Conditional Expectation

\[E[X|Y=y] = \sum_{i \in T} x_i p_{X|Y}(x_i|y) \text{ if } X \text{ is discrete} \]
\[E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \, dx \text{ if } X \text{ is continuous} \]

example:
\[Y = \text{job class} \in \{1, 2, \ldots, r\} \]
\[X = \text{job service time}, \quad f_{X|Y}(x|i) = \lambda_i e^{-\lambda_i x} \]
\[E[X | Y=i] = \frac{1}{\lambda_i} \]
also, \[E[X^2 | Y=i] = \frac{2}{\lambda_i^2} \]
Conditional Expectation

\[\bar{X}^{\text{Y}} = \sum E[X|Y = y] p_Y(y) \text{ if } Y \text{ is discrete} \]

\[\bar{X}^{\text{Y}} = \int E[X|Y = y] f_Y(y)dy \text{ if } Y \text{ is continuous} \]

Example: G/G/1 queue

\[N_a = \# \text{ customers in the queue at an arrival instant} \]

\[E[R] = E[R|N_a = n] P[N_a = n] \]

\[Z \sim \text{hyperexponential}(k,\{\alpha_i\},\{\lambda_i\}) \]

To compute \(E[Z] \), \(C_Z \):

\[f_Z(z) = \sum_{i=1}^{k} \alpha_i e^{-\lambda_i x} \]

\[F_Z(z) = \sum_{i=1}^{k} \alpha_i (1 - e^{-\lambda_i x}) \]

\(k \in \{1, 2, 3, \ldots\} \)

\(\alpha_i > 0 \), \(\lambda_i > 0 \), \(x > 0 \)

\(\alpha_1 + \alpha_2 + \cdots + \alpha_k = 1 \)

\(e.g., Z \sim \text{hyperexponential}(2, (0.95, 0.05), (1/10, 1/210)) \)

\(k=1: Z \sim \text{exponential}() \)

\(k>1: Z \) has a fatter tail than the exponential; (more variability)

\[Z \sim \text{hyperexponential}(k,\{\alpha_i\},\{\lambda_i\}) \]

To compute \(E[Z] \), \(C_Z \):

\[f_Z(z) = \sum_{i=1}^{k} \alpha_i e^{-\lambda_i x} \]

\[F_Z(z) = \sum_{i=1}^{k} \alpha_i (1 - e^{-\lambda_i x}) \]

\(Y \in \{1, 2, \ldots, k\} \)

\(p_Y(i) = \alpha_i, \alpha_i > 0, \)

\[Z = \alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_k X_k \]

\[F_Z(z) = \sum_{i=1}^{k} p_Y(i) P[Z \leq z] = \sum_{i=1}^{k} \alpha_i (1 - e^{-\lambda_i z}) \]

\[E[Z] = \sum_{i=1}^{k} p_Y(i) E[Z|Y=i] = \sum_{i=1}^{k} \frac{\alpha_i}{\lambda_i} \]

\(\text{"k-stage hyperexponential"} \)

\[Z \sim \text{hyperexponential}(k,\{\alpha_i\},\{\lambda_i\}) \]

To compute \(E[Z], C_Z \):

\[f_Z(z) = \sum_{i=1}^{k} \alpha_i e^{-\lambda_i x} \]

\[F_Z(z) = \sum_{i=1}^{k} \alpha_i (1 - e^{-\lambda_i x}) \]

\(Y \in \{1, 2, \ldots, k\} \)

\(p_Y(i) = \alpha_i, \alpha_i > 0, \)

\[Z = \alpha_1 X_1 + \alpha_2 X_2 + \cdots + \alpha_k X_k \]

\[F_Z(z) = \sum_{i=1}^{k} p_Y(i) P[Z \leq z] = \sum_{i=1}^{k} \alpha_i (1 - e^{-\lambda_i z}) \]

\[E[Z] = \sum_{i=1}^{k} p_Y(i) E[Z|Y=i] = \sum_{i=1}^{k} \frac{\alpha_i}{\lambda_i} \]

then

\[E[Z] = \sum_{i=1}^{k} p_Y(i) E[Z|Y=i] = \sum_{i=1}^{k} \frac{\alpha_i}{\lambda_i} \]

\(C_Z \geq 1 \) (model: cpu service times)
Workload Characterization

Goal: complete characterization
all parameters needed for synthetic workload
e.g., O2K jobs for scheduling
 - job interarrival time
 - requested number of processors
 - requested memory
 - requested runtime
 - actual runtime
 - actual memory usage

Workload Characterization

Goal: avoid mixture distributions
measure distribution for population &
during period where the distribution is stationary
e.g.,
 - job or request interarrival times during period when the arrival rate is constant
 - file popularity during one day (not during one month)
 - peer-to-peer sessions in Europe, North America
 - session duration for passive peers, active peers
 - time until first request, between requests, after last request
Workload Characterization

- goal: use conditional distributions to capture correlations between parameters
 - e.g., size of memory request per O2K job

- fractional of jobs requested memory (MB)
 - P = 2
 - P = 3–5
 - P = 9–32
 - P = 33–64

- number of processors

Fraction of jobs with memory requests (GB)

80-percentile, average, 50-percentile, 20-percentile

Workload Characterization

- goal: complete characterization
 - all parameters needed for synthetic workload
 - e.g., peer-to-peer system workload

- fraction of sessions that are passive
- session duration for passive peers
- active sessions:
 - number of requests
 - time until first request
 - time between requests
 - time after last request
 - request popularity

Workload Characterization

- complete characterization
 - e.g., peer-to-peer system workload
 - session duration for passive peers

- Fraction of Sessions with Duration > x
 - Europe
 - North America
 - Asia

Workload Characterization

- complete characterization
 - e.g., peer-to-peer system workload
 - Number of queries per active session

- Fraction of Sessions with #Queries > x
 - Europe
 - North America
 - Asia
Workload Characterization

- complete characterization
 - e.g., peer-to-peer system workload
 - Distribution of number of queries per session, peers in North America

![Graph showing the distribution of number of queries per session.](image)

Questions?