clouds

To get a quick bird’s eye view of a public cloud let us follow the life cycle
of a VM, which is the fundamental scheduling entity for a cloud user.

Life cycle of a VM. A cloud user starts a VM by invoking the cloud API
through which a desired set of parameters describing the configuration of
the VM is communicated to the cloud provider. The provider initiates the
resource allocation for the new VM; this process is called VM provisioning.
VM provisioning consists of two steps: VM placement, which selects the
physical host to run a VM using a VM placement algorithm followed by
bootstrapping the VM on that host, which involves the per-host resource
manager carving out physical resources for running the VM. The resulting
VM-to-host mapping we call the VM placement and the per-host resource
manager is called the hypervisor that is responsible for allocation and
isolation of resources between VMs on that host. The VM interacts with the



17

hypervisor to set up network and storage resources or request new services
through other cloud management infrastructures, which we collectively
refer to as the cloud fabric. The cloud fabric as a whole is also responsible
for resource accounting, billing and performance monitoring for that VM.
During the lifetime of the VM, it and its resources can be reconfigured.
The cloud fabric may also choose to transparently migrate the VM to a
different host. When the VM has completed its workload or when the
compute resource is no longer needed, it saves any necessary state to a
persistent storage. Then the cloud user invokes the cloud API to initiate a
VM termination call to the cloud fabric. The cloud fabric reclaims all the
resources associated with the VM, ending the life cycle of a VM.

Cloud Interface. All public clouds provide a management interface for
customers to rent resources either using specialized Software-as-a-Services
like a database engine [20], performance monitoring tool [6], load bal-
ancer [16], etc. or raw compute or storage resources in form of VMs or
virtual disks. Typically, users start by registering an account with the cloud
provider that at least require a credit card or bank account credentials
and an email address. Then the users invoke the cloud interface to specify
their resource requirements using the management interface or cloud API.
There are several different APIs for accessing various services1 but we
restrict our discussion to the Cloud API that helps a user to configure,
launch and terminate VMs in the public cloud (in IaaS parlance often
referred to as Compute API).

2.1.1 Compute Cloud API

A typical cloud API consists many calls to the public cloud fabric that aid in
VM configuration, which is not limited to launching and terminating VMs
but attaching/detaching storage volumes, create/delete VM snapshots,

1For instance, GCE had more than 100 Cloud APIs that were available at the time
when this dissertation was written.
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Type* EC2 GCE Azure
Shared-core t1.x, t2.x f1-micro, g1-small basic A0-A4

Standard x.medium n1-standard-N standard A0-A7
Large x.large, x.Nxlarge n1-highcpu-N D1-D4 & D11-D14

X-Optimized memory, GPU, I/O n1-highmem-N network, memory

Figure 2.1: Instance Types in EC2, GCE and Azure Public Clouds. Popu-
lar public clouds have numerous predefined VM configurations under different tiers. The
type (*) mentioned is an author defined tiers for VM types commonly found across public
clouds. Shared-core instances are configured to consume only a fraction of a physical core
and hence often share the same core with another tenant’s VM. X-Optimized instance
types satisfy special requirements for a cloud application like access to GPUs or better
network or memory configuration than other available instance types. x in the instance
type takes set of values forming a hierarchy of instance types. For example, t1.micro and
t1.medium in EC2 are two instance types under same hardware configuration (t1 - ma-
chine generation with shared core) but different VM configuration. micro VM instances
have 1 virtual CPU with 1GB of memory whereas medium instances have 2 virtual CPUs
with 4GB of memory. This is the snapshot of instances types available as of October 2015.

Instance Type CPU Memory Network Storage
t2.micro 10% of 1 vCPU up to 3.3GHz 1GB Low EBS HDD

t2.medium 40% of 2 vCPU up to 3.3GHz 4GB Low EBS HDD
m3.medium 1 vCPU, 2.5 GHz 3.75GB Moderate 4GB SSD

m3.xlarge 4 vCPUs, 2.5 GHz 15GB High 80GB SSD
c4.xlarge 4 vCPUs, 2.9 GHz 7.5GB High EBS HDD

Figure 2.2: VM Configurations of EC2 Instance Types.. Only shows a
subset of the available instance types in Amazon EC2 [13] but diverse enough to give an
idea of various VM configurations available in the modern public clouds. EBS stands for
Elastic Block Stores, which are network attached Hard Disk Drives (HDDs). Historically,
EC2 provided an architecture agnostic CPU metric (called Elastic Compute Unit or ECU)
but in 2014 EC2 exposed raw vCPU metrics that reflect the physical CPU limits. This is
the reason the above CPU configuration varies for different instance types.
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assigning IP addresses, etc. (e.g., EC2 API [10]). We focus on two impor-
tant calls that affect the life cycle of a VM: VM launch and VM terminate.
When a user wishes to launch a VM (in EC2 called RunInstances [11]), it
is required to pass several parameters that define the VM and its configu-
rations. This include: VM instance type, datacenter location, VM image,
number of VMs of this type apart from various common parameters that
identify the user with credentials like security tokens and/or API keys.
Each public cloud has several instance types that are basically predefined
VM configurations with their own associated VM capacities. Some of the
common instance types are shown in Figure 2.1. To get an idea of VM
configurations associated with a VM type, we take a closer look at the con-
figurations of a subset of instance types available in Amazon EC2 (shown
in Figure 2.2). There is a spectrum of instance types that are ideal for
different workloads. For example, m3.medium instance are ideal for small
and mid-sized databases and c4.xlarge for high-performance front-end
webservers, video encoding, gaming and distributed analytics [13].

Apart from instance types, users also have different choices for datacen-
ter location. A datacenter location typically consists of two dimensions: 1.
the actual geographical location of the datacenter, e.g., US-east (also called
regions) and 2. the availability zone within a datacenter. Availability zones
are cluster of machines in a region that are designed to fail independent of
any failure in another availability zone in the same region. Here failures
include network, power or other management failures that might happen
in a datacenter. For example, EC2 has 4 regions in the US with 2-5 avail-
ability zones in each of these regions and has several regions in Europe
and Asia. To fully utilize the presence of availability zones, customers
are recommended to spawn redundant components of their application
in at least 2 if not 3 availability zones. This increases the availability of
their application as they could service user requests amidst unpredictable
systems failure in other availability zones. It is important to note that
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Cloud* Price per hour Granularity
EC2 $0.026 per hour
GCE $0.027 per minute

Azure $0.060 per minute
Rackspace $0.037 per hour

Figure 2.3: Public Cloud Pricing for EC2, GCE, Azure and Rackspace.
Price per hour listed here are the price for on-demand small instances (EC2: t2.small,
GCE: g1-small, Azure: Standard-A1, Rackspace: General1-1).

users do not have the flexibility to choose a particular availability zone
that another user may reside as the naming of availability zones differs
from one customer account to another2.

2.1.2 Pricing Model

The above cloud API enables any user to request VM instances of any
type on-demand. The pricing model with which users are billed for the
use of these instances varies across cloud providers. Figure 2.3 lists the
prices for a similar instance type on four popular public clouds. Typically,
all providers follow the pay-as-you-go pricing model where there are
no upfront costs and users pays for the actual usage per unit time. The
granularity at which each providers charges may be as high as one hour
to as low as every minute. For instance, if a user starts an instance and run
for only 10 minutes, EC2 and Rackspace charges the user for the whole
hour but GCE and Azure charge only for the 10 minutes. Similarly, each
providers charges for network resource per unit of data transmitted and
for storage per unit of data per unit time. Overall, the pricing model is
highly flexible compared to the cost incurred for setting up a datacenter
and the maintenance cost associated with it. Interestingly, this simplistic
pricing model also has some downsides like homogeneous pricing for
heterogeneous hardware. For instance, there is a possibility that the same

2This is known to be true for Amazon EC2.



21

instance type might run on two different machines and be charged the
same cost even though the performance may differ even when run the
same workload inside those instances (e.g., m3.medium in EC2 may also
run on an older generation microarchitecture) [61].

2.1.3 Other cloud services

One of the many advantages of the public clouds is its elasticity – ability
to scale the size of the virtual datacenter of any user dynamically with
minimal effort. In fact there are several higher-level services that monitor
load and automatically launch or terminate instances based on the work-
load [32, 74, 150]. These services internally use the same mechanisms as
users to configure, launch and terminate VMs but agree upon the cloud
application configuration and needs ahead of time.

There are also other services to: 1. load balance client request over the
Internet among a set of front-end servers [16], 2. provide Content Delivery
Networks (CDNs) [5], 3. Database services [20] and many more.

Public vs. private clouds. Typically, an enterprise invests in a cluster of
machines or a datacenter to satisfy its computing needs and is responsible
for its maintenance as well. Historically, these clusters are managed using
a mix of off-the-shelf and in-house enterprise tools. Recently, for ease of
maintenance, these clusters are also managed using the same software
management infrastructure (e.g., OpenStack [138]) that are employed in
public clouds and hence, virtualize the cluster of machines. Unlike public
clouds, the access to the datacenter is limited to only the employees of
the enterprise. Such a private software/hardware infrastructure forms a
private cloud. On the other hand, a public cloud has similar challenges
as a private cloud but is accessible to any user over the Internet. In this
dissertation, we focus on security concerns that arise in a public cloud
in the presence of malicious users. Although many of the problems and
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solutions discussed here may also apply to private clouds, such discussions
are out of the scope of this dissertation.

2.2 Virtualization

Virtualization is a method that allows multiple users or programs to share
the same resources. It provides an illusion that a user has all of the phys-
ical resources but in fact the physical resource may be simultaneously
shared between multiple users or each user uses the resource for a frac-
tion of a time (time-multiplexing). This illusion is often called the virtual
counter-part of the actual resource (e.g., CPU vs. Virtual CPU). For exam-
ple, Operating Systems (OS) in the era of mainframes virtualized a single
mainframe into multiple processes each of which had access to all the
resources of the mainframe like memory, disks, CPU etc. Hence a process
essentially is a virtual mainframe. In the public cloud setting, virtualiza-
tion plays a major role in enabling sharing of a cluster of machines among
disparate users over the Internet. Below we will take a close look at how
three major resources (compute, network, storage) are virtualized in the
cloud.

2.2.1 Compute Virtualization

Compute Virtualization is a combination of software (operating system)
and hardware protection mechanisms that provide a task abstraction en-
abling resource sharing between disparate users. This is true since the
era of mainframes where OSes with minimal hardware support virtualize
all resources (e.g., CPU, memory, disk, network). Note that an OS that
provides process abstraction is far away from the physical machine layer
and is designed to support various system management tasks that are
hidden behind the process abstraction. For example, all processes used the
system call interface to off-load management tasks to the OS like memory,
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devices like disk, network, etc. But unlike operating systems that use a
process abstraction, IaaS providers use a virtual machine (VM) abstraction.
Figure 2.4 depicts these differences in the perspective of an application
running in a process versus one running inside a VM environment. As
the name suggests, the virtual machine is the lowest form of abstraction,
where the system exposes the same interface a bare physical machine
provides, machine instructions. Hence, unlike a process abstraction, VMs
require only minimal management support from the system software.
For the same reason, the VM abstraction also promises highest level of
freedom enabling any user to independently run an operating system of
their choice irrespective of whom they are sharing the physical machine
with or the type of the machine they are running on. Here the system
software that manages these VMs is called a hypervisor. These hypervisors
are solely responsible for two main function – efficiently sharing resources
and isolation between disparate VMs. In this section, we will take a close
look at how the hypervisor strives to do both these functions.

Isolation. Recall the definition of isolation (in Chapter 1): two user tasks
are perfectly isolated if one task cannot know about the execution of the
other task and its use of all the shared resources. It is important to note this
is a stronger form of isolation than is expected from an ideal hypervisor.
In reality, it is hard if not impossible to achieve this strict form of isolation
and we often refer to two forms of isolation called logical and performance
isolation. Two VMs are logically isolated if one of the VMs cannot name
or identify an instance of a resource that is also shared by the other VM.
Examples for a shared namespace that violate logical isolation between
two VMs are: a common physical host IP address or common hypervisor
identifier (e.g., Dom0 identifier in Xen [152]). Two VMs are performance
isolated if a VM is unable to know the presence of another VM by measuring
the performance of a shared resource. A lack of performance isolation
is realized, for instance, when a VM perceives a significant reduction in
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Figure 2.4: Process vs. Virtual Machine Abstraction.

CPU bandwidth when sharing the CPU with another VM relative to the
bandwidth observed when run in isolation. There are other special forms
of isolation like thermal or power isolation, where instead of performance,
dissipation of heat or consumption of power, respectively, could also aid in
the knowledge of other VMs in the system. Such highly specialized forms
of isolation are out of scope of this dissertation. Ideally, a hypervisor aims
to achieve both logical and performance isolation but in reality achieving
perfect performance isolation is much harder than logical isolation.

Types of hypervisors. There are two different types of hypervisors that
allow a full-fledged OS (also called as the guest OS) to run inside a VM.
Type I or bare-metal hypervisors run directly on the physical hardware
(e.g., Xen [40], KVM/QEMU [45, 105], HyperV [173], VMware ESX [130]).
On the other hand, a Type II or hosted hypervisors run on top of a host OS



25

using nested virtualization [46] hardware support or binary translation
support [119] (e.g., VMware Workstation [163], VirtualBox [181]). In this
dissertation, we will focus only on type I hypervisors, as the other type is
unsuitable for a public cloud environment.

The popular public clouds differ in their choice of hypervisors; GCE
uses KVM, Azure: HyperV, EC2 and Rackspace: Xen. Although all these
hypervisors aim to achieve the same goals of isolation and close to bare-
metal efficiency, they slightly differ in their system architecture and design.
There are several metrics by which Hypervisors and their security guaran-
tees are evaluated. One common metric is the Trusted Computing Base
(TCB). A TCB is the minimal set of system software that is responsible
for security guarantees of the system and is essential trusted. Hence, in
general the size of the TCB could be used as a proxy to gauge the security
of the system (smaller the better).

Xen [40] and HyperV [92, 173] follow a micro-kernel like system where
the auxiliary management software is separated from the actual hypervisor
and hence brandishes a very thin Trusted Computing Base (TCB). On the
other hand, the KVM hypervisor, which comprises of the whole Linux OS
and a kernel module (kvm.ko), has a large TCB. Although it has a large
TCB, the reused Linux OS source is highly mature and taps into all the
contributions to the mainline Linux OS. In this dissertation, we will focus
on one of the hypervisors (Xen) that is freely accessible and is used by the
most popular and a successful public cloud (EC2).

Xen Hypervisor

In order to understand the sources and effects of performance interference,
we describe the Xen hypervisor mechanisms and policies for sharing re-
sources between guest virtual machines while still providing performance
isolation. A key reason to use VM-based virtualization in cloud computing
is their ability to logical isolation between customer applications. This is
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because a VM-abstraction virtualizes everything about a machine, detach-
ing a VM from its physical host. On top of this, achieving performance
isolation is a primary goal for hypervisors like Xen hypervisor used in
EC2 [40]. To this end, Xen and other hypervisors focus on fairly allocating
CPU time and memory capacity [175]. However, other hardware resources
such as memory bandwidth, processor cache capacity, network, and disk
have received less attention.

CPU. The scheduler views VMs as a set of virtual CPUs (VCPUs), which
are scheduled entities (like threads or processes in OS) and its task is to
determine which VCPUs should be run on each physical CPU at any given
time. The Xen scheduler provides both fair-share allocation of CPU and
low-latency dispatch for I/O-intensive VCPUs. The commonly used CPU
scheduler is the credit scheduler I [54].

The scheduler gives VCPUs credits at a pre-determined rate. The credits
represent a share of the CPU and provide access to the CPU. Every 10ms a
periodic scheduler tick removes credits from the currently running VCPU
and if it has none remaining, switches to the next VCPU in the ready queue.
VCPUs are given more credits periodically (typically every 30ms). Thus,
if a CPU-bound process runs out of credit, it must suspend for up to 30ms
until it receives new credits to run. A VCPU that runs for short periods
may never run out of credit, although the total amount it can accrue is
limited.

In order to support low-latency I/O, Xen implements a boost mechanism
that raises the priority of a VM when it receives an event (loosely translated
as interrupt), which moves it towards the head of the ready queue. This
allows it to preempt the running VM and respond to an I/O request
immediately. However, a VM that has run out of credits cannot receive
this boost priority. The boost mechanism is a key component that is often
abused in many security attacks [166, 168, 191].

The credit scheduler supports a work-conserving mode, in which idle
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CPU time is distributed to runnable VCPUs, and a non-work-conserving
mode, in which VMs’ CPU time is capped. The latter mode reduces
efficiency but improves performance isolation. Though Amazon does
not report which mode it uses, our experiments indicate that EC2 uses
non-work-conserving scheduling.

On a multiprocessor, Xen can either float VPCUs, letting them execute
on any CPU, or pin them to particular CPUs. When floating, Xen allows
a VCPU to run on any CPU unless it ran in the last 1ms, in which case it
is rescheduled on the same core to maintain cache locality. Experiments
show that EC2 configures Xen to float VCPUs across cores.

Memory. Xen isolates memory access primarily by controlling the alloca-
tion of memory pages to VMs. In cloud settings, Xen is often configured
to give each VM a static number of pages. It does not swap pages to disk,
actively manage the amount of memory available to each VM, or use dedu-
plication to maximize use of memory [175]. Furthermore, x86 hardware
does not provide the ability to enforce per-VCPU limits on memory band-
width, hence Xen does not manage memory usage. Although recent Intel
microarchitectures (since Broadwell, 2015) provide mechanisms to manage
LLC usage in the OS (called Cache Allocation Technology (CAT) [94, 95]),
current version of Xen is yet to utilize such facilities.

Devices. By default, Xen seeks fair sharing of disk and network by pro-
cessing batches of requests from VMs in round-robin order [40]. For disks,
this can lead to widely varying access times, as sets of random requests
may incur a longer delay than sequential accesses. Further, Xen defaults
to a work conserving scheduler for other devices, so performance can also
degrade if another VM that was not using a device suddenly begins to do
so. However, we observe that EC2 sets caps on the network bandwidth
available to an m1.small instance at around 300 Mbps, but does not cap
disk bandwidth (more details in Chapter 6).
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2.2.2 Network Virtualization

Compute virtualization described above is essential to provide isolation
for majority of the resources used by a VM but arbitrating and configuring
datacenter network is equally important. Unlike other per-host resources,
the network spans the whole datacenter and into the Internet. The network
is often the only entry point for various security attacks and are hardest to
secure because of the inherent distributed nature of the network (with a
cluster of routers and switches).

Typically the cloud infrastructure, by default, configures each VM with
at least two IP addresses, a public IP address for communication over the
Internet, and a private or internal IP address for intra-datacenter commu-
nications. Cloud providers aim to fully virtualize the network by using
a combination of several technologies [55]: network overlays for ease of
virtualization in multi-tenant clouds [55], Virtual Local Area Networks
(VLANs) [171] for network isolation for small networks, Software Defined
Networking (SDN) for ease of management and control [53, 104, 121],
Virtual Private Networks (VPNs) for secure inter-datacenter communi-
cation [154], middleboxes3 and network firewalls for enforcing security
policies. Understanding and evaluating security properties provided by
these technology is not the focus of this dissertation. Readers interested
in gaining deeper understanding of the network virtualization techniques
are directed to relevant publications [55]. Overall, a combination of these
technologies enables a dynamic, agile network that isolates each user’s
traffic from another. This enables a user to configure and manage the
network as part of their own Virtual Private Cloud (VPC) [22, 44], where
the user is given the view of a private cloud with a cluster of VMs whose
interaction with each other and the Internet can be monitored and isolated
from others.

3Network Function Virtualization is another related keyword that would be useful
for any interested readers.
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2.2.3 Storage Virtualization

In addition to virtualizing network, often cloud providers benefit from
virtualizing storage systems as well. There are several ways to provide
storage resources to a VM. A straightforward method is to expose a logical
partition of a disk on that host to each VM running on the same host.
Although this results in a simple storage manager, it has several drawbacks
such as expensive VM migration, and complex VM snapshot process. For
instance, on a VM failure the recovery process becomes complex without
the availability of the host as the VM’s persistent state is on the host’s local
disk. Current public clouds increasingly offer network-attached disks,
where a virtual block-storage driver on the host emulates a local disk
partition that transparently communicates with a disk cluster. Here the
disk cluster could either be part of a Storage Area Network (SAN) or a
Network-attached Storage (NAS). Although the details and distinction
between these two types of decentralized storage architectures is out of
scope of this dissertation, they help optimize for all the drawbacks of local
disk storage or direct-attached storage system. Amazon EC2 calls their
network-attached disks as Elastic Block Store (EBS) [8] and the local disks
as ephemeral disks, offering them as scratch disks whose state are not
persistent across VM termination. The added benefit of these network-
attached disks is that it provides the flexibility of choosing either a Solid
State Disks (SSDs) or Hard Disk Drives (HDDs) from any host with the
added benefit of almost infinite disk capacity.

Apart from these storage virtualization that operates at the block-level,
some cloud providers also provide specialized storage like object stores
that are accessible via a separate API. For example, Amazon Web Services
offers an object store called Amazon Simple Storage Service (S3) [21] and
Google Cloud offers Google Cloud Storage [72]. Both of them expose
a simple put-get key-value store style interface. These object stores do
not provide rich querying interfaces and store unstructured binary blob
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associated with a key. There are also other NoSQL (e.g. DynamoDB [7],
BigTable [70]) and SQL (e.g., Amazon RDS [20]) storage services that
provide rich interfaces than the simple object stores. There are also storage
services for specific use cases like data archiving and long term backup
storage (e.g., Amazon Glacier [17]).

2.3 Cluster Scheduler

Cluster schedulers are responsible for selecting where to place VMs in a
datacenter. The mapping of VM to host is called a VM placement and the
logic that decides this mapping is the placement algorithm or scheduler.
The primary goal of a VM placement scheduler is maximizing datacenter
efficiency and resource utilization of its servers [42]. Apart from this,
the scheduler also controls co-location of multi-tenant VMs and hence is
indirectly responsible for isolation in public clouds.

The placement for a specific VM may depend on many factors: the load
on each machine, the number of machines in the data center, the number
of concurrent VM launch requests, etc. as defined by the placement policy
for that public cloud. As mentioned earlier, the VM placement policies and
the associated placement algorithm that implements it in public clouds aim
to increase data center efficiency, quality of service, or both. For instance, a
policy that aims to increase data center utilization may pack launched VMs
on fewer machines. Similarly policies that optimize the time to provision
a VM, which involves fetching an image over the network to the physical
machine and booting, may choose the last machine that used the same VM
image, as it may already have the VM image cached on local disks. Policies
may vary across cloud providers, and even within a provider based on
the nature of the VM launch requests.

Current public clouds do not disclose these placement policies and
algorithms used and the average user entrusts the cloud provider to pro-
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vide best-effort safety measures. The existence of an open source cloud
management software, OpenStack [138] sheds light on the structure of a
state-of-the-art cluster scheduler used in the wild. This is because a num-
ber of public clouds (and some private clouds) use a version of OpenStack
to manage their datacenter (e.g., Rackspace [146], HPE Helion [89]).

OpenStack cluster scheduler. OpenStack’s cluster scheduler (also called
nova-scheduler) decides the placement of a VM in two stages. First, from
the list of all hosts available in the datacenter it filters out hosts that cannot
satisfy the VM launch request. The scheduler can be configured with more
than one filter, each filter for a corresponding policy restriction. Second, it
weighs and ranks the list of remaining hosts based on configured policy
and chooses the host with highest weight to place the requested VM. Note
that there is also a non-weight based scheduler in the second stage called
the chance scheduler, which as the name implies randomly selects one of
the filtered hosts.

It is evident that the choice of the filters used and the host weighing
policy defines the placement policy under this OpenStack scheduler ar-
chitecture. There are several options for the filters and host ranking for a
cloud provider, and a few of them are described below (for the full list see
the Openstack documentation [139]).

By default, OpenStack is configured to use to the filter scheduler with
the following filters:

• Availability zone filter: selects only the machines that are in the re-
quested availability zone,

• RAM filter: selects machines with sufficient physical memory,

• Image properties filter: selects machines that have the machine archi-
tecture, hypervisors that are compatible with the image of choice,
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• Affinity and Anti-affinity filter: selects machines that already hosts a
group of VMs (affinity) and avoids certain other VMs and their hosts
(anti-affinity).

Regarding the weighing options, one can define a policy that enables
either spreading of VMs across all available machines after filtering or
stack VMs on single machine before moving to the next. Here the former
increases machine utilization whereas later saves power. By default, a
host’s weight is calculated based on the amount of unused RAM and the
weighing policy is defined using a multiplier that defines how the weight
of that host grows with the amount of its unused RAM capacity. For
example, a negative multiplier promotes packing VMs on the same host.

In the current version of OpenStack there are very few filters that help
configure security policies. For instance, there is a filter to remove list of
machine that hosts VMs that belong to untrusted users, although it is not
clear how a user is defined trusted or untrusted. Overall, there are no
known policies in OpenStack for managing co-location of multi-tenant
VMs.

VM migration. During the lifetime of a VM, a VM may not always run
on a single host on which it was placed at start. Cloud providers may
also migrate VMs to another machine. There are several reasons that
may trigger a VM migration event – power cycling hosts for maintenance
or system upgrade purposes, efficiency reasons to pack multiple long
running VMs on a small number of hosts, or security reasons to avoid
long periods of co-location with a group of VMs. Although there are
benefits for migrating VMs, migration affects the availability of the VM
even if it is for a brief time [132]. For this reason may cloud providers
turn to live VM migration as a last resort (e.g., rolling critical security
update or other maintenance activity) [71]. Google Cloud acknowledges
the possibility of VM migration for maintenance and provides a choice to
the user to do live VM migration (the default option) or to terminate and
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re-launch the VM that is affected by the maintenance activity [71]. Other
cloud providers provide only notifications in case of such disruptive VM
migration activities. Hence, the VM migration is often not visible to the
user and at the time of this writing no cloud providers provided any user
interface to trigger VM migrations.

2.4 Side-channels in Public Clouds

Any lack of isolation in the cloud infrastructure manifests as a security
concern in a public cloud environment in the presence of malicious users.
In this dissertation we focus on cross-VM attacks where a malicious VM
is co-located with the victim VM and exploits lack of isolation to steal
sensitive information. In this section, we provide a background on side-
channel attacks in this section.

Side-channels. Two users when on different machines may communicate
through network protocols by using their Internet Protocol (IP) addresses,
when on the same machine may use system provided communication
channels (e.g., using shared memory) for communication. There are also
unintended communication channels that may exist in a system that could
be exploited by two users. These are called side-channels. Side-channels in
a public cloud setting across VMs exist when there is a lack of proper isola-
tion of shared resources used by those VMs. One can classify side-channels
based on the lack of isolation they exploit, as: logical side-channels and
performance side-channels.

Logical side-channels allow information leakage via naming or identifica-
tion of a shared resource that is explicitly observable, e.g., IP addresses,
timestamp counter values. For instance, it is known that an OS assigns a
file descriptor or IDs for opened files. Often, the file descriptors are num-
bered starting from 0 and incrementally assigned to opened files. This
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file-descriptor name space is shared across all process. Two processes can
use this shared namespace to communicate by opening and closing one
or more files and denote them as 0 or 1, respectively.

Performance side-channels are created when performance variations due
to resource contention are observable. For example, a shared disk can
be used as a side-channel by using the performance characteristics of
the sequential and random accesses, where sequential accesses complete
faster than random accesses because of the spatial locality of the sequential
addresses and the seek latency of magnetic disk heads. A task doing
sequential access will observe a significant drop in its disk throughput if
another task does a random disk read. Here the performance of the first
task could be used to know the access done by the second task and hence
establishing a performance side-channel.

Side-channel attacks. Note that in all the above examples, we considered
two tasks cooperating and using the side-channel for communication. Such
cooperative use of side-channel are often referred as covert-channels. There
are also cases where the side-channels can be used to extract information
that is potentially secret to another user. Such uses of a side-channel make
it a security attack (i.e., a side-channel attack). For instance, the above disk
performance side-channel may also be used to surreptitiously learn about
disk requests done by another user (or a victim), which may indirectly
leak some secret information (e.g., cryptographic secret keys used for
confidential communication).

In public clouds, even though virtualization provides isolation be-
tween two VMs (good logical isolation, limited performance isolation),
it is known that an attacker can use various performance side-channels
across the VM boundary to steal cryptographic secrets (more on this in
the later chapters).

Types of side-channel attacks. Side-channel attacks can be broadly clas-
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sified into three classes: time-, trace-, and access-driven. Time-driven
attacks arise when an attacker can glean useful information via repeated
observations of the (total) duration of a victim operation, such as the time
to compute an encryption (e.g., [2, 47, 52, 83, 107]). Trace-driven attacks
work by having an attacker continuously monitor a cryptographic opera-
tion, for example via electromagnetic emanations or power usage leaked
to the attacker (e.g., [66, 106, 145].

The third and the most damaging class of side-channel attacks are the
access-driven side-channel attacks, in which the attacker is able to run a
program on the same physical server as the victim. These abuse stateful
components of the system shared between attacker and victim program.
They have proved damaging in a wide variety of settings [3, 78, 141, 143,
152, 187, 191, 192]. In the cross-process setting, the attacker and victim are
two separate processes running within the same operating system. In the
cross-VM setting, the attacker and victim are two separate VMs running
co-resident (or co-tenant) on the same server. The cross-VM setting is of
particular concern for public IaaS [152, 191] and PaaS clouds [192], where
it has been shown that an attacker can obtain co-residence of a malicious
instance on the same server as a target [152].

2.5 Other Non-IaaS Public Clouds

Infrastructure-as-a-Service public clouds are not the only type of public
clouds that are available. A second type of public cloud that is increasing
in popularity is the Platform-as-a-Service (PaaS) clouds that, unlike IaaS
clouds, export a process-level abstraction that is higher up the software
stack. Unlike IaaS where users are granted full control of a VM, PaaS
providers often managed compute tasks (or instances) for the execution of
hosted web applications, and allow multiple such instances to share the
same operating system. Typically, a PaaS user uploads application source
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code (e.g., Java, PHP, Python, Ruby) which are then deployed in one or
more instance under the provider-managed host OS. Example of these
PaaS clouds include, Heroku [86], Google App Engine [67], OpenShift by
RedHat [137], Amazon Elastic Beanstalk [32] etc.

There are two major classes of PaaS clouds. One, that provides a
restricted interface as defined by the programming language runtimes
like Java Virtual Machine runtime or Python runtime interpreter. They
often are run in sandboxed environment where two different PaaS in-
stances’ data and execution are isolated from each other and certain cloud
providers further restrict the runtime APIs for security reasons [69]. An al-
ternative approach popular in PaaS clouds is to provides IaaS like flexible
interface with either process-level isolation via file system access con-
trols, or increasingly as Linux containers (e.g., LXC [117], OpenVZ [140]).
Linux containers use existing process-level isolation mechanisms (like
cgroups [51]) available in the Linux OS to run isolated systems (or contain-
ers) that are managed by the same shared OS. They aim to provide flexible
VM like abstraction but do it higher up the stack. The system architecture
is similar to what is pictured in Figure 2.4, where processes are replaced
with containers.

2.5.1 Container-based Clouds

An ardent reader would have noticed that a container-based PaaS clouds
when compared to IaaS clouds, inherently do not provide (logical) isolation
by design because of a lightweight, relatively flimsy process abstraction
(refer to Figure 2.4). This is because, it is easier to ensure and enforce isola-
tion at a lower level of the stack as the potential attack surface is naturally
small with a well-defined interface with potentially untrusted code above
the stack. On the other hand, a process-level abstraction has a large shared
system software with loosely defined and large system-call interface that
needs to be secured (refer to [192] for a detailed discussion). Despite this
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disadvantage, their increasingly popularity could be attributed to the sig-
nificantly lower overhead of running an application inside a process (vs.
inside a VM), and the ease of quickly launching and scaling PaaS instances.
Emergence of application packaging ecosystems like Docker [58, 123] and
open source application orchestration systems like Kubernetes [110] that
ease PaaS application management have also contributed to its popularity.
Often cloud providers work around the security limitations of PaaS clouds
by running the PaaS instances of a single tenant inside a VM to get the
best of both worlds. In this dissertation, we primarily focus on IaaS cloud
and leave PaaS clouds for future work.
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3
Threat Model

In this chapter we list the assumptions that we make about the public cloud
provider, the adversary and the victim and justify these assumptions. This
defines our threat model that we use throughout this dissertation.

3.1 Cloud Provider

Cloud provider is trusted. In our threat model, we assume that the cloud
provider is trusted and strives to provide best-effort security and perfor-
mance guarantees. We also assume that the cloud provider does not
collude with adversaries, or have malicious insiders that may work for the
benefit of an adversary. This is a reasonable assumption if we consider
the level of trust we already place on the cloud provider. Hypervisors
that manage VMs are under complete control of the cloud provider. As a
result they have access to all data (memory, disk, network) associated with
any VM run on these hypervisors. In addition, the cloud provider also
has physical access to the machines that run customer workloads. Further,
it is in the best interest for the cloud provider to make its infrastructure
trustworthy to keep its business profitable. Hence, we trust the cloud
provider. Although designing systems obviates the necessity to trust the
hypervisor is also interesting and challenging, it is not the focus of this
dissertation.

We assume a Type I hypervisor is employed by these cloud providers
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and the hypervisor is trusted as much as the cloud provider who manages
it. That is, the cloud provider is motivated to avoid poor configurations
of the hypervisor for the benefit of the users. For example, we assume
that Simultaneous MultiThreading (SMT) and memory deduplication or
sharing are disabled in the hypervisor, which are known to enable several
classes of co-location attacks (e.g., [1] and [188], respectively).

3.2 Attacker

Adversary as any cloud user. We assume that the attacker has no affili-
ation of any form with the cloud provider. This partly follows from the
above assumption of trusting the cloud provider. But, it also means that
the adversary has no internal knowledge of the workings of the public
cloud systems, (e.g., placement policies that are responsible for the VM
placements, hypervisor configurations, cloud user information). As the
cloud provider is trusted to do the right thing, it is not necessary to dis-
close any such knowledge to its customers. That said, it is only reasonable
to assume that the adversary has access to any public knowledge that is
explicitly revealed by the provider (e.g., explicit documentation by the
provider) or implicitly accessible via usage of the cloud services through
the existing interfaces that is available to any regular user.

Adversary is cost-conscious. We also assume that an adversary has
enough credentials to request a number of user accounts for these public
clouds. Even though there may be per-account limits that a cloud provider
imposes (e.g., maximum of 30 active VMs per account), an adversary has
access to an unlimited number of accounts. This is reasonable as an at-
tacker may have access to number of user credentials, i.e., stolen credit
cards and email addresses, which is sufficient to create a large number of
user accounts. Hence, the adversary has no limit on the number of VMs
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he could launch at any given time. No resource limited cloud provider
can defend against a resource unlimited adversary. For example, if a
cloud provider has a maximum of 50,000 servers for hosting user VMs,
a resource unlimited adversary can always achieve co-location with a
victim by launching the maximum number of VMs required to achieve
co-location with every VM in the public cloud. Such a scenario models
a naïve, brute adversary and there are alternative mechanisms to defend
against such adversaries [125]. In this dissertation, we are concerned about
a sophisticated adversary who is resource conscious in terms of money
and time spent on a successful attack. Such an adversary is also motivated
to do so because of the low risk of detection associated with such cost
conscious attacks.

Adversary controls VM’s software stack. The adversary controls the
entire software stack of its instances (all layers above the hypervisor),
including the guest operating system and applications. Although live VM
migration could be deployed by the cloud providers to improve isolation,
we assume they are not used due to their disadvantages (refer to § 2.3).
We later show through experiments that this configuration assumption is
in fact true with many popular public cloud providers.

3.3 Victim

Victim reconnaissance. Regarding the information about the victim, we
assume the adversary only has access to publicly available information as
allowed by the cloud infrastructure. For instance, public IP address of a
victim can be obtained by a DNS lookup and if the cloud infrastructure
allows translation of a public IP address into an internal IP address, then
the adversary has access to that information as well. Similarly, any public
interface exposed by the victim’s VMs is both accessible and identifiable



41

by the attacker with help of certain tools (e.g., port scanning).
In this dissertation, we do not explicitly explore the ways in which an

attacker can conduct victim reconnaissance. We assume that the adversary
has access to tools to identify a set of target victims (and their VMs), and
all associated information about the victim required for the attack. For
example, to use an efficient launch strategy, the attacker might require
either to know victim VMs’ launch time or to directly trigger their launches.
The latter is possible by increasing load in order to cause the victim to scale
up by launching more instances as many users use auto-scaling features
of the cloud (refer to § 2.1.3).
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4
Motivation

With the background on public clouds presented in Chapter 2, we are
aware of the benefits of multi-tenancy and how the state-of-the-art cloud
systems share resources between disparate users. Although there is sig-
nificant attention towards improving performance and efficiency of the
public cloud infrastructure there is limited attention to evaluate the infras-
tructure for security and their isolation guarantees. In this chapter we will
motivate three important problems that support our thesis: “the practice of
multi-tenancy in public clouds demands stronger isolation guarantees between
VMs in the presence of malicious users.” The three problems we focus in this
dissertation are:

1. Are co-location attacks impractical in modern clouds? (§ 5)

2. Are there unique opportunities for malicious users to exploit the
lack of performance isolation for monetary or performance gains?
(§ 6)

3. Can isolation be improved for security against malicious VMs with-
out compromising the efficiency benefits of sharing? (§ 7)

In the following sections, we will motivate why these questions are
important to answer and why it is important to do so now.
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4.1 Evaluating Modern Clouds for Co-location
Attacks

As we mentioned earlier, recall that co-location attacks involve two steps:
place and breach. The side-channel attacks are examples of the breach
step, which breaks the isolation boundary imposed by the hypervisor to
steal secrets. Less understood is the ability of adversaries to arrange for co-
residency in the first place. In general, doing so consists of using a launch
strategy together with a mechanism for co-residency detection. Here a launch
strategy is a clever invocation of the cloud interface that increases the
chances of co-location. As no cloud provider share co-residency status of
two disparate VMs, the co-residency detection mechanism helps in learn-
ing whether a launch strategy was successful in achieving co-residency
with the victim VM(s).

The only prior work on obtaining co-residency [152] exposed that Ama-
zon EC2 was vulnerable to simple network-topology-based co-residency
checks and simple launch strategies like launching 20 VMs at the time of
the victim VM launch. When such simple, advantageous launch strategies
exist, we say the cloud suffers from a placement vulnerability. Since then,
Amazon has made several changes to their infrastructure, including im-
proving placement policies and removing the ability to do the simplest
co-residency check. It should be noted that there are several other popular
public clouds besides Amazon EC2 that hosts sensitive customer applica-
tions. Whether placement vulnerabilities exist in other public clouds has,
to the best of our knowledge, never been explored.

The current state of the public clouds begs the question: is VM co-
location possible in modern security-hardened clouds? To motivate this
question, we will take a closer look at two aspects of modern clouds: 1.
why prior work on co-location detection no longer work, giving a false
sense of security to these attacks, 2. why we need a systematic study of
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placement policies for testing their resilience to co-location attacks.

4.1.1 Placement Policies used in Public Clouds

When a user launches a VM, the cluster scheduler chooses the physical
host in the whole datacenter to provision the VM. The algorithm that
decides this is called the VM placement algorithm and the resulting VM-
to-host mapping we call the VM placement. The placement for a specific
virtual machine may depend on many factors: the load on each machine,
the number of machines in the data center, the number of concurrent VM
launch requests, etc. The specifics of these factors that influence the VM
placement form the placement policy.

VM placement algorithms used in public clouds often aim to increase
data center efficiency, quality of service, or both by realizing some placement
policy. For instance, a policy that aims to increase data center utilization
may pack launched VMs on a single machine before choosing the next
machine (called stacking). On the other hand, in order to avoid interfer-
ence between similar workloads running inside VMs of the same user or
avoid dependent failures, provider may also choose to spread the VMs on
different hosts. Policies may vary across cloud providers, and even within
a provider.

Public cloud placement policies, although undocumented, often exhibit
behavior that is externally observable. One example is parallel placement
locality [152], in which VMs launched from different accounts within a
short time window are often placed on the same physical machine. Two
instances launched sequentially, where the first instance is terminated
before the launch of the second one, are often placed on the same physical
machine, a phenomenon called sequential placement locality [152]. This may
correspond to a policy which optimizes for VM-image to machine affinity,
to speed up provision by using the already cached VM image and/or disk
state in that host.
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An adversary could capitalize on these advantageous strategies that
exploit aspects of the placement policy. This in turn could benefit the adver-
sary by reducing the cost and risk of detection of such attacks. Surprisingly,
there here has been no study that investigated the security aspect of these
efficiency-optimized placement policies. Although these placement poli-
cies and their associated placement behaviors are not explicitly exposed
by the cloud provider, they can be systematically measured with careful
experiments. Understanding the state of the art placement policies help
both drive future works on designing a placement policy with the right
balance between efficiency and security, and also provide a framework for
systematically evaluating the new and improved placement policies in the
future.

4.1.2 Prior Work on Co-location Detection

Ristenpart et al. [152] proposed several co-residency detection techniques
and used them to identify several launch strategies in Amazon EC2. As
co-resident status is not reported directly by the cloud provider, these
detection methods usually exploit side-channels (either logical or perfor-
mance side-channels described in Section 2.4). Ristenpart et al. discovered
a logical side-channel via shared IP address namespace used in Amazon
EC2. Particularly, each VM is assigned two IP addresses, a public IP address
for communication over the Internet, and a private or internal IP address
for intra-datacenter communications. The EC2 cloud infrastructure al-
lowed translation of public IP addresses to their internal counterparts.
This translation revealed the topology of the internal data center network,
which allowed a remote adversary to map the entire public cloud infras-
tructure and determine, for example, the availability zone and instance
type of a victim. Furthermore, co-resident VMs tended to have adjacent
internal IP addresses.

Similarly, a performance side-channel over the network has also been
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used for detecting co-residence [152, 168]. This is because hypervisors
often directly relay network traffic between VMs on the same host, provid-
ing detectably shorter round-trip times than between VMs on different
hosts. Co-residency detection mechanisms are not limited to the above
two techniques. Covert channels, as a special case of side-channels, can be
established between two VMs that are cooperating in order to detect co-
residency. For purposes of co-residency detection, covert channels based
on shared hardware resources, such as last level caches (LLCs) or local stor-
age disks, can be exploited by one VM to detect performance degradation
caused by a co-resident VM [152]. Covert channel detection techniques
require control over both VMs, and we later refer to such approaches as
cooperative co-residency detection. For this reason, such a cooperative co-
residency detection mechanism is usually used only in experimentation
rather than in practical attacks.

4.1.3 Challenges in Modern Clouds

Applying many of the detection techniques mentioned above is no longer
feasible in modern clouds. In part due to the vulnerability disclosure
by Ristenpart et al. [152], modern public clouds have adopted new tech-
nologies that enhance the isolation between cloud tenants and thwart
known co-residence detection techniques. In the network layer, virtual
private clouds (VPCs) have been broadly employed for data center man-
agement [22, 44]. With VPCs, internal IP addresses are private to a cloud
tenant, and can no longer be used for mapping VMs location in the cloud
infrastructure as described in the previous section1. Although EC2 allowed
this in the older generation instances (called EC2-classic), this is no longer
possible under Amazon VPC setting. In addition, VPCs require communi-
cation between tenants to use public IP addresses for communication. As
shown in Figure 4.1, the network timing test is also defeated, as using pub-

1This technique is termed as cloud cartography [152].
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Figure 4.1: Histogram of minimum network round trip times between
pairs of VMs. The frequency is represented as a fraction of total number of pairs in
each category. The figure does not show the tail of the histogram.

lic IP addresses seems to involve routing in the data center network rather
than short-circuiting through the hypervisor. Here, the ground-truth of
co-residency is detected using a memory-based covert-channel (described
later in Chapter 5). Notice that there is no clear distinction between the
frequency distribution of the network round trip times of co-resident and
non-coresident pairs on all three clouds.

In the system layer, persistent storage using local disks is no longer the
default. For instance, many Amazon EC2 instance types do not support
local storage [12]; GCE and Azure provide only local Solid State Drives
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(SSD) [38, 75], which are less susceptible to detectable delays from long
seeks. In addition, covert channels based on last-level caches [152, 168, 184,
190] are less reliable in modern clouds that use multiple CPU packages.
Two VMs sharing the same machine may not share LLCs to establish the
covert channel. Hence, these LLC-based covert-channels can only capture
a subset of co-resident instances.

As a result of these technology changes, none of the prior techniques
for detecting co-residency reliably work in modern clouds, compelling
us to develop new approaches for our study. Apart from the lack of a
working co-residency detection mechanism, there is no prior work that
systematically evaluated the placement policies employed in public clouds
for placement vulnerabilities.

Summary. Without a working co-residency mechanism, one may pre-
maturely conclude that co-location attacks are impractical in security-
hardened modern clouds. But taking a perspective of a highly motivated
attacker, it is now more important to answer the question: Are co-location
attacks impractical in modern clouds? If yes, it is a wakeup call for security
researchers to concentrate on other important problems considering a
plethora of previous works on co-location [93, 152, 182, 184, 188, 191, 192,
195]. If no, how could one evaluate different public clouds for placement
vulnerability and quantify the cost such attacks? In Chapter 5 we show
that not only that three most popular public clouds are vulnerable to VM
placement but also that such placements are very practical and extremely
cheap to exploit in a live cloud.
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4.2 (Lack of) Performance Isolation between
VMs

Cloud computing provides high efficiency in part by multiplexing mul-
tiple customer workloads onto a single physical machine. For example,
Amazon’s Elastic Compute Cloud (EC2) [19] runs multiple customer vir-
tual machines (VMs) on a single host. For small instances, they offer each
guest VM roughly 40% of a single CPU by time slicing. Similarly, access
to the local disk, network, memory, and cache are all shared by virtual
machines from multiple customers (as described in Section 2.2.1).

However, with this efficiency comes performance interference2. When
two customer applications share a machine, they contend for access to
resources. Existing hardware and software virtualization mechanisms
do not provide perfect performance isolation. For example, running two
applications that make heavy use of memory bandwidth can degrade
the performance of both. Past work has demonstrated the existence and
amount of this interference [41, 129].

As a result, there have been numerous proposals on how to construct
hypervisors or processors that better isolate customer applications from
each other. For example, fine-grained accounting of CPU usage [79], net-
work traffic [158] or disk-queue utilization [77] can decrease the amount of
interference. Unfortunately, the inherent tension between efficiency and
isolation means that, in practice, cloud computing systems continue to
provide poor isolation as witnessed below.

Extent of Resource Contention

With the goal of determining the worst-case resource contention between
two VMs, we ran experiments on a local Xen testbed. The testbed machine

2We use performance interference and resource contention interchangeably.
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Resources CPU Net Disk Memory LLC
CPU - 5 - - -
Net - 194 - - -
Disk - - 455 - -
Memory - 6 - - -
LLC 8 539 72 38 34

Figure 4.2: Resource contention in Xen. Percentage increase in workload run
times indicated in row when contending with workload indicated in column. Percentage
is computed as run time with contention over run time on otherwise idle machine. For
network, run time is the time to serve a fixed number of requests. A dash means there was
no significant performance degradation. In this experiment, the VMs are pinned to the
same core. Here LLC stands for Last Level Cache.

is a 4-core, 2-package 2.66 GHz Intel Xeon E5430 with 6MB of shared L2
cache per package and 4GB of main memory. This is representative of some
of the architectures used by EC23. We designed microbenchmarks that
stress each type of resources and measured the contention as experienced
by another VM for the same or a different resource. The result of this
experiment is shown in Figure 4.2. We see significant degradation in
performance for multiple resources even when run on separate VMs on
the same machine. This demonstrates that Xen is not able to completely
isolate the performance for many shared resources. More details on the
experiment, system setup, and microbenchmarks are in Chapter 6.

Out of all resources, CPU and Memory show the least interference
indicating that Xen does a good job accounting for CPU usage and that the
physical hardware limits contention for memory bandwidth. However,
for all other resources, there are competing workloads that substantially
degrade performance. For instance, an LLC-intensive workload suffers
a worst-case performance degradation of 500% when either run with
a network- or memory-intensive workload. This is because competing
workloads either interrupt frequently (Net) or move a lot of data through

3This is at the time of the study in 2011.
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the cache (Memory).

Summary. We found that certain cache-sensitive workloads take 5x longer
when contending with other memory-intensive workloads. Unlike in pri-
vate data centers, resource contention in public clouds arises between
disparate customers. Unique to the public cloud setting, then, is the incen-
tive for greedy customers to attempt to free up this resource contention for
their application. This is because, irrespective of the performance degrada-
tion perceived by the VMs, cloud providers charge all the VMs under the
same simple pricing model – pay per unit time (described in Section 2.1).
This gives rise to the question: In the presence of performance interference,
can a malicious user steal resources by interfering with neighboring VMs? A
naïve example of an attack would be crashing co-resident VMs, but this
requires knowledge of an exploitable vulnerability and would be easily
detectable. We are interested in whether there exist more subtle strategies
for freeing up resources. In Chapter 6 we show that a new class of attacks
called Resource-Freeing Attacks (RFAs) that exploit resource contention
to improve ones own performance at the expense of others.

4.3 Need for Defenses against Cross-VM
Side-channels

A poorly designed placement algorithm that is vulnerable to adversarial
VM co-location may still be safe from co-location attacks if the hypervisor
multiplexing multi-tenant VMs on a single host provides better perfor-
mance isolation. As we saw above, existing hypervisors do not provide
perfect because of the tension between efficiency (via sharing) and isola-
tion. In this section, we will take a close look at the particular problem
of cross-VM side-channels (refer to Section 2.4 for background) and find
that there may be new unexplored directions to improve isolation without
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compromising on efficiency.

4.3.1 An Example Cross-VM Side-channel

Zhang, Juels, Reiter, and Ristenpart (ZJRR) [191] demonstrated the first
cross-VM access-driven side-channel attack with sufficient granularity to
extract ElGamal secret keys from the victim. They use a version of the
classic Prime+Probe technique [141]: the attacker first primes the cache
(instruction or data) by accessing a set of addresses that fill the entire cache.
It then yields the CPU, causing the hypervisor to run the victim, which
begins to evict the attacker’s data or instructions from various cache. As
quickly as possible, the attacker preempts the victim, and then probes the
cache by again accessing a set of addresses that cover the entire cache.
By measuring the speed of each cache access, the attacker can determine
which cache lines were displaced by the victim, and hence learn some
information about which addresses the victim accessed.

The ZJRR attack builds off a long line of cross-process attacks (c.f., [3,
4, 78, 141, 143]) all of which target per-core microarchitectural state. When
simultaneous multi-threading (SMT) is disabled (as is typical in cloud
settings), such per-core attacks require that the attacker time-shares a
CPU core with the victim. In order to obtain frequent observations of
shared state attacks abuse scheduler mechanisms that prioritize interactive
workloads in order to preempt the victim. For example, ZJRR use inter-
processor interrupts to preempt every 16µs on average. In their cross-
process attack, Bangerter et al. abuse the Linux process scheduler [78].

Requirements for a successful attack. In this context, the best known
attacks rely on:

1. Shared per-core state that is accessible to the attacker and that has visi-
bly different behavior based on its state, such as caches and branch
predictors.
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2. The ability to preempt the victim VM at short intervals to allow only a
few changes to that hardware state.

3. Access to a system clock with enough resolution to distinguish micro-
architectural events (e.g., cache hits and misses).

These conditions are all true in contemporary multi-tenant cloud settings,
such as Amazon’s EC2. Defenses can target any of these dependencies,
and we discuss some existing approaches next.

4.3.2 Prior Defenses and their Deficiencies

Past work on defenses against such side-channel attacks identified the
above requirements for successful side-channels and tried to obviate one
or more of the above necessary conditions for attacks. We classify and
summarize these techniques below.

An obvious solution is to prevent an attacker and victim from sharing
hardware, which we call hard isolation. Partitioning the cache in hardware
or software prevents its contents from being shared [103, 149, 157, 179,
180]. This requires special-purpose hardware or loss of various useful
features (e.g., large pages) and thus limits the adoption in a public cloud
environment. Assigning VMs to run on different cores avoids sharing of
per-core hardware [101, 118, 164], and assigning them to different servers
avoids sharing of any system hardware [152]. A key challenge here is
identifying an attacker and victim in order to separate them; otherwise
this approach reduces to using dedicated hardware for each customer,
reducing utilization and thus raising the price of computing.

Beyond hard isolation are approaches that modify hardware to add
noise, either in the timing or by obfuscating the specific side-channel in-
formation. The former can be accomplished by removing or modifying
timers [115, 120, 172] to prevent attackers from accurately distinguishing
between microarchitectural events, such as a cache hit and a miss. For
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example, StopWatch [115] removes all timing side-channels and incurs a
worst-case overhead of 2.8x for network intensive workloads. Specialized
hardware-support could also be used to obfuscate and randomize pro-
cessor cache usage [109, 180]. All of these defenses either result in loss of
high-precision timer or require hardware changes.

Goals. All the above mentioned prior works either compromise on ef-
ficiency from resource sharing or add significant overhead or result in
loss of a valuable feature making it hard for cloud providers to deploy the
defense mechanism. For the same reason, none of the previously proposed
defense mechanisms have not be deployed in public clouds to the best of
our knowledge. Hence, it is important to address this lack of a deployable
and effective defense mechanism against side-channels. The desirable
properties of such a defense mechanism include:

1. Retain benefits of sharing, i.e., hard-isolation is not an option,

2. Do not compromise on any valuable features (e.g., high-resolution
timers),

3. Easily deployable for cloud provider, i.e., no changes to hardware,

4. Zero or negligible overhead on legitimate workloads.

Notice that in addition to sharing resources and having access to fine-
grained clocks, shared-core side-channel attacks also require the ability
to measure the state of the cache frequently. For example, the ZJRR attack
on ElGamal preempted the victim every 16µs on average [191]. With less
frequent interruptions, the attacker’s view of how hardware state changes
in response to a victim becomes obscured. Perhaps surprisingly, then, is
the lack of any investigation of the relationship between CPU scheduling
policies and side-channel efficacy. In particular, scheduling may enable
what we call soft isolation: limiting the frequency of potentially dangerous
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cross-VM interactions. (We use the adjective soft to indicate allowance of
occasional failures, analogous to soft real-time scheduling.)

Summary. Although better co-location aware cluster scheduler may in-
crease the cost of a co-location attack, VM co-location is always possible
when the cloud provider is resource limited. This leads to the inevitable
need to strengthen isolation between VMs at the hypervisor. Perhaps
surprisingly, then, is the lack of a low overhead defense mechanism that
does not compromise on efficiency benefits of sharing or other valuable
features of the cloud. This raises the important question, is it possible to
design a hypervisor that achieves both improved isolation without compromis-
ing efficiency? In Chapter 7 we try to answer this question and design a
simple hypervisor CPU scheduler primitive that achieves these goals by
taking advantage of the above requirements of the cross-VM side-channel
attacks. This gives rise to a new design principle called soft-isolation where
instead of strictly partitioning resources, the system limits and manages
dangerous interactions between multi-tenant VMs.
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5
Co-location in Public Clouds

In this chapter, we provide a framework to systematically evaluate public
clouds for placement vulnerabilities and show that three popular public
cloud providers may be vulnerable to co-location attacks. More specifically,
we set out to answer four questions:

• Can co-residency be effectively detected in modern public clouds?

• Are known launch strategies [152] still effective in modern clouds?

• Are there any new exploitable placement vulnerabilities?

• Can we quantify the cost (time and money) of an attack for an adver-
sary to achieve a certain probability of success?

We started this study by exploring the efficacy of prior co-residency
tests, which we described in Chapter 4.1.2. This motivated us to develop
more reliable tests for our placement study (§ 5.2.1). We also find a novel
test to detect co-residency with VMs uncontrolled by the attacker by just
using their public interface even when they are behind a load balancer
(§ 5.2.3).

We use multiple customer accounts across three popular cloud provi-
ders, launch VM instances under different scenarios that may affect the
placement algorithm, and test for co-residency between all launched in-
stances. We analyze three popular cloud providers, Amazon Elastic Com-
pute Cloud (EC2) [9], Google Compute Engine (GCE) [73] and Microsoft



57

Azure (Azure) [37], for vulnerabilities in their placement algorithm. After
exhaustive experimentation with each of these cloud providers and at least
190 runs per cloud provider, we show that an attacker can still successfully
arrange for co-location (§ 5.3). We find new launch strategies in these three
clouds that obtain co-location faster (10x higher success rate) and cheaper
(up to $114 less) when compared to a secure reference placement policy.

Before describing the details of the study, we start by defining terms
that we will frequently encounter in the study in the next section.

5.1 Definitions

VM placement. The provider’s VM launch service receives from a client
a desired set of parameters describing the configuration of the VM. The
service then allocates resources for the new VM; this process is called VM
provisioning. We are most interested in the portion of VM provisioning
that selects the physical host to run a VM, which we call the VM placement
algorithms. The resulting VM-to-host mapping we call the VM placement.
The placement for a specific virtual machine may depend on many factors:
the load on each machine, the number of machines in the data center, the
number of concurrent VM launch requests, etc.

Placement variables. While cloud providers do not generally publish
their VM placement algorithms, there are several variables under the
control of the user that could affect the VM placement, such as time-
of-day, requested data center, and number of instances. A list of some
notable parameters is shown in Table 5.1. By controlling these variables,
an adversary can partially influence the placement of VMs on physical
machines that may also host a target set of VMs. We call these variables
placement variables and the set of values for these variables form a launch
strategy. An example launch strategy is to launch 20 instances 10 minutes
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Type Variable
# of customers
# of instances launched per customer

Placement Instance type
Parameters Data Center (DC) or Region

Time launched
Cloud provider
Time of the day

Environment Days of the week
Variable Number of in-use VMs

Number of machines in DC

Table 5.1: List of placement variables.

after triggering an auto-scale event on a victim application. This is, in fact,
a launch strategy suggested by prior work [152].

Placement policies. VM placement algorithms used in public clouds
often aim to increase data center efficiency, quality of service, or both by
realizing some placement policy. For instance, a policy that aims to increase
data center utilization may pack launched VMs on a single machine. Sim-
ilarly policies that optimize the time to provision a VM, which involves
fetching an image over the network to the physical machine and booting,
may choose the last machine that used the same VM image, as it may al-
ready have the VM image cached on local disks. Policies may vary across
cloud providers, and even within a provider.

Public cloud placement policies, although undocumented, often exhibit
behavior that is externally observable. One example is parallel placement
locality [152], in which VMs launched from different accounts within a
short time window are often placed on the same physical machine. Two
instances launched sequentially, where the first instance is terminated
before the launch of the second one, are often placed on the same physical
machine, a phenomenon called sequential placement locality [152]. These
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placement behaviors are artifacts of the two placement policies described
earlier, respectively.

Other examples of policies and resulting behaviors exist as well. VMs
launched from the same accounts may either be packed on the same phys-
ical machine to maximize locality (and hence co-resident with themselves)
or striped across different physical machines to maximize redundancy
(and hence never co-resident with themselves). In the course of normal
usage, such behaviors are unlikely to be noticed, but they can be measured
with careful experiments.

Launch strategies. An adversary can exploit placement behaviors to
increase the likelihood of co-locating with target victims. As pointed
out by Ristenpart et al. [152], parallel placement locality can be exploited
by triggering a scale-up event on target victim by increasing their load,
which will cause more victim VMs to launch. The adversary can then
simultaneously (or after a time lag) launch multiple VMs some of which
may be co-located with the newly launched victim VM(s).

Cost of a launch strategy. Quantifying the cost of a launch strategy is
straightforward: it is the cost of launching a number of VMs and running
tests to detect co-residency with one or more target victim VMs. To be
precise, the cost of a launch strategy S is given byCS = a·P(atype)·Td(v,a).
Here a is the number of attacker VMs of type atype launched to get co-
located with one of the v victim VMs. P(atype) is the price of running
one VM of type atype for a unit time. Td(a, v) is the time (in billing units)
to detect co-residency between all pairs of a attackers and v victim VMs,
excluding pairs within each group. For simplicity, we assume that the
attacker is running all instances until the last co-residency check completes
or that, equivalently. When the time to finish co-residency checks is within
the granularity of one unit of billing time (e.g., one hour on EC2), this is
equivalent to a more refined model.
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Reference placement policy. In order to define placement vulnerability,
we need a yardstick to compare various placement policies and the launch
strategies that they may be vulnerable to. To aid this purpose, we define
a simple reference placement policy that has good security properties
against co-residency attacks and use it to gauge the placement policies
used in public clouds. Let there beNmachines in a data center and let each
machine have unlimited capacity. Given a set of unordered VM launch
requests, the mapping of each VM to a machine follows a uniform random
distribution. Let there be v victim VMs assigned to v unique machines
among N, where v � N. The probability of at least one collision (i.e.
co-residency) under the random placement policy and the above attack
scenario when attacker launches a instances is given by 1−

(
1−v/N

)a. We
call this probability the reference probability.1 Recall that for calculating
the cost of a launch strategy under this reference policy, we also need
to define the price function, P(vmtype). For simplicity, we use the most
competitive minimum price offered by any cloud provider as the price for
the compute resource under the reference policy. For example, at the time
of this study, Amazon EC2 offered t2.small instances at $0.026 per hour
of instance activity, which was the cheapest price across all three clouds
considered in this study.

Note that the reference placement policy makes several simplifying
assumptions, but these only benefit the attacker. This is conservative as we
will compare our experimental results to the best possible launch strategy
under the reference policy. For instance, the assumption on unlimited
capacity of the servers only benefits the attacker as it never limits the
number of victim VMs an attacker could potentially co-locate with. We use
a conservative value of 1000 forN, which is at least an order-of-magnitude
less than the number of servers (50,000) in the smallest reported Amazon
EC2 data centers [23]. Similarly, the price function of this placement policy

1This probability event follows a hypergeometric distribution.
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also favors an attacker as it provides the cheapest price possible in the
market even though in reality a secure placement policy may demand a
higher price. Hence, it would be troubling if the state-of-the-art placement
policies used in public clouds does not measure well even against such a
conservative reference placement policy.

5.1.1 Defining Placement Vulnerability

Putting it all together, we define two metrics to gauge any launch strategy
against a placement policy: (i) normalized success rate, and (ii) cost-benefit.
The normalized success rate is the success rate of the launch strategy in
the cloud under test normalized to the success rate of the same strategy
under the reference placement policy. The cost-benefit of a strategy is the
additional cost that is incurred by the adversary in the reference placement
policy to achieve the same success rate as the strategy in the placement
policy under test. We define that a placement policy has a placement
vulnerability if and only if there exists a launch strategy with a normalized
success rate that is greater than 1.

Note that the normalized success rate quantifies how easy it is to get
co-location. On the other hand, the cost benefit metric helps to quantify
how cheap it is to get co-location compared to a more secure placement
policy. These metrics can be used to compare launch strategies under
different placement policies, where a higher value for any of these metrics
indicate that the placement policy is relatively more vulnerable to that
launch strategy. An ideal placement policy should aim to reduce both the
success rate and the cost benefit of any strategy.

Study overview. In this study, we develop a framework to systematically
evaluate public clouds against launch strategies and uncover previously
unknown placement behaviors. We approach this study by (i) identifying
a set of placement variables that characterize a VM, (ii) enumerating the
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most interesting values for these variables, and (iii) quantifying the cost
of such a strategy, if it in fact exposes a co-residency vulnerability. We
repeat this for three major public cloud providers: Amazon EC2, Google
Compute Engine, and Microsoft Azure. Note that the goal of this study is
not to reverse engineer the exact details of the placement policies, but rather
to identify launch strategies that can be exploited by an adversary.

5.2 Detecting Co-Residence

An essential prerequisite for the placement vulnerability study is access
to a co-residency detection technique that identifies whether two VMs are
resident on the same physical machine in a third-party public cloud. As
we saw in Chapter 4, co-residency detection is challenging in the modern
security hardened public clouds. Below, we investigate and discover new
mechanisms to reliably detection VM co-locations.

5.2.1 Co-residency Tests

We describe in this subsection a pair of tools for co-residency tests, with
the following design goals:

• Applicable to a variety of heterogeneous software and hardware stacks
used in public clouds.

• Detect co-residency with high confidence: the false detection rate
should be low even in the presence of background noise from other
neighboring VMs.

• Detect co-residency fast enough to facilitate experimentation among
large sets of VMs.

We chose a performance covert-channel based detection technique that
exploits shared hardware resources, as this type of covert-channels are
often hard to remove and most clouds are very likely to be vulnerable to it.
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A covert-channel consists of a sender and a receiver. The sender creates
contention for a shared resource and uses it to signal another tenant that
potentially share the same resource. The receiver, on the other hand, senses
this contention by periodically measuring the performance of that shared
resource. A significant performance degradation measured at the receiver
results in a successful detection of a sender’s signal. Here the reliability
of the covert-channel is highly dependent on the choice of the shared
resource and the level of contention created by the sender. The sender is
the key component of the co-residency detection techniques we developed
as part of this study.

// allocate memory multiples of 64 bits
char_ptr = allocate_memory((N+1)*8)
//move half word up
unaligned_addr = char_ptr + 2
loop forever:

loop i from (1..N):
atomic_op(unaligned_addr + i, some_value)

end loop

Figure 5.2: Memory-locking – Sender.

Memory-locking sender. Modern x86 processors support atomic mem-
ory operations, such as XADD for atomic addition, and maintain their atom-
icity using cache coherence protocols. However, when a locked operation
extends across a cache-line boundary, the processor may lock the memory
bus temporarily [182]. This locking of the bus can be detected as it slows
down other uses of the bus, such as fetching data from DRAM. Hence,
when used properly, it provides a timing covert channel to send a signal
to another VM. Unlike cache-based covert channels, this technique works
regardless of whether VMs share a CPU core or package.
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We developed a sender exploiting this shared memory-bus covert-
channel. The psuedocode for the sender is shown in Figure 5.2. The
sender creates a memory buffer and uses pointer arithmetic to force atomic
operations on unaligned memory addresses. This indirectly locks the
memory bus even on all modern processor architectures [182].

size = LLC_size * (LLC_ways +1)
stride = LLC_sets * cacheline_sz)
buffer = alloc_ptr_chasing_buff(size, stride)
loop sample from (1..10): //number of samples

start_rdtsc = rdtsc()
loop probes from (1..10000):

probe(buffer); //always hits memory
end loop
time_taken[sample] = (rdtsc() - start_rdtsc)

end loop

Figure 5.3: Memory-probing – Receiver..

Receivers. With the aforementioned memory-locking sender, there are
several ways to sense the memory-locking contention induced by the
sender in another co-resident tenant instance. All the receivers measure
the memory bandwidth of the shared system. We present two types of
receivers that we used in this study that works on heterogeneous hardware
configurations.

Memory-probing receiver uses carefully crafted memory requests that al-
ways miss in the cache hierarchy and always hit memory. This is ensured by
constricting the data accesses of the receiver into a single LLC set. In order to
evade hardware prefetching, we use a pointer-chasing buffer to randomly
access a list of memory addresses (pseudocode shown in Figure 5.3). The
time needed to complete a fixed number of probes (e.g., 10,000) provides
a signal of co-residence: when the sender is performing locked operations,
loads from memory proceed slowly.
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Memory-locking receiver is similar to the sender but measures the number
of unaligned atomic operations that could be completed per unit time.
Although it also measures the memory bandwidth, unlike the memory-
probing receiver, it works even when the cache architecture of the machine
is unknown.

The sender along with these two receivers form our two novel co-
residency detection methods that we use in this study: memory-probing test
and memory-locking test (named after their respective receivers). These com-
prise our co-residency test suite. Each test in the suite starts by running the
receiver on one VM while keeping the other idle. The performance mea-
sured by this run is the baseline performance without contention. Then the
receiver and the sender are run together. If the receiver detects decreased
performance, the tests conclude that the two VMs are co-resident. We use
a slowdown threshold to detect when the change in receiver performance
indicates co-residence (discussed later in the section).

Machine Clock SMT LLC Memory
Architecture (GHz) Cores (Ways x Set) Architecture
Core i5-4570 3.20 4 12 x 8192 UMA
Core i7-2600 3.40 8 18 x 8192 UMA
Xeon E5645 2.40 6 16 x 12288 UMA
Xeon X5650 2.67 12 16 x 12288 NUMA

Table 5.4: Local Testbed Machine Configuration. All are Intel machines.
SMT stands for Simultaneous Multi-Threaded cores (in Intel parlance, Hyper-threads).
Ways x Sets x Word Size gives the LLC size. The word size is 64 bytes on all these x86-64
machines. Here, NUMA stands for Non-Uniform Memory Access.

Evaluation on local testbed. In order to measure the efficacy of this
covert-channel we ran tests in our local testbed. Results of running the
memory-probing and -locking tests under different machine configura-
tions (Table 5.4) are shown in Table 5.5. The hardware architectures of
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Machine Cores Memory Memory Socket
Architecture Probing Locking
Xeon E5645 6 3.51 1.79 Same
Xeon X5650 12 3.61 1.77 Same
Xeon X5650 12 3.46 1.55 Diff.

Table 5.5: Memory-probing and -locking on testbed machines. Slow-
down relative to the baseline performance observed by the receiver averaged across 10
samples. Same – sender and receiver on different cores on the same socket, Diff. – sender
and receiver on different cores on different sockets. Xeon E5645 machine had a single
socket.

these machines are similar to what is observed in the cloud [61]. Across
these hardware configurations, we observed a performance degradation
of at least 3.4× compared to not running memory-locking sender on a
non-coresident instance (i.e. a baseline run with idle sender), indicating
reliability. Note that this works even when the co-resident instances are
running on cores on different sockets, which does not share the same LLC
(works on heterogeneous hardware). Further, a single run takes one tenth
of a second to complete and hence is also quick.

With the emergence of new microarchitectures (Haswell and Skylake)
that promise better performance isolation of shared resources, we sought
out to measure the efficacy of the above described memory-probing co-
residency test on a (then) latest Skylake machine. The test machine is a
single socket, 4 core Intel Core i7-6700K with 8MB LLC. We observed a
2× degradation in performance when running the memory-probing test
on this machine. Although the performance degradation is significantly
lesser than what we observed on Ivy Bridge and earlier microarchitectures
(4×), it demonstrates that modern processors are still vulnerable to the
abuse of the unaligned atomic operations.

Note that for this test suite to work in the real world, an attacker re-
quires control over both the VMs under test, which includes the victim.
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We call this scenario as co-residency detection under cooperative victims
(in short, cooperative co-residency detection). Such a mechanism is suffi-
cient to observe placement behavior in public clouds (Section 5.2.2). We
further investigated approaches to detect co-residency under a realistic
setting with an uncooperative victim. In Section 5.2.3 we show how to
adapt the memory-probing test to detect co-location with one of the many
webservers behind a load balancer.

5.2.2 Cooperative Co-residency Detection

In this section, we describe the methodology we used to detect co-residency
in public clouds. For the purposes of studying placement policies, we had
the flexibility to control both VMs that we test for co-residence. We did this
by launching VMs from two separate accounts and test them for pairwise
co-residence. We encountered several challenges when running the co-
residency test suite on three different public clouds - Google Computer
Engine, Amazon EC2 and Microsoft Azure.

First, we had to handle noise from neighboring VMs sharing the same
host. Second, hardware and software heterogeneity in the three different
public clouds required special tuning process for the co-residency detec-
tion tests. Finally, testing co-residency for a large set of VMs demanded a
scalable implementation. We elaborate on our solution to these challenges
below.

Handling noise. Any noise from neighboring VMs could affect the per-
formance of the receiver with and without the signal (or baseline) and
result in misdetection. To handle such noise, we alternate between mea-
suring the performance with and without the sender’s signal, such that
any noise equally affects both the measurements. Secondly, we take ten
samples of each measurement and only detect co-residence if the ratios of
both the mean and median of these samples exceed the threshold. As each
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Figure 5.6: Distribution of performance degradation of memory-
probing test. For varying number of pairs on each cloud (GCE:29, EC2:300,
Azure:278). Note the x-axis plots performance degradation. Also for EC2 x-axis range is
cut short at 20 pairs for clarity.

run takes a fraction of a second to complete, repeating 10 times is still fast
enough.

Tuning thresholds. As expected, we encountered different machine con-
figurations on the three different public clouds (shown in Table 5.7) with
heterogeneous cache dimensions, organizations and replacement poli-
cies [96, 99]. This affects the performance degradation observed by the
receivers with respect to the baseline and the ideal threshold for detecting
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Cloud Machine Clock LLC
Provider Architecture (GHz) (Ways × Set)

EC2 Intel Xeon E5-2670 2.50 20 × 20480
GCE Generic Xeon* 2.60* 20 × 16384

Azure Intel E5-2660 2.20 20 × 16384
Azure AMD Opteron 4171 HE 2.10 48 × 1706

Table 5.7: Machine configuration in public clouds. The machine configu-
rations observed over all runs with small instance types. GCE did not reveal the exact
microarchitecture of the physical host (*). Ways × Sets ×Word Size gives the LLC size.
The word size for all these x86-64 machines is 64 bytes.

co-residency. This is important because the thresholds we use to detect
co-residence yield false positives, if set too low, and false negatives if set
too high. Hence, we tuned the threshold to each hardware we found on
all three clouds.

We started with a conservative threshold of 1.5x and tuned to a fi-
nal threshold of 2x for GCE and EC2 and 1.5x for Azure for both the
memory-probing and -locking tests. Figure 5.6 shows the distribution of
performance degradation under the memory-probing tests across Intel
machines in EC2, GCE, and Azure. For GCE and EC2, a performance degra-
dation threshold of 2 clearly separates co-resident from non-coresident
instances. For all Intel machines we encountered, although we ran both
memory-locking and -probing tests, memory-probing was sufficient to
detect co-residency. For Azure, overall we observe lower performance
degradation and the initial threshold of 1.5 was sufficient to detect co-
location on Intel machines.

The picture for AMD machines in Azure differs significantly as shown
in Figure 5.8. The distribution of performance degradation for both the
memory-locking and the memory-probing tests shows that, unlike for
other architectures, co-residency detection is highly sensitive to the choice
of the threshold for AMD machines. This may be due to the more asso-
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ciative cache (48 ways vs. 20 for Intel), or different handling of locked
instructions. For these machines, a threshold of 1.5 was high enough to
have no false positives, which we verified by hand checking the instances
using the two covert-channels and observed consistent performance degra-
dation of at least 50%. We determine a pair of VMs as co-resident if the
degradation in either of the tests is above this threshold. We did not detect
any cross-architecture (false) co-residency detection in any of the runs.

Scaling co-residency detection tests. Testing co-residency at scale is time-
consuming and increases quadratically with the number of instances:
checking 40 VM instances, involves 780 pair-wise tests. Even if each run of
the entire co-residency test suite takes only 10 seconds, a naïve sequential
execution of the tests on all the pairs will take 2 hours. Parallel co-residency
checks can speed checking, but concurrent tests may interfere with each



71

other.
To parallelize the test, we partition the set of all VM pairs (

(
v+a2

)
) into

sets of pairs with no VMs twice; we run one of these sets at a time and
record which pairs detected possible co-residence. After running all sets,
we have a set of candidate co-resident pairs, which we test sequentially.
Parallelizing co-residency tests significantly decreased the time taken
to test all co-residency pairs. For instance, the parallel version of the
test on one of the cloud providers took 2.4 seconds per pair whereas the
serial version took almost 46.3 seconds per pair (a speedup of 20x). While
there are faster ways to parallelize co-residency detection, we chose this
approach for simplicity.

Veracity of our tests. Notice that a performance degradation of 1.5x, 2x
and 4x corresponds to 50%, 100% and 300% performance degradation.
Such high performance degradation (even 50%) is clear enough signal
to declare co-residency due to resource sharing. Furthermore, we hand
checked by running the two tests in isolation on the detected instance-
pairs for a significant fraction of the runs for all clouds and observed a
consistent covert-channel signal. Thus our methodology did not detect
any false positives, which are more detrimental to our study than false
negatives. Although co-residency here implies sharing of memory channel,
which may not always mean sharing of cores or other per-core hardware
resources.

5.2.3 Uncooperative Co-residency Detection

Until now, we described a method to detect co-residency with a cooper-
ative victim. In this section, we look at a more realistic setting where an
adversary wishes to detect co-residency with a victim VM with accesses
limited to only public interfaces like HTTP or a key-value (KV) store’s put-
get interface. We show that the basic cooperative co-residency detection
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can also be employed to detect co-residency with an uncooperative victim
in the wild.

Attack setting. Unlike previous attack scenarios, we assume the attacker
has no access to the victim VMs or its application other than what is
permitted to any user on the Internet. That is, the victim application
exposes a well-known public interface (e.g., HTTP, FTP, KV-store protocol)
that allows incoming requests, which is also the only access point for the
attacker to the victim. The front end of this victim application can range
from caching or data storage services (e.g., memcached, cassandra) to
generic webservers. We also assume that there may be multiple instances
of this front-end service running behind a load balancer. Under this
scenario, the attacker wishes to detect co-location with one or more of the
front-facing victim VMs.

Co-residency test. We adapt the memory tests used in previous section
by running the memory-locking sender in the attacker instance. For a
receiver, we use the public interface exposed by the victim by generating
a set of requests that potentially makes the victim VMs hit the memory

Figure 5.9: An example victim web application architecture.
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bus. This can be achieved by looping through a large number of requests
of sizes approximately equal or greater than the size of the LLC. This
creates a performance side-channel that leaks co-residency information.
This receiver runs in an independent VM under the adversary’s control,
which we call the co-residency detector.

Experiment setup. To evaluate the efficacy of this method, we used the
Olio multi-tier web application [136] that is designed to mimic a social-
networking application. We used an instance of this workload from Cloud-
Suite [64]. Although Olio supports several tiers (e.g., memcached to cache
results of database queries), we configured it with two tiers as shown
in Figure 5.9, with each webserver and the database server running in
a separate VM of type t2.small on Amazon EC2. Multiple of these web-
server VMs are configured behind a HAProxy-based load balancer [82]
running in an m3.medium instance (for better networking performance).
The load balancer follows the standard configuration of using round-robin
load balancing algorithm with sticky client sessions using cookies. We
believe such a victim web application and its configuration is a reasonable
generalization of real world applications running in the cloud.

For the attacker, we use an off-the-shelf HTTP performance measure-
ment utility called HTTPerf [128] as the receiver in the co-residency detec-
tion test. This receiver is run inside a t2.micro instance (for free of charge).
We used a set of 212 requests that included web pages and web objects
(images, PDF files). We gathered these requests using the access log of
manual navigation around the web application from a web browser.

Evaluation methodology. We start with a known co-resident VM pair
using the cooperative co-residency detection method. We configure one
of the VMs as a victim webserver VM and launch four more VMs: two
webservers, one database server and a load balancer, all of which are not
co-resident with the attacker VM.

Co-residency detection starts by measuring the average request latency
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Figure 5.10: Co-residency detection on an uncooperative victim. The
graph shows the average request latency at the co-residency detector without and with
memory-locking sender running on the co-resident attacker VM under varying back-
ground load on the victim. Note that the y-axis is in log scale. The load is in the number
of concurrent users, where each user on average generates 20 HTTP requests per second
to the webserver.

at the receiver inside the co-residency detector for the baseline (with idle at-
tacker) and contended case with the attacker running the memory-locking
sender. A significant performance degradation between the baseline and
the contended case across multiple samples reveal co-residency of one of
the victim VMs with the attacker VM. On Amazon EC2, with the above
setup we observed an average request latency of 4.66ms in the baseline case
and a 10.6ms in the memory-locked case, i.e., a performance degradation
of ≈ 2.3×.

Background noise. The above test was performed when the victim web
application was idle. In reality, any victim in the cloud might experience
constant or varying background load on the system. False positives or
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negatives may occur when there is spike in load on the victim servers.
In such case, we use the same solution as in Section 5.2.2 — alternating
between measuring the idle and the contended case.

In order to gauge the efficacy of the test under constant background
load, we repeated the above experiment with varying load on the victim.
The result of this experiment is summarized in Figure 5.10. Counterintu-
itively, we found that a constant load on the background server exacerbates
the performance degradation gap, hence resulting in a clearer signal of
co-residency. This is because running memory-locking on the co-resident
attacker increases the service time of all requests as majority of the requests
rely on memory bandwidth. This increases the queuing delay in the sys-
tem and in turn increasing the overall request latency. Interestingly, this
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aforementioned performance gap stops widening at higher loads of 750 to
1000 concurrent users as the system hits a bottleneck (in our case a network
bottleneck at the load balancer) even without running the memory-locking
sender. Thus, detecting co-residency with a victim VM that is part of a
highly loaded and bottlenecked application would be hard using this test.

We also experimented with increasing the number of victim webservers
behind the load balancer beyond 3 (Figure 5.11). As expected, the co-
residency signal grew weaker with increasing victims, and at 9 webservers,
the performance degradation was too low to be useful for detecting co-
residency.

5.3 Placement Vulnerability Study

In this section, we evaluate three public clouds, Amazon EC2, Google
Compute Engine and Microsoft Azure, for placement vulnerabilities and
answer the following questions: (i) what are all the strategies that an
adversary can employ to increase the chance of co-location with one or
more victim VMs? (ii) what are the chances of success and cost of each
strategy? and (iii) how do these strategies compare against the reference
placement policy introduced in Section 5.1?

5.3.1 Experimental Methodology

Before presenting the results, we first describe the experiment setting and
methodology that we employed for this placement vulnerability study.

Experiment settings. Recall VM placement depends on several place-
ment variables (shown in Table 5.1). We assigned reasonable values to
these placement variables and enumerated through several launch strate-
gies. A run corresponds to one launch strategy and involves launching
multiple VMs from two distinct accounts (i.e., subscriptions in Azure and
projects in GCE) and checking for co-residency between all pairs of VMs
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launched. One account was designated as a proxy for the victim and the
other for the adversary. We denote a run configuration by v× a, where v is
the number of victim instances and a is the number of attacker instances
launched in that run. We varied v and a for all v, a ∈ {10, 20, 30} and
restricted them to the inequality, v 6 a, as it increases the likelihood of
achieving co-residency.

Other placement variables that are part of the run configuration include:
victim launch time (including time of the day, day of the week), delay
between victim and attacker VM launches, victim and attacker instance
types and data center location or region where the VMs are launched.
We repeat each run multiple times across all three cloud providers. The
repetition of experiments is especially required to control the effect of
certain environment variables like time of day. We repeat experiments
for each run configuration over various times of the day and days of the
week. We fix the instance type of VMs to small instances (t2.small on EC2,
g1.small on GCE and small or Standard-A1 on Azure) and data center
regions to us-east for EC2, us-central1-a for GCE and east-us for Azure,
unless otherwise noted. All experiments were conducted over 3 months
between December 2014 to February 2015.

For all experiments, we use a single Intel Core i7-2600 machine located
at Wisconsin with 8 SMT cores to launch VM instances, log instance in-
formation and run the co-residency detection test suite unless otherwise
noted.

Implementation and the Cloud APIs. In order to automate our exper-
iments, we used Python and the libcloud2 library [24] to interface with
EC2 and GCE. Unfortunately, libcloud did not support Azure. The only
Azure cloud API on Linux platform was a node.js library and a cross-
platform command-line interface (CLI). We built a wrapper around the

2We used libcloud version 0.15.1 for EC2, and a modified version of 0.16.0 for GCE to
support the use of multiple accounts in GCE.
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CLI. There were no significant differences across different cloud APIs
except that Azure did not have any explicit interface to launch multiple
VMs simultaneously.

As mentioned in the experiment settings, we experimented with vari-
ous delays between the victim and attacker VM launches (0, 1, 2, 4 …hours).
To save money, we reused the same set of victim instances for each of the
longer runs. That is, for the run configuration of 10x10 with 0, 1, 2, and 4
hours of delay between victim and attacker VM launches, we launched
the victim VMs only once at the start of the experiment. After running
co-residency tests on the first set of VM pairs, we terminated all the at-
tacker instances and relaunched attacker VM instances after appropriate
delays (say 1 hour) and rerun the tests with the same set of victim VMs.
We repeat this until we experiment with all delays for this configuration.
We call this methodology the leap-frog method. It is also important to note
that zero delay here means parallel launch of VMs from our test machine
(and not sequential launch of VMs from one account after another), unless
otherwise noted.

In the sections below, we take a closer look at the effect of varying one
placement variable while keeping other variables fixed across all the cloud
providers. In each case, we use three metrics to measure the degree of
co-residency: chances of getting at least one co-resident instance across a
number of runs (or success rate), average number of co-resident instances
over multiple runs and average coverage (i.e., fraction of victim VMs with
which attacker VMs were co-resident). Although these experiments were
done with victim VMs under our control, the results can be extrapolated
to guide an attacker’s launch strategy for an uncooperative victim. We
also discuss a set of such strategic questions that the results help answer.
At the end of this section, we summarize and calculate the cost of several
interesting launch strategies and evaluate the public clouds against our
reference placement policy.
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Delay Config. Mean S.D. Min Median Max
(hr.)

0 10x10 0.11 0.33 0 0 1
0 10x20 0.2 0.42 0 0 1
0 10x30 0.5 0.71 0 0 2
0 20x20 0.43 0.65 0 0 2
0 20x30 1.67 1.22 0 2 4
0 30x30 1.6 1.65 0 1 5
1 10x10 0.25 0.46 0 0 1
1 10x20 0.33 0.5 0 0 1
1 10x30 1.6 1.07 0 2 3
1 20x20 1.27 1.22 0 1 4
1 20x30 2.44 1.51 0 3 4
1 30x30 3 1.12 1 3 5

(a) us-central1-a

Delay Config. Mean S.D. Min Median Max
(hr.)

0 10x10 2 1.73 1 1 4
0 10x20 2.67 1.53 1 3 4
0 10x30 3 2.65 1 2 6
0 20x20 3.67 1.53 2 4 5
0 20x30 2.75 2.06 0 3 5
0 30x30 12.33 2.08 10 13 14
1 10x10 2 1 1 2 3
1 10x20 2 1 1 2 3
1 10x30 2 1.73 1 1 4
1 20x20 4.67 5.51 1 2 11
1 20x30 3.75 2.5 1 3.5 7
1 30x30 10 3 7 10 13

(b) europe-west1-b

Table 5.12: Distribution of number of co-resident pairs on GCE.
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Delay Config. Mean S.D. Min Median Max
(hr.)

0 ∗ 0 0 0 0 0
1 10x10 0.44 0.73 0 0 2
1 10x20 1.11 1.17 0 1 3
1 10x30 1.4 1.43 0 1.5 4
1 20x20 3.57 2.59 0 3.5 9
1 20x30 3.78 1.79 1 4 7
1 30x30 3.89 2.09 2 3 9

(a) us-east

Delay Config. Mean S.D. Min Median Max
(hr.)

0 ∗ 0 0 0 0 0
0 20x20 10.33 8.96 0 15 16
1 10x10 1.67 0.58 1 2 2
1 10x20 2.33 0.58 2 2 3
1 10x30 5.33 2.52 3 5 8
1 20x20 8.33 4.51 4 8 13
1 20x30 5.5 3.87 2 4.5 11
1 30x30 8.33 6.66 4 5 16

(b) us-west-1 (CA)

Table 5.13: Distribution of number of co-resident pairs on EC2.

Delay (hr.) Config. Mean S.D. Min Median Max
0 10x10 15.22 19.51 0 14 64
0 10x20 3.78 4.71 0 3 14
0 10x30 4.25 6.41 0 2.5 19
0 20x20 9.67 8.43 0 8 27
0 20x30 2.38 1.51 1 2 5
0 30x30 24.57 36.54 1 6 99
1 10x10 2.78 3.87 0 1 12
1 10x20 0.78 1.2 0 0 3
1 10x30 0.75 1.39 0 0 3
1 20x20 0.67 1.66 0 0 5
1 20x30 0.86 0.9 0 1 2
1 30x30 4.71 9.89 0 1 27

Table 5.14: Distribution of number of co-resident pairs on Azure. Re-
gion: East US 1.
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5.3.2 Effect of Number of Instances

In this section, we observe the placement behavior while varying the num-
ber of victim and attacker instances. Intuitively, we expect the chances of
co-residency to increase with the number of attacker and victim instances.
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Figure 5.15: Chances of co-residency of 10 victim instances with varying
number of attacker instances. All these results are from one data center region
(EC2: us-east, GCE: us-central1-a, Azure: East US) and the delays between victim and
attacker instance launch were 1 hour. Results are over at least 9 runs per run configuration
with at least 3 runs per time of day.

Varying number of attacker instances. Keeping all the placement vari-
ables constant including the number of victim instances, we measure the
chance of co-residency over multiple runs. The result of this experiment
helps to answer the question: How many VMs should an adversary launch
to increase the chance of co-residency?

As is shown in Figure 5.15, the placement behavior changes across
different cloud providers. For GCE and EC2, we observe that higher the
number of attacker instances relative to the victim instances, the higher
the chance of co-residency is. Table 5.12a and 5.13a show the distribution
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of number of co-resident VM pairs on GCE and EC2, respectively. The
number of co-resident VM pairs also increases with the number of attacker
instances, implying that the coverage of an attack could be increased with
larger fraction of attacker instances than the target VM instances if the
launch times are coordinated.

Contrary to our expectations, the placement behavior observed on
Azure is the inverse. The chances of co-residency with 10 attacker in-
stances are almost twice as high as with 30 attacker instances. This is also
reflected in the distribution of number of co-residency VM pairs (shown
in Table 5.14). Further investigation revealed a correlation between the
number of victim and attacker instances launched and the chance of co-
residency. That is, for the run configuration of 10x10, 20x20 and 30x30,
where number of victim and attacker instances are the same, and with
0 delay, the chance of co-residency were equally high for all these con-
figurations (between 0.9 to 1). This suggests a possible placement policy
that collates VM launch requests together based on their request size and
places them on the same group of machines.

Varying number of victim instances. Similarly, we also varied the num-
ber of victim instances by keeping the number of attacker instances and
other placement variables constant (results shown in Figure 5.16). We
expect the chance of co-residency to increase with the number of victims
targeted. Hence, the results presented here help an adversary answer the
question: What are the chances of co-residency with varying sizes of target
victims?

As expected, we see an increase in the chances of co-residency with
increasing number of victim VMs across all cloud providers. We see that
the absolute value of the chance of co-residency is lower for Azure than
other clouds. This may be the result of significant additional delay between
victim and attacker launch times in Azure as a result of our methodology
(more on this later).
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Figure 5.16: Chances of co-residency of 30 attacker instances with vary-
ing number of victim instances. All these results are from one data center region
(EC2: us-east, GCE: us-central1-a, Azure: East US) and the delays between victim and
attacker instance launch were 1 hour. Results are over at least 9 runs per run configuration
with at least 3 runs per time of day.

5.3.3 Effect of Instance Launch Time

In this section, we answer two questions that aid an adversary to design
better launch strategies: How quickly should an attacker launch VMs after
the victim VMs are launched? Is there any increase in chance associated
with the time of day of the launch?

Varying delay between attacker and victim launches. The result of vary-
ing the delay between 0 (i.e., parallel launch) and 1 hour delay is shown
in Figure 5.17. We can make two immediate observations from this result.

The first observation reveals a significant artifact of EC2’s placement
policy: VMs launched within a short time window are never co-resident
on the same machine. This observation helps an adversary to avoid such
a strategy. We further investigated placement behaviors on EC2 with
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Figure 5.17: Chances of co-residency with varying delays between vic-
tim and attacker launches. Solid boxes correspond to zero delay (simultaneous
launches) and gauze-like boxes correspond to 1 hour delay between victim and attacker
launches. We did not observe any co-resident instances for runs with zero delay on EC2.
All these results are from one data center region (EC2: us-east, GCE: us-central1-a, Azure:
East US). Results are over at least 9 runs per run configuration with at least 3 runs per
time of day.

shorter non-zero delays in order to find the duration of this time window
in which there are zero co-residency (results shown in Table 5.18). We
found that this time window is very short and that even a sequential
launch of instances (denoted by 0+) could result in co-residency.

The second observation shows that non-zero delay on GCE and zero
delay on Azure increases the chance of co-residency and hence directly
benefits an attacker. It should be noted that on Azure, the launch delays
between victim and attacker instances were longer than 1 hour due to our
leap-frog experimental methodology; the actual delays between the VM
launches were, on average, 3 hours (with a maximum delay of 10 hours
for few runs). This higher delay was more common in runs with larger
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Delay Mean S.D. Min Median Max Success
rate

0+ 0.6 1.07 0 0 3 0.30
5 min 1.38 0.92 0 1 3 0.88
1 hr 3.57 2.59 0 3.5 9 0.86

Table 5.18: Distribution of number of co-resident pairs and success rate
or chances of co-residency for shorter delays under 20x20 run configu-
ration in EC2. A delay with 0+ means victim and attacker instances were launched
sequentially, i.e. attacker instances were not launched until all victim instances were
running. The results averaged are over 9 runs with 3 runs per time of day.

number of instances as there were significantly more false positives, which
required a separate sequential phase to resolve (see Section 5.2.2).

We also experimented with longer delays on EC2 and GCE to under-
stand whether and how quickly the chance of co-residency drops with
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Figure 5.19: Chances of co-residency over long periods. Results include 9
runs over two weeks with 3 runs per time of day under 20x20 run configuration. Note
that we only conducted 3 runs for 32 hour delay as opposed to 9 runs for all other delays.
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Chances of Co-residency
Cloud Morning Afternoon Night

02:00 - 10:00 10:00 - 18:00 18:00 - 02:00
GCE 0.68 0.61 0.78
EC2 0.89 0.73 0.6

Table 5.20: Effect of time of day. Chances of co-residency when an attacker
changes the launch time of his instances. The results were aggregated across all run
configurations with 1 hour delay between victim and attacker launch times. All times are
in PT.

increasing delay (results shown in Figure 5.19). Contrary to our expecta-
tion, we did not find the chance of co-residency to drop to zero even for
delays as high as 16 and 32 hours. We speculate that the reason for this ob-
servation could be that the system was under constant churn where some
neighboring VMs on the victim’s machine were terminated. Note that
our leap-frog methodology may, in theory, interfere with the VM place-
ment. But it is noteworthy that we observed increased number of unique
co-resident pairs with increasing delays, suggesting fresh co-residency
with victim VMs over longer delays.

Effect of time of day. Prior works have shown that churn or load is often
correlated with the time of day [178]. Our simple reference placement
policy does not have a notion of load and hence have no effect on time of
day. In reality, with limited number of servers in datacenters and limited
number of capacity per host, load on the system has direct effect on the
placement behavior of any placement policy.

As expected, we observe small effect on VM placement based on
the time of day when attacker instances are launched (results shown
in Table 5.20). Specifically, there is a slightly higher chance of co-residency
if the attacker instances are launched in the early morning for EC2 and at
night for GCE.
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Figure 5.21: Median number of co-resident pairs across two regions.
The box plot shows the median number of co-resident pairs excluding co-residency within
the same account. Results are over at least 3 run per run configuration (x-axis).

5.3.4 Effect of Data Center Location

All the above experiments were conducted on relatively popular regions
in each cloud (especially true for EC2 [178]). In this section, we report
the results on other smaller and less popular regions. As the regions
are less popular and have relatively fewer machines, we expect higher
co-residency rates and more co-resident instances. Figure 5.21 shows the
median number of co-resident VM pairs placed in these regions alongside
the results for popular regions. The distribution of number of co-resident
instances is shown in Table 5.12b and 5.13b.

The main observation from these experiments is that there is a higher
chance of co-residency in these smaller regions than the larger, more
popular regions. Note that we placed at least one co-resident pair in all
the runs in these regions. Also the higher number of co-resident pairs also
suggests a larger coverage over victim VMs in these smaller regions.

One anomaly that we found during two 20x20 runs on EC2 between
30th and 31st of January 2015, when we observed an unusually large num-
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ber of co-resident instances (including three VMs from the same account).
We believe this anomaly may be a result of an internal management inci-
dent in the Amazon EC2 us-west-1 region.
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Figure 5.22: Distribution of number of co-resident instances per host
on Azure. The results shown are across all the runs. We saw at most 2 instances per
host in EC2 and at most 3 instances per host in GCE.

5.3.5 Effect of Launch Origin Machine

Until now, we simulated launch characteristics of a victim and an attacker
by executing a launch strategy from a single machine (launch origin ma-
chine). It is possible that the location or the network address of the launch
origin machine may influence co-location even when the VM launches are
requested two different account. Although it is not clear what is the goal
of such a placement policy, it is useful to understand whether the origin of
launch requests is an essential criteria for a successful co-location. To verify
this, we repeated one of the successful strategies – 30x30 with one hour
delay – on Amazon EC2. But instead of launching VMs from the same
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workstation at Wisconsin, we launched VMs under each account from
machines at different locations within the US. For the victim, we initiated
the launch from a remote virtual machine in GCE in the us-east1-b region3.
For the attacker, we used the same workstation at Wisconsin (central US).
With three runs at three different times of day on a week day, we achieved
co-location in 2 out of the 3 runs with a maximum of 3 co-resident pairs in
one run. With the results gathered from previous experiments (conducted
between December 2014 to February 2015), we expected all the three runs
to result in at least one pair of co-resident instances between the attacker
and the victim. We believe there are two reasons that we did not achieve
co-location in all the three runs: 1) this new experiment was conducted
in December 2015 almost one year after the first set of experiments and
hence may be a result of any changes to the placement policy used by
EC2, 2) Both set of experiments have their limitations. For example, they
involve only a small number of runs (3 or 9). Nevertheless, the fact that
we observe some co-resident instances is sufficient to show that a single
launch origin machine is not a necessary criteria for successful co-location
in Amazon EC2.

5.3.6 Other Observations

We report several other interesting observations in this section. First, we
found more than two VMs can be co-resident on the same host on both
Azure and GCE, but not on EC2. Figure 5.22 shows the distribution of
number of co-resident instances per host. Particularly, in one of the runs,
we placed 16 VMs on a single host.

Another interesting observation is related to co-resident instances from
the same account. We term them as self-co-resident instances. We observed
many self-co-resident pairs on GCE and Azure (not shown). On the other

3This is one of the new regions recently introduced in GCE at the time of this experi-
ment in December 2015.
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hand, we never noticed any self co-resident pair on EC2 except for the
anomaly in us-west-1. Although we did not notice any effect on the actual
chance of co-residence, we believe such placement behaviors (or the lack
of) may affect VM placement.

We also experimented with medium instances and successfully placed
few co-located VMs on both EC2 and GCE by employing similar successful
strategies learned with small instances.

5.3.7 Cost of Launch Strategies
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Figure 5.23: Launch strategy and co-residency detection execution times.
The run configurations v× a indicates the number of victims vs. number of attackers
launched. The error bars show the standard deviation across at least 7 runs.

Recall that the cost of a launch strategy from Section 5.1, CS = a ∗
P(atype) ∗ Td(v,a). In order to calculate this cost, we need Td(v,a) which
is the time taken to detect co-location with a attackers and v victims.
Figure 5.23 shows the average time taken to complete launching attacker
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Run Average Cost ($) Maximum Cost ($)
config. GCE EC2 Azure GCE EC2 Azure
10x10 0.137 0.260 0.494 0.140 0.260 0.819
10x20 0.370 0.520 1.171 0.412 0.520 1.358
10x30 1.049 0.780 2.754 1.088 1.560 3.257
20x20 0.770 0.520 2.235 1.595 1.040 3.255
20x30 1.482 1.560 3.792 1.581 1.560 4.420
30x30 1.866 1.560 5.304 2.433 1.560 7.965

Table 5.24: Cost of running a launch strategy. Maximum cost column refers
to the maximum cost we incurred out of all the runs for that particular configuration and
cloud provider (in dollars). The cost per hour of small instances at the time of this study
were: 0.05, 0.026 and 0.06 dollars for GCE, EC2 and Azure, respectively. The minimum
and maximum costs are in bold.

instances and complete co-residency detection for each run configuration.
Here the measured co-residency detection is the parallelized version dis-
cussed in Section 5.2.2 and also includes time taken to detect co-residency
within each tenant account. Hence, for these reasons the time to detect
co-location is an upper bound for a realistic and highly optimized co-
residency detection mechanism.

We calculate the cost of executing each launch strategy under the three
public clouds. The result is summarized in Table 5.24. Note that we only
consider the cost incurred by the compute instances because the cost for
other resources such as network and storage, was insignificant. Also note
that EC2 bills every hour even if an instance runs less than an hour [14],
whereas GCE and Azure charge per minute of instance activity. This
difference is considered in our cost calculation. Overall, the maximum
cost we incurred was about $8 for running 30 VMs for 4 hours 25 minutes
on Azure and a minimum of 14 cents on GCE for running 10 VMs for
17 minutes. We incurred the highest cost for all the launch strategies in
Azure because of overall higher cost per hour and partly due to longer
tests due to our co-residency detection methodology.
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Run Config. 10x10 10x20 10x30 20x20 20x30 30x30
Pr [ Ev

a > 0 ] 0.10 0.18 0.26 0.33 0.45 0.60

Table 5.25: Probability of co-residency under the reference placement
policy.

5.4 Summary of Placement Vulnerabilities

In this section, we return to the secure reference placement policy in-
troduced in Section 5.1 and use it to identify placement vulnerabilities
across all the three clouds. Recall that the probability of at least one
pair of co-residency under this random placement policy is given by
Pr [ Ev

a > 0 ] = 1 − (1 − v/N)a, where Ev
a is the random variable denoting

the number of co-location observed when placing a attacker VMs among
N = 1000 total machines where v machines are already picked for the v
victim VMs. First, we evaluate this probability for various run configura-
tions that we experimented with in the public clouds. The probabilities
are shown in Table 5.25.

Recall that a launch strategy in a cloud implies a placement vulnerabil-
ity in that cloud’s placement policy if its normalized success rate is greater
than 1. The normalized success rate of the strategy is the ratio of the chance
of co-location under that launch strategy to the probability of co-location
in the reference policy (Pr [ Ev

a > 0 ]). Below is a list of selected launch
strategies that escalate to placement vulnerabilities using our reference
policy with their normalized success rate in parenthesis.

(S1) In Azure, launch ten attacker VMs closely after the victim VMs are
launched (1.0/0.10).

(S2) In EC2 and GCE, if there are known victims in any of the smaller
datacenters, launch at least ten attacker VMs with a non-zero delay
(1.0/0.10).

(S3) In all three clouds, launch 30 attacker instances, either with no delay
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Strategy v & a a ′ Cost benefit ($) Normalized
success

S1 & S2 10 688 113.87 10
S3 30 227 32.75 1.67

S4(i) 20 105 4.36 2.67
S4(ii) 20 342 53.76 3.03

S5 20 110 4.83 1.48

Table 5.26: Cost benefit analysis. N = 1000, P(atype) = 0.026, which is the
cost per instance-hour on EC2 (the cheapest). For simplicity Td(v,a) = (v ∗ a) ∗ 3.85,
where 3.85 is fastest average time to detect co-residency per instance-pair. Here, v× a is
the run configuration of the strategy under test. Note that the cost benefit is the additional
cost incurred under the reference policy, hence is equal to cost incurred by a ′−a additional
VMs.

(Azure) or one hour delay (EC2, GCE) from victim launch, to get
co-located with one of the 30 victim instances (1.00/0.60).

(S4) (i) In Amazon EC2, launch 20 attacker VMs with a delay of 5 minutes
or more after the victims are launched (0.88/0.33). (ii) The optimal
delay between victim and attacker VM launches is around 4 hours
for a 20x20 run (1.00/0.33).

(S5) In Amazon EC2, launch the attacker VMs with 1 hour after the victim
VMs are launched where the time of day falls in the early morning,
i.e., 02:00 to 10:00hrs PST (0.89/0.60).

Cost benefit. Next, we quantify the cost benefit of each of these strate-
gies over the reference policy. As the success rate of any launch strategy
on a vulnerable placement policy is greater than what is possible in the
reference policy, we need more attacker instances in the reference policy
to achieve the same success rate. We calculate this number of attacker
instances a ′ using: a ′ = ln(1 − Sva)/ ln(1 − v/N), where, Sva is the success
rate of a strategy with run configuration of v×a. The result of this calcula-
tion is presented in Table 5.26. The result shows that the best strategy, S1
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and S2, on all three cloud providers is $114 cheaper than what is possible
in the reference policy.

It is also evident that these metrics enable evaluating and comparing
various launch strategies and their efficacy on various placement policies
both on robust placements and attack cost. For example, note that although
the normalized success rate of S3 is lower than S4, it has a higher cost
benefit for the attacker.

5.4.1 Limitations

Although we exhaustively experimented with a variety of placement vari-
ables, the results have limitations. One major limitation of this study is the
number of placement variables and the set of values for the variables that
we used to experiment. For example, we limited our experiments with
only one instance type, one availability zone per region and used only
one account for the victim VMs. Although different instance types may
exhibit different placement behavior, the presented results hold strong
for the chosen instance type. The only caveat that may affect the results
is a placement policy that uses account ID for VM placement decisions.
Since, we experimented with only one victim account (separate from the
designated attacker account) across all providers our experiments, in the
worst case, may have captured such a placement behavior that resulted
in similar placement decisions for VMs from these two accounts. Given
that we found similar results of co-location on three distinct public clouds
such a worst-case scenario seems extremely unlikely.

Even though we ran at least 190 runs per cloud provider over a period
of 3 months to increase statistical significant of our results, we were still
limited to at most 9 runs per run configuration (with 3 runs per time of
day). These limitations have only minor bearing on the results presented,
if any, and the reported results are significant and impactful for cloud
computing security research.
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5.5 Placement Vulnerability in PaaS

While we mainly studied placement vulnerabilities in the context of IaaS,
we also experimented with Platform-as-a-Service (PaaS) clouds. PaaS
clouds offer elastic application hosting services. Unlike IaaS where users
are granted full control of a VM, PaaS provides managed compute tasks (or
instances) for the execution of hosted web applications, and allow multiple
such instances to share the same operating system. These clouds use
either process-level isolation via file system access controls, or increasingly
Linux-style containers (see [192] for a more detailed description). As such,
logical side-channels alone are usually sufficient for co-residency detection
purposes. For instance, in PaaS clouds, co-resident instances often share
the same public IP address as the host machine. This is because the host-to-
instance network is often configured using Network Address Translation
(NAT) and each instance is assigned a unique port under the host IP
address for incoming connections.

We found that many such logical side-channel-based co-residency
detection approaches worked on PaaS clouds, even on those using con-
tainers. Specifically, we used both system-level interrupt statistics via
/proc/interrupts and shared public IP addresses of the instances to de-
tect co-location in Heroku [87]. Note that both these techniques either
require direct access to victim instances, or a software vulnerability to
access procfs or initiate reverse connections, respectively.

Our brief investigation of co-location attacks in Heroku [86] showed
that naïve strategies like scaling two PaaS web applications to 30 instances
with a time interval of 5 minutes between them, resulted in co-location in
6 out of 10 attempts. Moreover, since the co-location detection was simple
and quick including the time taken for application scaling, we were able to
do these experiments free of cost. This result reinforces prior findings on
PaaS co-location attacks [192] and confirms the existence of cheap launch
strategies to achieve co-location and easy detection mechanisms to verify
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it. We do not investigate PaaS clouds further in the rest of this dissertation.
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6
Stealing Performance from

Neighboring VMs

In Chapter 4.2 we witnessed the extent of performance interference be-
tween VMs because of the lack of performance isolation. In this chapter,
we will look at how a malicious user could abuse this lack of isolation for
his own performance by using an attack we call Resource-Freeing Attack.

We explore an approach based on two observations. First, applications
are often limited by a single bottleneck resource, such as memory or
network bandwidth. Second, we observe that an application’s use of
resources can change unevenly based on workload. For example, a web
server may be network limited when serving static content, but CPU
limited when serving dynamic content.

A resource-freeing attack (RFA) leverages these observations to improve a
VM’s performance by forcing a competing VM to saturate some bottleneck.
If done carefully, this can slow down or shift the competing application’s
use of a desired resource. For example, we investigate in detail an RFA
that improves cache performance when co-resident with a heavily used
Apache web server. Greedy users will benefit from running the RFA, and
the victim ends up paying for increased load and the costs of reduced
legitimate traffic.

We begin this work with a comprehensive study of the resource in-
terference exhibited by the Xen hypervisor in our local testbed (§ 6.2).
In addition to testing for contention of a single resource, these results
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show that workloads using different resources can contend as well, and
that scheduling choices on multicore processors greatly affect the perfor-
mance loss. We then develop a proof-of-concept resource-freeing attack
for the cache-network contention scenario described above (§ 6.3). In a
controlled environment, we determine the necessary conditions for a suc-
cessful resource-freeing attack, and show that average performance of a
cache-sensitive benchmark can be improved by as much as 212% when the
two VMs always share a single core, highlighting the potential for RFAs to
ease cache contention for the attacker. If VMs float among all cores (the
default configuration in Xen), we still see performance gains of up to 60%.
When applied to several SPEC benchmarks [84], whose more balanced
workloads are less effected by cache contention, RFAs still provide benefit:
in one case it reduces the effect of contention by 66.5% which translated to
a 6% performance improvement.

Finally, we show that resource-freeing attacks are possible in uncon-
trolled settings by demonstrating their use on Amazon’s EC2 (§ 6.3.2).
Using co-resident virtual machines launched under accounts we control,
we show that introducing additional workload on one virtual machine
can improve the performance of our cache-sensitive benchmark by up to
13% and provides speedups for several SPEC benchmarks as well.

6.1 Resource-freeing Attacks

The interference encountered between VMs on public clouds motivates a
new class of attacks, which we call resource-freeing attacks (RFAs). The
general idea of an RFA is that when a guest virtual machine suffers due to
performance interference, it can affect the workload of other VMs on the
same physical server in a way that improves its own performance.

Attack setting. We consider a setting in which an attacker VM and one or
more victim VMs are co-resident on the same physical server in a public
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cloud. There may be additional co-resident VMs as well. It is well known
that public clouds make extensive use of multi-tenancy.

The RFAs we consider in Section 6.3 assume that the victim is running a
public network service, such as a web server. This is a frequent occurrence
in public clouds. Measurements in 2009 showed that approximately 25%
of IP addresses in one portion of EC2’s address space hosted a publicly
accessible web server [151].

Launching RFAs that exploit a public network service require that
the attacker knows with whom it is co-resident. On many clouds this is
straightforward: the attacker can scan nearby internal IP addresses on
appropriate ports to see if there exist public network services. This was
shown to work in Amazon EC2, where for example m1.small co-resident
instances had internal IP addresses whose numerical distance from an
attacker’s internal IP address was at most eight [151]. Furthermore, packet
round-trip times can be used to verify co-residence. We expect that similar
techniques work on other clouds, such as Rackspace.

The attacker seeks to interfere with the victim(s) to ease contention
for resources on the node or nearby network. The attacker consists of
two logical components, a beneficiary and a helper. The beneficiary is the
application whose efficiency the attacker seeks to improve. The helper
is a process, either running from within the same instance or on another
machine, that the attacker will use to introduce new workload on the
victim. Without loss of generality, we will describe attacks in terms of one
victim, one beneficiary, and one helper.

We assume the beneficiary’s performance is reduced because of inter-
ference on a single contended resource, termed the target resource. For
example, a disk-bound beneficiary may suffer from competing disk ac-
cesses from victim VMs.

Conceptual framework. The beneficiary and the helper work together
to change the victim’s resource consumption in a manner that frees up the
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target resource. This is done by increasing the time the victim spends on
one portion of its workload, which limits its use of other resources.

There are two requirements for an RFA. First, an RFA must raise the
victim’s usage of one resource until it reaches a bottleneck. Once in a
bottleneck, the victim cannot increase usage of any resources because of
the bottleneck. For example, once a web server saturates the network, it
cannot use any more CPU or disk bandwidth. However, simply raising the
victim to a bottleneck does not free resources; it just prevents additional
use of them. The second requirement of an RFA is to shift the victim’s
resource usage so that a greater fraction of time is spent on the bottleneck
resource, which prevents spending time on other resources. Thus, the
bottleneck resource crowds out other resource usage. As an example, a
web server may be sent requests for low-popularity web pages that cause
random disk accesses. The latency of these requests may crowd requests
for popular pages and overall reduce the CPU usage of the server.

There are two shifts in target resource usage that can help the benefi-
ciary. First, if the victim is forced to use less of the resource, then there
may be more available for the beneficiary. Second, even if the victim uses
the same amount of the resource, the accesses may be shifted in time. For
example, shifting a victim’s workload so that cache accesses are consol-
idated into fewer, longer periods can aid the beneficiary by ensuring it
retains cache contents for a larger percentage of its run time. A similar
effect could be achieved for resources like the hard disk if we are able to
provide the beneficiary with longer periods of uninterrupted sequential
accesses.

Modifying resource consumption. The helper modifies the victim’s re-
source usage and pushes it to overload a bottleneck resource. This can be
done externally, by introducing new work over the network, or internally,
by increasing contention for other shared resources.

A helper may introduce additional load to a server that both increases
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its total load and skews its workload towards a particular resource. The
example above of requesting unpopular content skews a web server’s
resource usage away from the CPU towards the disk. This can create
a bottleneck at either the server’s connection limit or disk bandwidth.
Similarly, the helper may submit CPU-intensive requests for dynamic data
that drive up the server’s CPU usage until it exceeds its credit limit and is
preempted by the hypervisor.

The helper can also affect performance by increasing the load on other
contended resources. Consider again a web server that makes use of the
disk to fetch content. A helper running in the beneficiary’s instance can
introduce unnecessary disk requests in order to degrade the victim’s disk
performance and cause the disk to become a bottleneck. Similarly, the
helper could slow the victim by introducing additional network traffic
that makes network bandwidth a bottleneck for the server.

There exist some obvious ways an attacker might modify the workload
of a victim. If the attacker knows how to remotely crash the victim via
some exploitable vulnerability, then the helper can quite directly free up
the target resource (among others). However this is not only noisy, but
requires a known vulnerability. Instead, we focus on the case that the
attacker can affect the victim only through use (or abuse) of legitimate
APIs.

Example RFA. As a simple example of an RFA, we look at the setting of
two web servers, running in separate VMs on the same physical node, that
compete for network bandwidth. Assume they both serve a mix of static
and dynamic content. Under similar loads, a work-conserving network
scheduler will fairly share network capacity and give each web server
50% (indeed, our experiment show that Xen does fairly share network
bandwidth).

However, if we introduce CPU-intensive requests for dynamic content
to one web server that saturate the CPU time available to the server, we
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find that the other server’s share of the network increases from 50% to 85%,
because there is now less competing traffic. We note that this requires
a work-conserving scheduler that splits excess network capacity across
the VMs requesting it. A non-work conserving scheduler would cap the
bandwidth available to each VM, and thus a decline in the use by one VM
would not increase the bandwidth available to others.

6.2 Contention Measurements

In order to understand which resources are amenable to resource-freeing
attacks in a Xen environment, we created a local testbed that attempts to
duplicate a typical configuration found in EC2 (in particular, the m1.small
instance type).

Testbed. Although Amazon does not make their precise hardware config-
urations public, we can still gain some insight into the hardware on which
an instance is running by looking at system files and the CPUID instruc-
tion. Based on this, we use a platform consisting of a 4-core, 2-package
2.66 GHz Intel Xeon E5430 with 6MB of shared L2 cache per package and
4GB of main memory. This is representative of some of the architectures
used by EC2.

We install Xen on the testbed, using the configurations shown in
Table 6.1. Again, while we do not have precise knowledge of Amazon’s
setup for Xen, our configuration approximates the EC2 m1.small instance.

This configuration allows us to precisely control the workload by vary-
ing scheduling policies and by fixing workloads to different cores. In
addition, it enables us to obtain internal statistics from Xen, such as traces
of scheduling activities.

Table 6.2 describes the workloads we use for stressing different hard-
ware resources. The workloads run in a virtual machine with one VCPU.
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Xen Version 4.1.1
Xen Scheduler Credit Scheduler 1
OS Fedora 15, Linux 2.6.40.6-0.fc15
Dom0 4 VCPU / 6 GB memory / no cap

/ weight 512
DomU 8 instances each with 1 VCPU / 1

GB memory / 40% cap / weight
256

Network Bridging via Dom0
Disk 5 GB LVM disk partition of a sin-

gle large disk separated by 150GB

Table 6.1: Xen configuration in our local testbed..

In order to understand the impact of sharing a cache, we execute the
workloads in three scenarios:

(i) Same core time slices two VMs on a single core, which shares all levels
of processor cache.

(ii) Same package runs two VMs each pinned to a separate core on a single
package, which shares only the last-level cache.

(iii) Different package runs two VMs floating over cores on different pack-
ages, which do not share any cache, but do share bandwidth to
memory.

In addition, Xen uses a separate VM named Dom0 to run device drivers.
In accordance with usage guides, we provision Dom0 with four VCPUs.
As past work has shown this VM can cause contention [79, 190], we make
it execute on a different package for the first two configurations and allow
it to use all four cores (both cores in both packages) for the third.

Extent of Resource Contention. The goal of our experiments is to de-
termine the contention between workloads using different hardware re-
sources and determine whether enough contention exists to mount an
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Workload Description
CPU Solving the N-queens problem for N = 14.
Net Lightweight web server hosting 32KB static

web pages cached in memory, 5000 requests
per second from a separate client.

Diskrand Requests for randomly selected 4KB chunk
in 1 GB span.

Memrand Randomly request 4B from every 64B of data
from a 64MB buffer.

LLC Execute LLCProbe, which sequentially re-
quests 4B from every 64B of data within an
LLC-sized buffer using cache coloring to bal-
ance access across cache sets.

Table 6.2: Resource-specific workloads used to test contention..

RFA. With perfect isolation, performance should remain unchanged no
matter what competing benchmarks run. However, if the isolation is not
perfect, then we may see performance degradation, and thus may be able
to successfully mount an RFA.

Table 6.3 provides tables showing the results, which demonstrate that
Xen is not able to completely isolate the performance of any resource.
Across all three configurations, CPU and Memrand show the least interfer-
ence, indicating that Xen does a good job accounting for CPU usage and
that the processor limits contention for memory bandwidth.

However, for all other resources, there are competing workloads that
substantially degrade performance. The two resources suffering the worst
contention are Diskrand where run time increases 455% with contending
random disk access; and LLC, where run time increases over 500% with
Net and over 500% with Memrand. for Diskrand, competing disk traffic
causes seeks to be much longer and hence slower. For LLC, competing
workloads either interrupt frequently ( Net) or move a lot of data through
the cache ( Memrand).
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Same core CPU Net Diskrand Memrand LLC
CPU - 5 - - -
Net - 194 - - -
Diskrand - - 455 - -
Memrand - 6 - - -
LLC 8 539 72 38 34
Same
package

CPU Net Diskrand Memrand LLC

CPU - - - - -
Net - 198 - - -
Diskrand - - 461 - -
Memrand - - 17 - -
LLC 20 448 55 566 566
Diff. pack-
age

CPU Net Diskrand Memrand LLC

CPU - 20 - - -
Net - 100 - - -
Diskrand - - 462 - -
Memrand - 35 - - -
LLC 6 699 11 15 15

Table 6.3: Resource Contention in Xen.. Percentage increase in workload run
times indicated in row when contending with workload indicated in column. Percentage
is computed as run time with contention over run time on otherwise idle machine. For
network, run time is the time to serve a fixed number of requests. A dash means there
was no significant performance degradation. (Top) The VMs are pinned to the same core.
(Middle) The VMs are pinned to different cores on the same package. (Bottom) The VMs
are pinned to different packages.

The three configurations differ mostly in the LLC results. In the same-
core and different-package configurations, the contention with LLC is fairly
small. On the same core, the conflicting code does not run concurrently,
so performance is lost only after a context switch. On different packages,
performance losses come largely from Dom0 , which is spread across
all cores. In the same-package configuration, though, the tests execute
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concurrently and thus one program may displace data while the other is
running.

One pair of resources stands out as the worst case across all configu-
rations: the degradation caused by Net on LLC. This occurs for three rea-
sons: (i) the HTTP requests cause frequent interrupts and hence frequent
preemptions due to boost; (ii) in the same-core and same-package configu-
rations the web server itself runs frequently and displaces cache contents;
and (iii) Dom0 runs the NIC device driver in the different-package config-
uration. We will therefore focus our investigation of RFAs on the conflict
between such workloads, and leave exploration of RFAs for other workload
combinations to future work.

6.3 RFA for Cache versus Network

As we saw, a particularly egregious performance loss is felt by cache-
bound workloads when co-resident with a network server. Unfortunately,
co-residence of such workloads seems a likely scenario in public clouds:
network servers are a canonical application (EC2 alone hosts several mil-
lion websites [134]) while cache-bound processes abound. The remainder
of the work seeks to understand whether a greedy customer can mount
an RFA to increase performance when co-resident with one or more web
servers.

Setting. We start by providing a full description of the setting on which
we focus. The beneficiary is a cache bound program running alone in a VM
with one VCPU. We use the LLCProbe benchmark as stand-in for a real ben-
eficiary. LLCProbe is intentionally a synthetic benchmark and is designed
to expose idealized worst-case behavior. Nevertheless, Its pointer-chasing
behavior is reflected in real workloads [76]. We will also investigate more
balanced benchmarks such as SPEC CPU2006 [84], SPECjbb2005 [161] and
graph500 [76].



107

In addition to the beneficiary, there is a victim VM co-resident on the
same physical machine running the Apache web server (version 2.2.22).
It is configured to serve a mix of static and dynamic content. The static
content consists of 4, 096 32KB web pages (enough to overlow the 6MB
LLC) containing random bytes. The dynamic content is a CGI script that
can be configured to consume varying amounts of CPU time via busy
looping. This script serves as a stand in for either an actual web server
serving dynamic content on the web, or the effects of DoS attacks that
drive up CPU usage, such as complexity attacks [56, 60]. The script takes a
parameter to control duration of the attack, and spins until wall-clock time
advances that duration. We note that this does not reflect the behavior
of most DoS attacks, which take a fixed number of cycles, but we use it
to provide better control over the web server’s behavior. We confirmed
that the behaviors exhibited also arise with CGI scripts performing a fixed
number of computations.

The Apache server is configured with the mod_mem_cache module to
reduce the latency of static content and FastCGI to pre-fork a process for
CGI scripts. We also use the Multi-Processing Module for workers, which
is a hybrid multithreaded multi-process Apache web server design used
for better performance and for handling larger request loads.

To simulate load on the web server, we use a custom-built multi-
threaded load generator that sends web requests for the static content hosted
by the victim. Each client thread in the load generator randomly selects
a static web page to request from the web server. The load generator in-
cludes a rate controller thread that ensures that the actual load on the
web server does not exceed the specified request rate. The client uses 32
worker threads, which we empirically determined is enough to sustain
the web server’s maximum rate. Requests are synchronous and hence the
load generator waits for the response to the previous request and then
a timeout (to prevent sending requests too fast) before sending the next
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request. Since each thread in the load generator waits for a response from
the web server before sending the next request, it may not meet the speci-
fied request rate if the server or the network bandwidth cannot sustain
the load. The helper, which performs the actual RFA, is identical to the
load generator except that it sends requests for the CGI script rather than
for static pages.

Understanding the contention. We conduct experiments on our local
testbed to understand the basic performance degradation experienced
by LLCProbe as the web server’s workload varies. We report the average
time to probe the cache; one probe involves accessing every cacheline out
of a buffer of size equal to the LLC. We measure the time per probe by
counting the number of probes completed in 10 seconds.

To understand contention, we first pin the victim VM and the bene-
ficiary VM to the same core and pin Dom0 to a different package. The
Fixed Core columns in Table 6.4 show the runtime per cache probe aver-
aged over 3 runs for a range of background request rates to the web sever.
The increase column shows the percent increase in probe time relative to
running with an idle victim VM.

Request Fixed Core Floating Core
Rate Runtime Increase Runtime Increase

0 4033 0 4791 0
100 4780 19% 5362 12%

1000 6500 61% 6887 44%
1500 7740 92% 7759 62%
2000 9569 137% 8508 78%
3000 18392 356% 16630 247%

Table 6.4: Performance Interference of a Webserver on LLCProbe. Run-
times (in microseconds) and percentage increase in performance degradation of LLCProbe
(foreground) workload as a function of request rate to victim (background). For Fixed
Core both VMs are pinned to the same core and for Floating Core Xen chooses where to
execute them.
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As the workload of the victim increases, we see a corresponding in-
crease in the performance degradation of LLCProbe. To evaluate our hy-
pothesis that the effect arises due to frequent interruptions, we use Xen-
trace [116] to record the domain switches that occur over a fixed period
of time in which the LLCProbe VM runs. We analyzed the case of 1500
requests per second ( rps) and 3000 rps. For the 3000 rps case, the web
server runs for less than 1ms in 80% of the times it is scheduled whereas
in the 1500 rps case the web server runs for less than 1ms only 40% of
the time, because the longer run periods reflect fixed-length CPU tasks
not correlated with traffic. Because Apache does not saturate its CPU
allocation, it retains “boost” priority, which allows it to preempt LLCProbe
for every request. Thus, LLCProbe also runs for short periods, causing it
to lose the data in its cache.

The rightmost columns in Table 6.4 show the same experiment when
the two VMs are allowed to float across all the cores (floating). We see a
similar trend here, though slightly less severe because for some fraction of
time, the victim and beneficiary VMs are scheduled on different packages
and do not share an LLC. Thus, we expect in live settings such as EC2 to
see less interference than when both VMs are pinned to the same core.

We separately investigate the effect of contention with the Xen driver
domain, Dom0 1, which handles all device access such as interrupts or
requests to send a packet. In the typical setting where Dom0 is assigned
one VCPU per physical CPU, Dom0 may run on any core and uses the same
scheduling mechanism as other guest VMs. As a result, Dom0 receives
boost and can interfere with the beneficiary just like the victim when it
handles a network interrupt. Dom0 and the beneficiary may share a CPU
even if the victim is scheduled elsewhere.

The attack. As alluded to in Section 6.2, the beneficiary’s performance
1The default configuration in Xen is to run device drivers in a single domain with

privileged access to I/O hardware.
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Figure 6.5: Performance of LLCProbe under Pinned and Floating VM
Configurations.. “Baseline” measures baseline performance when no traffic was
sent to the victim; it is shown in each grouping for comparison. “No-RFA” measures
performance when no RFA requests were sent. (Left) Performance when LLCProbe and
web server VMs are pinned to same core. (Right) Performance when they float amongst
cores. Error bars indicate one standard deviation.

degradation is caused by a victim frequently preempting the beneficiary
and thereby polluting its cache. The preemptions occur to handle static
web page requests due to legitimate traffic to the victim. Our attack aims
to exploit the victim’s CPU allotment as a bottleneck resource in order
to shift, in time, its accesses to the cache, and to reduce the number of
requests it serves. Doing so will provide the beneficiary longer periods of
uninterrupted access to the cache and less cache pollution from handling
requests, resulting in increased cache hit rates and improved performance.

The trigger for this is the introduction of a small number of CGI requests
per second from a helper. Even a low rate of requests per second can push
the victim up to its CPU cap, forcing it to lose boost and thus consolidating
its use of the cache into a smaller time frame. Introducing long-latency
dynamic requests means that, instead of interrupting LLCProbe frequently,
the web server runs continuously until the Xen scheduler preempts it,
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which allows LLCProbe to run uninterrupted. The Xen credit scheduler
allows a maximum of 30ms of credit per VCPU, with each domain being
allotted only one VCPU in our case. Therefore, the helper sends RFA
requests that invoke the CPU-intensive CGI helper in an effort to use up the
victim’s CPU allotment. In addition, the CPU-intensive requests displace
legitimate traffic and thus reduce the rate of requests that pollute the cache.

Here the helper is any system that can make CGI requests. Given
the very low rate required, this could be a free micro instance running
on the cloud or —scaling up— a single system that performs the RFA
against many victims in parallel (that are each co-resident with a different
beneficiary). While for some applications the helper might be put to better
use helping with whatever computation the beneficiary is performing, in
others this will not be possible (e.g., if it is not easily parallelized) or not
as cost effective. We also mention that one might include a lightweight
helper on the same VM as the beneficiary, but this would require care to
ensure that interference from the client does not outweigh the potential
speedup due to the RFA. In our experiments to follow, we run the helper
on a system different from the one on which the beneficiary and victim
co-reside.

6.3.1 Evaluation on Local Testbed

The results above show that LLCProbe experiences a significant perfor-
mance gap when running on an otherwise idle server as opposed to one
that is hosting one or more active web servers. In this section, we show
that this performance gap can be narrowed using the RFA outlined above.
In the following we look at the effectiveness of the attack under a range of
RFA intensities, which specifies the their total runtime per second. Unless
otherwise noted, we implement the RFA using CGI requests specifying
40ms of computation. We investigate a range of RFA intensities: 160, 320,
and 640ms. This allows understanding both the effect of overloading the
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victim by requesting more computation than its total allotment of 400ms.
We first run LLCProbe fifteen times while the victim VM is idle to get

a baseline. Then for each legitimate victim traffic rate and each level of
RFA including “No-RFA”, we run LLCProbe fifteen times while offering
the appropriate legitimate traffic and RFA traffic.

The average runtimes of these tests are shown in Figure 6.5. We observe
several interesting trends. Consider the left chart, which reports on a
setting with both victim and beneficiary pinned to the same core and all
four Dom0 VCPUs floating across all cores. First, introducing the extra
load from the RFA requests helps the beneficiary. Second, the greater the
victim’s load the higher the payoffs from the RFA.

In order to understand these results, we ran additional experiments
trying to identify various sources of interference on the beneficiary. There
are three main sources of interference: two effects on request processing
by the web server and the effect of network packet processing by Dom0 .
RFA requests help mitigate the effect of web server request handling in
two ways. First, introducing sufficiently many CPU-intensive requests will
deprive the web server of the boost priority. This is the major reason for
the high performance improvement in the pinned case shown in Figure 6.5.
Second, introducing long-running CGI requests reduces the amount of
CPU time available to serve legitimate traffic and thus, implicitly reduces
the capacity of the web server. This is the reason for higher payoffs at higher
web-server request rates. Reducing Dom0 ’s impact on the beneficiary
can only be indirectly achieved by saturating the web server and hence
reducing the rate of incoming request to the web server.

Figure 6.6 shows the CDF of runtime durations of the web server (top
chart) and LLCProbe (bottom chart) before being preempted both with and
without an RFA for the pinned case. What we see is that LLCProbe runs
for more than 1ms 85% of the time in the RFA case but only 40% of the
time without the RFA. This accounts for part of its improved performance.
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a: Webserver b: LLCProbe

Figure 6.6: Cumulative VM Runtime Distributions of Webserver and
LLCProbeVMs.. Runtime distribution of (top) the web server domain (with load
2,000 rps) and (bottom) the LLCProbe domain under both no RFA and with RFA 320 in
pinned core case.

Similarly, the web server changes from running longer than 1ms for only
10% of the time to 60% of the time. Furthermore, we can see that the web
server often runs out of scheduling credit from the vertical line at 30ms,
indicating that it uses up some of its scheduling quanta.

Figure 6.7 shows the effect of displacing legitimate traffic at higher
RFA intensities for the floating case. At low web-server request rates and
low RFA intensities, the offered and the observed load remain similar.
However, at 3000 rps and RFA intensity of 320, the observed load reduces
to 1995 rps, which leads LLCProbe to have performance similar to No-RFA
case at 2000 rps (right graph in Figure 6.5). This is the primary reason for
large performance improvement at 3000 rps in both pinned and floating
case shown in Figure 6.5.

In the floating case shown on the right in Figure 6.5, we see that RFA
requests can sometimes hurt performance. There appear to be two reasons
for this. First, some percentage of the time LLCProbe and Apache are
running concurrently on two different cores sharing an LLC. Because the
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Figure 6.7: Offered vs. Observed Load on Webserver with Varying RFA
Intensities.. Here all the VMs float across all cores.

two loads run concurrently, every cache access by the web server hurts
the performance of LLCProbe. In such a case, depriving the web server
of boost is insufficient and LLCProbe performance increases only when
the RFA rate is high enough so that the web server saturates its CPU
allotment and so spends more than half the time waiting (40% CPU cap).
In a separate experiment, we pinned the web server and the LLCProbe
to different cores on the same package, and used a web-server request
rate of 2000 rps. In this configuration, a high RFA intensity improved
performance by a meager 2.4%. In contrast, when we pin the two to the
same core, performance improved by 70%. Thus, improving performance
when sharing a core is possible without reducing legitimate foreground
traffic, while without sharing a core it requires displacing some legitimate
traffic.

Second, in this floating case the beneficiary will for some percentage of
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Figure 6.8: Normalized performance for SPEC workloads on our local
testbed.. Normalized performance is calculated with the baseline runtime over runtime
for various RFA intensities. All values are at a web server request rate of 3000 rps.

the time be scheduled to run on a core or package as Dom0 . Since Dom0
handles all incoming and outgoing packets, it may frequently interrupt
the beneficiary and pollute its cache state. When we pin LLCProbe and
the web server to different packages (no shared cache) but let Dom0 float,
LLCProbe still experiences interference. At a load of 2000 rps on the web
server, LLCProbe suffered a 78% degradation in performance just due to
Dom0 ’s inference. The RFA we explore can only alleviate contention from
Dom0 by forcing a drop in the web server’s foreground traffic rate (by
exhausting its VM’s CPU allocation as shown in Figure 6.7).

Finally, we analyze a spectrum of SPEC benchmarks. Each SPEC bench-
mark is run three times with an idle webserver, an active web server, and
an active web server with various RFA intensities where all the VMs (in-
cluding Dom0 ) float across all cores. Figure 6.8 depicts the normalized
performance of seven benchmarks under no RFA and intensities of 320
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and 640. That is, the reported fractions are computed as t ′/t where t is
the average runtime (request latency is computed and used for SPECjbb)
and t ′ is the average baseline performance when no traffic is sent to the
victim. All benchmarks benefit from the RFA, with the general trend that
cache-sensitive benchmarks (as indicated by a larger drop in performance
relative to the baseline) achieve more gains from the RFA. For example,
the 640 RFA increases normalized performance of SPECjbb from 0.91 to
0.97, a 6 percentage point improvement in performance and a 66.5% reduc-
tion in harm due to contention. The smallest improvement occurs with
hmmer, which shows only a 1.1 percentage point improvement because it
only suffers a performance loss of 1.6% without the RFA. Across all the
benchmarks, the 640 RFA achieves an average performance improvement
of 3.4 percentage points and recovers 55.5% of lost performance. These im-
provements come largely from the ability of the RFA to reduce the request
rate of the victim web server.

6.3.2 Evaluation on EC2

The above experiments clearly indicate that RFAs can provide substantial
gains in a controlled setting. To verify that the attacks will also work in a
noisier, more realistic setting, we turn to Amazon’s Elastic Compute Cloud
(EC2). There are several reasons it is important to evaluate RFAs in a real
cloud setting. First of all, the success of the RFA is highly dependent on
the overall load of the physical machine. The instances in question (the
beneficiary and the victim) make up only a portion of the total possible
load on a single machine. If the other instances on the machine are heavy
resource users, they will constantly interfere with the beneficiary and
overshadow any performance benefit from slowing the victim. Thus, if
most physical machines in EC2 are constantly under heavy load, we are
unlikely to see much effect from an RFA on a single victim. Furthermore,
EC2’s Xen configuration is not publicly available and may prevent RFAs.
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Thus, to understand if RFAs actually behave as an attacker would hope, it
is necessary to verify their effectiveness in a live setting like EC2.

Ethical considerations. When using EC2 for experiments, we are obli-
gated to consider the ethical, contractual, and legal implications of our
work. In our experiments, we use instances running under our accounts in
our names as stand-ins for RFA victims and beneficiaries. We abide by the
Amazon user agreement, and use only the legitimate Amazon-provided
APIs. We only attempt to send reasonable levels of traffic (slightly more
than 2000 rps for a small web page) to our own instances (the stand-ins for
victims). We do not directly interact with any other customer’s instances.
Our experiments are therefore within the scope of typical customer behav-
ior on EC2: running a utilized web server and a CPU intensive application.
Our experiments can therefore indirectly impact other customer’s service
only to the same extent as typical use.

Test machines. To test an RFA, we require control of at least two instances
running on the same physical machine. As AWS does not provide this
capability directly, we used known techniques [152] to achieve sets of co-
resident m1.small instances on 12 different physical machines in the EC2
us.east-1c region. Specifically, we launched large numbers of instances
of the same type and then used RTT times of network probes to check
co-residence. Co-residence was confirmed using a cache-based covert
channel. Nine of these were the same architecture: Intel Xeon E5507 with
a 4MB LLC. We discarded the other instances to focus on those for which
we had a large corpus, which are summarized in Table 6.9.

Each instance ran Ubuntu 11.04 with Linux kernel 2.6.38-11-virtual. For
each machine, we choose one of the co-resident instances to play the role of
the beneficiary and another one to be the victim. The beneficiary was con-
figured with various benchmarks while the victim had the same Apache
installation and configuration as in the local testbed (see Section 6.3.1).
Any remaining co-resident instances were left idle.



118

Machine # Machine # Machine #
E5507-1 4 E5507-4 3 E5507-7 2
E5507-2 2 E5507-5 2 E5507-8 3
E5507-3 2 E5507-6 2 E5507-9 3

Table 6.9: Summary of EC2 machines and Number of Co-resident In-
stances.. For m1.small instances running under our EC2 accounts.

We used separate m1.small instances to run the victim load and the
RFA traffic generator. We note that despite offering load of 2000 rps on
EC2, the achieved load was only around 1500 on average and sometimes
slightly less in the presence of RFAs.

Experimental procedure. We chose a subset of the benchmarks (sphinx,
mcf, LLCProbe, and bzip2) used in the local testbed for the experiments
on EC2. We ran each benchmark on a beneficiary instance while a co-
resident victim received requests made by a client load generator as well
as an RFA helper, both located on separate EC2 instances that were not
co-resident with the beneficiary and victim. We used an intensity of 512ms
and changed the duration of each RFA request to 16ms, as that was most
effective in our experiments. For each benchmark we run the benchmark
no RFA, followed by running it with the RFA, and we repeat this three
times. (For LLCProbe, each single run of the benchmark was in fact five
sequential runs to gather more samples.) This gives 4 data points (10 for
LLCProbe). The interleaving of no-RFA and RFA helped limit the effects of
unexpected intermittent noise (e.g., from other co-resident VMs outside
our control) that may effect measurements. Throughout these experiments
the client load generator sends web server requests at a configured rate.
We also measure the baseline with no background traffic once at the start
of measurements for each benchmark.

Aggregate effectiveness. We start by looking at average performance
of the RFA’s across all nine machines. Figure 6.10 depicts the results as
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normalized average runtimes (average runtime divided by average base-
line runtime). Thus higher is better (less slowdown from interference).
What we see is that the RFAs provides slight performance improvements
across all the instances and, in particular, never hurts average runtime.
While the absolute effects are small, they are not insignificant: the RFA
improved LLCProbe performance by 6.04%. For the SPEC benchmarks (not
shown), we see that the degradation due to the victim (the No-RFA) is, on
average, less than observed on the local testbed. This may be due to the
different architectures and software configurations, or it may be due to
higher contention in the baseline case due to other co-resident instances
(owned by other customers). Given the smaller gap between baseline and
No-RFA, there is less absolute performance to recover by mounting an RFA.
Nevertheless, as a fraction of lost performance, even here the beneficiary
receives back a large fraction of its performance lost to interference.
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Figure 6.10: Normalized Performance Across All Machines on EC2..
Here workload performance is normalized with baseline runtime under zero performance
interference.
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Per-machine breakdown. To understand the effect further and, in par-
ticular, to get a better sense of whether other (uncontrolled) co-resident
instances are causing contention, we breakdown the results by individual
machine. Figure 6.11 depicts average runtimes for each machine and for
each of the four benchmarks. (The error bars for LLCProbe denote one
standard deviation — for the other benchmarks we omitted these due
to having three samples.) As it can be seen, the baseline, No-RFA, and
RFA performances all vary significantly across the different machines.
While we cannot know the precise reason for this, we speculate that it is
mostly due to contention from other customer VMs or, possibly, slight
differences in configuration and baseline software performance of the
distinct machines.

Likewise the benefit of performing an RFA varies by machine. In the
case of LLCProbe, RFAs were always beneficial, but the degree to which
they improved performance varied. Machine E5507-6 had the highest
speedup of 13% from the RFA, which corresponded to decreasing the cost
of contention by about 33%. Interestingly, there seems to be little correla-
tion between benchmarks, for example E5507-6 had negative improvement
from RFA for the bzip2 and mcf benchmarks. Other machines faired bet-
ter for SPEC benchmarks, for example E5507-1 had a 3.2% performance
improvement under RFAs.

These varied results are not unexpected in the noisy environment of
EC2. We draw two general conclusions. First, RFAs can provide significant
speedups in the (real-world) environment of EC2, but the benefits will
vary depending on a variety of environmental factors. Second, given that
the aggregate benefit across all machines is positive, a greedy customer
will —on average over the long term— benefit from mounting RFAs.
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Figure 6.11: Average Runtimes of LLCProbe, bzip2, mcf, and sphinx
Benchmarks Across 9 EC2 machines.. Baseline has no traffic to victim, while
No-RFA and 512 RFA have foreground request rate of 2000 rps.
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6.4 Discussion

Practical dimensions. Deploying a resource-freeing attack like the one
explored in the last few sections would be subject to several complicating
issues in practice. First, it may be difficult to predictably modify the
victim’s workload because the victim’s normal (pre-RFA) workload may
be unknown to the attacker. As shown in Section 6.3, the amount of extra
work required was dependent on the existing workload of the victim. Here,
simple adaptive techniques, where workload is continually introduced as
long as it improves the beneficiary’s performance, may suffice. Moreover,
our results suggest an attacker would typically do well to overestimate the
RFA intensity required.

Second, it may be that co-resident instances do not have services that
are accessible to the RFA helper. As discussed in Section 6.1 a wide swath
of, e.g., EC2 instances run public web servers, and such interrupt-driven
workloads are likely to be the most damaging to cache-bound workloads.
Even public servers may only be indirectly accessible to the helper, for
example if they lie behind a load balancer. Future work might target RFAs
that can exploit other avenues of generating a bottleneck resource for the
victim, for example the attacker might generate extra contention on a
disk drive using asynchronous accesses in order to throttle a victim’s I/O
bound processes. Such an attack would not require any form of logical
access to the victim.

Third, the client workload we experimented with does not reflect all
victim workloads seen in practice. For example, if thousands of inde-
pendent clients submit requests concurrently, the RFA may not be able
to effect as much displacement of inbound connection requests (though
request processing will still be displaced). Future work might clarify the
vulnerability of other victim workloads to RFAs.

Economics of RFAs. In the setting of public clouds, performance im-
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provement can translate directly to cost improvement since one pays per
unit time. For long running jobs, even modest improvements in perfor-
mance can significantly lower cost. Of course, one must account for the
cost of mounting the RFA itself, which could diminish the cost savings.
The RFAs we explored used a helper that sends a small number of web re-
quests to the victim. For example, our helper uses only 15 Kbps of network
bandwidth with a CPU utilization of 0.7% (of the E5430 as configured in
our local testbed). We located this helper on a separate machine. That the
helper is so lightweight means that one might implement it in a variety
of ways to ameliorate its cost. For example, by running it in places where
spare cycles cannot be used for the main computational task or even on a
non-cloud system used to help manage cloud tasks. One could also use a
cheap VM instance that runs helpers for a large set of beneficiaries, thereby
amortizing the cost of the VM instance.

A related issue is that of VM migration. While contemporary IaaS
clouds do not enable dynamic migration, customers may move a VM from
one system to (hopefully) another by shutting it down and restarting it.
The beneficiary could therefore try to migrate away from a contended
host instead of mounting an RFA. We view migration and RFAs as two
complementary directions along which a greedy customer will attempt
to optimize their efficiency. Which strategy, or a combination thereof,
works best will depend on the contention, the workload, the likelihood
of ending up on an uncontended host, pricing, etc. Understanding the
relative economic and performance benefits of migration and RFAs is an
interesting question for future work.

Preventing RFAs. To prevent the kinds of RFAs we consider, one could
deploy VMs onto dedicated instances. This was suggested in the cloud
setting by Ristenpart et al. [152], and subsequently added as a feature
in EC2. However, the significant cost of dedicated instances makes it
impractical for a variety of settings.
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There are two primary methods for preventing RFAs even in the case
of multiplexed physical servers: stronger isolation and smarter schedul-
ing. A hypervisor that provides strong isolation for every shared resource
can prevent RFAs. This entails using non-work conserving scheduling,
so that idleness of a resource allocated to one VM does not benefit an-
other. In addition, it requires hardware support for allocating access to
processor resources, such as the cache and memory bandwidth. With
current hardware, the only possibility is cache coloring, which sets virtual-
to-physical mappings to ensure that guest virtual machines do not share
cache sets [102]. This effectively partitions the cache in hardware, which
hurts performance for memory-intensive workloads. Finally, it requires
that the hypervisor never overcommit and promise more resources to VMs
than are physically available, because concurrent use of overcommitted
resources cannot be satisfied. While this approach may work, it sacrifices
performance and efficiency by leaving resources idle.

A second approach is to apply smarter scheduling. Based on the con-
tention results in Section 6.2, the hypervisor can monitor the VMs between
processes and attempt to schedule those workloads that do not conflict.
This approach, often applied to multicore and multithreaded schedul-
ing [48, 63, 159], detects workloads with conflicting resource usages via
statistics and processor performance counters, and attempts to schedule
them at different times, so they do not concurrently share the contended
resource, or on separate cores or packages to reduce contention, as in the
case of the LLC.

A final idea would be to prevent RFAs by detecting and blocking them.
We suspect that this would be very difficult in most settings. RFAs need not
abuse vulnerabilities on a system, rather they can simply take advantage
of legitimate functionality (e.g., CGI scripts on a web server). Moreover
they are stealthy in the sense that it may only require a few requests per
second to drive the victim up against a resource bottleneck. A provider or
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the victim itself would be hard pressed to detect and block RFA requests
without preventing legitimate access to the resource.
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7
Soft-isolation: Improving
Isolation in Public Clouds

Cross-VM side-channel attacks are one of the most dangerous co-location
attacks that have been demonstrated in the public clouds [93, 152]. Per-
haps surprisingly, then, is the lack of any investigation of the relationship
between hypervisor scheduling policies and side-channel efficacy.

In this chapter, we evaluate the ability of system software to mitigate
cache-based side-channel attacks through scheduling. In particular, we fo-
cus on the type of mechanism that has schedulers ensure that CPU-bound
workloads cannot be preempted before a minimum time quantum, even
in the presence of higher priority or interactive workloads. We say that
such a scheduler offers a minimum run time (MRT) guarantee. Xen version
4.2 features an MRT guarantee mechanism for the stated purpose of im-
proving the performance of batch workloads in the presence of interactive
workloads that thrash their cache footprint [59]. A similar mechanism also
exists in the Linux CFS scheduler [126].

Cache-based side-channel attacks are an example of such highly inter-
active workloads that thrash the cache. One might therefore hypothesize
that by reducing the frequency of preemptions via an MRT guarantee, one
achieves a level of soft isolation suitable for mitigating, or even prevent-
ing, a broad class of shared-core side-channel attacks. We investigate this
hypothesis, providing the first analysis of MRT guarantees as a defense
against cache-based side-channel attacks. With detailed measurements of
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cache timing, we show that even an MRT below 1mscan defend against
existing attacks.

But an MRT guarantee can have negative affects as well: latency-
sensitive workloads may be delayed for the minimum time quantum. To
evaluate the performance impact of MRT guarantees, we provide extensive
measurements with a corpus of latency-sensitive and batch workloads.
We conclude that while worst-case latency can be hindered by large MRTs
in some cases, in practice Xen’s existing core load-balancing mechanisms
mitigate the cost by separating CPU-hungry batch workloads from latency-
sensitive interactive workloads. As just one example, memcached, when
running alongside batch workloads, suffers only a 7% overhead on 95th-
percentile latency for a 5msMRT compared to no MRT. Median latency is
not affected at all.

The existing MRT mechanism only protects CPU-hungry programs
that do not yield the CPU or go idle. While we are aware of no side-channel
attacks that exploit such victim workloads, we nevertheless investigate a
simple and lightweight use of CPU state cleansing to protect programs that
quickly yield the CPU by obfuscating predictive state. By implementing
this in the hypervisor scheduler, we can exploit knowledge of when a
cross-VM preemption occurs and the MRT has not been exceeded. This
greatly mitigates the overheads of cleansing, attesting to a further value
to soft-isolation style mechanisms. In our performance evaluation of this
mechanism, we see only a 10–50µsworse-case overhead on median latency
due to cleansing while providing protection for all guest processes within
a VM (and not just select ones, as was the case in Düppel). In contrast,
other proposed defenses have similar (or worse) overhead but require new
hardware, new guest operating systems, or restrict system functionality.

In the next section, we describe the Xen hypervisor scheduling system,
its MRT mechanism, and the principle of soft isolation. In Section 7.2 we
measure the effectiveness of MRT as a defense. Section 7.3 shows the per-
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formance of Xen’s MRT mechanism, and Section 7.4 describes combining
MRT with cache cleansing.

7.1 MRT Guarantees and Soft Isolation

We investigate a different strategy for mitigating per-core side-channels:
adjusting hypervisor core scheduling to limit the rate of preemptions. This
targets the second requirement of attacks such as ZJRR. Such a scheduler
would realize a security design principle that we call soft isolation1: limiting
the frequency of potentially dangerous interactions between mutually
untrustworthy programs. Unlike hard isolation mechanisms, we will
allow shared state but attempt to use scheduling to limit the damage.
Ideally, the flexibility of soft isolation will ease the road to deployment,
while still significantly mitigating or even preventing side-channel attacks.
We expect that soft isolation can be incorporated as a design goal in a
variety of resource management contexts. That said, we focus in the rest
of this work on CPU core scheduling.

Xen scheduling. Hypervisors schedule virtual machines much like an
operating system schedules processes or threads. Just as a process may
contain multiple threads that can be scheduled on different processors, a
virtual machine may consist of multiple virtual CPUs (VCPUs) that can be
scheduled on different physical CPUs (PCPUs). The primary difference
between hypervisor and OS scheduling is that the set of VCPUs across all
VMs is relatively static, as VM and VCPU creation/deletion is a rare event.
In contrast, processes and threads are frequently created and deleted.

Hypervisor schedulers provide low-latency response times to interac-
tive tasks by prioritizing VCPUs that need to respond to an outstanding
event. The events are typically physical device or virtual interrupts from

1The term “soft” is inherited from soft real-time systems, where one similarly relaxes
requirements (in that case, time deadlines, in our case, isolation).
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packet arrivals or completed storage requests. Xen’s credit scheduler nor-
mally lets a VCPU run for 30ms before preempting it so another VCPU can
run. However, when a VCPU receives an event, it may receive boost priority,
which allows it to preempt non-boosted VCPUs and run immediately.

VCPUs are characterized by Xen as either interactive (or latency-sensitive)
if they are mostly idle until an interrupt comes in, at which point they
execute for a short period and return to idle. Typical interactive workloads
are network servers that execute in response to an incoming packet. We
refer to VCPUs that are running longer computations as batch or CPU-
hungry, as they typically execute for longer than the scheduler’s time slice
(30ms for Xen) without idling.

Schedulers can be work conserving, meaning that they will never let a
PCPU idle if a VCPU is ready to run, or non-work conserving, meaning that
they enforce strict limits on how much time a VCPU can run. While work-
conserving schedulers can provide higher utilization, they also provide
worse performance isolation: if one VCPU goes from idle to CPU-hungry,
another VCPU on the same PCPU can see its share of the PCPU drop in
half. As a result, many cloud environments use non-work conserving
schedulers. For example, Amazon EC2’s m1.small instances are configured
to be non-work conserving, allocating roughly 40% of a PCPU (called cap
in Xen) to each VCPU of a VM.

Since version 4.2, Xen has included a mechanism for rate limiting pre-
emptions of a VCPU; we call this mechanism a minimum run-time (MRT)
guarantee. The logic underlying this mechanism is shown as a flowchart in
Figure 7.1. Xen exposes a hypervisor parameter, ratelimit_us (the MRT
value) that determines the minimum time any VCPU is guaranteed to run
on a PCPU before being available to be context-switched out of the PCPU
by another VCPU. One could also rate limit preemptions in other ways,
but an MRT guarantee is simple to implement. Note that the MRT is not
applicable to VMs that voluntarily give up the CPU, which happens when
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Figure 7.1: Logic underlying the Xen MRT mechanism.

the VM goes idle or waits for an event to occur.
As noted previously, the original intent of Xen’s MRT was to improve

performance for CPU-hungry workloads run in the presence of latency-
sensitive workloads: each preemption pollutes the cache and other mi-
croarchitectural state, slowing the CPU-intensive workload

Case study. We experimentally evaluate the Xen MRT mechanism as a de-
fense against side-channel leakage by way of soft isolation. Intuitively, the
MRT guarantee rate-limits preemptions and provides an attacker less gran-
ularity in his observations of the victim’s use of per-CPU-core resources.
Thus one expects that increased rate-limits decreases vulnerability. To be
deployable, however, we must also evaluate the impact of MRT guarantees
on benign workloads. In the next two sections we investigate the following
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questions:

1. How do per-core side-channel attacks perform under various MRT
values? (Section 7.2)

2. How does performance vary with different MRT values? (Section 7.3)

7.2 Side-channels under MRT Guarantees

We experimentally evaluate the MRT mechanism as a defense against
side-channel leakage for per-core state. We focus on cache-based leakage.

Experimental setup. Running on the hardware setup shown in Table 7.2,
we configure Xen to use two VMs, a victim and attacker. Each has two
VCPUs, and we pin one attacker VCPU and one victim VCPU to each of
two PCPUs (or cores). We use a non-work-conserving scheduler whose
configuration is shown in Table 7.9. This is a conservative version of the
ZJRR attack setting, where instead the VCPUs were allowed to float —
pinning the victims to the same core only makes it easier for the attacker.
The hardware and Xen configurations are similar to the configuration used
in EC2 m1.small instances [61]. (Although Amazon does not make their
precise hardware configurations public, we can still gain some insight into
the hardware on which an instance is running by looking at sysfs and
the CPUID instruction.)

Cache-set timing profile. We start by fixing a simple victim to measure
the effects of increasing MRT guarantees. We have two functions that
each access a (distinct) quarter of the instruction cache (I-cache)2. The
victim alternates between these two functions, accessing each quarter
500 times. This experiment models a simple I-cache side-channel where
switching from one quarter to another leaks some secret information (we

2Our test machine has a 32 KB, 4-way set associative cache with 64-byte lines. There
are 128 sets.
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Machine Configuration Intel Xeon E5645, 2.40GHz clock,
6 cores in one package

Memory Hierarchy Private 32 KB L1 (I- and D-cache),
256 KB unified L2, 12 MB shared
L3 and 16 GB main memory.

Xen Version 4.2.1
Xen Scheduler Credit Scheduler 1
Dom0 OS Fedora 18, 3.8.8-202.fc18.x86_64
Guest OS Ubuntu 12.04.3, Linux 3.7.5

Table 7.2: Hardware configuration in local test bed.

call any such leaky function a sensitive operation). Executing the 500 access
to a quarter of the I-cache requires approximately 100µµs when run in
isolation.

We run this victim workload pinned to a victim VCPU that is pinned
to the same PCPU as the attacker VCPU. The attacker uses the IPI-based
Prime+Probe technique3 and measures the time taken to access each I-
cache set, similar to ZJRR [191].

Figure 7.3 shows heat maps of the timings of the various I-cache sets
as taken by the Prime+Probe attacker, for various MRT values between
0 (no MRT) and 5ms. Darker colors are longer access times, indicating
conflicting access to the cache set by the victim. One can easily see the
simple alternating pattern of the victim as we move up the y-axis of time
in Figure 7.3b. Also note that this is different from an idle victim under
zero-MRT shown in Figure 7.3a. With no MRT, the attacker makes approx-
imately 40 observations of each cache set, allowing a relatively detailed
view of victim behavior.

As the MRT value increases we see the loss of resolution by the attacker
as its observations become less frequent than the alternations of the victim.

3Note that the attacker requires two VCPUs, one measuring the I-cache set timing
whenever interrupted and the other issuing the IPIs to wake up the other VCPU. The
VCPU issuing IPIs is pinned to a different PCPU.
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a: Zero-MRT w/ Idle Victim
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b: Zero-MRT
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c: 100µs-MRT
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d: 1ms-MRT

Figure 7.3: Heatmaps of I-cache set timing as observed by a prime-probe
attacker. Displayed values are from a larger trace of 10,000 timings. (a) Timings
for idle victim and no MRT. (b)–(d) Timings for varying MRT values with the victim
running.

At an MRT of 100µsthe pattern is still visible, but noisier. Although the
victim functions run for 100µs, the prime+probe attacker slows downs the
victim by approximately a factor of two, allowing the pattern to be visible
with a 100µsMRT. When the MRT value is set to 1msthe attacker obtains
no discernible information on when the switching between each I-cache
set happens.

In general, an attacker can observe victim behavior that occurs at a
lower frequency than the attacker’s preemptions. We modify the vic-
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b: 5ms-MRT

Figure 7.4: Heatmaps of I-cache set timings as observed by a prime-
probe attacker for 10x slower victim computations. Displayed values are
from a larger trace of 9,200 timings.

tim program to be 10x slower (where each function takes approximately
1msstandalone). Figure 7.4 shows the result for this experiment. With a
1msMRT, we observe the alternating pattern. When the MRT is raised to
5ms, which is longer than the victim’s computation (≈ 2ms), no pattern
is apparent. Thus, when the MRT is longer than the execution time of a
security-critical function this side-channel fails.

While none of this proves lack of side-channels, it serves to illustrate the
dynamics between side-channels, duration of sensitive victim operations,
and the MRT: as the MRT increases, the frequency with which an attacker
can observe the victim’s behavior decreases, and the signal and hence
leaked information decreases. All this exposes the relationship between
the speed of a sensitive operation, the MRT, and side-channel availability
for an attacker. In particular, very long operations (e.g., longer than the
MRT) may still be spied upon by side-channel attackers. Also, infrequently
accessed but sensitive memory accesses may leak to the attacker. We
hypothesis that at least for cryptographic victims, even moderate MRT
values on the order of a handful of milliseconds are sufficient to prevent per-
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core side-channel attacks. We next look, therefore, at how this relationship
plays out for cryptographic victims.

1 Procedure SquareMult(x, e,N):
2 Let en, ..., e1 be the bits of e
3 y← 1
4 for i← n down to 1 do
5 y← Square(y)
6 y←ModReduce(y,N)
7 if ei = 1 then
8 y←Mult(y, x)
9 y←ModReduce(y,N)

10 return y :

Algorithm 7.5: Modular exponentiation algorithm used in libgcrypt version
1.5.0. Note that the control flow followed when ei = 1 is lines 5→ 6→ 7 → 8→ 9
and when ei = 0 is lines 5→ 6; denoted by the symbols 1 and 0, respectively.

ElGamal victim. We fix a victim similar to that targeted by ZJRR. The vic-
tim executes the modular exponentiation implementation from libgcrypt
1.5.0 using a 2048-bit exponent, base and modulus, in a loop. Pseudo-code
of the exponentiation algorithm appears in Figure 7.5. One can see that
learning the sequence of operations leaks the secret key values: if the code
in lines 8 and 9 is executed, the bit is a 1; otherwise it is a zero. We instru-
ment libgcrypt to write the current bit being operated upon to a memory
page shared with the attacker, allowing us to determine when preemptions
occur relative to operations within the modular exponentiation.

For no MRT guarantee, we observe that the attacker can preempt the
victim many times per individual square, multiply, or reduce operation (as
was also reported by ZJRR). With MRT guarantees, the rate of preemptions
drops so much that the attacker only can interrupt once every several
iterations of the inner loop. Table 7.6 gives the number of bits operated on
between attacker preemptions for various MRT values. Table 7.7 gives the
number of preemptions per entire modular exponentiation computation.
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Xen MRT (ms) Avg. ops/run Min. ops/run
0 0.096 0

0.1 14.1 4
0.5 49.0 32
1.0 92.6 68
2.0 180.7 155
5.0 441.2 386

10.0 873.1 728

Table 7.6: The average and minimal number of ElGamal secret key bits
operated upon between two attacker preemptions for a range of MRT
values. Over runs with 40K preemptions.

Xen MRT Preemptions per function call
(ms) Min Median Max

0 3247 19940 20606
0.1 74 155 166
0.5 22 42 47
1.0 16 22 25
2.0 10 11 13
5.0 0 4 6
10.0 1 2 3

Table 7.7: Rate of preemption with various MRT. Here the function called is
the Modular-Exponentiation implementation in libgcrypt with a 2048 bit exponent. Note
that for zero MRT the rate of preemption is very high that victim computation involving
a single bit was preempted multiple times.

We see that for higher MRT values, the rate of preemption per call to the
full modular exponentiation reduces to just a handful. The ZJRR attack
depends on multiple observations per operation to filter out noise, so even
at the lowest MRT value of 100µs, with 4–14 operations per observation,
the ZJRR attack fails. In Appendix A.1, we discuss how one might model
this leakage scenario formally and evidence a lack of any of a large class
of side-channel attacks.
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OpenSSL-AES victim. L2 data loads are performance counter events that hap-
pen when a program requests for a memory word that is not in both L1 and L2 private
caches (effectively a miss). When running along-side a Prime+Probe attacker, these
data-cache accesses can be observed by the attacker.

AES victim. We evaluate another commonly exploited access-driven side-
channel victim, AES, which leaks secret information via key-dependent
indexing into tables stored in the L1 data cache [78, 141]. The previous
attacks, all in the cross-process setting, depend on observing a very small
number of cache accesses to obtain a clear signal of what portion of the
table was accessed by the victim. Although there has been no known
AES attack in the cross-VM setting (at least when deduplication is turned
off, otherwise see [97]), we evaluate effectiveness of MRT against the
best known IPI Prime+Probe spy process due to ZJRR. In particular, we
measured the number of private data-cache misses possibly observable by
this Prime+Probe attacker when the victim is running AES encryption in
a loop.

To do so, we modified the Xen scheduler to log the count of private-
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cache misses (in our local testbed both L1 and L2 caches are private)
experienced by any VCPU during a scheduled time slice. This corresponds
to the number of data-cache misses an attacker could ideally observe.
Figure 7.8 shows the cumulative distribution of the number of L2-data
cache misses (equivalently, private data-cache loads) during a time slice
of the victim running OpenSSL-AES. We can see that under no or lower
MRTs the bulk of time slices suffer only a few tens of D-cache misses that
happen between two back-to-back preemptions of the attacker. (We note
that this is already insufficient to perform prior attacks.) The number of
misses increases to close to 200 for an MRT value of 5ms. This means that
the AES process is evicting its own data, further obscuring information
from a would-be attacker. Underlying this is the fact that the number
of AES encryptions completed between two back-to-back preemptions
increases drastically with the MRT: found that thousands to ten thousands
AES block-encryptions were completed between two preemptions when
MRT was varied from 100µsto 5ms, respectively.

Summary. While side channels pose a significant threat to the security
of cloud computing, our measurements in this section show that, fortu-
nately, the hypervisor scheduler can help. Current attacks depend on
frequent preemptions to make detailed measurements of cache contents.
Our measurements show that even delaying preemption for a fraction of
millisecond prevents known attacks. While this is not proof that future at-
tacks won’t be found that circumvent the MRT guarantee, it does strongly
suggest that deploying such a soft-isolation mechanism will raise the bar
for attackers. This leaves the question of whether this mechanism is cheap
to deploy, which we answer in the next section.

Note that we have focused on using the MRT mechanism for CPU and,
indirectly, per-core hardware resources that are shared between multiple
VMs. But rate-limiting-type mechanisms may be useful for other shared
devices like memory, disk/SSD, network, and any system-level shared de-
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vices which suffer from a similar access-driven side-channels. For instance,
a timed disk read could reveal user’s disk usage statistics like relative disk
head positions [100]. Fine-grained sharing of the disk across multiple
users could leak sensitive information via such a timing side-channel. Re-
ducing the granularity of sharing by using MRT-like guarantees in the disk
scheduler (e.g., servicing requests from user for at least Tmin, minimum
service time, before serving requests from another user) would result in a
system with similar security guarantees as above, eventually making such
side-channels harder to exploit. Further research is required to analyze the
end-to-end performance impact of such a mechanism for various shared
devices and schedulers that manage them.

7.3 Performance of MRT Mechanism

The analysis in the preceding section demonstrates that MRT guarantees
can meaningfully mitigate a large class of cache-based side-channel attacks.
The mitigation becomes better as MRT increases. We therefore turn to
determining the maximal MRT guarantee one can fix while not hindering
performance.

7.3.1 Methodology

We designed experiments to quantify the negative and positive effects of
MRT guarantees as compared to a baseline configuration with no MRT (or
zero MRT). Our testbed configuration uses the same hardware as in the
last section and the Xen configurations are summarized in Table 7.9. We
run two DomU VMs each with a single VCPU. The two VCPUs are pinned
to the same PCPU. Pinning to the same PCPU serves to isolate the effect
of the MRT mechanism. The management VM, Dom0, has 6 VCPUs, one
for each PCPU (a standard configuration option). The remaining PCPUs
in the system are otherwise left idle.
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Work-conserving configuration
Dom0 6 VCPU / no cap / weight 256
DomU 1 VCPU / 2 GB memory / no cap / weight 256

Non-work-conserving configuration
Dom0 6 VCPU / no cap / weight 512
DomU 1 VCPU / 2 GB memory / 40% cap / weight 256

Table 7.9: Xen configurations used for performance experiments.

We use a mix of real-world applications and microbenchmarks in our
experiments (shown in Table 7.10). The microbenchmark CProbe simu-
lates a perfectly cache-sensitive workload that continuously overwrites
data to the (unified) L2 private cache, and Chatty-CProbe is its interactive
counterpart that overwrites the cache every 10µsand then sleeps. We also
run the benchmarks with an idle VCPU (labeled Idle below).

7.3.2 Latency Sensitivity

The most obvious potential performance downside of a MRT guarantee is
increased latency: interactive workloads may have to wait before gaining
access to a PCPU. We measure the negative effects of MRT guarantees
by running latency-sensitive workloads against Nqueens (a CPU-bound
program with little memory access). Figure 7.11 shows the 95th percentile
latency for the interactive workloads. The baseline results are shown as a
MRT of 0 on the X-axis. As expected, the latency is approximately equal
to the MRT for almost all workloads (Apache has higher latency because
it requires multiple packets to respond, so it must run multiple times to
complete a request). Thus, in the presence of a CPU-intensive workload
and when pinned to the same PCPU, the MRT can have a large negative
impact on interactive latency.

As the workloads behave essentially similarly, we now focus on just the
Data-Caching workload. Figure 7.12 shows the response latency when run
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CPU-hungry Workloads
Workload Description
SPECjbb Java-based application server [160]
graph500 Graph analytics workload [76] with scale of

18 and edge factor of 20.
mcf, sphinx,
bzip2

SpecCPU2006 cache sensitive benchmarks
[85]

Nqueens Microbenchmark solving n-queens problem
CProbe Microbenchmark that continuously trashes

L2 private cache.

Latency-sensitive Workloads
Workload Description
Data-Caching Memcached from Cloud Suite-2 with twitter

data set scaled by factor of 5 run for 3 min-
utes with rate of 500 requests per second
[64].

Data-Serving Cassandra KV-store from Cloud Suite-2
with total of 100K records4 [64]

Apache Apache webserver, HTTPing client [90], sin-
gle 4 KB file at 1ms interval.

Ping Ping command at 1ms interval.
Chatty-CProbe One iteration of CProbe every 10µs.

Table 7.10: Workloads used in performance experiments.

against other workloads. For the two CPU-intensive workloads, CProbe
and Nqueens, latency increases linearly with the MRT. However, when run
against either an idle VCPU or Chatty-CProbe, which runs for only a short
period, latency is identical across all MRT values. Thus, the MRT has little
impact when an interactive workload runs alone or it shares the PCPU
with another interactive workload.

We next evaluate the extent of latency increase. Figure 7.13 shows the
25th, 50th, 75th, 90th, 95th and 99th percentile latency for Data-Caching.
At the 50th percentile and below, latency is the same as with an idle
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Figure 7.11: 95th Percentile Latency of Various Latency Sensitive Work-
loads. Under non-work-conserving scheduling.

VCPU. However, at the 75th latency rises to half the MRT, indicating that
a substantial fraction of requests are delayed.

We repeated the above experiments for the work-conserving setting,
and the results were essentially the same. We omit them for brevity. Over-
all, we find that enforcing an MRT guarantee can severely increase latency
when interactive VCPUs share a PCPU with CPU-intensive workloads.
However, they have limited impact when multiple interactive VCPUs share
a PCPU.

7.3.3 Batch Efficiency

In addition to measuring the impact on latency-sensitive workloads, we
also measure the impact of MRT guarantees on CPU-hungry workloads.
The original goal of the MRT mechanism was to reduce frequent VCPU
context-switches and improve performance of batch workloads. We pin a
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Figure 7.12: 95th Percentile Request Latency of Data-Caching Workload
with Various Competing Micro-benchmarks. Under non-work-conserving
scheduling.

CPU-hungry workload to a PCPU against competing microbenchmarks.
Figure 7.14 shows the effect of MRT values on the graph500 workload

when run alongside various competing workloads. Because this is work-
conserving scheduling, the runtime of graph500 workload increases by
roughly a factor of two when run alongside Nqueens and CProbe as com-
pared to Idle, because the share of the PCPU given to the VCPU running
graph500 drops by one half. The affect of MRT is more pronounced when
looking running alongside Chatty-CProbe, the workload which tries to
frequently interrupt graph500 and trash its cache. With no MRT guarantee,
this can double the runtime of a program. But with a limit of only 0.5ms,
performance is virtually the same as with an idle VCPU, both because
Chatty-CProbe uses much less CPU and because it trashes the cache less
often.

With a non-work-conserving scheduler, the picture is significantly dif-
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ferent. Figure 7.15 shows the performance of three batch workloads when
run alongside a variety of other workloads, for various MRT values. First,
we observe that competing CPU-bound workloads such as Nqueens and
CProbe do not significantly affect the performance of CPU-bound appli-
cations, even in the case of CProbe that trashes the cache. This occurs
because the workloads share the PCPU at coarse intervals (30ms), so the
cache is only trashed once per 30msperiod. In contrast, when run with
the interactive workload Chatty-CProbe, applications suffer up to 4% per-
formance loss, which increases with longer MRT guarantees. Investigating
the scheduler traces showed that under zero MRT the batch workload en-
joyed longer scheduler time slices of 30mscompared to the non-zero MRT
cases. This was because under zero MRT highly interactive Chatty-CProbe
quickly exhausted Xen’s boost priority. After this, Chatty-CProbe could
not preempt and waited until the running VCPU’s 30mstime slice expires.
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Figure 7.14: Average runtime of graph500 workload when run alongside
various competing workloads and under work-conserving scheduling.
Averaged over 5 runs.

With longer MRT values, though, Chatty-CProbe continues to preempt and
degrade performance more consistently.

Another interesting observation in Figure 7.15 is that when the batch
workloads share a PCPU with an idle VCPU, they perform worse than
when paired with Nqueens or CProbe. Further investigation revealed that
an idle VCPU is not completely idle but wakes up at regular intervals for
guest timekeeping reasons. Overall, under non-work-conserving settings,
running a batch VCPU with any interactive VCPU (even an idle one) is
worse than running with another batch VCPU (even one like CProbe that
trashes the cache).

7.3.4 System Performance

The preceding sections showed the impact of MRT guarantees when both
applications are pinned to a single core. We next analyze the impact of



146

 40

 42

 44

 46

 48

 50

 52

 54

 56

 0  2  4  6  8  10

A
v
e

ra
g
e

 r
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Xen Ratelimit (ms)

Idle
Nqueens

CProbe
Chatty-CProbe

a: mcf

 200

 210

 220

 230

 240

 250

 260

 270

 0  2  4  6  8  10

A
v
e

ra
g
e

 r
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Xen Ratelimit (ms)

Idle
Nqueens

CProbe
Chatty-CProbe

b: graph500

 8

 9

 10

 11

 12

 13

 14

 0  2  4  6  8  10

A
v
e

ra
g

e
 t
h

ro
u

g
h

p
u
t 

(S
P

E
C

jb
b

 K
b

o
p

s
/s

e
c
)

Xen Ratelimit (ms)

Idle
Nqueens

CProbe
Chatty-CProbe

c: SPECjbb

Figure 7.15: Average runtime of various batch workloads under non-
work conserving setting. Note that for SPECjbb higher is better (since the graph
plots the throughput instead of runtime). All data points are averaged across 5 runs.

the Xen scheduler’s VCPU placement policies, which choose the PCPU
on which to schedule a runnable VCPU. We configure the system with 4
VMs each with 2 VCPUs to run on 4 PCPUs under a non-work conserving
scheduler. We run three different sets of workload mixes, which together
capture a broad spectrum of competing workload combinations. Together
with a target workload running on both VCPUs of a single VM, we run:
(1) All-Batch — consisting of worst-case competing CPU-hungry workload
(CProbe); (2) All-Interactive — consisting of worst-case competing interac-
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tive workload (Chatty-CProbe); and (3) Batch & Interactive — where half of
other VCPUs run Chatty-CProbe and half CProbe. We compare the perfor-
mance of Xen without MRT to running with the default 5ms limit. The
result of the experiment is shown in Figure 7.16. For interactive workloads,
the figure shows the relative 95th percentile latency, while for CPU-hungry
workloads it shows relative execution time.

On average across the three programs and three competing workloads,
latency-sensitive workloads suffered on average of only 4% increase in
latency with the MRT guarantee enabled. This contrasts sharply with the
5-fold latency increase in the pinned experiment discussed earlier. CPU-
hungry workloads saw their performance improve by 0.3%. This makes
sense given the results in the preceding section, which showed that an
MRT guarantee offers little value to batch jobs in a non-work-conserving
setting.

To understand why the latency performance is so much better than
our earlier results would suggest, we analyzed a trace of the scheduler’s
decisions. With the non-work-conserving setting, Xen naturally segregates
batch and interactive workloads. When an interactive VCPU receives a
request, it will migrate to an idle PCPU rather than preempt a PCPU
running a batch VCPU. As the PCPU running interactive VCPUs is often
idle, this leads to coalescing the interactive VCPUs on one or more PCPUs
while the batch VCPUs share the remaining PCPUs.

7.3.5 Summary

Overall, our performance evaluation shows that the strong security ben-
efits described the in Section 7.2 can be achieved at low cost in virtu-
alized settings. Prior research suggests more complex defense mecha-
nisms [103, 115, 120, 179, 180, 193] that achieve similar low performance
overheads but at a higher cost of adoption, such as substantial hardware
changes or modifications to security-critical programs. In comparison,
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the MRT guarantee mechanism is simple and monotonically improves
the security against many existing side-channel attacks with zero cost of
adoption and low overhead.

We note that differences between the hypervisor and the OS scheduling
mean that the MRT mechanism cannot be as easily applied by an operating
system to defend against malicious processes. As mentioned above, a
hypervisor schedules a small and relatively static number of VCPUS onto
PCPUs. Thus, it is feasible to coalesce VCPUs with interactive behavior
onto PCPUs separate from those running batch VCPUs. Furthermore,
virtualized settings generally run with share-based scheduling, where each
VM or VCPU is assigned a fixed share of CPU resources. In contrast, the OS
scheduler must schedule an unbounded number of threads, often without
assigned shares. Thus, there may be more oversubscription of PCPUs,
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which removes the idle time that allows interactive VCPUs to coalesce
separately from batch VCPUs. As a result, other proposed defenses may
still be applicable for non-virtualized systems, such as PaaS platforms that
multiplex code from several customers within a single VM [86].

7.4 Integrating Core-State Cleansing

While the MRT mechanism was shown to be a cheap mitigation for protect-
ing CPU-hungry workloads, it may not be effective at protecting interactive
ones. If a (victim) VCPU yields the PCPU quickly, the MRT guarantee
does not apply and an attacker may observe its residual state in the cache,
branch predictor, or other hardware structures. We are unaware of any at-
tacks targeting such interactive workloads, but that is no guarantee future
attacks won’t.

We investigate incorporating per-core state-cleansing into hypervisor
scheduling. Here we are inspired in large part by the Düppel system [193],
which was proposed as a method for guest operating systems to protect
themselves by periodically cleansing a fraction of the L1 caches. We will
see that by integrating a selective state-cleansing (SC) mechanism for I-
cache, D-cache and branch predictor states into a scheduler that already
enforces an MRT guarantee incurs much less overhead than one might
expect. When used, our cleansing approach provides protection for all
processes within a guest VM (unlike Düppel, which targeted particular
processes).

7.4.1 Design and Implementation

We first discuss the cleansing process, and below discuss when to apply it.
The cleanser works by executing a specially crafted sequence of instructions
that together overwrite the I-cache, D-cache, and branch predictor states of
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a CPU core. A sample of these instructions is shown in Figure 7.17; these
instructions are 27 bytes long and fit in a single I-cache line.

In order to overwrite the branch predictor or the Branch Target Buffer
(BTB) state, a branch instruction conditioned over a random predicate
in memory is used. There are memory move instructions that add noise
to the D-cache state as well. The last instruction in the set jumps to an
address that corresponds to the next way in the same I-cache set. This
jump sequence is repeated until the last way in the I-cache set is accessed,
at which point it is terminated with a ret instruction. These instructions
and the random predicates are laid out in memory buffers that are equal
to the size of the I-cache and D-cache, respectively. Each invocation of the
cleansing mechanism randomly walks through these instructions to touch
all I-cache sets, D-cache sets, and flush the BTB.

We now turn to how we have the scheduler decide when to schedule
cleansing. There are several possibilities. The simplest strategy would be
to check, when a VCPU wakes up, if the prior running VCPU was from
another VM and did not use up its MRT. If so, then run the cleansing pro-
cedure before the incoming VCPU. We refer to this strategy as Delayed-SC
because we defer cleansing until a VCPU wants to execute. This strat-
egy guarantees to cleanse only when needed, but has the downside of
potentially hurting latency-sensitive applications (since the cleanse has
to run between receiving an interrupt and executing the VCPU). Another
strategy is to check, when a VCPU relinquishes the PCPU before its MRT
guarantee expires, whether the next VCPU to run is from another domain
or if the PCPU will go idle. In either case, a cleansing occurs before the
next VCPU or idle task runs. Note that we may do unnecessary cleansing
here, because the VCPU that runs after idle may be from the same domain.
We therefore refer to this strategy as Optimistic-SC, given its optimism
that a cross-VM switch will occur after idle. This optimism may pay off
because idle time can be used for cleansing.



151

000 <L13-0xd>:
0: 8b 08 mov (%rax),%ecx
2: 85 c9 test %ecx,%ecx
4: 74 07 je d <L13>
6: 8b 08 mov (%rax),%ecx
8: 88 4d ff mov %cl,-0x1(%rbp)
b: eb 05 jmp 12 <L14>

00d <L13>:
d: 8b 08 mov (%rax),%ecx
f: 88 4d ff mov %cl,-0x1(%rbp)

012 <L14>:
12: 48 8b 40 08 mov 0x8(%rax),%rax
17: e9 e5 1f 00 00 jmpq <next way in set>

Figure 7.17: Instructions used to add noise. The assembly code is shown using
X86 GAS Syntax. %rax holds the address of the random predicate used in the test
instruction at the relative address 0x2. The moves in the basic blocks <L13> and <L14>
reads the data in the buffer, which uses up the corresponding D-cache set.

Note that the CPU time spent in cleansing in Delayed-SC is accounted
to the incoming VCPU but it is often free with Optimistic-SC as it uses idle
time for cleansing when possible.

7.4.2 Evaluation

We focus our evaluation on latency-sensitive tasks: because we only cleanse
when an MRT guarantee is not hit, CPU-hungry workloads will only be
affected minimally by cleansing. Quantitatively the impact is similar to
the results of Section 7.3 that show only slight degradation due to Chatty-
CProbe on CPU-hungry workloads.

We use the hardware configuration shown in Table 7.2. We measured
the standalone, steady state execution time of the cleansing routine as
8.4µs; all overhead beyond that is either due to additional cache misses
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that the workload experiences or slow down of the execution of the cleans-
ing routine which might itself experience additional cache misses. To
measure the overhead of the cleansing scheduler, we pinned two VCPUs
of two different VMs to a single PCPU. We measured the performance of
one of several latency-sensitive workloads running within one of these
VMs, while the other VM ran a competing workload similar to Chatty-
CProbe (but it did not access memory buffers when awoken). This ensured
frequent cross-VM VCPU-switches simulating a worst case scenario for
the cleansing scheduler.

We ran this experiment in four settings: no MRT guarantee (0ms-MRT),
a 5msMRT guarantee (5ms-MRT), a 5msMRT with Delayed-SC, and finally
a 5msMRT with Optimistic-SC. Figure 7.18 shows the median and 95th

percentile latencies under this experiment. The median latency increases
between 10–50µscompared to the 5ms-MRT baseline, while the 95th per-
centile results are more variable, and show at worst a 100µsincrease in tail
latency. For very fast workloads, like Ping, this results in a 17% latency
increase despite the absolute overhead being small. Most of the overhead
comes from reloading data into the cache, as only 1/3rd of the overhead
is from executing the cleansing code.

To measure overhead for non-adversarial workloads, we replaced
the synthetic worst-case interactive workload with a moderately loaded
Apache webserver (at 500 requests per second). The result of this ex-
periment is not shown here as it looks almost identical to Figure 7.18,
suggesting the choice of competing workload has relatively little impact
on overheads. In this average-case scenario, we observed an overhead of
20–30µsacross all workloads for the Delayed-SC and 10–20 µsfor Optimistic-
SC, which is 10 µsfaster. Note that in all the above cases, the cleansing
mechanism perform better than the baseline of no MRT guarantee with
no cleansing.

To further understand the trade-off between the two variations of
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Figure 7.18: Median and 95th percentile latency impact of the cleansing
scheduler under worst-case scenario. Here all the measured workloads are
feed by a client at 500 requests per second. The error bars show the standard deviation
across 3 runs.

state-cleansing, we repeated the first (worst-case) experiment above with
varying load on the two latency-sensitive workloads, Data-Caching and
Data-Serving. The 95th percentile and median latencies of these workloads
under varying loads are shown in Figure 7.19 and Figure 7.20, respectively.
The offered load shown on the x-axis is equivalent to the load perceived
at the server in all cases except for Data-Serving workload whose server
throughput saturates at 1870rps (this is denoted as Max in the graph).

The results show that the two strategies perform similarly in most
situations, with optimization benefiting in a few cases. In particular, we
see that the 95% latency for heavier loads on Data-Serving (1250, 1500,
and 1750) is significantly reduced for Optimistic-SC over Delayed-SC. It
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turned out that the use of idle-time for cleansing in Optimistic-SC was
crucial for Data-Serving workload as the tens to hundreds of microsecond
overhead of cleansing mechanism under the Delayed-SC scheme was
enough to exhaust boost priority at higher loads. From scheduler traces of
the runs with Data-Serving at 1500rps, we found that the VM running the
Data-Serving workload spent 1.9s without boost priority under Delayed-
SC compared to 0.8s and 1.1s spent under 5ms-MRT and Optimistic-SC,
respectively (over a 120 long second run). The Data-Serving VM also
experienced 37% fewer wakeups under Delayed-SC relative to 5ms-MRT
baseline, implying less interactivity.

We conclude that both strategies provide a high-performance mecha-
nism for selectively cleansing, but that Optimistic-SC handles certain cases
slightly better due to taking advantage of idle time.
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8
Related Work

In this chapter, we survey several prior research related to the three prob-
lems that are tackled in this dissertation, in their respective sections: 1.
placement vulnerability (§ 8.1), 2. lack of performance isolation (§ 8.2),
and 3. cross-VM side-channel attacks (§ 8.3).

8.1 Co-location in Public Clouds

Our work on understanding placement vulnerabilities in modern security-
hardened public clouds (Chapter 5) derive inspiration from many related
works. There are also subsequent works in this area that signifies the
importance of this problem. We survey all those related works in this
section.

8.1.1 VM Placement Vulnerability Studies

Ristenpart et al. [152] first studied the placement vulnerability in public
clouds, which showed that a malicious cloud tenant could place one of his
VMs on the same machine as a target VM with high probability. Placement
vulnerabilities exploited in their study include publicly available mapping
of VM’s public/internal IP addresses, disclosure of Dom0 IP addresses,
and a shortcut communication path between co-resident VMs. Their study
was followed by Xu et al. [184] and further extended by Herzberg et al. [88].
However, the results of these studies have been outdated by the recent
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development of cloud technologies, which is the main motivation of our
work.

Concurrent with our work, Xu et al. [185] conducted a systematic mea-
surement study of co-resident threats in Amazon EC2. Their focus, how-
ever, is in-depth evaluation of co-residency detection using network route
traces and quantification of co-residence threats on older generation in-
stances with EC2’s classic networking [15] (prior to Amazon VPC). In
contrast, we study placement vulnerabilities in the context of VPC on EC2,
as well as on Azure and GCE. That said, the two studies are complementary
and collectively strengthen the arguments made by each other.

8.1.2 Defenses Against Co-location

New VM placement policies to defend against placement attacks have
been studied by Han et al. [80, 81] and Azar et al. [36]. Han et al. propose
two different policies for reducing the chances of co-location of an adver-
sary: 1. game-theoretic defense: use a pool of policies and select a policy
at random or 2. place VMs that belong to a user in a smaller subset of
machines instead of stripping each VM on different machines, thereby
reducing the probability of co-location. Although, both these mechanisms
increase the cost of a simple attacker, it is unclear whether their proposed
policies work against the performance and reliability goals of public cloud
providers. In fact, we consider a random placement policy as a more
secure and apt reference policy for comparing different placement policies.
Further, Han et al. themselves admit that the second placement policy
could be circumvented by a sophisticated attacker who could judiciously
use multiple accounts to increase his chance of co-location. On the other
hand, Azar et al. take a formal approach to designing co-location resis-
tance placement algorithm [36]. In their formal model, they consider both
efficiency (as total amount of resources used) and security, which they
define by introducing a formal notion of co-location resistance. This work
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establishes foundation to reason and design placement algorithms with
strict notion of security against co-location attacks, although there is a
long gap that needs to be filled to employ them in practice.

Recently, Moon et al. propose a cloud-provider-assisted migration
mechanism, where they use a moving target philosophy to bound infor-
mation leakage via co-location of any single tenant [127]. First, they start
by formalizing information leakage due to co-residency between different
user VMs and propose four models, one model for each type of victim
(Replicated vs. Non-replicated) and adversary (Collaborative vs. Non-
collaborative). Second, they design an efficient and scalable algorithm that
decides when and where to migrate a VM, taking into account the history
of migration and resource needs for migration. But, as mentioned earlier
VM migration is often expensive and involve non-negligible downtime
for a commercial application. Further, as the Moon et al. point out, a
faster attack may still succeed under this defense. Nevertheless, this is a
significant step in the right direction and will greatly improve security of
the cloud infrastructure against malicious users.

8.1.3 Co-residency Detection Techniques

Techniques for co-residency detection have been studied in various con-
texts. We categorize these techniques into one of the two major classes:
side-channel approaches to detecting co-residency with uncooperative VMs
and covert-channel approaches to detecting co-residency with cooperative
VMs.

Side-channel based detection. Side-channels allow one party to exfil-
trate secret information from another; hence these approaches may be
adapted in practical placement attack scenarios with targets not controlled
by the attackers. Network round-trip timing side-channel was used by Ris-
tenpart et al. [152] and subsequently others [61, 168] to detect co-residency.
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Zhang et al. [190] developed a system called HomeAlone to enable VMs to
detect third-party VMs using timing side-channels in the last level caches.
Bates et al. [43] proposed a side-channel for co-residency detection by caus-
ing network traffic congestion in the host NICs from attacker-controlled
VMs; the interference of target VM’s performance, if the two VMs are
co-resident, should be detectable by remote clients. However, none of
these approaches works effectively in modern cloud infrastructures for
reasons mentioned earlier (in Section 4.1).

Covert-channel based detection. Covert-channels, a topic studied since
the 1970s [112], are secretive communication channels that involve two
colluding parties. Covert-channels on shared hardware components can
be used for co-residency detection when both VMs under test are coopera-
tive. Coarse-grained covert-channels in CPU caches and hard disk drives
were used in Ristenpart et al. [152] for co-residency confirmation. Xu et
al. [184] established covert-channels in shared last level caches between
two colluding VMs in the public clouds. Wu el al. [182] exploited memory
bus as a covert-channel on modern x86 processors, in which the sender
issues atomic operations on memory blocks spanning multiple cache lines
to cause memory bus locking or similar effects on recent processors. How-
ever, covert-channels proposed in the latter two studies were not designed
for co-residency detection, while those developed in our work are tuned
for this purpose. Concurrent to our work, Zhang et al. also used the same
memory-covert channel in their recent work on placement vulnerability
study [185].

Recently (in 2015), Inci et al. explored several techniques to detect
co-residency including techniques suggested in many prior works and
concluded that an LLC based covert-channel was the most reliable tech-
nique among the lot [93]. Note that an LLC-based covert-channel may not
be effective in detecting all VM co-locations running on a multi-socket
multi-core machine as LLCs are a per-socket resource. In contrast, we dis-
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covered an uncooperative co-residency detection mechanism that depends
on creating and detecting contention on a shared memory bus, which is a
system-wide shared resource.

Other techniques. Kohno et al. [108] demonstrated how clock skew in
previous generation machines could be used to fingerprint machines. They
utilize timestamps in TCP (or ICMP) network pings to remotely identify a
unique machine (or differentiate two machines). Such a technique would
also be applicable to virtualized platform where hypervisors give native
access to the system clock as virtualizing system clock adds non-trivial
overheads. An attacker could cleverly adapt this mechanism to detect co-
residency by comparing the machine fingerprints of the two VMs under
test. Although, analysis of clock-skew is non-trivial, the advantage of
this approach over the others is that the attacker only require a network
address and a publicly accesible TCP endpoint (e.g. ssh) on VMs under
test. Despite these advantages, because of the complexity of this technique,
we use a simpler alternative technique in our study.

8.2 Lack of Performance Isolation in Public
Clouds

Our work on Resource-Freeing Attack (RFA) (Chapter 6) builds on past
work surveying the performance interference of virtual machines, hard-
ware and software techniques for improving performance isolation, side-
channel attacks, and scheduler vulnerabilities. Many of these works are
also related to our work on scheduler-based defenses against cross-VM
attacks that aim to improve performance isolation (Chapter 7).
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8.2.1 Performance Interference

Numerous works have found severe performance interference in cloud
computing platforms [113, 144, 155, 177]. Our study of performance inter-
ference focuses more on the worst-case interference in a controlled setting
than on the actual interference in cloud platforms. In addition, we mea-
sure the interference from pairs of different workloads rather than two
instances of the same workload. Finally, our work looks at the impact of
multicore scheduling by pinning VMs to a specific core.

8.2.2 Performance Isolation

There are numerous prior works that have attempted to reduce the effect
of performance interference between competing workloads. Majority of
these works have focused on performance- and efficiency-centric goals
with limited or no focus on security implications of the system. Particularly,
they either focus on Quality-of-Service (QoS) of a subset of applications
(foreground or interactive) or aim to improve the datacenter utilization
and sometimes both. Nevertheless, such works help reduce contention
and hence the need for RFAs.

Contention for cache and processor resources is a major cause of per-
formance loss, and many projects have studied resource-aware CPU sched-
ulers that avoid contention [48, 98, 122, 196]. In cache/network contention,
these schedulers may place the cache and network workloads on differ-
ent packages to avoid affecting the cache. Similar work has been done
at the cluster level to place jobs [39, 57, 114, 156, 162, 186, 189]. These
systems attempt to place workloads that use non-interfering resources
together or even to leave a processor idle if interference is bad. These
cluster schedulers either do task placement apriori at the start of the task
or detect interference and migrate tasks to a different machine. Some of
them also try to throttle interfering low priority (background) tasks to
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reduce performance interference with a high priority (foreground) tasks.
Although none of these systems are designed for public clouds, several of
these techniques could be adopted to improve isolation in public clouds.

Beyond scheduling, software mechanisms can ensure performance iso-
lation for many other hardware resources, including cache [148], disk [77],
memory bandwidth [174] and network [158]. In addition to the software
techniques, changes to low-level hardware have been proposed to better
share memory bandwidth and processor caches [133, 147]. Many of the
techniques that defend against side-channels (described in a later section,
§ 8.3.2) could also improve isolation.

Overall, all the above mechanisms would reduce the amount of con-
tention and hence reduce the need and the benefit of RFAs.

8.2.3 Gaming Schedulers

The network/cache RFA works by forcing the scheduler to context switch
at much coarser granularities than normal. Similar techniques have been
used in the past to game schedulers in Linux [165] and Xen [194] in order
to extend the timeslice of a thread. These techniques exploit the difference
between the granularity of CPU allocation (cycles) and the granularity of
accounting (timer ticks). There are also other attacks that enable Denial
of Service on Linux Completely Fair Scheduler (CFS) [78]. Unlike these
attacks, RFAs influence the scheduler to view an originally interactive
workload as a CPU-bound workload, in the process influencing resource
allocation that may benefit another task.

8.2.4 Side-channel Attacks

RFAs exploit the lack of isolation to boost performance. Several works
demonstrated side-channel attacks through the shared LLC that can be
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used to extract information about co-resident virtual machines (e.g., [152,
184, 190]). More details in the following section.

8.3 Side-channel Attacks and Defenses

The work on soft-isolation to address information leakage across multi-
tenant VM boundaries and improve performance isolation, also derives
motivation from many related works. We survey works on side-channel
attacks that motivate the problem we address (§ 8.3.1) and various pro-
posed defenses which shows that our work takes an approach that has not
been explored in the recent past (§ 8.3.2).

8.3.1 Attacks

Side-channel attacks can be classified into three types: time-, trace-, and
access-driven. Time-driven attacks arise when an attacker can glean useful
information via repeated observations of the (total) duration of a victim op-
eration, such as the time to compute an encryption (e.g., [2, 47, 52, 83, 107]).
Trace-driven attacks work by having an attacker continuously monitor a
cryptographic operation, for example via electromagnetic emanations or
power usage leaked to the attacker (e.g., [66, 106, 145].

In this dissertation, we focus on access-driven side-channel attacks, in
which the attacker is able to run a program on the same physical server as
the victim. These abuse stateful components of the system shared between
attacker and victim program, and have proved damaging in a wide variety
of settings, including [3, 78, 141, 143, 152, 187].

In cloud setting. In the cross-VM setting, the attacker and victim are two
separate VMs running co-resident (or co-tenant) on the same server. The
cross-VM setting is of particular concern for public IaaS clouds, where it
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has been shown that an attacker can obtain co-residence of a malicious
VM on the same server as a target [152].

Zhang, Juels, Reiter, and Ristenpart (ZJRR) [191] demonstrated the
first cross-VM attack with sufficient granularity to extract ElGamal secret
keys from the victim. They use a version of the classic Prime+Probe
technique [141]: the attacker first primes the cache (instruction or data)
by accessing a fixed set of addresses that fill the entire cache. He then
yields the CPU, causing the hypervisor to run the victim, which begins to
evict the attacker’s data or instructions from various cache. As quickly as
possible, the attacker preempts the victim, and then probes the cache by
again accessing a set of addresses that cover the entire cache. By measuring
the speed of each cache access, the attacker can determine which cache
lines were displaced by the victim, and hence learn some information
about which addresses the victim accessed. The ZJRR attack builds off a
long line of cross-process attacks (c.f., [3, 4, 78, 141, 143]) all of which target
per-core microarchitectural state. When simultaneous multi-threading
(SMT) is disabled (as is typical in cloud settings), such per-core attacks
require that the attacker time-shares a CPU core with the victim. Similar
to the cross-process attack demonstrated by Bangerter et al. that abuse
the Linux process scheduler [78], ZJRR uses inter-processor interrupts to
make frequent observation of shared state.

Fewer attacks thus far have abused (what we call) off-core state, such as
last-level caches used by multiple cores. Some off-core attacks are coarse-
grained, allowing attackers to learn only a few bits of information (e.g.,
whether the victim is using the cache or not [152]). An example of a fine-
grained off-core attack is the recent Flush+Reload attack of Yarom and
Falkner [187]. Their attack extends the Bangerter et al. attack to instead tar-
get last-level caches on some modern Intel processors and has been shown
to enable very efficient theft of cryptographic keys in both cross-process
and cross-VM settings. However, like the Bangerter et al. attack, it relies on
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the attacker and victim having shared memory pages. This is a common
situation for cross-process settings, but also arises in cross-VM settings
should the hypervisor perform memory page deduplication. While several
hypervisors implement deduplication, thus far no IaaS clouds are known
to use the feature and so are not vulnerable.

Attack on live public clouds. Zhang et al. demonstrated first of its kind
successful side-channel attack across tenant instances in a container-based
PaaS cloud [192]. They showed how a malicious user could steal potentially
sensitive application data like number of items in the shopping cart of an
e-commerce application, hijack user accounts and break single sign-on
user authentication applications across multi-tenant container boundary.

Recently, Inci et al. demonstrated cross-VM side-channel on modern
implementation of RSA in a popular public clouds (EC2) [93], which apart
from the actual side-channel attack included figuring out how to detect co-
location, and reverse engineering the hardware LLC algorithm that maps
an address to memory location. The latter is essential for speeding up the
actual attack making it practical in live clouds. This further demonstrates
the practicality of side-channel attacks in modern security-hardened cloud
infrastructure.

8.3.2 Defenses

Hard isolation. An obvious solution is to prevent a successful side-
channel attack is to avoid sharing hardware between attacker and victim
tasks, which we call hard isolation. Partitioning the cache in hardware or
software prevents its contents from being shared [103, 149, 157, 179, 180].
This requires special-purpose hardware or loss of various useful features
(e.g., large pages) and thus limits the adoption in a public cloud envi-
ronment. Similarly, one can allocate exclusive memory resources for a
sensitive process [103] in the software. Such a mechanism requires iden-
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tification of the sensitive application and hence is not a general-purpose
solution. Assigning VMs to run on different cores avoids sharing of per-
core hardware [101, 118, 164], and assigning them to different servers
avoids sharing of any system hardware [152]. A key challenge here is
identifying an attacker and victim in order to separate them; otherwise
this approach reduces to using dedicated hardware for each customer,
reducing utilization and thus raising the price of computing.

Another form of hard isolation is to reset hardware state when switch-
ing from one VM to another. For example, flushing the caches on ev-
ery context switch prevents the cache state from being shared between
VMs [193]. However, this can decrease performance of cache-sensitive
workloads both because of the time taken to do the flush and the loss in
cache efficiency.

Adding noise. Beyond hard isolation are approaches that modify hard-
ware to add noise, either in the timing or by obfuscating the specific
side-channel information. The former can be accomplished by removing
or modifying timers [115, 120, 172] to prevent attackers from accurately
distinguishing between microarchitectural events, such as a cache hit and
a miss. For example, StopWatch [115] removes all timing side-channels
and incurs a worse-case overhead of 2.8x for network intensive workloads.
Specialized hardware-support could also be used to obfuscate and ran-
domize processor cache usage [109, 180]. All of these defenses either result
in loss of high-precision timer or require hardware changes.

An alternative to adding noise to the timing information, prior works
have also attempted to add noise to the shared state. Düppel adds noise to
the local processor cache state by flushing caches when sensitive applica-
tions run inside a VM [193]. Similarly, programs can be changed to obfus-
cate access patterns [49, 50]. These approaches are not general-purpose, as
they rely on identifying and fixing all security-relevant programs. Worst-
case overheads for these mechanisms vary from 6–7%.
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Recently, Xiao et al. used differential privacy mechanisms to plug
information leakage in shared pseudo filesystems like procfs [183], which
are often used in attacks on a multi-user environment. This fixes a specific
vulnerability in a system shared resource in a novel way but again is not a
general purpose solution.

Smart scheduling. This dissertation is not the first to explore smart sched-
uler designs to improve security which includes defending against side-
channel attacks. In 1992, Wei-Ming Hu proposed a new process scheduler
called lattice scheduler [91] that plugs cache covert-channels. Processes
under the lattice scheduler are tagged into access classes of varying se-
crecy and the scheduler avoids scheduling processes that resulted in a
downward transition in secrecy, i.e., a regular process is scheduled after a
highly sensitive (high secrecy) process. Our work is similar to this simple
scheduler mechanism in the fact that any interaction other than intra-
tenant (multiple VCPU of a single user VM) as sensitive and ratelimits
such interaction.

Several past efforts attempt to minimize performance interference be-
tween workloads (e.g., Q-clouds [131], mClock [77] and Bubble-Up [118]),
but do not consider adversarial workloads such as side-channel attacks.
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9
Conclusion and Lessons

Learned

Many enterprise applications [25–30, 34, 68, 124, 135] that are in day-to-
day use by customers over the Internet are hosted in the public clouds.
These applications run inside virtual machines that share the same host
to run other VMs that belong to arbitrary users (multi-tenancy). The
onus is on the cloud infrastructure to make sure that this sharing is only
profitable and not insecure. Unfortunately, we show that the state-of-the-
art cloud infrastructure do not provide sufficient isolation proving the
thesis that: “the practice of multi-tenancy in public clouds demands stronger
isolation guarantees between VMs in the presence of malicious users.” In this
chapter, we will revisit this thesis and show how the conclusion of the
works (Chapter 5, 6 & 7) presented in this dissertation support this thesis.

We specifically focused on one of the major security threats in public
clouds, co-location or cross-VM attacks and demonstrated how lack of
isolation enable a malicious user to exploit such attacks in live clouds.
In the first part of the dissertation we evaluated the placement policies
used in public clouds for vulnerabilities that enable any user to influence
co-location with a set of target victim VMs. Apart from evaluating the
cluster scheduler, we explored how performance interference between
co-located VMs could incentivize new attacks that help steal resources
from neighboring VMs.

In the second part, we investigated a new design principle called soft-
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isolation that improve VM isolation without compromising on the ef-
ficiency of resource sharing between VMs. We demonstrated this soft-
isolation principle with a simple CPU scheduler primitive, Minimum
RunTime (MRT) guarantee, which limits dangerous cross-VM interactions
between multi-tenant VMs. We showed that this simple modification to
the hypervisor’s CPU scheduler was sufficient to prevent many known
cross-VM side-channel attacks.

In this chapter, we will summarize the contribution of these works
(§ 9.1) and share some of the lessons learned in the process (§ 9.3) that
might benefit any budding researcher and the community.

9.1 Summary

In this section, we will recall the important questions/problems that we
motivated in Chapter 4 and see how the pieces of the dissertation answer
them, consequently tying it back to the thesis of this dissertation.

(Q1) Are co-location attacks impractical in modern clouds?

We started by systematically analyzing the placement policy of three pop-
ular public clouds (Amazon EC2, Microsoft Azure and Google Compute
Engine) for placement vulnerability [170]. We did this by observing place-
ment behavior of the clouds’ VM placement policy by simulating VM
launch scenarios of both the victims and an attacker. In order to observe
placement behavior we also required a mechanism to detect whether two
VMs (that belong to different users) are co-located on the same host, as
cloud providers do not expose this information. We showed that all prior
published techniques no longer worked, and hence investigated new ways
to reliably detect co-location with any victim VM. Overall, this extensive
study on three clouds lead to two important conclusions. First, there exists
adversarial launch strategy for all three public clouds that resulted in
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targeted co-location with the victim VMs. Although the launch strategy
varied based on the cloud provider and their specific placement algorithm,
the resulting launch strategies were extremely cheap and sometimes in-
curred as low as 14 cents in some clouds. Second, we found that many
prior techniques to cheaply detect co-location no longer worked. We found
a new technique that uses a shared-memory bus performance side-channel
to detect co-location with victim VMs. We do this by just using victim
VM’s public interfaces (e.g. HTTP) even when they are part of a large
multi-tiered cloud application.

In summary, the answer to the question is no, achieving co-location
with a set of target victim VMs is practical as we demonstrated it on
three public clouds. Our results demonstrate that even though cloud
providers have massive datacenters with numerous physical servers, the
chances of co-location are far higher than expected. PaaS clouds are no
exception to these attacks. Counter-intuitive to conventional wisdom, it is
also extremely cheap to do the attack in live clouds.

(Q2) Are there unique opportunities for malicious users to exploit the lack of
performance isolation for monetary or performance gains?

After analyzing the cluster scheduler and its placement policy, we turned to
analyze the (lack of) performance isolation in Hypervisors that multiplex
multi-tenant VMs on the same machine. With a set of carefully designed
microbenchmarks that stresses different per-host resources like processor
cache, memory, network and disks, we showed that worst-case resource
contention between two VMs for any two resources can degrade perfor-
mance of one of the VMs by as high as 5×-6×. Understanding the extent
of resource contention, taking the perspective of a malicious and greedy
user, we set out to find ways to reduce this contention. We demonstrated
a new class of attacks called Resource-Freeing Attacks (RFAs) [168], where
the goal is to free up contention on a target resource that the attacker cares
about. RFAs achieve this by interfering with the victim’s performance by
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using their public interface to create a bottleneck on another resource that
victim relies on and thereby freeing up the target resource. This was based
on a simple observation that real-world workloads depend on more than
one hardware resource for its performance. We demonstrated this attack
on a realistic setting where a highly-loaded webserver (network-intensive)
degrades the performance of a cache-sensitive workload by approximately
5×. Using RFAs and our understanding on how CPU schedulers handle
an interactive and batch type workloads in VMs, we were able to reduce
contention and improve performance by 60% in this scenario. For moder-
ately cache-sensitive SPEC workloads, RFAs relieved contention by 66.5%,
which translated into 6% performance improvement in a live and busy
public cloud (Amazon EC2).

In summary, the answer to the question is yes, RFAs exploit lack of
isolation for performance gain, which may in turn be translated into mon-
etary gains as well. This work leads to two important conclusions: 1. in
the presence of performance heterogeneity in public clouds because of
interference (and hardware heterogeneity [61]), a simple and static pay-
per-hour pricing model hugely incentivizes attacks like RFAs, 2. RFAs
provide insight into design principle for resource schedulers – a purely
work-conserving schedulers make RFAs hugely profitable. Hence a hybrid
scheduler, where majority of the resources are reserved to VMs and only
a fraction of the free resources are distributed between active VMs, gets
the best of both worlds – efficiency via sharing and improved isolation for
security.

(Q3) Can isolation be improved for security without compromising the fruits of
efficiency via sharing?

In the second part of the dissertation, we sought to solve the problem of
improving isolation, particularly, to thwart Cross-VM side-channel attacks
that exploit lack of isolation for stealing secrets across the VM boundary.
We observed that all the prior works either had high-overhead or required
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specialized hardware and hence were hard to deploy in the wild. We also
observed that all the most effective Prime+Probe side-channels relied on
Hypervisor’s CPU scheduler allowing frequent cross-VM preemptions at
an interval as low as 16µs. This lead us to investigated the relationship
between CPU scheduling policies and side-channel efficacy. We showed
that a simple scheduler primitive called minimum runtime guarantee of
5ms ratelimited the dangerous cross-VM preemptions long enough such
that it was sufficient to thwart all known cross-VM attacks [166]. With
extensive performance evaluation we also showed that counter-intuitive to
conventional wisdom this change did not affect any latency sensitive work-
loads. Complementary to this protection mechanism for batch victims, we
also proactively designed a protective mechanism to avoid information
leakage from interactive victim VMs using a low-overhead state-cleansing
mechanism. Both of these mechanisms resulted in no overhead for the
average-case and negligible overhead of 7% in the worst-case. This was
possibly partly because of a smarter multi-core scheduler that avoided
scheduling interactive and batch style VMs on the same core.

In summary, the answer is yes, with soft-isolation we were able to get
best of both sharing and isolation by carefully scheduling VM interactions
with the hypervisor’s CPU scheduler.

9.2 Conclusion

Cross-VM co-location attacks still remain a problem in modern clouds
amidst deployment of advanced virtualization techniques that improve
isolation. This dissertation shows that public clouds need to be more
aggressive when it comes to isolation as arbitrary users have several tools
to achieve co-location and game schedulers because of lack of proper
isolation. It is also important to note that, it is not only the software
infrastructure that needs to be fixed to improve isolation, the design of
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machine architecture is also an equally significant player in providing
isolation across VMs. Apart from playing devil’s advocate against the
state of security in modern clouds, we also demonstrate that striving to
improve isolation without compromising on efficiency is also possible. At
this point, it should come as no surprise that, “the practice of multi-tenancy
in public clouds demands stronger isolation guarantees between multi-tenant
VMs in the presence of malicious users.”

9.3 Lessons Learned

Until this point of the dissertation, we presented a research endeavor that
was smooth, coherent with no failures similar to a bed of roses (with thorny
stems cut out). This is the section where we present the thorny stems that
we encountered. As often famously quoted Thomas Alva Edison’s saying
goes:

“I have not failed. I’ve just found 10,000 ways that
won’t work.”

– Thomas A. Edison

; we also record our failures here. Although it would be hard for Edison
to publish a paper with that attitude as it would be received by a whole-
hearted rejection from a modern conference program committee!

9.3.1 CPU Scheduling is Delicate

In the work on soft-isolation [166] we presented a simple modification
to the CPU scheduler for preventing some classes of side-channels. In
fact, the final proposal was a simple change in scheduler configuration as
the Minimum RunTime (MRT) scheduler primitive was already present
in both KVM (Linux CFS [126]) and Xen hypervisors [59]. Although it
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was introduced as a performance improvement of batch workloads, we
showed that it also had good security properties that prevented informa-
tion leakage via per-core shared state. Recall, under this MRT mechanism
a vCPU or a VM cannot be preempted until a minimum scheduled runtime
(denoted by the MRT value) is elapsed. Arriving at this relatively simple
proposal was not a easy as it was preceded by numerous failures in try-
ing to design a reasonably efficient CPU scheduler with the soft-isolation
principle.

In this work, the main challenge is to find the right balance between
preventing malicious side-channel workloads and affecting the perfor-
mance of legitimate interactive workloads. Here side-channel workloads
are highly preemptive (several orders higher, 10µsvs. 1ms) than legitimate
workloads.

We will describe the approach that eventually failed to performance as
expected, below. We designed a mechanism which involved adaptively
ratelimiting dangerous cross-VM preemptions at a fine-granularity and a
VM migration scheduler to balance preemptions across different cores in
the same host. We defined a preemption interval threshold called Leakage
Vulnerability Window (LVW) below which a cross-VM preemption is
vulnerable to information leakage. We also defined a threshold number
of cross-VM preemptions (migration threshold) above which a migration
is forced. The above two fine-grained and coarse-grained components of
the preemption scheduler are guided by these two thresholds. These two
mechanisms are described below:

• Balancing preemption across available cores. The idea here is instead of
limiting preemption, moving highly preemptive vCPUs (which are
scheduling units in a hypervisor’s CPU scheduler) across multiple
cores after the number of cross-VM preemptions exceed a threshold
(migration threshold). Here we assume that each VM belongs to
a different user and a preemption is potentially dangerous if it re-
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sults in a context switch between two vCPUs of two disparate VMs
(referred to as cross-VM preemption). This would limit the effect
of any targeted side-channel attack on a victim VM. Considering
moderns servers that at least have 8 to 16 cores with large shared
LLCs, intuitively this approach would only marginally affect any
legitimate latency sensitive workloads because of cache misses due
to vCPU migration. Surprisingly, macro benchmarks faired poorly
against the baseline with a nominal 1ms MRT. This is because of
the fact that VCPU migrations are cheap only when done rarely and
the cost of migration quickly became expensive for a moderately
interactive legitimate workload.

• Adaptive preemption ratelimiting. The above failure suggested us to
avoid frequent VM migration and we set out to design a fine-granular
mechanism to provide soft-isolation by ratelimiting cross-VM pre-
emptions. A straight-forward method would be use existing static
MRT mechanism, but we believed an adaptively ratelimiting mecha-
nism would further reduce overhead of a static MRT mechanism on
legitimate interactive workloads. The goal of such a mechanism is
to detect and penalize a highly preemptive VMs with higher MRT
values and thereby scheduling cross-VM preemptions as a resource.
There are several ways we can increase MRT value. One example
is an exponential back-off style increasing of MRT by doubling the
current MRT value if the VM indulges in frequent preemptions (i.e.
preemption interval < LVW).

We experimented with several variations of the above scheduler with
varying migration threshold and policies for learning the MRT value.
Here, a higher migration threshold trades off isolation for performance
by reducing the rate of vCPU migration. Similarly different policies for
learning dynamically learning MRT value decide how quickly or accu-
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rately the system arrives at an ideal MRT value for a VM. After extensive
experiments with microbenchmarks and real-world benchmarks we were
surprised to learn that the payoff from using the two level preemption
scheduler did not fair well against both the security and performance of
the simple static MRT mechanism.

We learned two crucial lessons in this experiment:

1. Designing schedulers or even adding minor modifications to them
without any regression is an art that is hard to get correct the first
time.

2. Absence of standard and extensive tests to identify any regression
made this even more difficult.

Apart from these lessons, we made two main observations on why this
research endeavor failed.

Current CPU schedulers are extremely complex. It would not be inap-
propriate to equate CPU scheduler design to dark magic. One of the main
lesson we learned from working with CPU schedulers is that intuition
often fails in predicting the actual outcome in a scheduler. When sched-
ulers work at very short time scales (tens of µs to tens of milliseconds),
it is almost impossible to simulate the outcome with just one’s intuition.
Only handful of people with extensive experience in designing schedulers
are sufficiently equipped to do this daunting task. This task of modify-
ing existing schedulers is further exacerbated by the complexity of the
state-of-the-art mature CPU schedulers. I took almost two months to get
a sufficient understanding of the Linux Completely Fair Scheduler [126].
There are numerous corner cases that specializes scheduling designs for
certain specific scenarios. To quantify the complexity of the scheduler
subsystem, we translated the logic into plain English by sifting through the
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source code of the scheduler1. It took 7 two column pages in plain English
to summarize the core scheduler logic [167]. This is not considering the
interactions of the scheduler with other subsystems. Frustrated by this
complexity, we switched to working with Xen hypervisor’s CPU sched-
uler, which was relatively very simple. Nevertheless, the above adaptive
cross-VM preemption scheduler did not perform well when implemented
in Xen relative to the existing static MRT mechanism.

Batch vs. interactive – a never ending tension. Systems community for
decades have been working on the problem of satisfying the complimen-
tary needs of both batch and interactive workloads [54, 142, 153, 176].
Batch workloads benefit from longer scheduler time slices and are highly
cache-sensitive. On the other hand, interactive workloads benefit from
quicker wakeups and in general are not highly sensitive cache-hotness
requiring shorter time slices.

Schedulers have tried to find the right balance between scheduling
these two classes of workloads. Sliding this delicate balance a little further
in either side adversely affects the performance of the other. Further, this
coarse classification of workloads is not accurate, making this balance
even more difficult. In this dissertation, we found that the security as-
pects of these schedulers make this balance trickier. The balancing batch
vs. interactive workload still remains as a hard problem when considering ad-
versarial workloads like side-channels. For example, Prime+Probe attackers
abuse properties of interactive workloads to preempt batch like victim
workloads frequently.

Identifying and separating these workload classes on separate cores in
a multi-core system might alleviate this problem. In fact, one of the sur-
prising revelations from the soft-isolation project [166] is that the existing
multi-core scheduler in Xen did a good job in separating batch and interac-

1Currently there is no single document that completely explains the Linux CFS
schedulers.
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tive workloads on different cores 2. This hugely reduced the negative effect
of longer MRT values on interactive workload’s wakeup latency. On the
other hand, consequently this separation has a negative effect on utiliza-
tion [42, 118]. Hence, balancing the batch and the interactive workloads
remain a never ending problem.

9.3.2 Security Starts at the Hardware

There were also several failed attempts that did not satisfy publication and
hence did not make it into this dissertation. We had instances were lack
of proper hardware support made it hard to design a secure and efficient
system on top of it.

For managing processor caches in software. One of the most difficult
resources to manage in the Operating System are memory bandwidth
and processor caches. An ardent reader might have noticed that this is
the same resource that is also a major source of performance interference
in virtualized environments (§ 6.2). The main reason for this is because
there are no hardware support to account and control usage of both these
resources. All prior work have worked around this problem either us-
ing paging to limit memory usage and page coloring to control cache
usage [103, 148, 157] or hardware performance counters to account and
CPU scheduling to control memory and cache usage [62, 63]. Both these
workarounds only give coarse control over the resources and limits the
extent to which software can effectively and efficiently manage them. This
demonstrates the requirement for two main recommendations for hard-
ware vendors: 1. accounting per task cache usage that enable monitoring
task responsible for particular misses (self or other), 2. mechanisms to
monitor, control memory bandwidth per task (and/or per core). It turns
out that recently (at the time of writing this dissertation), Intel’s newer

2It is not clear if this side-effect of the scheduler is intentional as we did not find any
discussion or comment stating any such goal in the scheduler source code
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generation processors (since Broadwell, 2015) provides hardware support
and interfaces to manage and allocate last-level caches [94, 95]. Although
there are still some limitations, it is a good first step in the right direction.
To the best of our knowledge, there is no known support for allocation
and management of the memory bandwidth.

Need for testing of hardware for security. When investigating various
mechanisms to detect co-location, we stumbled up on a peculiar microar-
chitecture design bug in x86 processors that enabled a malicious user to
degrade whole system performance by running a single instruction (refer
to § 5.2.3). This was because of naïve implementation of an atomic in-
struction, where in order to provide atomicity over an unaligned memory
address the hardware was designed to lock a globally shared memory
bus. Note that an atomic operation over an unaligned address is uncon-
ventional and almost never occurs in modern applications. Although that
may not stop an adversary from abusing these features for a malicious
intent. Unfortunately, even after this discovery of this vulnerability it is
surprisingly hard to detect these abuses efficiently in software.

The lesson we learn here is that security starts at the hardware and it is
hard to expect designers at every layer to be security conscious. But, it is
important to test the security aspects of these mechanisms (esp. hardware
vendors) as well as it is not unreasonable to suspect the presence of other
related side-channels that are waiting to be discovered and abused. In
addition, it is high time we also incorporate security testing in every layer
of the application stack.
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A
Appendix A

A.1 Modeling the Effects of MRTs

In this section we investigate a model that, while abstract, enables more
formal reasoning about the security offered by the MRT guarantee for
some classes of victims.

The model. Recall that in a preemption-driven side-channel attack, the
attacker must interleave execution on a CPU core with the victim in order
to frequently measure some shared resource such as CPU caches, branch
predictors, or the like. Consider the example pseudo-code procedures
in Figure A.1. The first includes a side-channel vulnerability because an
attacker can infer the value of the secret using based on inferring which
portions of a CPU data cache are accessed by a victim.

For either of the procedures, we can represent the side-channel leakage
as a sequence of actions by the victim and which the attacker seeks to
learn. Fix a finite alphabet of symbols Σ = {A,B,C, . . .}, each representing
a microarchitectual operation on state that is time-shared between the
attacker and victim. For example in Procedure1 the possible actions are
accesses to the table elements, e.g., A accessing the first element of F, B the
second element, and so on. In Procedure2, action A represents bringing
the memory footprint of function Fa into the I-cache and B represents
function Fb. An execution of the victim leads to a sequence of actions
S1,S2, . . . ,Sn for some number n and with Si ∈ Σ. The attacker’s goal is to



200

1 Procedure Procedure1(secret, ...):
2 Let secret1, ..., secretn be ⊂ secret
3 Let table[size] be any data array
4 for i← 1 to n do
5 F(table[secreti])

6 Procedure Procedure2(secret, ...):
7 Let secret1, ..., secretn be ⊂ secret
8 for i← 1 to n do
9 if secreti = x then

10 Fa(...)
11 if secreti = y then
12 Fb(...)

Algorithm A.1: Pseudo-code of two sample procedures that leaks control-
flow and data-access information. Procedure1 leaks data-access information
and Procedure2 leaks control-flow information.

reconstruct (a portion of) the secret by learning (a subset of) the sequence
of victim’s actions.

To model preemption-based side-channel attacks, we fix a schedule
of preemptions as well as a leakage model. For scheduling, we assume
the attacker can arrange for itself to make an observation before the first
state, at one of the first m states, at intervals of m states thereafter, and
after the final state. Letting O denote an observation, we can represent
a scheduling trace as a sequence such as S1,O,S2,S3,O,S4,S5,O, . . . (here
m = 2). The valuem is determined by the duration of victim operations
(how long each one takes before the next state is initiated) as well as the
scheduler’s MRT mechanism. We assume the attacker knows where in the
victim computation the preemption occurred (i.e., the index i of the state
just set by the victim before the preemption). The attacker can force the
victim to re-run (on the same input) repeatedly up to t times.

We consider the following model of leakage, which models shared
state such as caches as sticky. Each preemption by the attacker leaks to
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it all types of operations executed (states visited) by the victim since the
last observation, but not the order of the states visited or their number
of times each state is visited. So if states A,C,A,B are visited between
two observations the attacker learns {A,B,C}. This models many side-
channels due to shared state, such as caches, in which an operation affects
the shared state in a fixed way independent of the order of operations.
Note that this is generous to the attacker, in that known attacks do not
reveal a noise-free set of all states visited: operations or data may have
overlapping effects obfuscating which of the kinds of operations occurred.

Now consider the victim of the ZJRR attack, shown in Figure 7.5 from
Section 7.2. The attacker wants to extract code paths, distinguishing be-
tween 5 → 6 → 7 → 8 → 9 and 5 → 6. The former reflects a one bit in
the secret key, and involves square and reduce and multiply plus reduce
operations. For simplicity, we treat the two code paths as the types of
operations/states, so an execution is simply a sequence of values b1, . . . ,bn
over a binary alphabet.1 In ElGamal the secret key, and so this sequence
of states, is uniformly random.

Note that because we (conservatively) assume the attacker can schedule
preemptions subject only to the rate limit, and that the attacker can make
an observation before the first and after the last operation, which implies
the attacker can trivially learn the first and last m bits of the key. The
question is what can be learned about the remaining bits of the key, and
here we can take advantage of the sticky model. In particular, consider
for illustrative purposes a sequence of key bits b1,b2,b3,b4,b5. Suppose
thatm = 2, then the adversary can learn all of the bits via a sequence by
learning b1 via an observationO,b1,O,b2 · · · ,b7. From there the adversary
can perform a sliding window of size m = 2, learning each subsequent

1This is not quite without loss, since in fact the two code paths require differing
amounts of time, reflecting the timing side channel. Our focus is on access-driven side
channels, so we ignore this subtlety. Future refinements to the model to include different
timing of operations could address it.
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bit by knowledge of the previous bit and the side-channel which gives
whether both 0, 1 are observed in a window, just 0, or just 1.

However, as soon as m = 3 the adversary cannot always learn the
entire bit string. Consider observation schedule O,b1,b2,b3,O,b4. As
before, the adversary can use previous observations to learn b1 and b2,
but this observation will only leak b3 in the case that b1 = b2. Otherwise,
the second observation returns {0, 1} and the bit could be either value.
Likewise for observation schedule b1,b2,O,b3,b4,b5,O the value of b3 is
only learned if b4 = b5. Since bits are uniform, the probability that b3 is
not learnable is 1/4.

We can provide an upper bound for arbitrary 2 < m 6 n, as follows.
The attacker can always learn bits b1,b2 and bn−1,bn by way of the reason-
ing above. For simplicity we allow the attacker to in fact learn the firstm
bits and the lastm bits. If nom-bit substring is all zeros or all ones, then
the attacker can learn no further bits with certainty. By a (loose) union
bound, the probability that there exists anym-bit substring that is equal
to all zeros or all ones is at most 2(n −m)/2m. If we set m = 68, which
corresponds to the minimal value seen in experiments for n = 2048-bit
exponents when run in the attack setting with the 1msMRT (see Table 7.6),
then this probability is at most 2−56.

This argument is admittedly informal, but it provides intuition regard-
ing how one might show how the MRT guarantee can prevent attacks
(under some well-stated assumptions on the side-channel).
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