
Adaptive Routing in High-Radix Clos Network

John Kim, William J. Dally, Dennis Abts†

Stanford University †Cray Inc.
{jjk12, billd}@cva.stanford.edu dabts@cray.com

Abstract

Recent increases in the pin bandwidth of integrated-
circuits has motivated an increase in the degree or radix
of interconnection network routers. The folded-Clos net-
work can take advantage of these high-radix routers and
this paper investigates adaptive routing in such net-
works. We show that adaptive routing, if done prop-
erly, outperforms oblivious routing by providing lower
latency, lower latency variance, and higher throughput
with limited buffering. Adaptive routing is particularly
useful in load balancing around nonuniformities caused
by deterministically routed traffic or the presence of
faults in the network. We evaluate alternative allocation
algorithms used in adaptive routing and compare their
performance. The use of randomization in the alloca-
tion algorithms can simplify the implementation while
sacrificing minimal performance. The cost of adaptive
routing, in terms of router latency and area, is increased
in high-radix routers. We show that the use of imprecise
queue information reduces the implementation complex-
ity and precomputation of the allocations minimizes the
impact of adaptive routing on router latency.

1 Introduction

Interconnection networks are widely used to connect
processors and memories in multiprocessors [20, 21], as
switching fabrics for high-end routers and switches [9],
and for connecting I/O devices [19]. As performance of
processor and memory continue to increase in a mul-
tiprocessor computer system, the performance of the
interconnection network plays a central role in deter-
mining the overall performance of the system. The la-
tency and bandwidth of the network largely establish
the remote memory access latency and bandwidth.

Recent advances in signaling technology have greatly
increased the pin bandwidth available in a router chip.
This bandwidth is most effectively used to reduce la-
tency and cost by building high-radix routers — with

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.

SC2006 November 2006, Tampa, Florida, USA
0-7695-2700-0/06 $20.00 c©2006 IEEE

a large number of thin (modest bandwidth) ports —
rather than conventional routers — with a small num-
ber of fat (high bandwidth) ports [13].

With migration towards high-radix routers, the low-
radix topologies such as the k-ary n-cubes [7] are no
longer suitable. However, the folded-Clos [5] (or the
fat-tree [14]) is a topology that can take advantage of
high-radix routers. The Cray BlackWidow vector mul-
tiprocessor [20] uses radix-64 routers and implements a
modified folded-Clos network. In this paper, we eval-
uate adaptive routing on a high-radix folded-Clos net-
work and compare it to oblivious routing. We also eval-
uate different allocation algorithms that can be used in
adaptive routing.

The main contributions of this paper include:

• Proper adaptive routing in a folded-Clos network
reduces latency and provides less variance in the
distribution of packet latency – which ultimately
reduces the global synchronization time in a multi-
processor.

• We show how nonuniformities in the network traf-
fic can be created in a folded-Clos topology by the
presence of deterministic routing and faults in the
network. By routing adaptively around the nonuni-
formities, adaptive routing can “smooth out” the
traffic and provide significantly higher throughput
compared to oblivious routing.

• We compare different allocation algorithms that
can be used in adaptive routing on a high-radix
network and compare their performance. We in-
troduce randomization in the allocation algorithms
to simplify the routing decision with minimal loss
in performance.

• We evaluate the cost of implementing adaptive
routing in a high-radix router. To minimize the
implementation cost, we show how reduced preci-
sion simplifies the comparison logic and precompu-
tation of the allocations minimizes the impact the
on router pipeline delay.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide background and discuss related works
on topology and routing of a folded-Clos network. We
compare adaptive and oblivious routing on a high-radix
folded Clos in Section 3 and discuss the benefits of adap-
tive routing. We discuss different allocation algorithms
that can be used in adaptive routing in Section 4. A cost

comparison and techniques to reduce the implementa-
tion cost of adaptive routing is presented in Section 5.
Section 6 presents conclusion and future works.

2 Background and Related Works

2.1 Topology

A Clos network is a multi-stage non-blocking network
with an odd number of stages [5]. The network is equiv-
alent to two back-to-back butterfly networks — where
the last stage of the input network is fused with the first
stage of the output network. The input network can
route from any input to any middle-stage switch. The
output network can route from any middle-stage switch
to any output. A 5-stage Clos network with 8 nodes, us-
ing radix-2 routers, is shown in Figure 1(a). Because of
packaging constraints, a Clos network can be folded so
that the input network and output network share switch
modules. A folded-Clos network is sometimes called a
fat-tree [14]. The corresponding folded-Clos of the Clos
network shown in Figure 1(a) is shown in Figure 1(b).1

The folded-Clos topology has been used in various dif-
ferent networks including both circuit switching [5] and
packet switching [6,15] . Most folded Clos networks use
low-radix routers such as the CM-5 network which uses
radix-8 routers and the Cray XD1 which uses a radix-24
Mellanox [16] routers. By using high-radix routers in a
folded Clos network, the latency and the cost of the net-
work can be lowered [13]. The BlackWidow network [20]
takes advantage of high-radix router and implements a
modified high-radix folded Clos network.

2.2 Routing

For a given topology, an appropriate routing algorithm
is needed to load-balance the traffic and minimize the
latency. A routing algorithm can be classified as ei-
ther oblivious where the routing decisions are made ran-
domly or adaptive where the decisions are made based
on the network state (e.g. queue depths along the
route).

Routing a packet through a Clos network proceeds
in two phases: input and output.2 During the input
phase, a middle-stage switch is selected and the packet
is routed to that switch. For a folded-Clos topology,
the packet need not route all the way to the middle
stage but can stop as soon as a common ancestor of the
source and destination nodes is reached. Any middle-
stage switch (or common ancestor switch) can be se-

1The 5-stage folded-Clos requires radix-4 routers. However,
the middle stage routers are logically radix-2 routers. A radix-4
router can be partitioned into two radix-2 virtual routers [20] and
used in the middle stages.

2The input phase routing will be referred to as uprouting and
the output phase routing will be referred to as downrouting.

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

input network
output network

(a)

N6

N7

N4

N5

N2

N3

N0

N1

(b)

Figure 1: A block diagram of (a) Clos topology and (b)
folded Clos or a fat-tree topology. The channels in (a)
represent unidirectional channels while channels in (b)
represent bidirectional channels.

lected during the input phase. The selection may be
made using either oblivious or adaptive routing. Dur-
ing the output phase, the packet is routed from the se-
lected middle-stage switch (or common ancestor) to its
destination output port. This routing is deterministic
as there exists only a single path to the destination.

Both adaptive routing [15] and oblivious routing
[23] have been implemented in a folded-Clos topology.
Oblivious routing is simple to implement as each source
independently selects a random middle-stage switch for
each packet. Adaptive routing is more complex, requir-
ing a decision at each input-network router to select the
output port based on network state. Despite the higher
complexity, adaptive routing is often used as it gives
better performance.

Adaptive routing algorithms have been studied in
depth on the torus network [3, 22]. Because the torus
network contains non-minimal paths, the routing algo-
rithm can provide proper load-balancing by taking non-
minimal paths and lead to higher performance. How-
ever, a folded-Clos network has multiple paths between
a source and a destination with all of the paths being
minimal. Therefore, the difference between oblivious
routing and adaptive routing is not clear on this topol-
ogy.

Aydogan et al. showed that an adaptive routing pro-
vides better performance than oblivious routing on the
SP2 network [1]. However, their study was focused on a
low-radix routers and limited analysis was provided on
the benefits of adaptive routing over oblivious routing.

Petrini and Vanneschi [18] evaluated a family of fat-
trees and studied the benefits of virtual channels [8] with
adaptive routing but do not compare oblivious routing
with adaptive routing.

We extend these work by providing a better under-
standing on the difference between adaptive and obliv-
ious routing on a folded-Clos network. Because of the
complexity of implementing adaptive routing in a high-
radix router, we discuss different implementations and
compare their performance and implementation cost.

Many studies have been done with regard to the im-
pact of randomization. Mitzenmacher [17] studied the
impact of two choices in load balancing and Azar et
al. [2] studied balanced allocation and how it can be
applied to on-line load balancing. The uprouting in
folded-Clos network can also be viewed as an alloca-
tion problem since the packet can traverse using any
uplinks. Therefore, the routing needs to make an as-
signment of the outputs to the input ports. We apply
randomization to the different allocation algorithms and
show that most of the gain can be realized with only two
choices [2]. However, continuing to increase the number
of random samples can actually reduce the performance
in some allocation algorithm.

3 Adaptive vs. Oblivious routing

In this section, we compare adaptive and oblivious rout-
ing on a high-radix folded-Clos network and discuss the
benefits of adaptive routing. We show how adaptive
routing is particularly beneficial with limited buffering
and nonuniformities. We assume an ideal adaptive rout-
ing in this section using the sequential allocation algo-
rithm. The different allocation algorithms will be dis-
cussed in Section 4.

3.1 Benefits of Adaptive Routing in High-
radix Network

The goal of adaptive routing in a folded-Clos network is
to load balance across the different physical links during
the uprouting to the common ancestor. Efficient adap-
tive routing will minimize packet collisions that occur
when multiple packets request the same output. These
collisions will create congestion in the network and re-
sult in higher latency and lower throughput [11].

To evaluate the benefit of adaptive routing, we cal-
culate the ratio of network latency between adaptive
routing (Tadapt) and oblivious routing (Tob). Ratio of 1
represents no benefit of adaptive compared to oblivious
routing while a lower ratio represents a higher benefit of
adaptive routing. The odd number of stages in a folded-
Clos network can be expressed as 2x+1 where x > 0, x
stages in the uprouting of the folded-Clos that is routed
either adaptively or obliviously and x + 1 stages in the

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Number of stages

R
at

io
 o

f
la

te
n

cy
 b

et
w

ee
n

 a
d

ap
ti

ve

ro
u

ti
n

g
 t

o
 o

b
liv

io
u

s
ro

u
ti

n
g

theoretical ratio simulation

Figure 2: Ratio of latency using adaptive and oblivious
routing in a 4K node folded-Clos network as the number
of stages in the network is varied. For larger number of
stages, the radix of the router decreases and the smaller
ratio represents higher benefit of adaptive routing.

downrouting that must be routed deterministically. The
latency through the network can then be expressed as

Tob = (2x + 1)Qob

Tadapt = xQadapt + (x + 1)Qob

where Qob and Qadapt are the per router delay (including
the queuing delay and the router pipeline delay) of the
router that is routed oblivious and adaptively respec-
tively. At high offered loads where the queuing delay
dominates the total delay, Qadapt � Qob since adaptive
routing attempts to remove congestion and minimize
any queuing delay. Thus, the ratio Tadapt/Tob can be
simplified to x+1

2x+1 .
We plot this ratio in Figure 2 and the ratio from simu-

lations 3 of a 4K node folded-Clos network at an offered
load of 0.95. We vary the radix of the routers such that
with radix-128, only 3 stages (x=1) are required and
with radix-4, 23 stages (x=11) are needed.

The simulation and theoretical ratio follow the same
trend but the simulation ratio is higher because of
the various assumptions made in the analysis. There
is more benefit of adaptive routing as the number of
stages increases, resulting in up to 40% savings in la-
tency. High-radix networks have fewer stages but there
is still approximately 30% reduction in latency with
adaptive routing. This result and analysis assumed in-
finite buffers at each router but we show in the next
section that when buffering is limited or in the pres-
ence of nonuniformities, the benefit of adaptive routing
is much greater in a high-radix network.

3.2 Performance Evaluation

In this section, we provide additional simulation results
to compare adaptive and oblivious routing. We use a

3The simulation setup is described in Section 3.2

R0

P0 P1 P31

R1

P32 P33 P63

R31

P992 P993 P1024

R32 R33 R63

Figure 3: Block diagram of a 1K node high-radix
folded-Clos network with radix-64 routers. P0-P1023
represents the terminals, R0-R31 represents the first
level routers, and R32-R63 represents the second level
routers.

cycle-accurate simulator to evaluate the performance of
adaptive and oblivious routing in a folded Clos network.
We perform open-loop simulations [10] to evaluate the
network and assume that the system has enough latency
hiding so that the offered load is not affected by mes-
sage latency.4 We simulate a single-cycle input-queued
router and the packets are injected using a Bernoulli
process. The simulator is warmed up under load with-
out taking measurements until steady-state is reached.
Then a sample of injected packets are labeled during
a measurement interval. The sample size was chosen
such that the measurements are accurate to within 3%
with 99% confidence. The simulation is run until all
measurement packets are delivered.

The design of input-queued routers has been shown
to be problematic as the number of ports increase in
high-radix routers [13]. However, in order to generalize
the results, we use input-queued routers and provide
sufficient switch speedup so that the routers do not be-
come the bottleneck in the network. We use radix-64
routers and create a 3-stage folded Clos network with
1K nodes as shown in Figure 3. We evaluate the net-
work performance using the worst-case uniform random
(wc-UR) traffic pattern – each source sends traffic to a
random destination whose common ancestor is the root
of the network – as well as permutation traffic patterns.
The credit-based flow control is used between routers to
maintain the buffer information of downstream routers.
Since we are focusing on the routing of the network,
we assume only a single virtual channel [8] and use a
packet size of 1 flit. Longer packet sizes generally follow
the same trend in the comparison but when necessary
to clarify some of the results, we vary the packet size.

3.2.1 Infinite Buffers

The simulation results comparing adaptive and oblivi-
ous routing with infinite buffers is shown in Figure 4(a).

4As an example, the processors in the BlackWidow system [20]
can support thousands of outstanding global memory references
and provide latency hiding.

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

Offered load

L
a

te
n
c
y
 (

c
y
c
le

s
)

oblivious adaptive

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1
Offered load

L
a

te
n
c
y
 (

c
y
c
le

s
)

oblivious adaptive

(a) (b)

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
Offered load

L
a

te
n

c
y
 (

c
y
c
le

s
)

oblivious adaptive

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
Offered load

L
a

te
n
c
y
 (

c
y
c
le

s
)

oblivious adaptive

(c) (d)

Figure 4: Adaptive and oblivious routing comparison of
the latency vs. offered load in the folded Clos network
with (a) wc-UR traffic with infinite buffers (b) wc-UR
traffic with 16 buffers (c) bit reverse traffic pattern and
(d) bit complement traffic pattern.

The throughput is identical as both routing algorithms
achieve nearly 100% throughput with adaptive routing
resulting in lower latency at higher loads. For obliv-
ious routing, the middle stages are chosen randomly
– thus, with sufficient buffering, the expected or the
average load across all the outputs will be the same.
Thus, oblivious routing results in the same throughput
as adaptive routing with infinite buffers.

However, adaptive routing provides lower latency at
higher offered loads since the routing decisions are made
adaptively each cycle to load balance across the uplinks.
To illustrate the benefit of adaptive routing, we plot the
distribution of packet latency in Figure 5 for oblivious
and adaptive routing at an offered load of 0.9. The av-
erage latency of oblivious routing is approximately 38%
higher than adaptive. In addition, adaptive routing has
a tighter latency distribution with a standard devia-
tion that is 20% less than that of oblivious routing. As
a result, the poor instantaneous decisions of oblivious
routing lead to higher average latency and a larger la-
tency distribution of the packets compared to adaptive
routing. Reducing the variance in the packet latency is
significant as it will improve the global synchronization
time across the whole system.

Other traffic patterns such as bit reverse permuta-
tion [10] follows the same trend as the wc-UR traffic

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

0 10 20 30 40 50 60 70

Latency

N
u

m
b

e
r

o
f

p
a

c
k
e

ts

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

0 10 20 30 40 50 60 70

Latency
N

u
m

b
e

r
o
f

p
a

c
k
e

ts

(a) (b)

Figure 5: Latency distribution of packets with an offered
load of 0.9 with (a) oblivious routing and (b) adaptive
routing.

pattern (Figure 4(c)). With a congestion-free traffic
pattern [11] such as the bit complement permutation,
adaptive routing results in a constant delay regardless of
the offered load [1] while congestion increases latency at
higher offered load with oblivious routing (Figure 4(d)).

3.2.2 Finite Buffers

When buffering is limited, the throughput of oblivious
routing suffers compared to adaptive routing as shown
in Figure 4(b) when the input buffers are limited to 16
entries.5 Adaptive routing provides approximately 10%
higher throughput as oblivious routing does not consider
the state of network – i.e. the randomly selected output
maybe not be available because of lack of buffer space.

The poor instantaneous load-balancing of oblivious
routing can be shown by a snapshot of the buffer uti-
lization of the middle stage routers during simulation.
For each middle stage router, we plot the size of the
input buffer with the highest occupancy in Figure 6 at
an offered load of 0.8. The average queue utilization is
under 1 for both routing (0.78 for oblivious and 0.33 for
adaptive) but the distribution of the maximum queue
occupancy is different. With oblivious routing, some of
the buffers are filled to capacity (16 entries) and average
of the maximum buffer depth is approximately 5 entries.
In contrast, the average of the maximum buffer depth is
only 3 entries with adaptive routing and the maximum
value is only 7, or roughly 50% of the capacity. Be-
cause of this imbalance in buffer utilization, oblivious
routing results in not only higher latency but also lower
throughput with limited buffering.

3.2.3 Nonuniformity - Presence of Deterministic
Traffic

Additional benefits of adaptive routing can be observed
in the presence of nonuniformity. Because of the sym-

516 buffer entries are sufficient to cover the credit latency.

0

2

4

6

8

10

12

14

16

Routers in the middle stage of the network

M
a

x
im

u
m

 b
u

ff
e

r
s
iz

e

0

2

4

6

8

10

12

14

16

Routers in the middle stage of the network

M
a

x
im

u
m

 b
u

ff
e

r
s
iz

e

(a) (b)

Figure 6: A snapshot of the maximum buffer size of
the middle stage routers in a 1K node folded-Clos net-
work. The distribution is shown for (a) oblivious and
(b) adaptive routing at an offered load of 0.8 and the
buffer depth of the routers are 16 entries.

metry in the topology, nonuniformity can not be created
by the traffic pattern itself since the traffic can be dis-
tributed across all the middle stages.

The nonuniformity can result from deterministic rout-
ing being used in the network. In a shared-memory mul-
tiprocessor, it is often necessary to ensure ordering of
requests to a given cache-line memory address because
of the memory consistency model. Therefore, determin-
istic routing such as that used by the Cray BlackWidow
network [20], can be used to provide in-order delivery
of all request packets at a cache-line address granularity
for a source-destination pair. Since response packets in
the network do not require ordering they can be routed
by using either oblivious or adaptive routing. By tak-
ing into account the congestive state of the network,
adaptive routing avoids any nonuniformities that may
be introduced as a result of deterministic routing of the
request traffic. Oblivious routing does not take into
account these potential nonuniformities and may ran-
domly select an output port which has a substantial
amount of deterministic request traffic en route. In ef-
fect, the adaptive routing will “smooth out” any nonuni-
formities in the traffic pattern to load balance the set of
available links.

To illustrate this nonuniformity, we simulate a traffic
pattern where each node i sends traffic to (i+k) mod N
where k is the radix of the routers and N is the to-
tal number of nodes. Using this traffic pattern, 50%
of the traffic is routed using deterministic routing and
the remaining 50% of the traffic is routed either adap-
tively or obliviously. The simulation result is shown
in Figure 7(a). With oblivious routing, the through-
put is limited to under 70% but with adaptive routing,
100% throughput can be achieved. The deterministi-
cally routed traffic cause nonuniformities in the various
different middle stages as they need to route through
the same middle stage. Adaptive routing allows the

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
Offered load

L
a

te
n

c
y
 (

c
y
c
le

s
)

oblivious adaptive

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
Offered load

L
a

te
n

c
y
 (

c
y
c
le

s
)

oblivious adaptive

(a) (b)

Figure 7: Routing comparison with nonuniformity in
the traffic pattern. The latency vs. offered load com-
parison of adaptive and oblivious routing in the folded
Clos network is shown for when (a) half of the traffic
is routed using deterministic routing and (b) network
with faults.

other traffic to be routed around these nonuniformities
while oblivious routing can not avoid the nonuniformity,
leading to lower throughput.

3.2.4 Nonuniformity - Faults in the Network

Nonuniformity can also be created by oblivious routing
in the presence of faults in the network. An example
is shown in Figure 8. Assume that the downlink from
R4→R0 is faulty6 and we observe the wc-UR traffic gen-
erated from nodes connected to R1. Any traffic gener-
ated for R0 can not be routed through R4 since they can
not reach its destination, resulting in the traffic being
load balanced across the other three routers (R5-R7).
However, traffic destined for R2 and R3 will be equally
distributed across all four uplinks. As a result, the up-
link from R1→R4 will be underutilized while the other
three uplinks will be over utilized – limiting the through-
put of the network. To load balance appropriately, the
traffic for R2 and R3 should utilize the R1→R4 uplink
more so that the traffic is balanced.

To evaluate the impact of faults on adaptive and
oblivious routing, we simulate a faulty network with
the 1K network shown in Figure 3 with approximately
1.5% of the links between stage1 and stage2 routers (16
of the 1024 links) assumed to be faulty. The simulation
results on this network with the wc-UR traffic pattern
is shown in Figure 7(b). By load balancing appropri-
ately across the healthy links, adaptive routing leads to
approximately 2× improvement in throughput.7

6The corresponding uplink will also need to be disabled.
7In the simulation setup, we assumed 16 of the 32 links con-

nected to R32 and R33 of Figure 3 are faulty. Different simula-
tion setup will result in different amount of benefit using adaptive
routing.

R4

R0

P0 P1 P3P2

R1

P4 P5 P7P6

R2

P8 P9 P11P10

R3

P12 P13 P15P14

R5 R6 R7

Figure 8: Block diagram of a radix-8 3-stage folded-
Clos network with a fault. By using oblivious routing,
the uplinks to the middle stages are not load balanced.

4 Allocation Algorithms in Adap-
tive Routing

Adaptive routing in a folded-Clos requires an allocation
algorithm since the outputs (middle stages) need to be
appropriately assigned to the inputs. We discuss the
different allocation algorithms and compare their per-
formances in this section.

4.1 Algorithm Description

To load balance in a folded-Clos network, adaptive rout-
ing selects the middle stage with the least amount of
congestion – i.e. middle stage with the largest amount of
buffering available. Since simulation is done with input-
queued routers, credits from the downstream routers are
used to load-balance. Thus, middle stages with larger
credits (more buffer space) is preferred over those with
lower credits.

We evaluate the following four allocation algorithms.
Unless stated otherwise, ties (equal credit counts) are
broken randomly.

• sequential : Each input i makes its adaptive deci-
sion after inputs 0 through i−1 have made their de-
cisions and updated the state of the network. The
allocation algorithm assigns outputs to each input
one at a time, taking into account the previous al-
locations of this cycle. To provide fairness, starting
input is selected randomly each cycle.

• greedy : Each input adaptively selects an output
independently. As a result, each input does not
take into account the routing decisions made by
the other inputs in the same cycle.

• sequential r(n) : A randomized version of
sequential with n samples. Each input i selects
n random outputs and adaptively selects among
the n random outputs after inputs 0 through i − 1
have made their routing decision. When n = 1,
sequntial r(1) is similar to oblivious routing and

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Offerd load

L
a

te
n
c
y
 (

c
y
c
le

s
)

greedy greedy_r(2) sequential_r(2) sequential

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Offered load

L
a

te
n
c
y
 (

c
y
c
le

s
)

greedy greedy_r(2) sequential_r(2) sequential

(a) (b)

Figure 9: Adaptive routing comparisons with (a) infinite
buffers and (b) 16 buffers using wc-UR traffic pattern.

sequntial r(k) is similar to the sequential algo-
rithm where k is the radix of the router.

• greedy r(n) : A randomized version of greedy with
n samples. Each input selects n random outputs
and adaptively selects among them. greedy r(k) is
identical to greedy and greedy r(1) is identical to
oblivious routing.

In the sequential and the sequential r(n) allocation
algorithms, if multiple outputs have the same credit
count, the ties are broken randomly. However, if one
of the outputs with the same credit count has already
been selected by a previous input in the same cycle,
we provide priority to the other outputs. For exam-
ple, if four outputs {O0,O1,O2,O3} have a credit count
{2,2,2,3}, the first input (I0) would select O3. The credit
count for O3 would be decremented by 1, resulting in
a credit count of {2,2,2,2}. For the next input (I1), all
of the credits are equal and it can select any output
to load balance. However, since O3 has been selected
by another input, we provide preference to the other
three outputs (O0,O1,O2). Using this policy to break
ties simplifies the switch scheduling by not overloading
an output and reduces congestion.

4.2 Algorithm Comparison

We simulate the different allocation algorithms using
the simulation setup described in Section 3. For the
randomized allocation algorithms, we use n = 2. The
allocation algorithms are compared in Figure 9 using
the wc-UR traffic pattern. The results for other traffic
patterns follow the same trend.

With unlimited buffering, sequential provides the
best performance as it leads to the lowest latency (Fig-
ure 9(a)). The sequential r(2) performs comparable to
sequential but leads to slightly higher latency near sat-
uration (approximately 10% higher at an offered load of
0.95). The greedy r(2) also provides the same through-
put but leads to higher latency, approximately 60%

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150

Radix

S
a

tu
ra

ti
o

n
 t
h

ro
u

g
h

p
u

t

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150

Packet size (flits)

S
a

tu
ra

ti
o

n
 t

h
ro

u
g
h

p
u

t

(a) (b)

Figure 10: The impact on the saturation throughput as
(a) radix and (b) packet size is varied using the greedy
routing algorithm. Higher radix and smaller packet size
limits the throughput of the greedy algorithm.

higher at an offered load of 0.95.
The difference in latency between greedy r(2) and

sequential is minimized with limited buffering (Fig-
ure 9(b)). With unlimited buffers, greedy r(2) might
randomly select a bad output – i.e. an output which
have a lot of packets. However, with limited buffering,
if bad outputs are selected which correspond to outputs
that are full, the packet will be stalled and allocation
is re-attempted in the next cycle and can avoid the bad
outputs. Thus, the latency difference is less than 20%
at an offered load of 0.85 near saturation.

Regardless of the amount of buffering, the greedy al-
gorithm performs poorly as the throughput is limited
to under 60%. With the greedy algorithm, each input
makes its routing decision independent of the other in-
puts. Thus, the routing decision might be an optimal
local decision but could be a poor global decision in at-
tempting to load balance. To illustrate this behavior,
we use the same example from Section 4.1. If the credit
count was {2,2,2,3} for the four outputs {O0,O1,O2,O3}
and if a new packet arrives at all four inputs, all of the
inputs would select O3. This allocation would be an
optimal local decision for the four inputs but does not
globally load balance across all the outputs and leads
to a poor allocation. As a result, congestion is created
at an output and the poor allocation decision creates a
head-of-line blocking effect [12] and limits the through-
put of the router.

It is worth noting that the greedy algorithm is not
problematic with low-radix routers but becomes prob-
lematic with high-radix routers. The throughput of the
greedy algorithm is compared in Figure 10(a) on a 4K
network as the radix of the routers is varied between
radix-4 and radix-128 with a single flit packet. Lower
radix networks achieves almost 100% throughput but
the throughput drops to under 80% with radix-16 and
beyond radix-32, the throughput is under 60%. The
packet size also impacts the performance of greedy al-

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Offered load

P
ro

b
a

b
il

it
y

 o
f

2
 o

r
m

o
re

 i
n

p
u

ts
 w

it
h

p

a
c

k
e

t
a

rr
iv

a
ls

radix-64, 1flit pkt radix-8, 1flit pkt radix-64, 8flit pkt

Figure 11: Probability of two or more packets arriving
in the same cycle as the radix and the packet size is
varied.

gorithm as large packet size increases the throughput
(Figure 10(b)). Since the routing decision is made only
for the head flit of a packet, large packet size decreases
the probability of having 2 or more new packets arriv-
ing in the same cycle – reducing the chance of output
collision from the poor routing decision. In Figure 11,
we plot this probability as a function of offered load.
The probability approaches 1 very quickly for radix-64
router which explains the poor performance of high-
radix routers for the greedy algorithm using 1-flit pack-
ets. However, the probability gradually approaches 1 for
radix-8 router, With a packet size of 8-flits in a radix-
64 router, the probability is reduced and behaves very
similar to a radix-8 router with 1-flit packets. Thus, it
is essentially the ratio between the radix and the packet
length that determines the performance of greedy algo-
rithm.

To evaluate the impact of the parameter n, we
vary n in the randomized allocation algorithms
(sequential r(n) and greedy r(n)) and plot the latency
at an offered load of 0.9 in Figure 12. When n = 1, the
randomized allocation algorithms are identical to obliv-
ious routing since only 1 randomly selected output is
used. As n increases from 1 to 2, there is approximately
10% reduction in latency for greedy r(n). However, as n
is increased further, the latency increases significantly
and is beyond the scale of the plot. As n approaches
32, the allocation algorithm behaves like greedy and
the network is no longer stable as the offered load of
0.9 exceeds the throughput.8 Similar to greedy r(1),
sequential r(1) behaves identical to oblivious routing.
By increase n from 1 to 2, there is over 20% reduction
in latency with sequential r(1). However, increasing
n from 2 to 32 results in less than 10% reduction in
latency. Thus, most of the performance gain can be
achieved by using only two samples.

8Although radix-64 routers is used in the simulation, only 32
output selections are possible in routing upstream in the folded-
Clos. Thus, the maximum size of n is 32.

sequential

10

12

14

16

18

20

0 10 20 30
Number of random choices (n)

L
a

te
n
c
y
 (

c
y
c
le

s
)

greedy_r(n) sequential_r(n)

Figure 12: Randomized adaptive allocation algorithm
comparison as n is varied for sequential r(n) and
greedy r(n). The lower bound of the algorithm is shown
by the sequential line.

Collect
requests and
network state

Allocation Result distribution/
Update network

state

Routing Delay

Figure 13: Timeline of delay in adaptive routing in a
high-radix folded-Clos network.

The randomized algorithm were implemented assum-
ing that the random choices are not necessarily unique
- e.g. for sequential r(2), the two randomly selected
outputs can be the same output. Simulations show that
the uniqueness of the random choices has minimal im-
pact on the latency of the allocation algorithm. As a
result, sequential r(32) latency is slightly higher than
the sequential but by less than 1%.

5 Cost Analysis

Although adaptive routing provides performance ben-
efits, the cost of implementation complexity, in terms
of router latency and area, need to be considered. For
deterministic routing or source routing where only bit
manipulation is required or oblivious routing where only
a random number needs to be generated, the routing
pipeline delay will be minimal. However, earlier work
showed that introducing adaptive routing can increase
the complexity and the cycle time of a router [4]. The
larger number of ports in a high-radix router can fur-
ther increase the routing complexity. For example, the
YARC router requires 4 clock cycles for the routing de-
cision [20].

A timeline of adaptive routing in a high-radix network
is shown in Figure 13. The three main components to
the latency of adaptive routing in high-radix routers are
the following:

1. Collecting the network state (e.g. availability of the

outputs and the output credit information) as well
as requests from each input.

2. Allocation based on the network state and the re-
quests.

3. Updating the network state and distributing the
outputs assigned to each input.

In this section, we provide a qualitative comparison
of the different adaptive allocation algorithms discussed
in Section 4.1. Then, we evaluate two different tech-
niques that reduce the complexity of adaptive routing
in a high-radix folded-Clos network. By using imprecise
queue information, the complexity of the route alloca-
tion can be reduced. The precomputation of the alloca-
tions can effectively hide the router latency of adaptive
routing. We evaluate their impact on performance and
show that there is minimal performance loss. The use
of imprecision can be used for all four of the algorithms
but the precomputation can only be used for greedy and
greedy r(n) algorithm since they are distributed algo-
rithms.

5.1 Algorithm Cost Comparison

Among the adaptive algorithms discussed in Section 4.1,
sequential requires a centralized routing structure that
collects all of the requests, performs the allocation, and
distribute the results. The complexity of such routing
structure grows as O(k2) and becomes prohibitively ex-
pensive to implement. The sequential r(n) routing al-
gorithm, even with n = 2, still requires a central routing
structure since each input is routed sequentially.

The greedy algorithm does not require a centralized
structure as the routing logic can be duplicated at each
input and be distributed. However, the routing algo-
rithm still requires the distribution of the output in-
formation to all of the inputs. In addition, the com-
parison logic at each input needs to compare all the
outputs, requiring a significant amount of logic. The
greedy r(n) algorithm can simplify the implementation
as only n comparisons need to be made. Simulation
earlier showed that n = 2 performs well – thus, only a
single comparison is needed.

5.2 Precision in Adaptive Routing

The buffer depth (credits) is used to load-balance prop-
erly in adaptive routing and results so far assumed that
the full information was available – i.e. the exact buffer
depth was available from the credits. For a buffer with q
entries, log2q bits are needed to obtain the exact buffer
information. However, log2q bit comparators can be
costly with the larger number of ports in a high-radix

number
of bits

Description

0 no buffer depth information used
– only whether an output is avail-
able or not

1 only the MSB is used
2 two MSBs is used
3 three MSBs is used
4 full buffer information is used

Table 1: Different values of precisions used to evalu-
ate the impact of precision in adaptive routing. Buffer
depth of 16 entries is assumed.

0

5

10

15

20

25

oblivious 0bit 1bit 2bits 3bits 4bits

Precision of Buffer Depth

L
a
te

n
c
y
 (

c
y
c
le

s
)

0

5

10

15

20

25

30

35

40

oblivious 0bit 1bit 2bits 3bits 4bits

Precision of Buffer Depth

L
a
te

n
c
y
 (

c
y
c
le

s
)

(a) (b)

Figure 14: Latency comparsion near saturation for net-
work simulations with wc-UR traffic using (a) 1 flit
packets and (b) 10 flit packets as the precision of al-
location is varied . The network shown in Figure 3 was
used for the simulations.

router. As a result, the YARC router only uses 1 or 2
bits of information to make its adaptive decision [20].9

Table 1 describes the different values of precisions
that are used to evaluate the impact of the precision.
We assume a buffer depth of 16 and use the sequential
algorithm in our evaluation. Using 0 bits of information
corresponds to an allocation which does not consider
the queue depth but considers only whether an output
is available or not.10 An output is not available if an-
other input with a multi-flit packet is transmitting to
the output or if the downstream buffer is full. By using
only the most significant bit (MSB), the adaptive infor-
mation will be used to differentiate whether the buffer
has more or less than 8 entries. By using 2 bits, the
buffer information is defined in granularity of 4 entries
– e.g. 00 corresponds to less than 4 entries, 01 corre-
sponds to 4 or more entries but less than 8 entries, and
so forth. Using 3 bits results in a finer granularity and
4 bits allows the exact queue information to be used.

9The routing decision at the input buffers of YARC use 1 bit
to select the row buffer and 2 bits are used to select the output
within the column.

10This adaptive allocation is similar to the adaptive routing
used in CM-5 [15].

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
Offered load

L
a

te
n
c
y
 (

c
y
c
le

s
)

0bits 1bits 2bits 3bits 4bits

Figure 15: Impact of precision with nonuniform traffic
pattern.

We plot the latency near saturation throughput as
the precision is varied in Figure 14. With single flit
packets, there is a significant difference between obliv-
ious and adaptive routing but only a small difference
between any of the different precision schemes – the
difference between 0 bits and 4 bits is less than 10%
(Figure 14(a)). With longer packets, the precision has
more significant impact on the latency as 4 bits of pre-
cision can reduce the latency by over 60%, compared to
using 0 bits (Figure 14(b)). However, by using only 2
or 3 bits of precision, the latency can still be reduced
by over 40% compared to using 0 bits.

For the uniform traffic patterns, the throughput is
very similar regardless of the precision used and differ-
ence in latency near saturation was compared. How-
ever, with the nonuniformity such as the one discussed
in Section 3.2.4, the different precision results in differ-
ent throughput as shown in Figure 15. Using 0 bit of
information still outperforms oblivious routing (see Fig-
ure 7(b)) but results in approximately 15% reduction in
throughput, compared to using all 4 bits. By using only
2 bits of precision, the difference can be reduce by half
and 3 bits of precision performs nearly identical to using
all 4 bits of precision.

5.3 Precomputation

To reduce the impact of adaptive routing on the router
latency, the allocation can be precomputed. By using
the queue information in the previous cycle, the routing
decision can be precomputed and be available when a
new packet arrives. The precomputation of allocations
can be utilized with minimal loss in performance for the
following reasons.

• The queue depth will change minimally from cycle
to cycle.

• When full precision is not used, the change in the
credit will have minimal impact – e.g. if only the 2
bits are used for adaptive decisions, the change in
the lower 2 bits will have minimal impact.

10

20

30

40

50

0.3 0.35 0.4 0.45 0.5 0.55 0.6
Offered load

L
a

te
n
c
y
 (

c
y
c
le

s
)

precompute2 precompute1 no precomputation

Figure 16: Performance comparison with the use of pre-
computation.

• With the use of randomization, even if some of the
data is stale, it might not impact the results.

The performance comparison with precomputation is
shown in Figure 16 using greedy r(2) algorithm. We
compare the performance without precomputation to
precompute1, where the output is calculated in the pre-
vious cycle, and precompute2 where the output is cal-
culated in 2 cycle advance. The comparison is shown
for the nonuniform traffic from Section 3.2.4 with a 10
flit packets using only 2 bits of precision. Both pre-
compute1 and precompute2 perform comparable to no
precomputation, with precompute2 resulting in approx-
imately 10% higher latency near saturation. With min-
imal loss in performance, precompute2 will allow an ex-
tra cycle to distribute the routing information – further
minimizing the impact of wires and reduce the router
pipeline delay as the routing results can be computed
in advance.

6 Conclusion and Future Work

A folded-Clos network is a topology that exploits the
recent developments in high-radix routers to reduce the
latency and the cost of the network. In this paper, we
evaluate adaptive routing on a high-radix folded-Clos
network and compare it to oblivious routing. We show
that appropriate adaptive routing lowers latency and
provides less variance in the packet latency compared
to oblivious routing. With limited buffering, adaptive
routing achieves better buffer utilization and results in
higher throughput. Nonuniformity can be created in
the folded-Clos topology with the presence of determin-
istically routed traffic and faults in the network. In the
presence of such nonuniformity, adaptive routing pro-
vides significant advantages as it will “smooth out” the
traffic and provide higher throughput.

We propose different allocation algorithms that can
be used for adaptive routing and compare their perfor-
mances. The sequential algorithm provides the best
performance but is expensive to implement. By using

randomization with the greedy r(2) algorithm, we show
that the implementation can be simplified with minimal
performance loss. We show that the implementation
complexity can be further reduced by using imprecise
queue information and the latency of adaptive routing
can be hidden by precomputing the adaptive routing re-
sults in a previous cycle.

The migration toward high-radix networks open other
opportunities for future work. Adaptive routing has
been shown to provide better buffer utilization in this
paper. However, it still remains to be seen what is the
most effective way to partition the buffers available –
e.g. partition the buffers into virtual channels, shared
buffering scheme, etc. In addition, an appropriate flow
control for high-radix networks needs to be evaluated.
The diameter of the network is reduced with high-radix
routers and it remains to be seen how this impacts the
flow control.

Acknowledgments

The authors would like to thank the anonymous review-
ers for their insightful comments. This work has been
supported in part by New Technology Endeavors, Inc.
through DARPA subcontract CR03-C-0002 under U.S.
government Prime Contract Number NBCH3039003.

References

[1] Y. Aydogan, C. B. Stunkel, C. Aykanat, and B. Abali.
Adaptive source routing in multistage interconnection
networks. In IPPS ’96: Proceedings of the 10th Interna-
tional Parallel Processing Symposium, pages 258–267,
Honolulu, HW, 1996. IEEE Computer Society.

[2] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced allocations. SIAM Journal on Computing,
29(1):180–200, 2000.

[3] R. V. Boppana and S. Chalasani. A Comparison of
Adaptive Wormhole Routing Algorithms. In Proc. of
the International Symposium on Computer Architecture
(ISCA), pages 351–360, San Diego, California, 1993.

[4] A. A. Chien. A cost and speed model for k-ary n-cube
wormhole routers. IEEE Transactions on Parallel and
Distributed Systems, 9(2):150–162, 1998.

[5] C. Clos. A Study of Non-Blocking Switching Net-
works. The Bell System technical Journal, 32(2):406–
424, March 1953.

[6] Cray XD1. http://www.cray.com/xd1.
[7] W. J. Dally. Performance Analysis of k-ary n-cube In-

terconnection Networks. IEEE Transactions on Com-
puters, 39(6):775–785, 1990.

[8] W. J. Dally. Virtual-channel Flow Control. IEEE
Transactions on Parallel and Distributed Systems,
3(2):194–205, 1992.

[9] W. J. Dally, P. Carvey, and L. Dennison. Architecture
of the Avici terabit switch/router. In Proceedings of
Hot Interconnects Symposium VI, August 1998, pages
41–50, 1998.

[10] W. J. Dally and B. Towles. Principles and Practices
of Interconnection Networks. Morgan Kaufmann, San
Francisco, CA, 2004.

[11] S. Heller. Congestion-Free Routing on the CM-5 Data
Router. In Parallel Computer Routing and Communi-
cation Workshop, pages 176–184, Seattle, WA, 1994.

[12] M. J. Karol, M. G. Hluchyj, and S. P. Morgan.
Input versus Output Queueing on a Space-division
Packet Switch. IEEE Transactions on Communica-
tions, COM-35(12):1347–1356, 1987.

[13] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta.
Microarchitecture of a high-radix router. In Proc. of
the International Symposium on Computer Architecture
(ISCA), pages 420–431, Madison, WI, June 2005.

[14] C. Leiserson. Fat-trees: Universal networks for hard-
ware efficient supercomputing. IEEE Transactions on
Computer, C-34(10):892–901, October 1985.

[15] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R.
Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis,
B. C. Kuszmaul, M. A. S. Pierre, D. S. Wells, M. C.
Wong-Chan, S.-W. Yang, and R. Zak. The Network Ar-
chitecture of the Connection Machine CM-5. J. Parallel
Distrib. Comput., 33(2):145–158, 1996.

[16] Mellanox. http://www.mellanox.com/.
[17] M. Mitzenmacher. The power of two choices in random-

ized load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1094–1104, 2001.

[18] F. Petrini and M. Vanneschi. k -ary n -trees: High
performance networks for massively parallel architec-
tures. In IPPS ’97: Proceedings of the 11th Inter-
national Symposium on Parallel Processing, page 87,
Geneva, Switzerland, 1997. IEEE Computer Society.

[19] G. Pfister. An Introduction to the InfiniBand Architec-
ture (http://www.infinibandta.org). IEEE Press, 2001.

[20] S. Scott, D. Abts, J. Kim, and W. J. Dally. The
BlackWidow High-radix Clos Network. In Proc. of
the International Symposium on Computer Architecture
(ISCA), pages 16–28, Boston, MA, June 2006.

[21] S. Scott and G. Thorson. The Cray T3E Network:
Adaptive Routing in a High Performance 3D Torus.
In Hot Chips 4, Stanford, CA, Aug. 1996.

[22] A. Singh. Load-Balanced Routing in Interconnection
Networks. PhD thesis, Stanford University, 2005.

[23] C. B. Stunkel, D. G. Shea, B. Aball, M. G. Atkins, C. A.
Bender, D. G. Grice, P. Hochschild, D. J. Joseph, B. J.
Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and
P. R. Varker. The SP2 High-performance Switch. IBM
Syst. J., 34(2):185–204, 1995.

