Overview
- simple formulas, open or closed systems
- formalize intuition
- useful for:
 - system capacity planning, computing measures
e.g., given X and R, compute N
 - verifying measured values
 - deriving new results & insights
- for open systems, assume: $X = \lambda$
 (i.e., λ is not too high; queues large enough)

Outline
- Forced Flow Law
- Little's Result
 - Basic result
 - Example applications
- Verifying System Measures

Forced Flow Law: $X_k = V_k X$

- X_k number of completions at node k
- V_k length of measurement interval
- $X = \lambda$

Forced Flow Law – Numerical Example

- $S_1 = 0.6$
- $S_2 = 0.5$
- $S_3 = 1 \text{ sec}$
- $\lambda = 1/\text{sec}$
- $X_1 = X_2 = X$
- $\lambda = 1.5/\text{sec}$
- $X_1 = X_2 = X$

Lecture 5, ABA: simple formula to detect infeasible λ
Forced Flow Law – Numerical Example

\[\lambda \]
\[X_1 \]
\[p=0.5 \]
\[S_2=1.5 \text{ sec} \]
\[1-p \]
\[S_3=1 \text{ sec} \]

\[S_1 = 0.6 \]
\[S_2 = 1.5 \text{ sec} \]
\[S_3 = 1 \text{ sec} \]

\[X \]

\[\lambda = \text{1/sec} \]
\[X_1 = \text{1/sec} \]
\[X_2 = \text{0.5/sec} \]
\[X = \text{1/sec} \]

\[(a) \lambda = \text{1/sec} \]
\[X_1 = \text{1/sec} \]
\[X_2 = \text{0.5/sec} \]
\[X = \text{1/sec} \]

\[(b) \lambda = \text{1.5/sec} \]
\[X_1 = \text{1.5/sec} \]
\[X_2 = \text{0.67/sec} \]
\[X = \text{1.42/sec} \]

\[X \]

\[\lambda \]
\[V_1 \]
\[P_{1,0} \]
\[X_1 \]
\[X_2 \]
\[X_3 \]

\[V_i = 5 \Rightarrow X_i = 5X \Rightarrow X = 0.2X_i \Rightarrow p_{1,0} = 0.2 \]

\[\text{Conversely,} \]
\[P_{1,0} = 0.2 \Rightarrow X = 0.2X_i \Rightarrow X_i = 5X \Rightarrow V_i = 5 \]

\[\text{i.e.,} \]
\[X = p_{1,0}X_1 \Rightarrow X_2 = (1/p_{1,0})X \text{ or } V_1 = 1/p_{1,0} \]

\[X \]

\[\lambda \]
\[X \]
\[V \]
\[p_{1,0} \]

\[X_2 = p_{1,2}X_1 \]
\[X_1 = p_{1,2}V_1 \]
\[X_2 = p_{1,2}V_1 \]

\[\text{More generally,} \]
\[X_i = \sum p_{i,j}X_j \text{ and } V_i = \sum p_{i,j}V_j \]

\[\text{e.g.,} \]
\[X_1 = X_0 + X_2 + X_3 \]
\[V_1 = 1 + V_2 + V_3 \]

\[X \]

\[\lambda \]
\[X_1 \]
\[X_2 \]
\[X_3 \]

\[\gamma = \text{accumulated customer-seconds in } [0,T] \]
\[= \text{area between the two curves} \]
\[R = \text{average residence time in the "system"} \]
\[N = \text{average number of customers in the "system"} \]

\[\gamma = \text{XR} \]

\[N = \text{XR} \]

\[C = \text{average customer arrival rate} \]

\[\gamma/C = \text{average throughput} \]

\[\text{holds for open or closed system} \]

\[\text{holds for open or closed system} \]
N = XR: Computing Measures

Application:
compute from NCSA O2K job trace:
X, average wait to run (W), average runtime (T)
use Little's result to estimate:
average number waiting to run = XW
average number waiting & running = X(W+T)
question: when are these estimates exact?

N = XR: Checking Measured Values

Application:
proxy server media caching policy simulation
average size of small files: 50 MB
large files: 500 MB
arrival rate of client requests: 15/min.
ratio of small to large requests: 1:4
file streaming rate = 4 Mbits/sec
total proxy disk bandwidth: 8 MBytes/sec
simulation result: hit rate = 0.33
average number of concurrent streams: 15/min×0.33×13.7 min

N = XR: types of applications

key types of applications:
compute measures, i.e.,
given two of the measures, compute the third
check the correctness of measured data
insight - e.g., SRPT scheduling minimizes N ⇒ min. R

Example: TCP Vegas

Algorithm for setting window (W)
- backlog = \(\frac{W}{RTT} \) (RTT - baseRTT)
- Slow Start: exit if backlog > \(\gamma \)
- every RTT in congestion avoidance:
 \[
 \begin{align*}
 W' &= W, \text{ if } \alpha < \text{backlog} < \beta \\
 W' &= W - W, \text{ if backlog} > \beta
 \end{align*}
 \]
(i.e., reduce W before loss occurs)

Summary

- Forced Flow Law, \(X_k = V_k X \)
 - \(x_k = \sum_{j=1}^{p} x_j \) and \(v_k = \sum_{j=1}^{p} v_j \)
- Little's Result, \(N = XR \)
- Key applications
 - System design & capacity planning
 - computing measures, deriving new insight
 e.g., \(V_1 = \frac{1}{p_0}, \) LRPT minimizes \(R \)
 - Checking the correctness of measured parameters

Questions?
CS 547: Next Steps

- Read LZGS, Chapter 5 for Wednesday
- Read LZGS, Chapter 6 for next Monday
- Homework #2 due 9/24
- keep up with reading & homeworks